Hoare Logic for Quantum Programs

Mingsheng Ying
University of Technology, Sydney
and
Tsinghua University

SamsonFest, May 28-30,2013

Abramsky Conjecture:

For every $n>2$, every n-partite entangled state is logically non-local

Happy Birthday, Samson!

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics
Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics
Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Quantum Programming

- Quantum Random Access Machine (QRAM) model
E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los Alamos National Laboratory, 1996.

Quantum Programming

- Quantum Random Access Machine (QRAM) model
- A set of conventions for writing quantum pseudocode
E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los Alamos National Laboratory, 1996.

Quantum Programming Languages

- qGCL: quantum extension of Dijkstra's Guarded Command Language [1]
[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

- qGCL: quantum extension of Dijkstra's Guarded Command Language [1]
- QCL: high-level, architecture independent, with a syntax derived from classical procedural languages like C or Pascal [2]
[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

- qGCL: quantum extension of Dijkstra's Guarded Command Language [1]
- QCL: high-level, architecture independent, with a syntax derived from classical procedural languages like C or Pascal [2]
- QPL: functional in nature, with high-level features (loops, recursive procedures, structured data types) [3]
[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science, 14(2004)

Quantum Programming Languages

- Scaffold: Quantum programming language (Princeton, UCS, UCSB) [1]
[1] A. J. Abhari, et al., Scaffold: Quantum Programming Language, Technical Report, Department of Computer Science, Princeton University, 2012.
[2] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron, Quipper: A Scalable Quantum Programming Language, PLDI, 2013.

Quantum Programming Languages

- Scaffold: Quantum programming language (Princeton, UCS, UCSB) [1]
- Quipper: A Scalable Quantum Programming Language [2]
[1] A. J. Abhari, et al., Scaffold: Quantum Programming Language, Technical Report, Department of Computer Science, Princeton University, 2012.
[2] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron, Quipper: A Scalable Quantum Programming Language, PLDI, 2013.

Floyd-Hoare Logic for Quantum Programs

[1] O. Brunet and P. Jorrand, Dynamic quantum logic for quantum programs, International Journal of Quantum Information, 2(2004) [2] A. Baltag and S. Smets, LQP: the dynamic logic of quantum information, Mathematical Structures in Computer Science, 16(2006) [3] Y. Kakutani, A logic for formal verification of quantum programs, Proceedings of 13th Asian conference on Advances in Computer Science, 2009
[4] M. S. Ying, TOPLAS 39(2011), art. no. 19
[4’] M. S. Ying, arXiv (quant-ph): 0906.4586

Outline

Introduction

Syntax of Quantum Programs

Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Syntax
A "core"language for imperative quantum programming

- A countably infinite set Var of quantum variables

Syntax
A "core"language for imperative quantum programming

- A countably infinite set Var of quantum variables
- Two basic data types: Boolean, integer

Syntax, Continued

Hilbert spaces denoted by Boolean and integer:

$$
\begin{aligned}
& \mathcal{H}_{\text {Boolean }}=\mathcal{H}_{2} \\
& \mathcal{H}_{\text {integer }}=\mathcal{H}_{\infty}
\end{aligned}
$$

Space l_{2} of square summable sequences

$$
\mathcal{H}_{\infty}=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle: \alpha_{n} \in \mathbb{C} \text { for all } n \in \mathbb{Z} \text { and } \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty\right\},
$$

where \mathbb{Z} is the set of integers.

Syntax, Continued

A quantum register is a finite sequence of distinct quantum variables.
State space of a quantum register $\bar{q}=q_{1}, \ldots, q_{n}$:

$$
\mathcal{H}_{\bar{q}}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}} .
$$

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
S::=\text { skip } \mid & q:=0|\bar{q}:=U \bar{q}| S_{1} ; S_{2} \mid \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
& S::=\text { skip }|q:=0| \bar{q}:=U \bar{q}\left|S_{1} ; S_{2}\right| \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register
- U in the statement " $\bar{q}:=U \bar{q}$ "is a unitary operator on $\mathcal{H}_{\bar{q}}$

