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Abramsky Conjecture:
For every n > 2, every n−partite entangled state is logically non-local



Happy Birthday, Samson!
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Quantum Programming

I Quantum Random Access Machine (QRAM) model

I A set of conventions for writing quantum pseudocode

E. H. Knill, Conventions for quantum pseudocode, Technical Report, Los
Alamos National Laboratory, 1996.
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Quantum Programming Languages

I qGCL: quantum extension of Dijkstra’s Guarded Command
Language [1]

I QCL: high-level, architecture independent, with a syntax derived
from classical procedural languages like C or Pascal [2]

I QPL: functional in nature, with high-level features (loops,
recursive procedures, structured data types) [3]

[1] J. W. Sanders and P. Zuliani, Quantum programming, Mathematics
of Program Construction, 2000.
[2] B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical
University of Vienna, 2003.
[3] P. Selinger, Towards a quantum programming language,
Mathematical Structures in Computer Science, 14(2004)
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Quantum Programming Languages

I Scaffold: Quantum programming language (Princeton, UCS,
UCSB) [1]

I Quipper: A Scalable Quantum Programming Language [2]
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Quipper: A Scalable Quantum Programming Language, PLDI, 2013.
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Syntax
A “core”language for imperative quantum programming

I A countably infinite set Var of quantum variables

I Two basic data types: Boolean, integer
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Syntax, Continued

Hilbert spaces denoted by Boolean and integer:

HBoolean = H2,

Hinteger = H∞.

Space l2 of square summable sequences

H∞ = {
∞

∑
n=−∞

αn|n〉 : αn ∈ C for all n ∈ Z and
∞

∑
n=−∞

|αn|2 < ∞},

where Z is the set of integers.



Syntax, Continued

A quantum register is a finite sequence of distinct quantum variables.

State space of a quantum register q = q1, ..., qn:

Hq =
n⊗

i=1

Hqi .



Syntax, Continued

Quantum extension of classical while-programs:

S ::= skip | q := 0 | q := Uq | S1; S2 |measure M[q] : S
| while M[q] = 1 do S

I q is a quantum variable and q a quantum register

I U in the statement “q := Uq”is a unitary operator onHq
I statement measure:

I M = {Mm} is a measurement on the state spaceHq of q
I S = {Sm} is a set of quantum programs such that each outcome m

of measurement M corresponds to Sm

I statement while: M = {M0, M1} is a yes-no measurement onHq
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Notation
I A quantum configuration is a pair

〈S, ρ〉

I S is a quantum program or E (the empty program)
I ρ ∈ D−(Hall) is a partial density operator onHall — (global) state

of quantum variables
I Tensor product of the state spaces of all quantum variables:

Hall =
⊗
all q
Hq

I Transitions between configurations:

〈S, ρ〉 → 〈S′, ρ′〉
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Operational Semantics

(Skip) 〈skip, ρ〉 → 〈E, ρ〉

(Initialization)
〈q := 0, ρ〉 → 〈E, ρ

q
0〉

I type(q) = Boolean:

ρ
q
0 = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

I type(q) = integer:

ρ
q
0 =

∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|
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Operational Semantics, Continued

(Unitary Transformation) 〈q := Uq, ρ〉 → 〈E, UρU†〉

(Sequential Composition)
〈S1, ρ〉 → 〈S′1, ρ′〉

〈S1; S2, ρ〉 → 〈S′1; S2, ρ′〉

Convention : E; S2 = S2.

(Measurement)
〈measure M[q] : S, ρ〉 → 〈Sm, MmρM†

m〉

for each outcome m



Operational Semantics, Continued

(Loop 0)
〈while M[q] = 1 do S, ρ〉 → 〈E, M0ρM†

0〉

(Loop 1)
〈while M[q] = 1 do S, ρ〉 → 〈S; while M[q] = 1 do S, M1ρM†

1〉
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Definition

Semantic function of quantum program S:

~S� : D−(Hall)→ D−(Hall)

is defined by

~S�(ρ) = ∑{|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|}

for all ρ ∈ D−(Hall).



Representation of Semantic Function

1. ~skip�(ρ) = ρ.

2. I type(q) = Boolean:

~q := 0�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

type(q) = integer:

~q := 0�(ρ)
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := Uq�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~measure M[q] : S�(ρ) = ∑m~Sm�(MmρM†

m).
6. ~while M[q] = 1 do S�(ρ) =

∨∞
n=0~(while M[q] = 1 do S)n�(ρ).
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Notation

(while M[q] = 1 do S)0 = Ω,

(while M[q] = 1 do S)n+1 = measure M[q] : S,

where:
I Ω is a program such that ~Ω� = 0Hall

for all ρ ∈ D(H)

I S = S0, S1,

I

S0 = skip,

S1 = S; (while M[q] = 1 do S)n

for all n ≥ 0.
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Recursion

~while�(ρ) = M0ρM†
0 + ~while�(~S�(M1ρM†

1))

for all ρ ∈ D−(Hall), where:

I while is the quantum loop “while M[q] = 1 do S”.



Observation:

tr(~S�(ρ)) ≤ tr(ρ)

for any quantum program S and all ρ ∈ D−(Hall).

I tr(ρ)− tr(~S�(ρ)) is the probability that program S diverges
from input state ρ.
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Definition

E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)

I For any X ⊆ Var, a quantum predicate onHX is a Hermitian
operator P:

0HX v P v IHX .

I P(HX) denotes the set of quantum predicates onHX.

