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Abramsky Conjecture:
For every n > 2, every n—partite entangled state is logically non-local



Happy Birthday, Samson!
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Quantum Programming

» Quantum Random Access Machine (QRAM) model

E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los
Alamos National Laboratory, 1996.
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» Quantum Random Access Machine (QRAM) model
» A set of conventions for writing quantum pseudocode

E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los
Alamos National Laboratory, 1996.



Quantum Programming Languages

» qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

[1]]. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.

[2] B. Omer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.

[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)



Quantum Programming Languages

» qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

» QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

[1]]. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.

[2] B. Omer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.

[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)



Quantum Programming Languages

» qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

» QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

» QPL: functional in nature, with high-level features (loops,
recursive procedures, structured data types) [3]

[1]]. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.

[2] B. Omer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.

[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)



Quantum Programming Languages

» Scaffold: Quantum programming language (Princeton, UCS,
UCSB) [1]

[1] A.]. Abhari, et al., Scaffold: Quantum Programming Language,
Technical Report, Department of Computer Science, Princeton
University, 2012.

[2] A.S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron,
Quipper: A Scalable Quantum Programming Language, PLDI, 2013.
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Syntax
A “core”language for imperative quantum programming

» A countably infinite set Var of quantum variables



Syntax
A “core”language for imperative quantum programming
» A countably infinite set Var of quantum variables

» Two basic data types: Boolean, integer



Syntax, Continued

Hilbert spaces denoted by Boolean and integer:

HBoolean = 7‘[2,
Hinteger = Hoo.
Space I, of square summable sequences
Heo = Z ay|n) :a, € Cforalln € Z and Z |1Xn|2 < oo},

n=—oo n=—oo

where Z is the set of integers.



Syntax, Continued

A quantum register is a finite sequence of distinct quantum variables.

State space of a quantum register § = g, ..., u:

Hy = ® Hy,
i=1



Syntax, Continued

Quantum extension of classical while-programs:

Su=skip|q:=0]|7:=Uq|S1;S, | measure M[q] : S
| while M[g] =1do S

» gisa quantum variable and § a quantum register
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Syntax, Continued

Quantum extension of classical while-programs:

Su=skip|q:=0]|7:=Uq|S1;S, | measure M[q] : S
| while M[g] =1do S

» gisa quantum variable and § a quantum register

v

U in the statement “g := Uq”is a unitary operator on Hz

v

statement measure:
» M = {M,,} is a measurement on the state space Hgofg
» S = {S} is a set of quantum programs such that each outcome m
of measurement M corresponds to Sy,

v

statement while: M = {My, M } is a yes-no measurement on H;
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Notation

» A quantum configuration is a pair

(S,p)

> Sis a quantum program or E (the empty program)

» p € D~ (H,y) is a partial density operator on H,;; — (global) state
of quantum variables

» Tensor product of the state spaces of all quantum variables:

Han = Q) H,
all g

» Transitions between configurations:

(S,0) = (8',p")



Operational Semantics

(Skip)

(skip, 0) — (E,p)

(Initialization)

» type(q) = Boolean:

Pg = |0)4(0]p[0)4(0] + [0)4(1]0[1)4(0|



Operational Semantics

(Skip)

(skip, 0) — (E,p)

(Initialization)

» type(q) = Boolean:
04 = 10)4(00]0)4(0[ + [0)4(1]p|1)4(0]

> type(q) = integer:

06 = Z 10)4(1]p|1)4(0|

n=—oo



Operational Semantics, Continued

(Unitary Transformation =
v ) G Une) - (U

(§1,0) = (S1,0")
(51;52,0) = (51;S2,0")

(Sequential Composition)

Convention : E; S, = 55.