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
& S::=\text { skip }|q:=0| \bar{q}:=U \bar{q}\left|S_{1} ; S_{2}\right| \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register
- U in the statement " $\bar{q}:=U \bar{q}$ "is a unitary operator on $\mathcal{H}_{\bar{q}}$
- statement measure:

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
S::=\text { skip } \mid & q:=0|\bar{q}:=U \bar{q}| S_{1} ; S_{2} \mid \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register
- U in the statement " $\bar{q}:=U \bar{q}$ "is a unitary operator on $\mathcal{H}_{\bar{q}}$
- statement measure:
- $M=\left\{M_{m}\right\}$ is a measurement on the state space $\mathcal{H}_{\bar{q}}$ of \bar{q}

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
S::=\text { skip } \mid & q:=0|\bar{q}:=U \bar{q}| S_{1} ; S_{2} \mid \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register
- U in the statement " $\bar{q}:=U \bar{q}$ "is a unitary operator on $\mathcal{H}_{\bar{q}}$
- statement measure:
- $M=\left\{M_{m}\right\}$ is a measurement on the state space $\mathcal{H}_{\bar{q}}$ of \bar{q}
- $S=\left\{S_{m}\right\}$ is a set of quantum programs such that each outcome m of measurement M corresponds to S_{m}

Syntax, Continued

Quantum extension of classical while-programs:

$$
\begin{aligned}
& S::=\text { skip }|q:=0| \bar{q}:=U \bar{q}\left|S_{1} ; S_{2}\right| \text { measure } M[\bar{q}]: \bar{S} \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

- q is a quantum variable and \bar{q} a quantum register
- U in the statement " $\bar{q}:=U \bar{q}$ "is a unitary operator on $\mathcal{H}_{\bar{q}}$
- statement measure:
- $M=\left\{M_{m}\right\}$ is a measurement on the state space $\mathcal{H}_{\bar{q}}$ of \bar{q}
- $S=\left\{S_{m}\right\}$ is a set of quantum programs such that each outcome m of measurement M corresponds to S_{m}
- statement while: $M=\left\{M_{0}, M_{1}\right\}$ is a yes-no measurement on $\mathcal{H}_{\bar{q}}$

Outline

Introduction
 Syntax of Quantum Programs

Operational Semantics
Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Notation

- A quantum configuration is a pair

$$
\langle S, \rho\rangle
$$

Notation

- A quantum configuration is a pair

$$
\langle S, \rho\rangle
$$

- S is a quantum program or E (the empty program)

Notation

- A quantum configuration is a pair

$$
\langle S, \rho\rangle
$$

- S is a quantum program or E (the empty program)
- $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$ is a partial density operator on $\mathcal{H}_{\text {all }}$ - (global) state of quantum variables

Notation

- A quantum configuration is a pair

$$
\langle S, \rho\rangle
$$

- S is a quantum program or E (the empty program)
- $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$ is a partial density operator on $\mathcal{H}_{\text {all }}$ - (global) state of quantum variables
- Tensor product of the state spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{\text {all } q} \mathcal{H}_{q}
$$

Notation

- A quantum configuration is a pair

$$
\langle S, \rho\rangle
$$

- S is a quantum program or E (the empty program)
- $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$ is a partial density operator on $\mathcal{H}_{\text {all }}$ - (global) state of quantum variables
- Tensor product of the state spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{\text {all } q} \mathcal{H}_{q}
$$

- Transitions between configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

Operational Semantics

(Skip)

$$
\overline{\langle\text { skip }, \rho\rangle \rightarrow\langle E, \rho\rangle}
$$

(Initialization)

$$
\overline{\langle q:=0, \rho\rangle \rightarrow\left\langle E, \rho_{0}^{q}\right\rangle}
$$

- $\operatorname{type}(q)=$ Boolean:

$$
\rho_{0}^{q}=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0|
$$

Operational Semantics

(Skip)

$$
\overline{\langle\text { skip }, \rho\rangle \rightarrow\langle E, \rho\rangle}
$$

(Initialization)

$$
\overline{\langle q:=0, \rho\rangle \rightarrow\left\langle E, \rho_{0}^{q}\right\rangle}
$$

