
Hoare Logic for Quantum Programs

Mingsheng Ying

University of Technology, Sydney
and

Tsinghua University

SamsonFest, May 28-30,2013

Abramsky Conjecture:
For every n > 2, every n−partite entangled state is logically non-local

Happy Birthday, Samson!

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Quantum Programming

I Quantum Random Access Machine (QRAM) model

I A set of conventions for writing quantum pseudocode

E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los
Alamos National Laboratory, 1996.

Quantum Programming

I Quantum Random Access Machine (QRAM) model
I A set of conventions for writing quantum pseudocode

E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los
Alamos National Laboratory, 1996.

Quantum Programming Languages

I qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

I QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

I QPL: functional in nature, with high-level features (loops,
recursive procedures, structured data types) [3]

[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

I qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

I QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

I QPL: functional in nature, with high-level features (loops,
recursive procedures, structured data types) [3]

[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

I qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

I QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

I QPL: functional in nature, with high-level features (loops,
recursive procedures, structured data types) [3]

[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

I Scaffold: Quantum programming language (Princeton, UCS,
UCSB) [1]

I Quipper: A Scalable Quantum Programming Language [2]

[1] A. J. Abhari, et al., Scaffold: Quantum Programming Language,
Technical Report, Department of Computer Science, Princeton
University, 2012.
[2] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron,
Quipper: A Scalable Quantum Programming Language, PLDI, 2013.

Quantum Programming Languages

I Scaffold: Quantum programming language (Princeton, UCS,
UCSB) [1]

I Quipper: A Scalable Quantum Programming Language [2]

[1] A. J. Abhari, et al., Scaffold: Quantum Programming Language,
Technical Report, Department of Computer Science, Princeton
University, 2012.
[2] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron,
Quipper: A Scalable Quantum Programming Language, PLDI, 2013.

Floyd-Hoare Logic for Quantum Programs

[1] O. Brunet and P. Jorrand, Dynamic quantum logic for quantum
programs, International Journal of Quantum Information, 2(2004)
[2] A. Baltag and S. Smets, LQP: the dynamic logic of quantum
information, Mathematical Structures in Computer Science, 16(2006)
[3] Y. Kakutani, A logic for formal verification of quantum programs,
Proceedings of 13th Asian conference on Advances in Computer Science,
2009

[4] M. S. Ying, TOPLAS 39(2011), art. no. 19
[4’] M. S. Ying, arXiv (quant-ph): 0906.4586

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Syntax
A “core”language for imperative quantum programming

I A countably infinite set Var of quantum variables

I Two basic data types: Boolean, integer

Syntax
A “core”language for imperative quantum programming

I A countably infinite set Var of quantum variables
I Two basic data types: Boolean, integer

Syntax, Continued

Hilbert spaces denoted by Boolean and integer:

HBoolean = H2,

Hinteger = H∞.

Space l2 of square summable sequences

H∞ = {
∞

∑
n=−∞

αn|n〉 : αn ∈ C for all n ∈ Z and
∞

∑
n=−∞

|αn|2 < ∞},

where Z is the set of integers.

Syntax, Continued

A quantum register is a finite sequence of distinct quantum variables.

State space of a quantum register q = q1, ..., qn:

Hq =
n⊗

i=1

Hqi .

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register

I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register
I U in the statement “q := Uq”is a unitary operator onHq

I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register
I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register
I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q

I S = {Sm} is a set of quantum programs such that each outcome m
of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register
I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register
I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)
I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state

of quantum variables
I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)

I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state
of quantum variables

I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)
I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state

of quantum variables

I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)
I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state

of quantum variables
I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)
I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state

of quantum variables
I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Operational Semantics

(Skip) 〈skip, ρ〉 → 〈E, ρ〉

(Initialization)
〈q := 0, ρ〉 → 〈E, ρ

q
0〉

I type(q) = Boolean:

ρ
q
0 = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

I type(q) = integer:

ρ
q
0 =

∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|

Operational Semantics

(Skip) 〈skip, ρ〉 → 〈E, ρ〉

(Initialization)
〈q := 0, ρ〉 → 〈E, ρ

q
0〉

I type(q) = Boolean:

ρ
q
0 = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

I type(q) = integer:

ρ
q
0 =

∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|

Operational Semantics, Continued

(Unitary Transformation) 〈q := Uq, ρ〉 → 〈E, UρU†〉

(Sequential Composition)
〈S1, ρ〉 → 〈S′1, ρ′〉

〈S1; S2, ρ〉 → 〈S′1; S2, ρ′〉

Convention : E; S2 = S2.

(Measurement)
〈measure M[q] : S, ρ〉 → 〈Sm, MmρM†

m〉

for each outcome m

Operational Semantics, Continued

(Loop 0)
〈while M[q] = 1 do S, ρ〉 → 〈E, M0ρM†

0〉

(Loop 1)
〈while M[q] = 1 do S, ρ〉 → 〈S; while M[q] = 1 do S, M1ρM†

1〉

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Definition

Semantic function of quantum program S:

~S� : D−(Hall)→ D−(Hall)

is defined by

~S�(ρ) = ∑{|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|}

for all ρ ∈ D−(Hall).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.

