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We define a strongly normalising proof-net calculus corresponding to the logic of

strongly compact closed categories with biproducts. The calculus is a full and faithful

representation of the free strongly compact closed category with biproducts on a given

category with an involution. This syntax can be used to represent and reason about

quantum processes.

1. Introduction

Recent work by Abramsky and Coecke (AC04) develops a complete axiomatization of

finite dimensional quantum mechanics in the abstract setting of strongly compact closed

categories with biproducts. This is used to formalize and verify a number of key quan-

tum information protocols. In this setting, classical information flow is explicitly repre-

sented by the biproduct structure, while the compact closed structure models quantum

behaviour: preparation, unitary evolution and projection, including powerful algebraic

methods for representing and reasoning about entangled states. Mediating between the

two levels is a semiring of scalars, which is an intrinsic part of the structure, and repre-

sents the probability amplitudes in the abstract.

Compact closed categories can be seen as degenerate models of multiplicative linear

logic in which the connectives, tensor and par, are identified. Similarly, the biproduct is

a connective in which the additives of linear logic are combined. The system resulting

from these identifications has a very different flavour to linear logic, indeed to any fa-

miliar system of logic. Cyclic structures abound, and every sequent is provable. These

apparent perversities are, however, no cause for alarm: the resulting equations faithfully

mirror calculations in quantum mechanics as shown in (AC04). Moreover, the cyclic proof

structures give rise to scalars, and allow quantitative aspects to be expressed.

Beginning with a category A of basic types and maps between them we develop a

logical presentation of the free strongly compact closed category with biproducts FA.

By varying the choice of A it is possible to explore what are the minimal requirements

to achieve various “quantum” effects. For example, let A be the category with the single

object C2, and the Pauli maps as the non-identity arrows. In this case the only possible

preparations are the elements of the Bell basis, and their composites. This is sufficient

for entanglement swapping, but not logic gate teleportation.
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We extend the work of Kelly and Laplaza (KL80) by explicitly describing the arrows

of this category in terms of a system of proof-nets. We prove that this syntax is a faithful

and fully complete representation of FA.

In this system the axiom links represent the preparation of atomic states, while cuts

encode projections. The biproduct is used to represent the classical branching struc-

ture. Hence proof-nets can encode physical networks of quantum state preparations and

measurements, and a compilation process to quantum circuits is easily defined. Cut-

elimination reduces each such network to one without measurements and as such ex-

presses the outcome of executing a quantum protocol or algorithm. Cut-elimination pre-

serves denotational equality and hence can serve as a correctness proof for the protocol

encoded by the proof-net.

The cut-elimination procedure provides an easily implemented method for performing

calculations about the structure of entangled states. Such a concrete implementation

promises to be a useful tool for reasoning qualitatively about quantum protocols. For

example, in (AC04), the correctness of several significant quantum protocols is captured

as the commutativity of a certain diagram, which expresses the fact that the protocol

meets its specification. Such reasoning can be automated by representing the protocol as

a proof-net containing Cuts, and normalizing it to show its equality with the specification,

which can be represented as a Cut-free proof-net.

Furthermore, the system can be viewed as a step towards a quantum programming

language equipped with an entanglement-aware type system.

In order to give a flavour of how the proof-net syntax may be used to represent quan-

tum systems we develop an example, the entanglement swapping protocol, in the next

section. In section 3 we reprise the requisite categorical structures, and in sections 4

and 5 we develop the syntax and semantics of our proof-net calculus, and prove strong

normalisation. We sketch the proofs of faithfulness and full completeness. More detailed

proofs are given in the Appendix.

Previous work Shirahata has studied a sequent calculus for compact closed categories

in (Shi96), while Soloviev has studied natural transformations of definable functors on

compact closed categories with biproducts in (Sol87). In (Abr05), the first author has

given a comprehensive survey of free constructions for various forms of monoidal cate-

gory, including traced, compact closed and strongly compact closed categories. Neither

biproducts, nor an explicit logical syntax of proof-nets, were considered in that paper.