- $\operatorname{type}(q)=$ Boolean:

$$
\rho_{0}^{q}=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0|
$$

- type $(q)=$ integer:

$$
\rho_{0}^{q}=\sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0|
$$

Operational Semantics, Continued

(Unitary Transformation)

$$
\overline{\langle\bar{q}}:=U \bar{q}, \rho\rangle \rightarrow\left\langle E, U \rho U^{+}\right\rangle
$$

(Sequential Composition) $\quad \frac{\left\langle S_{1}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime}, \rho^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime} ; S_{2}, \rho^{\prime}\right\rangle}$

Convention: $E ; S_{2}=S_{2}$.
(Measurement)

$$
\overline{\langle\text { measure } M[\bar{q}]: \bar{S}, \rho\rangle \rightarrow\left\langle S_{m}, M_{m} \rho M_{m}^{\dagger}\right\rangle}
$$

for each outcome m

Operational Semantics, Continued

(Loop 0)

$$
\overline{\langle\text { while } M[\bar{q}]=1 \text { do } S, \rho\rangle \rightarrow\left\langle E, M_{0} \rho M_{0}^{+}\right\rangle}
$$

(Loop 1)

$$
\overline{\langle\text { while } M[\bar{q}]=1 \text { do } S, \rho\rangle \rightarrow\left\langle S ; \text { while } M[\bar{q}]=1 \text { do } S, M_{1} \rho M_{1}^{\dagger}\right\rangle}
$$

Outline

Introduction
\section*{Syntax of Quantum Programs}
Operational Semantics

Denotational Semantics

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Definition

Semantic function of quantum program S :

$$
\llbracket S \rrbracket: \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)
$$

is defined by

$$
\llbracket S \rrbracket(\rho)=\sum\left\{\left|\rho^{\prime}:\langle S, \rho\rangle \rightarrow^{*}\left\langle E, \rho^{\prime}\right\rangle\right|\right\}
$$

for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.

Representation of Semantic Function

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.

Representation of Semantic Function

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.

Representation of Semantic Function

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2. $\quad \operatorname{type}(q)=$ Boolean:

$$
\llbracket q:=0 \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

type $(q)=$ integer:

$$
\llbracket q:=0 \rrbracket(\rho) \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

Representation of Semantic Function

1. $\llbracket \operatorname{skip} \rrbracket(\rho)=\rho$.
2. $\quad \operatorname{type}(q)=$ Boolean:

$$
\llbracket q:=0 \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

type $(q)=$ integer:

$$
\llbracket q:=0 \rrbracket(\rho) \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U \bar{q} \rrbracket(\rho)=U \rho U^{+}$.

Representation of Semantic Function

1. $\llbracket \operatorname{skip} \rrbracket(\rho)=\rho$.
2. $\quad \operatorname{type}(q)=$ Boolean:

$$
\begin{aligned}
& \llbracket q:=0 \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| . \\
& \operatorname{type}(q)=\text { integer: } \\
& \llbracket q:=0 \rrbracket(\rho) \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
\end{aligned}
$$

3. $\llbracket \bar{q}:=U \bar{q} \rrbracket(\rho)=U \rho U^{\dagger}$.
4. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$.

Representation of Semantic Function

1. $\llbracket \operatorname{skip} \rrbracket(\rho)=\rho$.
2. $\quad \operatorname{type}(q)=$ Boolean:

$$
\llbracket q:=0 \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

type $(q)=$ integer:

$$
\mathbb{\| q}:=0 \rrbracket(\rho) \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U \bar{q} \rrbracket(\rho)=U \rho U^{\dagger}$.
4. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$.
5. \llbracket measure $M[\bar{q}]: \bar{S} \rrbracket(\rho)=\sum_{m} \llbracket S_{m} \rrbracket\left(M_{m} \rho M_{m}^{+}\right)$.

Representation of Semantic Function

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2. $\quad \operatorname{type}(q)=$ Boolean:

$$
\llbracket q:=0 \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

type $(q)=$ integer:

$$
\llbracket q:=0 \rrbracket(\rho) \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U \bar{q} \rrbracket(\rho)=U \rho U^{\dagger}$.
4. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$.
5. \llbracket measure $M[\bar{q}]: \bar{S} \rrbracket(\rho)=\sum_{m} \llbracket S_{m} \rrbracket\left(M_{m} \rho M_{m}^{\dagger}\right)$.
6. \llbracket while $M[\bar{q}]=1$ do $S \rrbracket(\rho)=\bigvee_{n=0}^{\infty} \llbracket(\text { while } M[\bar{q}]=1 \text { do } S)^{n} \rrbracket(\rho)$.