(Measurement )

(measure M[q] : S, 0) — (Sm, MmoM?,)

for each outcome m



Operational Semantics, Continued

(Loop 0)

(while M[g] = 1do S,p) — (E,MopM{)

(Loop 1)

(while M[g] = 1do S,p) — (S; while M[g] = 1 do S, M;pMI)
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Denotational Semantics



Definition
Semantic function of quantum program S:

[S1: D~ (Han) = D~ (Han)
is defined by

[S1(p) = Y _{le" : (S,p) =" (E, ")}
forallp € D~ (Hap)-



Representation of Semantic Function

1. [skipl(p) = p.
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Representation of Semantic Function

1. [skipl(p) =
2. > type(q) = Boolean:
19 = 01(0) = [0)4(01p[0) (0] + [0} {1lp[1)4 (0]
type(q) = integer:
_Z |0)q(nlpn)4(0].
3. I3 := Uqll(p) = UpU".
4. [S1;S21(0) = [S20(IS11(p))-

5. [measure M[q] : ST(p) = ¥, [Sm1(MmpM?,).
6. [while M[g] =1 do Sl(p) = V5ol (while M[g] =1 do S)"1(p).
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Notation

(while M[g] =1doS)° = O,
(while M[g] = 1 do S)"*! = measure M([j] : S,
where:
> ()is a program such that [()] = 04, forall p € D(H)
> g = SO/ S]/

>

So = skip,
S1 = S; (while M[g] =1do S)"

foralln > 0.



Recursion

[while]|(p) = MopM{ + [while] ([ST(M;1pM?))
forall p € D~ (H,y), where:

» while is the quantum loop “while M[g] =1 do S”.



Observation:

#(IS1(0) < tr(p)
for any quantum program S and all p € D™ (H,y).

» tr(p) — tr([ST(p)) is the probability that program S diverges
from input state p.
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Correctness Formulas



Definition

E. D’'Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

» For any X C Var, a quantum predicate on Hy is a Hermitian
operator P:
091y E P E Iy
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Definition

E. D’'Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

» For any X C Var, a quantum predicate on Hy is a Hermitian
operator P:
091y E P E Iy

» P(Hx) denotes the set of quantum predicates on Hy.

» For any p € D~ (Hx), tr(Pp) stands for the probability that
predicate P is satisfied in state p.
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where:

» S is a quantum program



Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}s{Q}

where:
» S is a quantum program
» P and Q are quantum predicates on H.



Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}s{Q}

where:
» S is a quantum program
» P and Q are quantum predicates on H.
» Operator P is called the precondition and Q the postcondition.



Definition

1. The correctness formula {P}S{Q} is true in the sense of total
correctness, written

‘:tot {P}S{Q}’
if
tr(Pp) < tr(QISI(p))
forall p € D~ (Hay)-



Definition

1. The correctness formula {P}S{Q} is true in the sense of total
correctness, written

Fot {P}S{Q},
if
tr(Pp) < tr(QISI(p))
forall p € D~ (Hay)-
2. The correctness formula {P}S{Q} is true in the sense of partial

correctness, written
':par {P}S{Q}/
if
tr(Pp) < tr(QISI(p)) + [tr(p) — tr([S1(p))]
forallp € D~ (Huy).
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Proof System for Quantum Programs



Proof System PD for Partial Correctness

(Axiom Skip) {P}Skip{P}

(Axiom Initialization)
type(q) = Boolean :

{10)4{0[P[0)4 (O] + [1)4{0[P|0)¢(1[ }q := O{P}

type(q) = integer :

{Z [1)(0[P[0)q(n|}q := O{P}

n=—oo

(Axiom Unitary Transformation) {utpu}g := Ug{pr}



Proof System PD for Partial Correctness, Continued

{P}51{Q} {Q}S:{R}
{P}51;S2{R}

(Rule Sequential Composition)

{P;,}Sm{Q} for all m
(Rule Measurement) {¥ M}, PuM,, }measure M[q] : S{Q}
» {Q}S{M}PMy + MIQM, }
(Rule Loop Partial) {M}PM, + MTQM, }while M[g] = 1 do S{P}
(Rule Order) PP {P}S{Q} QLCQ

{Pys{Q}



Soundness Theorem for PD

Proof system PD is sound for partial correctness of quantum
programs.

» For any quantum program S and quantum predicates
P,Q € P(Ha), we have:

Fpp {P}S{Q} implies =par {P}S{Q}.



Completeness Theorem for PD

Proof system PD is complete for partial correctness of quantum
programs.

» For any quantum program S and quantum predicates
P,Q € P(Ha), we have:

|:par {P}S{Q} implies Fpp {P}S{Q}.