2. An Example: Entanglement Swapping

Before proceeding to the details of the proof-calculus and its categorical model, we present

informally a simple example of a quantum protocol represented as a proof-net. First

proposed in (ZZHE93), entanglement swapping allows two parties, Alice and Bob, to

share an entangled state without directly interacting with each other. Instead they each

share a Bell pair with an intermediary, Charlie, who performs a projective Bell-basis

measurement on his part of the two entangled states. After this measurement, the qubits
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retained by Alice and Bob are jointly in a Bell state, and the outcome of Charlie’s

measurement will indicate which state it is.

For any finite dimensional vector spaces, A, and B there is an isomorphism between

A⊗B and the linear maps A→ B via
∑

ij

λijai ⊗ bj ∼= ai 7→
∑

ij

λijbj.

We label states by the maps which they are related to under this isomorphism. For

example the 4 elements of the Bell basis are related to the Pauli maps, up to a global

phase. Since 1√
2
(|00〉 + |11〉) ↔ 1Q, we represent a Bell state as a proof-net as shown

below.

— —

1Q

Q∗ Q

We view this as representing a 2-qubit state, but if read from top to bottom, it can also

been seen as the quantum process which produces the state. In general proof-nets are

understood as processes but if, as in this case, the proof-net is normal then there is no

danger in identifying the quantum state with the process which prepares it.

The other component of this protocol is the measurement in the Bell basis. Suppose

that the measurement performed by Charlie yields the state X ; then the effect of this

measurement is to project his two qubits onto that state. This is dual to preparing the

state, and represented by the following diagram fragment

X

Q Q

Combining two Bell states and the projection we get the proof-net labelled (a) below

— — — —X

1Q 1Q X

Q∗ Q Q∗ Q

(a) (b)

which represents the whole protocol: the preparation of two Bell states in parallel, and

the projection of two of the qubits onto the state X . This is a process which prepares a

2-qubit state — we view measurements as destructive — and by normalising the proof-

net we can compute which state is prepared. For a proof-net as simple as this one, the

result is simply the state which codes the composition of the functions labelling the arcs.

In this case the resulting state is that coded by 1Q ◦X ◦ 1Q = X , labelled (b) above.

In reality, there four possible outcomes of a Bell measurement; these distinct possibil-

ities are represented as slices, which are in a sense different pages of the diagram. In this
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case each slice represents a different element of the Bell basis.

— —

1Q 1Q

1Q
Q∗ Q

— —

1Q 1Q

X
Q∗ Q

— —

1Q 1Q

Y
Q∗ Q

— —

1Q 1Q

Z
Q∗ Q

Further, the party who performs the measurement knows which outcome actually oc-

curred; we represent this classical information with a “gearstick”. In each slice we use a

different index to label each possible outcome. The final protocol is shown below.

⋆

— —

⊕1

—
1Q

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕2

—
X

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕3

—
Y

1Q 1Q

Q∗ Q
⊕

4

i=1
I

⋆

— —

⊕4

—
Z

1Q 1Q

Q∗ Q
⊕

4

i=1
I

In the following sections we formalise the syntax and semantics of this proof calculus, and

prove that the diagrammatic reasoning employed is correct with respect to any suitable

category.

3. Categorical Preliminaries

We recall the definitions and key properties of strongly compact closed categories with

biproducts (SCCCBs). Considered separately, compact closure and biproducts are stan-

dard structures, and may be found in (Mit65; ML97; KL80) for example. Compact closed

categories with biproducts have also been studied by Soloviev (Sol87) and, with some

strong additional assumptions, as Tannakian categories (Del91). They have also been

studied in a Computer Science context in the first author’s work on Interaction Cate-

gories (AGN96). Strong compact closure is introduced, and an axiomatic approach to

quantum mechanics based on strongly compact closed categories with biproducts is de-

veloped, in (AC04).

We will use FDHilb, the category of finite dimensional complex Hilbert spaces and

linear maps as a running example. Another example of an SCCCB is Rel, the category

of sets and relations.