Notation

$$
\begin{aligned}
(\text { while } M[\bar{q}]=1 \text { do } S)^{0} & =\Omega \\
(\text { while } M[\bar{q}]=1 \text { do } S)^{n+1} & =\text { measure } M[\bar{q}]: \bar{S}
\end{aligned}
$$

where:

- Ω is a program such that $\llbracket \Omega \rrbracket=0_{\mathcal{H}_{\text {all }}}$ for all $\rho \in \mathcal{D}(\mathcal{H})$

Notation

$$
\begin{aligned}
(\text { while } M[\bar{q}]=1 \text { do } S)^{0} & =\Omega \\
(\text { while } M[\bar{q}]=1 \text { do } S)^{n+1} & =\text { measure } M[\bar{q}]: \bar{S}
\end{aligned}
$$

where:

- Ω is a program such that $\llbracket \Omega \rrbracket=0_{\mathcal{H}_{\text {all }}}$ for all $\rho \in \mathcal{D}(\mathcal{H})$
- $\bar{S}=S_{0}, S_{1}$,

Notation

$$
\begin{aligned}
(\text { while } M[\bar{q}]=1 \text { do } S)^{0} & =\Omega \\
(\text { while } M[\bar{q}]=1 \text { do } S)^{n+1} & =\text { measure } M[\bar{q}]: \bar{S}
\end{aligned}
$$

where:

- Ω is a program such that $\llbracket \Omega \rrbracket=0_{\mathcal{H}_{\text {all }}}$ for all $\rho \in \mathcal{D}(\mathcal{H})$
- $\bar{S}=S_{0}, S_{1}$,

$$
\begin{aligned}
& S_{0}=\text { skip } \\
& S_{1}=S ;(\text { while } M[\bar{q}]=1 \text { do } S)^{n}
\end{aligned}
$$

for all $n \geq 0$.

Recursion

\llbracket while $\rrbracket(\rho)=M_{0} \rho M_{0}^{\dagger}+\llbracket$ while $\rrbracket\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{\dagger}\right)\right)$

for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$, where:

- while is the quantum loop "while $M[\bar{q}]=1$ do $S^{\prime \prime}$.

Observation:

$$
\begin{aligned}
& \qquad \operatorname{tr}(\llbracket S \rrbracket(\rho)) \leq \operatorname{tr}(\rho) \\
& \text { for any quantum program } S \text { and all } \rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right) .
\end{aligned}
$$

- $\operatorname{tr}(\rho)-\operatorname{tr}(\llbracket S \rrbracket(\rho))$ is the probability that program S diverges from input state ρ.

Outline

Introduction
\section*{Syntax of Quantum Programs}
Operational Semantics
\section*{Denotational Semantics}

Correctness Formulas

Proof System for Quantum Programs

Conclusion

Definition

E. D'Hondt and P. Panangaden, Quantum weakest preconditions, Mathematical Structures in Computer Science, 16(2006)

- For any $X \subseteq$ Var, a quantum predicate on \mathcal{H}_{X} is a Hermitian operator P :

$$
0_{\mathcal{H}_{X}} \sqsubseteq P \sqsubseteq I_{\mathcal{H}_{X}} .
$$

Definition

E. D'Hondt and P. Panangaden, Quantum weakest preconditions, Mathematical Structures in Computer Science, 16(2006)

- For any $X \subseteq$ Var, a quantum predicate on \mathcal{H}_{X} is a Hermitian operator P :

$$
0_{\mathcal{H}_{X}} \sqsubseteq P \sqsubseteq I_{\mathcal{H}_{X}} .
$$

- $\mathcal{P}\left(\mathcal{H}_{X}\right)$ denotes the set of quantum predicates on \mathcal{H}_{X}.

