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ABSTRACT
We present a research programme dedicated to the application of
Game Semantics to program analysis and verification. We high-
light several recent theoretical results and describe a prototypical
software modeling and verification tool. The distinctive novel fea-
tures of the tool are its ability to handle open programs and the
fact that the models it produces are observationally fully abstract.
These features are essential in the modeling and verification of soft-
ware components such as modules. Incidentally, these features also
lead to very compact models of programs.

1. INTRODUCTION AND BACKGROUND
Game Semantics has emerged as a powerful paradigm for giving

semantics to a variety of programming languages and logical sys-
tems. It has been used to construct the first syntax-independent
fully abstract models for a spectrum of programming languages
ranging from purely functional languages to languages with non-
functional features such as control operators and locally-scoped
references [4, 27, 5, 6, 3, 28].

We are currently developing Game Semantics in a new, algo-
rithmic direction, with a view to applications in computer-assisted
verification and program analysis. Some promising steps have al-
ready been taken in this direction. Hankin and Malacaria have ap-
plied Game Semantics to program analysis, e.g. to certifying se-
cure information flows in programs [21, 22]. A particularly strik-
ing development was the work by Ghica and McCusker [20] which
captures the game semantics of a procedural language in a remark-
ably simple form, as regular expressions. This leads to a decision
procedure for observational equivalence on this fragment. Ghica
has subsequently extended the approach to a call-by-value language
with arrays [16], to model checking Hoare-style program correct-
ness assertions [15] and to a more general model-checking friendly
specification framework [17].

Game Semantics has several features which make it very promis-
ing from this point of view. It provides a very concrete way of
building fully abstract models. It has a clear operational content,
while admitting compositional methods in the style of denotational
semantics. The basic objects studied in Game Semantics are games,
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and strategies on games. Strategies can be seen as certain kinds of
highly-constrained processes, hence they admit the same kind of
automata-theoretic representations central to model checking and
allied methods in computer-assisted verification. Moreover, games
and strategies naturally form themselves into rich mathematical
structures which yield very accurate models of advanced high-level
programming languages, as the various full abstraction results show.
Thus the promise of this approach is to carry over the methods of
model checking (see e.g. [10]), which has been so effective in the
analysis of circuit designs and communications protocols, to much
more structured programming situations, in which data-types as
well as control flow are important.

A further benefit of the algorithmic approach is that by embody-
ing game semantics in tools, and making it concrete and algorith-
mic, it should become more accessible and meaningful to practi-
tioners. We see Game Semantics as having the potential to fill the
role of a “Popular Formal Semantics,” called for in an eloquent pa-
per by Schmidt [39], which can help to bridge the gap between the
semantics and programming language communities. Game Seman-
tics has been successful in its own terms as a semantic theory; we
aim to make it useful to and usable by a wider community.

Model checking for state machines is a well-studied problem
(e.g. Murφ [14], Spin [25] and Mocha [8] to name a few sys-
tems). Software model checking is a relatively new direction (see
e.g. [24]); the leading projects (e.g. SLAM [9], and Bandera [12])
excel in tool constructions. The closest to ours in terms of tar-
get applications is the SLAM project, which is able to check safety
properties of C programs. This task is reduced in stages to the prob-
lem of checking if a given statement in an instrumented version of
the program in question is reachable, using ideas from data-flow
and inter-procedural analysis and abstract interpretation.

In relation to the extensive current activity in model checking
and computer assisted verification, our approach is distinctive, be-
ing founded on a highly-structured compositional semantic model.
This means that we can directly apply our methods to open pro-
gram phrases (i.e. terms-in-context with free variables) in a high-
level language with procedures, local variables and data types. This
ability is essential in analyzing properties of software components.
The soundness of our methods is guaranteed by the properties of
the semantic models on which they are based. By contrast, most
current model checking applies to relatively “flat” unstructured sit-
uations.

Our semantics-driven approach has some other additional bene-
fits: it is generic and fully automated. We do not target particular
bugs or programs. The tool has the level of automation of a com-
piler. The input is a program fragment, with very little instrumenta-
tion required, and the output is a finite-state (FS) model. The result-
ing model itself can be analyzed using third-party model-checking



tools, or our tool can automatically extract traces with certain prop-
erties, e.g. error traces.