Definition 1 (Symmetric Monoidal Category). A symmetric monoidal category is
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a category C equipped with a bifunctor

−⊗− : C × C - C,

a monoidal unit object I and certain natural isomorphisms

λA : A ≃ I ⊗A ρA : A ≃ A⊗ I

αA,B,C : A⊗ (B ⊗ C) ≃ (A⊗B) ⊗ C

σA,B : A⊗B ≃ B ⊗A

which satisfy certain coherence conditions (ML97). Without essential loss of generality,

we can assume that λ, ρ and α are all identities; that is, we can assume a strict monoidal

category.

In any symmetric monoidal category C, the endomorphisms C(I, I) form a commutative

monoid (KL80). We call these endomorphisms the scalars of C. For each scalar s : I → I

we can define a natural transformation

sA : A = I ⊗A
s⊗ 1A- I ⊗A = A .

Hence, we can define scalar multiplication s • f := f ◦ sA = sB ◦ f for f : A→ B. Then

we have

(s • g) ◦ (r • f) = (s ◦ r) • (g ◦ f)

for r : I → I and g : B → C.

Definition 2 (Compact Closed Category). A symmetric monoidal category is com-

pact closed if to each object A there is an assigned left adjoint (A∗, ηA, ǫA) such that the

composites

A = A⊗ I
1A⊗ηA- A⊗A∗ ⊗A

ǫA⊗1A- I ⊗A = A

A∗ = I ⊗ A∗ ηA⊗1A∗- A∗⊗A⊗A∗ 1A∗⊗ǫA- A∗⊗ I = A∗

are both identities.

In FDHilb the tensor product is just the usual Kronecker tensor product, and I = C.

Since any linear map from C to itself is fixed by its value at 1, the formal scalars in

FDHilb are indeed the complex numbers. If A is some finite dimensional Hilbert space

then, we can take A∗ to be the usual dual, the space of linear maps A → C. Given a

basis {ai}i for A, and its dual basis {ai}i, the required maps are

ηA : 1 7→
∑

i

ai ⊗ ai;

ǫA : ai ⊗ aj 7→ δij .

A routine calculation verifies that the required equalities hold, FDHilb is indeed compact

closed.

For each morphism f : A→ B in a compact closed category we can construct its name,
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pfq : I → A∗ ⊗B, coname, xfy : A⊗B∗ → I, and dual, f∗ : B∗ → A∗, by

I
ηA- A∗ ⊗A

A∗ ⊗B

1A∗ ⊗ f

?

pf
q

-

A⊗B∗

B ⊗B∗

f ⊗ 1B∗

?

ǫA
- I

xf
y

-

B∗ = I ⊗B∗ ηA ⊗ 1B∗ - A∗ ⊗A⊗ B∗

A∗

f∗

?
= A∗ ⊗ I � 1A∗ ⊗ ǫB

A∗ ⊗B ⊗B∗

1A∗ ⊗ f ⊗ 1B∗

?

In particular, the map f 7→ f∗ extends to a contravariant endofunctor with A ∼= A∗∗.
Each compact closed category admits a categorical trace. That is, for every morphism

f : A ⊗ C → B ⊗ C certain axioms (JSV96) are satisfied by TrC
A,B(f) : A → B, defined

as the composite:

A = A⊗ I
1A ⊗ ηC∗- A⊗ C ⊗ C∗ f ⊗ 1C∗- B ⊗ C ⊗ C∗ 1B ⊗ ǫC- B ⊗ I = B.

The following results are proved in (AC04).

Lemma 3. Suppose we have maps E
k- A

f- B
g- C

h- D. Then we have

the following equations.

(a) Absorption:

(1A∗⊗ g) ◦ pfq = pg ◦ fq

(b) Backward absorption:

(k∗ ⊗ 1A∗) ◦ pfq = pf ◦ kq

(c) Compositionality:

λ−1
C ◦ (xfy ⊗ 1C) ◦ (1A ⊗ pgq) ◦ ρA = g ◦ f

(d) Compositional cut:

(ρ−1
A ⊗ 1D∗) ◦ (1A∗⊗ xgy ⊗1D) ◦ (pfq ⊗ phq) ◦ ρI = ph ◦ g ◦ fq

The obvious analogues of Lemma 3(a) and 3(b) for conames also hold.