Definition

E. D'Hondt and P. Panangaden, Quantum weakest preconditions, Mathematical Structures in Computer Science, 16(2006)

- For any $X \subseteq$ Var, a quantum predicate on \mathcal{H}_{X} is a Hermitian operator P :

$$
0_{\mathcal{H}_{X}} \sqsubseteq P \sqsubseteq I_{\mathcal{H}_{X}} .
$$

- $\mathcal{P}\left(\mathcal{H}_{X}\right)$ denotes the set of quantum predicates on \mathcal{H}_{X}.
- For any $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{X}\right), \operatorname{tr}(P \rho)$ stands for the probability that predicate P is satisfied in state ρ.

Definition

A correctness formula (Hoare triple) is a statement of the form:

$$
\{P\} S\{Q\}
$$

where:

- S is a quantum program

Definition

A correctness formula (Hoare triple) is a statement of the form:

$$
\{P\} S\{Q\}
$$

where:

- S is a quantum program
- P and Q are quantum predicates on $\mathcal{H}_{\text {all }}$.

Definition

A correctness formula (Hoare triple) is a statement of the form:

$$
\{P\} S\{Q\}
$$

where:

- S is a quantum program
- P and Q are quantum predicates on $\mathcal{H}_{\text {all }}$.
- Operator P is called the precondition and Q the postcondition.

Definition

1. The correctness formula $\{P\} S\{Q\}$ is true in the sense of total correctness, written

$$
\models_{\text {tot }}\{P\} S\{Q\},
$$

if

$$
\operatorname{tr}(P \rho) \leq \operatorname{tr}(Q \llbracket S \rrbracket(\rho))
$$

for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.

Definition

1. The correctness formula $\{P\} S\{Q\}$ is true in the sense of total correctness, written

$$
\models_{\text {tot }}\{P\} S\{Q\},
$$

if

$$
\operatorname{tr}(P \rho) \leq \operatorname{tr}(Q \llbracket S \rrbracket(\rho))
$$

for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.
2. The correctness formula $\{P\} S\{Q\}$ is true in the sense of partial correctness, written

$$
\models_{\text {par }}\{P\} S\{Q\},
$$

if

$$
\operatorname{tr}(P \rho) \leq \operatorname{tr}(Q \llbracket S \rrbracket(\rho))+[\operatorname{tr}(\rho)-\operatorname{tr}(\llbracket S \rrbracket(\rho))]
$$

for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.

Outline

Introduction
 Syntax of Quantum Programs
 Operational Semantics
 Denotational Semantics
 Correctness Formulas

Proof System for Quantum Programs

Conclusion

Proof System PD for Partial Correctness

(Axiom Skip) $\{P\}$ Skip $\{P\}$
(Axiom Initialization)

$$
\operatorname{type}(q)=\text { Boolean : }
$$

$$
\left\{|0\rangle_{q}\langle 0| P|0\rangle_{q}\langle 0|+|1\rangle_{q}\langle 0| P|0\rangle_{q}\langle 1|\right\} q:=0\{P\}
$$

type $(q)=$ integer $:$

$$
\left\{\sum_{n=-\infty}^{\infty}|n\rangle_{q}\langle 0| P|0\rangle_{q}\langle n|\right\} q:=0\{P\}
$$

(Axiom Unitary Transformation)

$$
\left\{U^{\dagger} P U\right\} \bar{q}:=U \bar{q}\{P\}
$$

Proof System PD for Partial Correctness, Continued

(Rule Sequential Composition) $\quad \frac{\{P\} S_{1}\{Q\} \quad\{Q\} S_{2}\{R\}}{\{P\} S_{1} ; S_{2}\{R\}}$
(Rule Measurement)

$$
\frac{\left\{P_{m}\right\} S_{m}\{Q\} \text { for all } m}{\left\{\sum_{m} M_{m}^{\dagger} P_{m} M_{m}\right\} \text { measure } M[\bar{q}]: \bar{S}\{Q\}}
$$

(Rule Loop Partial)

$$
\frac{\{Q\} S\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\}}{\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\} \text { while } M[\bar{q}]=1 \text { do } S\{P\}}
$$

(Rule Order)

$$
\frac{P \sqsubseteq P^{\prime} \quad\left\{P^{\prime}\right\} S\left\{Q^{\prime}\right\} \quad Q^{\prime} \sqsubseteq Q}{\{P\} S\{Q\}}
$$

Soundness Theorem for $P D$

Proof system PD is sound for partial correctness of quantum programs.