Software model checking is a fast-developing area of study, driven
by needs of the industry as much as, if not more than, theoretical
results. Often, tool development runs well ahead of rigorous con-
siderations of soundness of the methods being developed. Our aim
is to build on the tools and methods which have been developed in
the verification community, while exploring the advantages offered
by our semantics-directed approach.

2. A PROCEDURAL PROGRAMMING LAN-
GUAGE

Our prototypical procedural language is a simply-typed call-by-
name lambda calculus with basic types of booleans (bool), integers
(exp), assignable variables (var) and commands (comm). We de-
note the basic types by σ and the function types by θ. Assignable
variables, storing integers, form the state while commands change
the state. In addition to abstraction (λx : σ.M ) and application
(FA), other terms of the language are conditionals, uniformly ap-
plied to any type, (if B then M else N ), recursion (fix x : σ.M ), con-
stants (integers, booleans) and arithmetic-logic operators (M ∗N );
we also have command-type terms which are the standard imper-
ative operators: dereferencing (explicit in the syntax, !V ), assign-
ment (V :=N), sequencing (C; M , note that we allow, by sequenc-
ing, expressions with side-effects), no-op (skip) and local variable
block (new x in M ). We write M : σ to indicate that term M has
type σ.

This language, which elegantly combines state-based procedural
and higher-order functional programming, is due to Reynolds [38]
and its semantic properties have been the object of important re-
search [35].

If the programming language is restricted to first-order proce-
dures, (more precisely, we restrict types to θ ::= σ | σ → θ)
tail recursion (iteration) and finite data-types then the Abramsky-
McCusker fully abstract game model for this language [5] has a
very simple and appealing regular-language representation [20].
The formulation of the regular-language model in loc. cit. is very
well suited for proving equivalences “by hand,” but we will prefer a
slightly different but equivalent presentation [2] because it is more
uniform and more compact. The referenced work gives motivation
and numerous examples for the model presented below.

2.1 Abstract syntax
The typing judgements have the form Γ � M : θ where Γ =

x1 : θ1, . . . , xk : θk. The typing rules are those of the typed λ-
calculus: variables, abstraction and application:

Γ, x : θ � x : θ

Γ, x : θ � M : θ′

Γ � λx : θ.M : θ → θ′

Γ � M : θ → θ′ Γ � M ′ : θ
Γ � MM ′ : θ′

Additionally, there is a rule for block structure:

Γ, x : var � M : σ

Γ � new x in M : σ

The programming language also contains a set of constants:

n : exp true : bool false : bool skip : comm

− := − : var → exp → comm

if − then − else − : bool → σ → σ → σ

−;− : comm → σ → σ

while − do − : bool → comm → comm

For the purpose of defining the semantics, it is convenient to use
a variant of the above system, in which the application rule is re-
placed by two rules: linear application and contraction.

Γ � M : θ → θ′ Γ′ � M ′ : θ
Γ, Γ′ � MM ′ : θ′

Γ, x : θ, x′ : θ � M : θ′

Γ, y : θ � M [y/x, y/x′] : θ′

It is well known that this system has the same typing judgements
as the original system.

We also use a construct for function (or procedure) definition:

Γ � M : θ Γ, f : θ � N : σ

Γ � let f be M in N : σ

Finally, it is convenient to define a non-terminating command
div : comm.

2.2 Extended Regular Expressions
This section describes the representation of the game model us-

ing a language of extended regular expressions. Due to space con-
straints, a basic understanding of game semantics must be assumed
as background. Otherwise, the reader is encouraged to refer to the
literature mentioned in the Introduction.

Terms are interpreted by languages over alphabets of moves A.
The languages, denoted by L(R), are specified using extended reg-
ular expressions R. They include the standard regular expressions
consisting of the empty language ∅, the empty sequence ε, concate-
nation R · S, union R + S, Kleene star R∗, and the elements of
the alphabet taken as sequences of unit length. We also use the
additional constructs of intersection R ∩ S, direct image under ho-
momorphism φR and inverse image φ−1R. The languages defined
by these extensions are the obvious ones:

L(R ∩ S) = L(R) ∩ L(S)

L(φR) = {φw | w ∈ L(R)}
L(φ−1R) = {w ∈ A∗

1 | φw ∈ L(R)},
where φ :A1 → A∗

2 is a homomorphism; it lifts to strings in the
usual way, φ(a1 . . . ak) = φ(a1) · · ·φ(ak).