I For any ρ ∈ D−(HX), tr(Pρ) stands for the probability that
predicate P is satisfied in state ρ.
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Definition

A correctness formula (Hoare triple) is a statement of the form:

{P}S{Q}

where:
I S is a quantum program

I P and Q are quantum predicates onHall.
I Operator P is called the precondition and Q the postcondition.
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Definition

1. The correctness formula {P}S{Q} is true in the sense of total
correctness, written

|=tot {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ))

for all ρ ∈ D−(Hall).

2. The correctness formula {P}S{Q} is true in the sense of partial
correctness, written

|=par {P}S{Q},

if
tr(Pρ) ≤ tr(Q~S�(ρ)) + [tr(ρ)− tr(~S�(ρ))]

for all ρ ∈ D−(Hall).
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Proof System PD for Partial Correctness

(Axiom Skip) {P}Skip{P}

(Axiom Initialization)
type(q) = Boolean :

{|0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|}q := 0{P}

type(q) = integer :

{
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|}q := 0{P}

(Axiom Unitary Transformation) {U†PU}q := Uq{P}



Proof System PD for Partial Correctness, Continued

(Rule Sequential Composition)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule Measurement)
{Pm}Sm{Q} for all m

{∑m M†
mPmMm}measure M[q] : S{Q}

(Rule Loop Partial)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Order)
P v P′ {P′}S{Q′} Q′ v Q

{P}S{Q}



Soundness Theorem for PD

Proof system PD is sound for partial correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

`PD {P}S{Q} implies |=par {P}S{Q}.



Completeness Theorem for PD

Proof system PD is complete for partial correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

|=par {P}S{Q} implies `PD {P}S{Q}.



Proof System TD for Total Correctness

Let P ∈ P(Hall) and ε > 0. A function

t : D−(Hall)→N

is called a (P, ε)−bound function of quantum loop:

while M[q] = 1 do S

if:
1. t(~S�(M1ρM†

1)) ≤ t(ρ);

2. tr(Pρ) ≥ ε implies t(~S�(M1ρM†
1)) < t(ρ)

for all ρ ∈ D−(Hall).



Proof System TD for Total Correctness

Let P ∈ P(Hall) and ε > 0. A function

t : D−(Hall)→N

is called a (P, ε)−bound function of quantum loop:

while M[q] = 1 do S

if:
1. t(~S�(M1ρM†

1)) ≤ t(ρ);

2. tr(Pρ) ≥ ε implies t(~S�(M1ρM†
1)) < t(ρ)

for all ρ ∈ D−(Hall).



Proof System TD for Total Correctness

Proof System TD = (Proof System PD− Rule Loop Partial)
+ Rule Loop Total

Rule: Total Correctness for Loop

(Rule Loop Total)

(1) {Q}S{M†
0PM0 + M†

1QM1}
(2) for any ε > 0, tε is a (M†

1QM1, ε)− bound
function of loop while M[q] = 1 do S

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}
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Soundness Theorem for TD

Proof system TD is sound for total correctness of quantum programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

`TD {P}S{Q} implies |=tot {P}S{Q}.



Completeness Theorem

The proof system TD is complete for total correctness of quantum
programs.

I For any quantum program S and quantum predicates
P, Q ∈ P(Hall), we have:

|=tot {P}S{Q} implies `TD {P}S{Q}.



Proof Outline
I Claim: `PD {wlp.S.Q}S{Q} for any quantum program S and

quantum predicate P ∈ P(Hall).

Induction on the structure of S.

I Example case: S = while M[q] = 1 do S′.

wp.while.Q = M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1.

Our aim is to derive:

{M†
0QM0 + M†

1(wp.S.(wp.while.Q))M1}while{Q}.
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Proof Outline, Continued

I Induction hypothesis on S′:

{wp.S′.(wp.while.Q)}S{wp.while.Q}.

I Rule Loop Total: It suffices to show that for any ε > 0, there
exists a (M†

1(wp.S′. (wp.S.Q))M1, ε)−bound function of quantum
loop while.

I Bound Function Lemma: We only need to prove:

lim
n→∞

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ)) = 0.
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lim
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Proof Outline, Continued

We observe:

tr(M†
1(wp.S′.(wp.while.Q))M1(~S′� ◦ E1)

n(ρ))

= tr(wp.S′.(wp.while.Q)M1(~S′� ◦ E1)
n(ρ)M†

1)

= tr(wp.while.Q~S′�(M1(~S′� ◦ E1)
n(ρ)M†

1))

= tr(wp.while.Q(~S′� ◦ E1)
n+1(ρ))

= tr(Q~while�(~S′� ◦ E1)
n+1(ρ))

=
∞

∑
k=n+1

tr(Q[E0 ◦ (~S′� ◦ E1)
k](ρ)).



Proof Outline, Continued

We consider the infinite series of nonnegative real numbers:

∞

∑
n=0

tr(Q[E0 ◦ (~S′� ◦ E1)
k](ρ)) = tr(Q

∞

∑
n=0

[E0 ◦ (~S′� ◦ E1)
k](ρ)).

Since Q v IHall , it follows that

tr(Q
∞

∑
n=0

[E0 ◦ (~S′� ◦ E1)
k](ρ)) = tr(Q~while�(ρ))

≤ tr(~while�(ρ)) ≤ tr(ρ) ≤ 1.
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Conclusion

Hoare logic for deterministic quantum programs!

I Classical control flow⇒ quantum control flow?



Thank You!
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