Definition 4 (Zero Object). A zero object in C is both initial and terminal. If 0 is a

zero object, there is an arrow 0A,B : A - 0 - B between any pair of objects A

and B.

Definition 5 (Biproduct). Let C be a category with a zero object and binary products

and coproducts. Any arrow

A1

∐

A2 → A1

∏

A2



A Categorical Quantum Logic 7

can be written uniquely as a matrix (fij), where fij : Ai → Aj . If the arrow
(

1 0

0 1

)

is an isomorphism for all A1, A2, then we say that C has biproducts, and write A⊕B for

the biproduct of A and B.

If C has biproducts then we can define an operation of addition on each hom-set C(A,B)

by

f + g = ∇ ◦ (f ⊕ g) ◦ ∆

for f, g : A → B, where ∆ = 〈1A, 1A〉 and ∇ = [1B, 1B]. This operation is associative

and commutative, with 0AB as a unit. Moreover, composition is bilinear with respect to

this semi-additive structure.

In FDHilb the direct sum of Hilbert spaces gives a biproduct, with the vector space

{0} as the zero object; the addition on hom sets is normal addition of maps. In Rel the

biproduct is given by disjoint union of sets; addition of relations is given by their union.

If C has biproducts, we can choose projections p1, p2 and injections q1, q2 for each

A⊕B satisfying:

pi ◦ qj = δij q1 ◦ p1 + q2 ◦ p2 = 1A⊕B

where δii = 1, and δij = 0, i 6= j.

Remark 1. We note that if C is already equipped with a semiadditive structure as above

then one can define the biproduct directly as a diagram,

A
� p1

q1
- A⊕B

p2 -�
q2

B

satisfying

pi ◦ qj = δij q1 ◦ p1 + q2 ◦ p2 = 1A⊕B.

This fact will be used for the biproduct structure of the proof calculus.

Of course, the biproduct defines a monoidal structure, with unit object 0. As before,

we will take it to be strict:

(A⊕B) ⊕ C = A⊕ (B ⊕ C), 0 ⊕A = A = A⊕ 0.

Proposition 6 (Distributivity of ⊗ over ⊕). In monoidal closed categories with

biproducts there are natural isomorphisms

dA,B,C : A⊗ (B ⊕ C) ∼= (A⊗B) ⊕ (A⊗ C)

dA,·,·= 〈1A ⊗ p1, 1A ⊗ p2〉 d−1
A,·,·= [1A ⊗ q1, 1A ⊗ q2] .

A left distributivity isomorphism can be defined similarly.

Proposition 7. In a monoidal closed category with a 0 object there are natural isomor-

phism A⊗ 0 ∼= 0 ∼= 0⊗A.
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Proposition 8 (Self-duality for (·)∗). In a compact closed category with biproducts

the following natural isomorphisms exist.

A∗∗ ∼= A (A⊗B)∗ ∼= A∗ ⊗B∗ I∗ ∼= I

(A⊕B)∗ ∼= A∗ ⊕B∗ 0∗ ∼= 0

It will be notationally convenient to take all the canonical maps of Prop. 7 and 8 as

equalities.

Definition 9 (Strong Compact Closure). A compact closed category C is strongly

compact closed if the assignment A 7→ A∗ extends to a covariant involutive compact

closed functor. Write f∗ for the action of this functor on arrow f . (See (AC05) for an

alternative definition of strong compact closure).

Given f : A → B in a strongly compact closed category C we can define its adjoint

f † : B → A by f † = (f∗)∗ = (f∗)∗. The assignments A 7→ A on objects and f 7→ f † on

arrows define an involutive functor . If C has biproducts then (·)† preserves them, and

hence is additive.

If C is strongly compact closed and has biproducts we require a compatibility condition,

namely that the coproduct injections

qi : Ai →

k=n
⊕

k=1

Ak

satisfy q†j ◦qi = δij . It then follows that the projections and injections additionally satisfy

(pi)
† = qi.