It is a standard result that any extended regular expression con-
structed from the operations described above denotes a regular lan-
guage, which can be recognized by a finite automaton which can
be effectively constructed from the regular expression [26].

We will often use the disjoint union of two alphabets to create a
larger alphabet:

A1+A2 = {a〈1〉 | a∈A1} ∪ {b〈2〉 | b∈A2} = A〈1〉
1 ∪A〈2〉

2 .

The tags −〈i〉 are used on a lexical level, resulting in new and dis-
tinct symbols belonging to the larger alphabet. The disjoint union
gives rise to the canonical maps:

A1

inl �� A1 + A2
outr

��
outl

�� A2

inr��

The definition of the maps is:

inl a = a〈1〉 inr b = b〈2〉

outl a〈1〉 = a outr a〈1〉 = ε

outl b〈2〉 = ε outr b〈2〉 = b



If φ :A → B∗ and φ′ : C → D∗ are homomorphisms then we
define their sum φ + φ′ :A + C → (B + D)∗ as

(φ + φ′)(a〈1〉) = (φa)〈1〉

(φ + φ′)(c〈2〉) = (φ′c)〈2〉.

DEFINITION 1 (COMPOSITION). If R is a regular expression
over alphabet A + B and S a regular expression over alphabet
B + C we define the composition R ◦ S as a regular expression
over alphabet A + C

R ◦ S = out
`
out−1

1 (R) ∩ out−1
2 (S)

´
,

with canonical maps

A + B
in1 �� A + B + C

out2
��

out1
��

out

��

B + C
in2��

A + C
in

��

Regular expression composition is very similar to composition of
finite state transducers [37]. Sets A and B represent, respectively,
the input and the output of the first transducer; sets B and C repre-
sent, respectively, the input and the output of the second transducer.
The result is a transducer of inputs A and output C. For example,
let A = {a}, B = {b}, C = {c}; then (ab)∗ ◦ (bcc)∗ = (acc)∗.

2.3 Alphabets
We interpret each type θ by a language over an alphabet A�θ�,

containing the moves from the game model. For basic types σ it is
helpful to define alphabets of questions Q �σ�and answers Aq �σ�
for each q ∈ Q �σ�. The alphabet of type σ is then defined as

A�σ�= Q �σ�∪ [
q∈Q�σ�

Aq �σ�.

The basic type alphabets are:

Q �exp�= {q}, Aq �exp�= N

Q �bool�= {q}, Aq �bool�= {t, f}
Q �comm�= {q}, Aq �comm�= {�}
Q �var�= {q} ∪ {w(n) | n ∈ N},

Aq �var�= N,Aw(n) = {�}.
where N = {−n, · · · ,−1, 0, 1, · · · , n}.

Alphabets of function types are defined by

A�σ → θ�= A�σ�+ A�θ�.
A typing judgement Γ � M : θ is interpreted by a regular expres-
sion R = �Γ � M : θ�over alphabet

P
xi : θi∈Γ A�θi�+ A�θ�.

For any type θ = σ1 → · · · → σk → σ, it is convenient to
define a regular language Kθ over alphabet A�θ�+A�θ�, called the
copy-cat language:

Kθ =
X

q∈Q�σ�

q〈2〉 · q〈1〉 ·
“ X

i=1,k

Ri

”∗
·

X
a∈Aq�σ�

a〈1〉 · a〈2〉,

where

Ri =
X

q∈Q�σi�

q〈2〉 · q〈1〉 ·
X

a∈Aq�σi�

a〈1〉 · a〈2〉.

This regular expression represents the so-called copy-cat strategy
of game semantics, and it describes the generic behaviour of a se-
quential procedure. At second-order [36] and above [27] this be-
haviour is far more complicated.

2.4 Regular-language semantics
We interpret terms using an evaluation function �−�mapping a

term Γ � M : θ and an environment u into a regular language R.
The environment is a function, with the same domain as Γ, mapping
identifiers of type θ to regular languages over A�Γ�+ A�θ�.