Proof System TD for Total Correctness

Let P € P(H,y) and € > 0. A function
t: D" (Ha) = N
is called a (P, ) —bound function of quantum loop:
while M[g] =1do S
if:
L. t(IS1(M1pMY)) < t(p);

forallp € D~ (Hap)-



Proof System TD for Total Correctness

Let P € P(H,y) and € > 0. A function
t: D" (Ha) = N
is called a (P, ) —bound function of quantum loop:
while M[g] =1do S
if:
L. t(IS1(M1pMY)) < t(p);

2. tr(Pp) > € implies t([ST(M1oM})) < t(p)
forallp € D~ (Hap)-



Proof System TD for Total Correctness

Proof System TD = (Proof System PD — Rule Loop Partial)
+ Rule Loop Total



Proof System TD for Total Correctness

Proof System TD = (Proof System PD — Rule Loop Partial)
+ Rule Loop Total

Rule: Total Correctness for Loop

(1) {Q}S{M{PMo + M{QM }
(2) for any € > 0, t. isa (MiQMj, €) — bound
function of loop while M[g] =1do S

Rule Loop Total
(Rule Loop Totel)(31£5M, + M{QM; Jwhile M| — 1 do S{P}




Soundness Theorem for TD

Proof system TD is sound for total correctness of quantum programs.

» For any quantum program S and quantum predicates
P,Q € P(Ha), we have:

Frp {P}S{Q} implies ot {P}S{Q}.



Completeness Theorem

The proof system TD is complete for total correctness of quantum
programs.

» For any quantum program S and quantum predicates
P,Q € P(Ha), we have:

Fiot {P}S{Q} implies rp {P}S{Q}.



Proof Outline

» Claim: Fpp {wlp.S5.Q}S{Q} for any quantum program S and
quantum predicate P € P(Hy).

Induction on the structure of S.

wp.while.Q = M{QMy + M1 (wp.S.(wp.while.Q) ) M.

Our aim is to derive:

{M{QMy + M (wp.S.(wp.while.Q))M; }while{Q}.



Proof Outline
» Claim: Fpp {wlp.S5.Q}S{Q} for any quantum program S and
quantum predicate P € P(Hy).
Induction on the structure of S.
» Example case: S = while M[g] =1do S

wp.while.Q = M{QMy + M1 (wp.S.(wp.while.Q) ) M.

Our aim is to derive:

{M{QMy + M (wp.S.(wp.while.Q))M; }while{Q}.



Proof Outline, Continued

» Induction hypothesis on §':

{wp.S'.(wp.while.Q) } S{wp.while.Q}.



Proof Outline, Continued

» Induction hypothesis on S':
{wp.S'.(wp.while.Q) }S{wp.while.Q}.

» Rule Loop Total: It suffices to show that for any € > 0, there
exists a (M} (wp.S'. (wp.S.Q))M;, €)—bound function of quantum
loop while.



Proof Outline, Continued

» Induction hypothesis on S':
{wp.S'.(wp.while.Q) }S{wp.while.Q}.

» Rule Loop Total: It suffices to show that for any € > 0, there
exists a (M} (wp.S'. (wp.S.Q))M;, €)—bound function of quantum
loop while.

» Bound Function Lemma: We only need to prove:

lim tr(M} (wp.S'.(wp.while.Q) )M ([S'1 0 £1)"(p)) = 0.



Proof Outline, Continued

We observe:

tr(M1 (wp.S'.(wp.while.Q))M; ([S'T 0 £1)"(p))
= tr(wp.S.(wp.while.Q)M; ([S'] o &) (0)M?)
= tr(wp.while.QIS'T(M; (IS o &)™ (0)M}))
= tr(wp.while.Q([S'] 0 &) (p))
= tr(QIwhile]([S'] o £1)"*(p))
2 tr(Q[Eo o (IS 0 £1)¥](p)).

k=n+1



Proof Outline, Continued

We consider the infinite series of nonnegative real numbers:

ztr Ql€s o (1510 £)5(0)) = 1(Q Y (€0 (15T 0 &)1 (0))-
n=0

Since Q E Iy, it follows that

agk

tr(Q Y [€oo ([T 0 €1)"](p)) = tr(Qlwhilel(p))

n=0

< tr([while]/(p)) < tr(p) < 1.
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Conclusion



Conclusion

Hoare logic for deterministic quantum programs!

» Classical control flow = quantum control flow?



Thank You!
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