- For any quantum program S and quantum predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, we have:

$$
\vdash_{P D}\{P\} S\{Q\} \text { implies } \models_{\text {par }}\{P\} S\{Q\} .
$$

Completeness Theorem for $P D$

Proof system PD is complete for partial correctness of quantum programs.

- For any quantum program S and quantum predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, we have:

$$
\models_{\text {par }}\{P\} S\{Q\} \text { implies } \vdash_{P D}\{P\} S\{Q\} .
$$

Proof System TD for Total Correctness

Let $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ and $\epsilon>0$. A function

$$
t: \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \mathbb{N}
$$

is called a (P, ϵ)-bound function of quantum loop:

$$
\text { while } M[\bar{q}]=1 \text { do } S
$$

if:

1. $t\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{+}\right)\right) \leq t(\rho)$;
for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.

Proof System TD for Total Correctness

Let $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ and $\epsilon>0$. A function

$$
t: \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \mathbb{N}
$$

is called a (P, ϵ)-bound function of quantum loop:

$$
\text { while } M[\bar{q}]=1 \text { do } S
$$

if:

1. $t\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{+}\right)\right) \leq t(\rho)$;
2. $\operatorname{tr}(P \rho) \geq \epsilon$ implies $t\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{+}\right)\right)<t(\rho)$ for all $\rho \in \mathcal{D}^{-}\left(\mathcal{H}_{\text {all }}\right)$.

Proof System TD for Total Correctness

$$
\begin{aligned}
\text { Proof System } T D=(\text { Proof System } P D & - \text { Rule Loop Partial }) \\
& + \text { Rule Loop Total }
\end{aligned}
$$

Proof System TD for Total Correctness

$$
\begin{aligned}
\text { Proof System } T D=(\text { Proof System } P D & - \text { Rule Loop Partial }) \\
& + \text { Rule Loop Total }
\end{aligned}
$$

Rule: Total Correctness for Loop

$$
\begin{aligned}
& \text { (1) }\{Q\} S\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\} \\
& \text { (2) for any } \epsilon>0, t_{\epsilon} \text { is a }\left(M_{1}^{\dagger} Q M_{1}, \epsilon\right)-\text { bound } \\
& \quad \text { function of loop while } M[\bar{q}]=1 \text { do } S \\
& \hline\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\} \text { while } M[\bar{q}]=1 \text { do } S\{P\}
\end{aligned}
$$

Soundness Theorem for TD

Proof system $T D$ is sound for total correctness of quantum programs.

- For any quantum program S and quantum predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, we have:

$$
\vdash_{T D}\{P\} S\{Q\} \text { implies } \models_{\text {tot }}\{P\} S\{Q\} .
$$

Completeness Theorem

The proof system TD is complete for total correctness of quantum programs.

- For any quantum program S and quantum predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, we have:

$$
\models_{\text {tot }}\{P\} S\{Q\} \text { implies } \vdash_{T D}\{P\} S\{Q\} .
$$

Proof Outline

- Claim: $\vdash_{P D}\{$ wlp.S. $Q\} S\{Q\}$ for any quantum program S and quantum predicate $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$.

Induction on the structure of S.

$$
w p . \text { while. } Q=M_{0}^{\dagger} Q M_{0}+M_{1}^{\dagger}(w p . S .(w p . \text { while. } Q)) M_{1} .
$$

Our aim is to derive:

$$
\left\{M_{0}^{\dagger} Q M_{0}+M_{1}^{\dagger}(w p . S .(w p . \text { while. } Q)) M_{1}\right\} \text { while }\{Q\} .
$$

Proof Outline

- Claim: $\vdash_{P D}\{$ wlp.S. $Q\} S\{Q\}$ for any quantum program S and quantum predicate $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$.

Induction on the structure of S.