The evaluation function is defined by recursion on the syntax.

Identifiers. Identifiers are read from the environment:

�Γ, x : θ � x : θ�u = u(x).

Abstraction.

�Γ � λx : σ.M : σ → θ�u
= φ

`�Γ, x : σ � M : θ�(u | x 	→ Kσ)
´

where φ is the (trivial) associative isomorphism

φ : (A�Γ�+ A �σ�) + A�θ� �−→ A�Γ�+ (A�σ�+ A�θ�).
Application and contraction.

�Γ, ∆ � MN�u = �Γ � M�u ◦ `�∆ � N�u´∗
,

with composition − ◦ − defined as before. Contraction is

�
Γ, z : θ � M [z/x, z/x′] : θ

�
u

= (id1 + δ + id2)
`�

Γ, x : θ, x′ : θ � M : θ
�
u

´
,

where id1 and id2 are identities on A�Γ� and, respectively, A�θ�.
The homomorphism δ :A�θ�+ A�θ� → A�θ� only removes tags
from moves. Note that this interpretation is also specific to first-
order types. In higher-order types this interpretation of contraction
by un-tagging can result in ambiguities.

Block Variables. Consider the following regular expression over
alphabet A�var�

cell =
“X

n∈N

w(n) · � · (q · n)∗
”∗

.

Intuitively, one can see that this regular expression describes the
sequential behaviour of a memory cell: if a value n is written, then
the same value is read back until the next write, and so on.

We define block variables as

�Γ � new x in M : σ�u = �Γ, x : var � M : σ�u ◦ cell,

Constants. Finally, the interpretation of constants is:

�n : exp�= q · n, �true : bool�= q · t, �false : bool�= q · f�−op − : σ → σ → σ′�

=
X
p∈N

X
m,n∈N

p=m op n

q〈3〉 · q〈1〉 · m〈1〉 · q〈2〉 · n〈2〉 · p〈3〉

�− := − : var → exp → comm�
=

X
n∈N

q〈3〉 · q〈2〉 · n〈2〉 · w(n)〈1〉 · �〈1〉 · �〈3〉

�if − then − else − : bool → σ → σ → σ�
=

X
q∈Q�σ�

q〈4〉 · q〈1〉 · t〈1〉 · q〈2〉 ·
X

a∈Aq�σ�

a〈2〉 · a〈4〉

+
X

q∈Q�σ�

q〈4〉 · q〈1〉 · f〈1〉 · q〈3〉 ·
X

a∈Aq�σ�

a〈3〉 · a〈4〉
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Figure 1: A simple switch

�−;− : comm → σ → σ�
=

X
q∈Q�σ�

q〈3〉 · q〈1〉 · �〈1〉 · q〈2〉 ·
X

a∈Aq�σ�

a〈2〉 · a〈3〉

�while − do − : bool → comm → comm�
= q〈3〉 ·

“
q〈1〉 · t〈1〉 · q〈2〉 · �〈2〉

”∗
· q〈1〉 · f〈1〉 · �〈3〉

�div : comm�= ∅, � skip : comm�= q · �.

The operator op ranges over the usual arithmetic-logic operators,
and op is its obvious interpretation.

2.5 A warm-up example
This simple example illustrates quite well the way the game-

based model works. It is a toy abstract data type (ADT): a switch
that can be flicked on, with implementation:

client : com -> exp -> com |-
new var v:= 0 in
let set be v := 1 in
let get be !v in
client (set, get) : com.

The code consists of local integer variable v, storing the state of
the switch, together with functions set, to flick the switch on, and
get, to get the state of the switch. The initial state of the switch
is off. The non-local, undefined, identifier client is declared at
the left of the turnstile |-. It takes a command and an expression-
returning functions as arguments. It represents, intuitively, “the
most general context” in which this ADT can be used.

A key observation about the model is that the internal state of the
program is abstracted away, and only the observable actions, of the
nonlocal entity client, are represented, insofar as they contribute
to terminating computations. The output of the modeling tool is
given in Fig. 1.