2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.

2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.
2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.
2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.

4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.
2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).

5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†
m).

6. ~while M[q] = 1 do S�(ρ) =
∨∞

n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.
2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).

6. ~while M[q] = 1 do S�(ρ) =
∨∞

n=0~(while M[q] = 1 do S)n�(ρ).

Representation of Semantic Function

1. ~skip�(ρ) = ρ.
2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).

Notation

(while M[q] = 1 do S)0 = Ω,

(while M[q] = 1 do S)n+1 = measure M[q] : S,

where:
I Ω is a program such that ~Ω� = 0Hall

for all ρ ∈ D(H)

I S = S0, S1,

I

S0 = skip,

S1 = S; (while M[q] = 1 do S)n

for all n ≥ 0.

Notation

(while M[q] = 1 do S)0 = Ω,

(while M[q] = 1 do S)n+1 = measure M[q] : S,

where:
I Ω is a program such that ~Ω� = 0Hall

for all ρ ∈ D(H)

I S = S0, S1,

I

S0 = skip,

S1 = S; (while M[q] = 1 do S)n

for all n ≥ 0.

Notation

(while M[q] = 1 do S)0 = Ω,

(while M[q] = 1 do S)n+1 = measure M[q] : S,

where:
I Ω is a program such that ~Ω� = 0Hall

for all ρ ∈ D(H)

I S = S0, S1,
I

S0 = skip,

S1 = S; (while M[q] = 1 do S)n

for all n ≥ 0.

Recursion

~while�(ρ) = M0ρM†
0 + ~while�(~S�(M1ρM†

1))

for all ρ ∈ D−(Hall), where:

I while is the quantum loop “while M[q] = 1 do S”.

Observation:

tr(~S�(ρ)) ≤ tr(ρ)

for any quantum program S and all ρ ∈ D−(Hall).

I tr(ρ)− tr(~S�(ρ)) is the probability that program S diverges
from input state ρ.

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Definition

E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

I For any X ⊆ Var, a quantum predicate onHX is a Hermitian
operator P:

0HX v P v IHX .

I P(HX) denotes the set of quantum predicates onHX.

I For any ρ ∈ D−(HX), tr(Pρ) stands for the probability that
predicate P is satisfied in state ρ.

Definition

E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

I For any X ⊆ Var, a quantum predicate onHX is a Hermitian
operator P:

0HX v P v IHX .

I P(HX) denotes the set of quantum predicates onHX.

I For any ρ ∈ D−(HX), tr(Pρ) stands for the probability that
predicate P is satisfied in state ρ.

Definition

E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

I For any X ⊆ Var, a quantum predicate onHX is a Hermitian
operator P:

0HX v P v IHX .

I P(HX) denotes the set of quantum predicates onHX.

I For any ρ ∈ D−(HX), tr(Pρ) stands for the probability that
predicate P is satisfied in state ρ.

Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}S{Q}

where:
I S is a quantum program

I P and Q are quantum predicates onHall.
I Operator P is called the precondition and Q the postcondition.

Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates onHall.

I Operator P is called the precondition and Q the postcondition.

Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates onHall.
I Operator P is called the precondition and Q the postcondition.

Definition

1. The correctness formula {P}S{Q} is true in the sense of total
correctness, written

|=tot {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ))

for all ρ ∈ D−(Hall).

2. The correctness formula {P}S{Q} is true in the sense of partial
correctness, written

|=par {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ)) + [tr(ρ)− tr(~S�(ρ))]

for all ρ ∈ D−(Hall).

Definition

1. The correctness formula {P}S{Q} is true in the sense of total
correctness, written

|=tot {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ))

for all ρ ∈ D−(Hall).
2. The correctness formula {P}S{Q} is true in the sense of partial

correctness, written
|=par {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ)) + [tr(ρ)− tr(~S�(ρ))]

for all ρ ∈ D−(Hall).

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Proof System PD for Partial Correctness

(Axiom Skip) {P}Skip{P}

(Axiom Initialization)
type(q) = Boolean :

{|0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|}q := 0{P}

type(q) = integer :

{
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|}q := 0{P}

(Axiom Unitary Transformation) {U†PU}q := Uq{P}

Proof System PD for Partial Correctness, Continued

(Rule Sequential Composition)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule Measurement)
{Pm}Sm{Q} for all m

{∑m M†
mPmMm}measure M[q] : S{Q}

(Rule Loop Partial)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Order)
P v P′ {P′}S{Q′} Q′ v Q

{P}S{Q}

Soundness Theorem for PD

Proof system PD is sound for partial correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

`PD {P}S{Q} implies |=par {P}S{Q}.

Completeness Theorem for PD

Proof system PD is complete for partial correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

|=par {P}S{Q} implies `PD {P}S{Q}.