- Example case: $S=$ while $M[\bar{q}]=1$ do S^{\prime}.

$$
w p . \text { while. } Q=M_{0}^{\dagger} Q M_{0}+M_{1}^{\dagger}(w p . S .(w p . \text { while. } Q)) M_{1} .
$$

Our aim is to derive:

$$
\left\{M_{0}^{\dagger} Q M_{0}+M_{1}^{\dagger}(w p . S .(w p . \text { while. } Q)) M_{1}\right\} \text { while }\{Q\} .
$$

Proof Outline, Continued

- Induction hypothesis on S^{\prime} :

$$
\left\{w p . S^{\prime} .(w p . \text { while. } Q)\right\} S\{w p . \text { while. } Q\} .
$$

Proof Outline, Continued

- Induction hypothesis on S^{\prime} :

$$
\left\{w p . S^{\prime} .(w p . \text { while. } Q)\right\} S\{w p . \text { while. } Q\} .
$$

- Rule Loop Total: It suffices to show that for any $\epsilon>0$, there exists a $\left(M_{1}^{+}\left(w p . S^{\prime} .(w p . S . Q)\right) M_{1}, \epsilon\right)-$ bound function of quantum loop while.

Proof Outline, Continued

- Induction hypothesis on S^{\prime} :

$$
\left\{w p . S^{\prime} .(w p . \text { while. } Q)\right\} S\{w p . \text { while. } Q\} .
$$

- Rule Loop Total: It suffices to show that for any $\epsilon>0$, there exists a $\left(M_{1}^{\dagger}\left(w p . S^{\prime} .(w p . S . Q)\right) M_{1}, \epsilon\right)-$ bound function of quantum loop while.
- Bound Function Lemma: We only need to prove:

$$
\lim _{n \rightarrow \infty} \operatorname{tr}\left(M_{1}^{\dagger}\left(w p . S^{\prime} .(w p . \text { while. } Q)\right) M_{1}\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n}(\rho)\right)=0 .
$$

Proof Outline, Continued

We observe:

$$
\begin{aligned}
\operatorname{tr}\left(M _ { 1 } ^ { \dagger } \left(w p . S^{\prime}\right.\right. & \left.(w p . \mathbf{w h i l e} \cdot Q)) M_{1}\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n}(\rho)\right) \\
& =\operatorname{tr}\left(w p . S^{\prime} .(w p . \mathbf{w h i l e} . Q) M_{1}\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n}(\rho) M_{1}^{+}\right) \\
& =\operatorname{tr}\left(w p . \mathbf{w h i l e} \cdot Q \llbracket S^{\prime} \rrbracket\left(M_{1}\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n}(\rho) M_{1}^{\dagger}\right)\right) \\
& =\operatorname{tr}\left(w p . \mathbf{w h i l e} \cdot Q\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n+1}(\rho)\right) \\
& =\operatorname{tr}\left(Q \llbracket \mathbf{w h i l e} \rrbracket\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{n+1}(\rho)\right) \\
& =\sum_{k=n+1}^{\infty} \operatorname{tr}\left(Q\left[\mathcal{E}_{0} \circ\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{k}\right](\rho)\right) .
\end{aligned}
$$

Proof Outline, Continued

We consider the infinite series of nonnegative real numbers:

$$
\sum_{n=0}^{\infty} \operatorname{tr}\left(Q\left[\mathcal{E}_{0} \circ\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{k}\right](\rho)\right)=\operatorname{tr}\left(Q \sum_{n=0}^{\infty}\left[\mathcal{E}_{0} \circ\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{k}\right](\rho)\right) .
$$

Since $Q \sqsubseteq I_{\mathcal{H}_{\text {all }}}$, it follows that

$$
\begin{aligned}
\operatorname{tr}\left(Q \sum_{n=0}^{\infty}\left[\mathcal{E}_{0} \circ\left(\llbracket S^{\prime} \rrbracket \circ \mathcal{E}_{1}\right)^{k}\right](\rho)\right) & =\operatorname{tr}(Q \llbracket \text { while } \rrbracket(\rho)) \\
& \leq \operatorname{tr}(\llbracket \text { while } \rrbracket(\rho)) \leq \operatorname{tr}(\rho) \leq 1 .
\end{aligned}
$$

Outline

Introduction
Syntax of Quantum Programs
Operational Semantics
Denotational Semantics
Correctness Formulas
\section*{Proof System for Quantum Programs}

Conclusion

Conclusion

Hoare logic for deterministic quantum programs!

- Classical control flow \Rightarrow quantum control flow?

Thank You!