Notice that no references to v, set, or get appear in the model!
The model is only that of the possible behaviours of the client:
whenever the client is executed, if it evaluates its second argument
(get the state of the switch) it will receive the value 0 as a result;
if it evaluates the first argument (set the switch on), one or more
times, then the second argument (get the state of the switch) will
always evaluate to 1. The model does not, however, assume that
client uses its arguments, or how many times or in what order.

2.6 Full abstraction
Full abstraction results are crucial in semantics, as they are a

strong qualitative measure of the semantic model. Full abstraction

is defined with respect to observational equivalence: two terms are
equivalent if and only if they can be substituted in all program con-
texts without any observable difference. This choice of observable
is therefore canonical, and arises naturally from the programming
language itself. In practice, fully abstract models are important
because they identify all and only those programs which are obser-
vationally equivalent.

Formally, terms M and N are defined to be observationally equiv-
alent, written M ≡ N , if and only if for any context C[−] such that
both C[M ] and C[N ] are closed terms of type comm, C[M ] con-
verges if and only if C[N ] converges. The theory of observational
equivalence, which is very rich (see e.g. [20] for a discussion), has
been the object of much research [35].

THEOREM 1 (FULL ABSTRACTION [5, 20]).

Γ � M ≡ N ⇐⇒ L`�Γ � M : θ�u0

´
= L`�Γ � N : θ�u0

´
,

where u0(x) = Kθ for all x : θ in Γ.

As an immediate consequence, observational equivalence for the
finitary fragment discussed here is decidable.

It can be shown that the full abstraction result holds relative to
contexts drawn from either the restricted fragment or the full pro-
gramming language [19].

3. APPLICATIONS TO ANALYSIS AND
VERIFICATION

The game model is algorithmic, fully abstract and compositional,
therefore it provides excellent support for compositional program
analysis and verification.

The initial decidability result of the previous section was ex-
tended to higher-order (recursion and iteration-free) call-by-name
procedural programming by Ong [36] and, for call-by-value, by
Murawski [34]. This required the use of deterministic pushdown
automata [40, 41], since the associated sets of complete plays in
the game semantics are no longer regular. Various other extensions
of the programming fragment, e.g. by introducing unrestricted re-
cursion [36] or further increasing the order of the fragment [33],
lead to undecidability. The game-theoretic approach seems to offer
a useful and powerful tool for investigating the algorithmic prop-
erties of programming language fragments, e.g. the complexity of
program equivalence [32].

A different direction of research is the development of game-
based, model-checking friendly specification languages. Such spec-
ification languages are necessary in order to fully exploit the com-
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Figure 2: A model of sorting

positionality of the game-based approach. It is of little use to rea-
son about program fragments if properties of the whole program
cannot be then compositionally inferred, without requiring further
model-checking. The first steps in this direction are taken in [17].

3.1 Tool support and case studies
The theoretical applications of game semantics have been very

successful. However, since the complexity of the regular-language
algorithms involved in the generation of the finite-state machines
representing the game models is exponential (both in time and in
space), it was unclear whether the technique was practicable. This
is in fact a common situation in software model checking: the
asymptotic complexity of the algorithms involved is high, but it
turns out that the worst-case scenario only happens in pathological
cases. Many programs can be in fact verified. But the only way
to make such pragmatic assessments is to implement and experi-
ment. We have implemented a prototype tool, and the results are
very positive.

Our tool converts an open procedural program into the finite-
state machine representation of the regular-language game model.
Very little user instrumentation of the source code is required. The
data-abstraction schemes (i.e. what finite sets of integers will be
used to model integer variables) for integer-typed variables need
to be supplied, using simple code annotations. The tool is imple-
mented in CAML; most of the back-end heavy duty finite-state ma-
chine processing is done using the AT&T FSM library [1]. A more
complete description of the tool is available in [18].

In the following we will present two case studies which best il-
lustrate the distinctive features of our model: a sorting program and
an abstract data type implementation.