Proof System TD for Total Correctness

Let P ∈ P(Hall) and ε > 0. A function

t : D−(Hall)→N

is called a (P, ε)−bound function of quantum loop:

while M[q] = 1 do S

if:
1. t(~S�(M1ρM†

1)) ≤ t(ρ);

2. tr(Pρ) ≥ ε implies t(~S�(M1ρM†
1)) < t(ρ)

for all ρ ∈ D−(Hall).

Proof System TD for Total Correctness

Let P ∈ P(Hall) and ε > 0. A function

t : D−(Hall)→N

is called a (P, ε)−bound function of quantum loop:

while M[q] = 1 do S

if:
1. t(~S�(M1ρM†

1)) ≤ t(ρ);

2. tr(Pρ) ≥ ε implies t(~S�(M1ρM†
1)) < t(ρ)

for all ρ ∈ D−(Hall).

Proof System TD for Total Correctness

Proof System TD = (Proof System PD− Rule Loop Partial)
+ Rule Loop Total

Rule: Total Correctness for Loop

(Rule Loop Total)

(1) {Q}S{M†
0PM0 + M†

1QM1}
(2) for any ε > 0, tε is a (M†

1QM1, ε)− bound
function of loop while M[q] = 1 do S

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

Proof System TD for Total Correctness

Proof System TD = (Proof System PD− Rule Loop Partial)
+ Rule Loop Total

Rule: Total Correctness for Loop

(Rule Loop Total)

(1) {Q}S{M†
0PM0 + M†

1QM1}
(2) for any ε > 0, tε is a (M†

1QM1, ε)− bound
function of loop while M[q] = 1 do S

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

Soundness Theorem for TD

Proof system TD is sound for total correctness of quantum programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

`TD {P}S{Q} implies |=tot {P}S{Q}.

Completeness Theorem

The proof system TD is complete for total correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

|=tot {P}S{Q} implies `TD {P}S{Q}.

Proof Outline
I Claim: `PD {wlp.S.Q}S{Q} for any quantum program S and

quantum predicate P ∈ P(Hall).

Induction on the structure of S.

I Example case: S = while M[q] = 1 do S′.

wp.while.Q = M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1.

Our aim is to derive:

{M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1}while{Q}.

Proof Outline
I Claim: `PD {wlp.S.Q}S{Q} for any quantum program S and

quantum predicate P ∈ P(Hall).

Induction on the structure of S.

I Example case: S = while M[q] = 1 do S′.

wp.while.Q = M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1.

Our aim is to derive:

{M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1}while{Q}.

Proof Outline, Continued

I Induction hypothesis on S′:

{wp.S′.(wp.while.Q)}S{wp.while.Q}.

I Rule Loop Total: It suffices to show that for any ε > 0, there
exists a (M†

1(wp.S′. (wp.S.Q))M1, ε)−bound function of quantum
loop while.

I Bound Function Lemma: We only need to prove:

lim
n→∞

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ)) = 0.

Proof Outline, Continued

I Induction hypothesis on S′:

{wp.S′.(wp.while.Q)}S{wp.while.Q}.

I Rule Loop Total: It suffices to show that for any ε > 0, there
exists a (M†

1(wp.S′. (wp.S.Q))M1, ε)−bound function of quantum
loop while.

I Bound Function Lemma: We only need to prove:

lim
n→∞

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ)) = 0.

Proof Outline, Continued

I Induction hypothesis on S′:

{wp.S′.(wp.while.Q)}S{wp.while.Q}.

I Rule Loop Total: It suffices to show that for any ε > 0, there
exists a (M†

1(wp.S′. (wp.S.Q))M1, ε)−bound function of quantum
loop while.

I Bound Function Lemma: We only need to prove:

lim
n→∞

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ)) = 0.

Proof Outline, Continued

We observe:

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ))

= tr(wp.S′.(wp.while.Q)M1(~S′� ◦ E1)
n(ρ)M†

1)

= tr(wp.while.Q~S′�(M1(~S′� ◦ E1)
n(ρ)M†

1))

= tr(wp.while.Q(~S′� ◦ E1)
n+1(ρ))

= tr(Q~while�(~S′� ◦ E1)
n+1(ρ))

=
∞

∑
k=n+1

tr(Q[E0 ◦ (~S′� ◦ E1)
k](ρ)).

Proof Outline, Continued

We consider the infinite series of nonnegative real numbers:

∞

∑
n=0

tr(Q[E0 ◦ (~S′� ◦ E1)
k](ρ)) = tr(Q

∞

∑
n=0

[E0 ◦ (~S′� ◦ E1)
k](ρ)).

Since Q v IHall , it follows that

tr(Q
∞

∑
n=0

[E0 ◦ (~S′� ◦ E1)
k](ρ)) = tr(Q~while�(ρ))

≤ tr(~while�(ρ)) ≤ tr(ρ) ≤ 1.

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Conclusion

Hoare logic for deterministic quantum programs!

I Classical control flow⇒ quantum control flow?

Thank You!

	Introduction
	Syntax of Quantum Programs
	Operational Semantics
	Denotational Semantics
	Correctness Formulas
	Proof System for Quantum Programs
	Conclusion