In FDHilb the (·)† is the usual adjoint of a linear map, given by

〈ψ | fφ〉 = 〈f †ψ | φ〉.

The functorial action f∗ is defined by

f∗(φ)(v) = φ ◦ f †(v).

Remark 2. In (AC04), A∗ is defined to be the conjugate space of A, which has the

advantage of being strictly involutive.

4. The Logic of SCCCBs

The purpose of this paper is to present a logic whose syntax captures the structure of

the free strongly compact closed category with biproducts generated by a category with

an involution. The formulae of the logic represent the objects of the free category, while

the proofs represent the arrows†.

Let F be the functor which takes a category with involution to the free strongly

† See the remarks at the end of (KL80) which explain why a description of the free compact closed
category is the strongest available form of coherence theorem for such categories.
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compact closed category with biproducts generated upon it.

InvCat

F -
⊥�
U

SCCCB

Here InvCat is the category of categories with involutions, i.e. identity-on-objects, con-

travariant, involutive functors, and functors preserving the given involutions. We will

define a logic relative to a ground category A (standing for “axioms” or “atoms” accord-

ing to taste) with involution (·)†. The objects of A will form the atomic formulas of the

syntax, and its arrows will give non-logical axioms. The formulas of the resulting logic

will represent the objects of the generated category FA, while the proofs will represent

its arrows.

We can simplify our task, following (Abr05). It is shown there that FCC, the functor

that constructs the free compact closed category generated by a category, lifts to InvCat

to yield the free strongly compact closed category over a category with involution. This

amounts to the observation that, given an involution on the base category, it lifts to

one on the freely generated compact closed category, and moreover this lifted involution

is compatible with the compact closed structure in the required fashion—so that, in

particular,

ǫA = σA∗,A ◦ η†A.

Lemma 27 in the Appendix recalls how the involution is lifted.

Henceforth we will assume that A has an adjoint f † assigned to every arrow f .

Definition 10. The formulae of the logic are built from the following grammar:

F ::= 0 | I | A | A∗ | F ⊗ F | F ⊕ F,

where A ranges over the objects of A, which we shall refer to as atoms. In order to

capture the strictness of the connectives with respect to their units, the use of the units

is restricted: 0 may not occur as a subformula of any formula other than itself; while I

may only occur immediately under a biproduct, i.e. I ⊗A is banned, but (I ⊕A) ⊗B is

permitted. While it is technically convenient to admit I as a valid formula, a correctness

condition for proof-nets will guarantee that I never occurs in a conclusion of a correct

proof without an accompanying ⊕. We define (·)∗ on arbitrary formulae by the following

equations:

X∗∗ = X

(X ⊗ Y )∗ = X∗ ⊗ Y ∗

(X ⊕ Y )∗ = X∗ ⊕ Y ∗

I∗ = I

0∗ = 0.

We use the notation convention that upper case letters A,B,C from the start of the

latin alphabet are atoms and those from the end of the alphabet X,Y, Z are arbitrary

formulae. Upper case Greek letters Γ,∆,Σ signify lists of formulae.

Definition 11. We shall use axiom synonymously with arrow of A .
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Cyclic structures play an important role in the theory of compact closed categories

and we shall have need of them in the syntax. Define the set of endomorphisms E(A) by

the disjoint union

E(A) =
∑

A∈|A|
A(A,A),

and let the set of loops [A] be the quotient of E(A) generated by the relation f ◦g ∼ g◦f

whenever A
f- B

g- A.

5. Proof-nets

We present a graphical proof notation which captures precisely the structure of strongly

compact closed categories with biproducts; in fact we offer a faithful and fully complete

representation of FA.

5.1. Syntax

Definition 12 (slice). A slice is a finite oriented graph with edges labelled by formulae.

The graph is constructed by composing the following nodes, which we call links, while

respecting the labelling on the incoming and outgoing edges.

Axiom : No incoming edges; two out-going edges. The link itself is labelled by an axiom

f : A→ B . One outgoing edge is labelled A∗, the other, B.