3.2 Sorting
In this section we will discuss the modeling of a sorting program,

a notoriously difficult problem. We will focus on bubble-sort, not
for its algorithmic virtues but because it is one of the most straight-
forward non-recursive sorting algorithms. The implementation we

x:var |- 1

array a[n] in 2

new var i:=0 in 3

while !i < n do a[!i]:=!x; i:=!i+1 od; 4

new var flag:=1 in 5

while !flag do 6

new var i:=0 in 7

flag:=0; 8

while !i < n - 1 do 9

if !a[!i] > !a[!i+1] then 10

flag:=1; 11

new var temp:=!a[!i] in 12

a[!i]:=!a[!i+1]; 13

a[!i+1]:=!temp 14

else skip fi; 15

i:=!i+1 16

od 17

od; 18

new var i:=0 in 19

while !i < n do x:=!a[!i]; i:=!i+1 od : com. 20

Figure 3: An implementation of sorting

will analyze is the one in Fig. 3. Meta-variable n, representing
the size of the array, will be instantiated to several different values.
Observe that the program communicates with its environment using
non-local var-typed identifier x:var only. Therefore, the model
will only represent the actions of x. Since we are in a call-by-name
setting, x can represent any var-typed procedure, for example in-
terfacing with an input/output channel. Notice that the array being
effectively sorted, a[], is not visible from the outside of the pro-
gram because it is locally defined.

We first generate the model for n = 2, i.e. an array of only



Figure 4: A model of sorting: 20 element-array

2 elements, in order to generate a small enough model which we
can display and discuss. The type of stored data is integers in the
interval [−1, 1], i.e. 3 distinct values. The resulting model is as
in Fig. 2. It reflects the dynamic behaviour of the program in the
following way: every trace in the model is formed from the actions
of reading all 3 × 3 = 9 possible combinations of values from x,
followed by writing out the same values, but in sorted order.

Increases in the array lead to (asymptotically exponential) in-
creases in the time and space of the verification algorithm. On our
development machine (SunBlade 100, 2GB RAM), the duration of
the generation of the model as a function of n was: n = 2: 5 min-
utes; n = 5: 10 minutes; n = 10: 15 minutes; n = 20: 4 hours;
n = 25: 10 hours; n = 30: the computation failed. Fig. 4 gives a
snapshot of the model for n = 20.

The output is a FS machine, which can be analyzed using stan-
dard FS-based model checking tools. Moreover, this model is an
extensional model of sorting: all sorting programs on an array of
size n will have isomorphic models. Therefore, a straightforward
method of verification is to compare the model of a sorting pro-
gram with the model of another implementation which is known to
be correct. In the case of our finite-state models, this is a decidable
operation.

Something quite remarkable about the model in Fig. 4 is its very
compact size. An array of 20 (3-valued) elements can represent 320

distinct states, i.e. approximately 3.5 billion states. This is a vast
memory space, beyond the range of tools much more sophisticated
than ours. Our tool cannot only handle such a program, but it also
produces its complete model.

The key observation is the following: the fact that the state of the
array is internalized and only a purely behavioural, observationally
fully abstract model is presented leads to significant savings in re-
quired memory space. In fact, the model in Fig. 4 has only circa
6,500 states. So, even though the algorithms we use are generic,
the fact that we use a model at a maximum level of abstraction,
which internalizes the details of stateful behaviour leads to major
improvements in efficiency. It is interesting to contrast this kind
of abstraction, which comes for free with our fully abstract model,
with other, syntactic, abstraction techniques such as slicing [23].

3.3 Code-level safety specifications
We define an assertion as a function which takes as argument a

boolean, the condition to be asserted. It does nothing if the condi-
tion is true and calls an (nonlocal) error procedure if the condi-
tion is false. In the resulting model, any trace containing the actions
error.run, error.done will represent a usage of the ADT
which violates the invariant, i.e. an error trace.

The encoding of safety properties using code-level assertions is
quite standard in SMC, e.g. [9], and it is also known that every
safety property can be encoded in a regular language [31]. Using
the assertion mechanism in conjunction with modeling open pro-

grams, such as modules, offers an elegant solution to the problem
of checking equational properties or invariants of ADTs.

For example, consider an implementation of a finite-size stack,
using a fixed-size array. The interface of the stack is through func-
tions push(n) and pop. Their implementation is the obvious one
(see Fig. 5). In addition, the stack component assumes the existence
of functions overflow and empty to call if a push is attempted
on a full stack, respectively a pop is attempted on an empty stack.
These functions need not be implemented.

Suppose that we want to check, for a size 2 stack, whether it is
the case that the last value pushed onto the stack is the value at the
top of the stack. We do this by using the assertion invariant on
lines 21–24 of Fig. 5. Notice the undefined component VERIFY of
this program: it stands for all possible uses of the stack module and
the assertion to be checked. The idea of providing such a generic
closure of an open program can be traced back to [11], and several
game-like solutions have been already proposed [13, 7]. The game
model which we use provides this closure, correct and complete,
directly at the level of the concrete programming language.

empty:com, overflow:com, m:exp, error:com, 1

VERIFY : com -> exp -> com -> com |- 2

let assert be fun a : exp. 3

if a then skip else error fi in 4

array buffer[n] in 5

let size be n in 6

new var crt:=0 in 7

let isempty be !crt = 0 in 8

let isfull be !crt = size in 9

let push be fun x : exp. 10

new var temp:=x in 11

if isfull then overflow 12

else buffer[!crt]:=!temp; 13

crt:=!crt+1 fi 14

in 15

let pop be 16

if isempty then empty; 0 17

else crt:=!crt - 1; 18

!buffer[!crt] fi 19

in 20

let invariant be 21

new var x:=m in 22

push(!x); pop = !x 23

in 24

VERIFY(push(m), pop, assert(invariant)) 25

: com. 26

Figure 5: A stack module

The tool automatically builds the model for the above and ex-
tracts its shortest failure trace (see Fig. 6).

Action 1.VERIFY represents a push action. So the simplest
possible error is caused by pushing 3 times the value 1 onto the
2-element stack. Indeed, if the stack is already full, pushing a new
element will cause an overflow error.

4. CURRENT LIMITATIONS AND FURTHER
RESEARCH

The initial results of our effort to model and verify programs us-



0 1 run
1 2 VERIFY.run
2 3 1.VERIFY.run
3 4 m.q
4 5 m.1
5 6 1.VERIFY.done
6 7 1.VERIFY.run
7 8 m.q
8 9 m.1
9 10 1.VERIFY.done
10 11 3.VERIFY.run
11 12 m.q
12 13 m.0
13 14 overflow.run
14 15 overflow.done
15 16 error.run
16 17 error.done
17 18 3.VERIFY.done
18 19 VERIFY.done
19 20 done
20

Figure 6: Shortest failure trace of stack component

ing Game Semantics are very encouraging: this approach proves
to give compact, practicable representations of many common pro-
grams, while the ability to model open programs allows us to verify
software components, such as ADT implementations.

We are considering several further directions:

language extensions: the procedural language fragment we are cur-
rently handling only includes basic imperative and functional
features. We are considering several ways to extend it: richer
computational primitives such as concurrency and control,
which already have game semantic models; restricted recur-
sion schemes which are more expressive than iteration (i.e.
tail recursion); higher-order functional features. In addition,
we consider a version of this tool which would handle call-
by-value languages.

specifications: in order to truly support compositional verification
we intend to expand the tool to model specifications of open
programs, rather than just open programs. A theoretical basis
for that is already provided in [17], which is in turn inspired
by the game-like ideas of interface automata [13].

tools and methodology: enriching the features of the tool and mak-
ing it more robust and user friendly. For example, the defin-
ability result in [5] guarantees that any trace in the model can
be mapped back into a program. Using this, we can give the
user code rather than trace counterexamples to failed asser-
tions. We would also like to investigate applying the tool to
the modeling and verification of a larger, more realistic case
study.

scalable model checking: our methods so far apply only to finite
data and store. Verifying a program operating on finite data
and store is an excellent method for bug detection and pro-
vides a fairly high measure of confidence in the correctness
of the code, but it does not represent a proof. There is, in gen-
eral, no guarantee that the properties of a program of given

size generalize. But we hope that recent results in data inde-
pendence [30, 29] can help overcome such limitations.

We are actively engaged in investigating the above topics, and we
are grateful to the Engineering and Physical Sciences Research
Council of the United Kingdom for financial support in the form
of the research grant Algorithmic Game Semantics and its Appli-
cations; there is also a related project on Scalable Software Model
Checking based on Game Semantics by Ranko Lazic of the Univer-
sity of Warwick.
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