Cut : Two incoming edges; no outgoing edges. Each cut is labelled either by an axiom

f : A→ B with incoming edges are labelled by atoms A and B∗, or else it is labelled

by an identity with the incoming edges labelled by X and X∗ for an arbitrary formula

X .

Times : Two incoming edges labelled A and B; one outgoing edge labelled A⊗B.

Plus 1 : One incoming edge labelled A; one outgoing edge labelled A⊕B.

Plus 2 : One incoming edge labelled B; one outgoing edge labelled A⊕B.

I : No incoming edges; one outgoing edge labelled by I.

The orientation is such that edges enter the node from the top, and exit from the bottom.

The conclusions of the slice are those labels on outgoing edges of links which are left

unconnected. The order of the conclusions is significant. There is one correctness criterion:

every I-link must be connected to either a Plus-link or a cut labelled with 1I.

Definition 13 (net). A net (or proof-net) is a finite multiset of slices where each slice

has the same conclusions. The conclusions of the net are the same as those of its slices.

We emphasise that empty slice is a valid slice, having no conclusions, and the empty

set of slices is a valid net. In particular the empty net may be considered as having any

conclusions; since there is no rule for introducing it otherwise, the additive unit 0 can

only occur among the conclusions of an empty net.
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Example 14. This net represents the distribution of ⊗ over ⊕.

⊕1

1X

⊗

—

⊗

⊕1

—

1Y

Y ∗

X∗

Y ∗⊕Z∗

X Y

X⊗Y

X∗⊗(Y ∗⊕Z∗)

(X⊗Y )⊕(X⊗Z)

⊕2

1X

⊗

—

⊗

⊕2

—

1Z

Z∗

X∗

Y ∗⊕Z∗

X Z

X⊗Z

X∗⊗(Y ∗⊕Z∗)

(X⊗Y )⊕(X⊗Z)

Definition 15 (Normal Forms). A slice is normal if every connected component either

has no cut links, or is a closed loop formed by an axiom link and an identity cut. We

identify loops if their labels are related by the equivalence relation on endomorphisms

give in section 4. A net is normal if every slice is normal.

Definition 16 (β-Reduction). Let →β be the reflexive transitive closure of the relation

defined on slices by the following set of rewrites on cut links.

1 A cut between atomic formulae. Atomic formulae are only introduced by axiom links,

so there are two subcases.

(a) If both formulae belong to the same axiom (say f):

g 1A

f g ◦ f

A∗ B A∗ A

(b) If the cut formulae are conclusions of different axioms, say f and h:

g

f h h ◦ g ◦ f

B C∗A∗ D DA∗

2 Cut between two tensor products:

⊗ ⊗

1X⊗Y

1X 1YX Y X∗ Y ∗

X X∗ Y Y ∗
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3 Cut between two biproducts:

i = j i 6= j
[delete Slice]

⊕i ⊕j
1Xi

1Xi⊕Xj

Xi X∗

j

Xi X∗

i

4 Cut between two I-links:

I I [nothing]

⋆ ⋆

1I

Extend →β to proof-nets by π →β π
′ iff there is an injective map p from the slices of π′

to those of π, such that if p(s′) = s then s →β s′, and for every slice s of π not in the

image of p, there is a →β sequence ending in “Delete Slice”. Let =β be the symmetric

closure of →β .

Theorem 17 (Cut Elimination). The relation →β is confluent and terminating; fur-

ther the β-normal forms are normal in the sense of Def. 15 above.

Proof. It suffices to consider →β on slices alone.

In the case of 1(b) pairs of rewrites may interfere as shown in figure 1. However

associativity in the underlying category A prevents any conflict.

Case 1(a) may also conflict with 1(b) as shown in figure 2; in this case the two resulting

components are identified by the equivalence on loops.

With these exceptions, each reduction step is purely local — no rewrite can affect any

other — hence the process is confluent. Since each step reduces the complexity of the

net, there is no infinite reduction sequence, and hence every net is strongly normalising.

The only situation where a cut will not be eliminated are those in case 1(a); hence

when no more rewrites can be done the slice is normal, as required.

5.2. Semantics

Definition 18 (Semantics of proof-nets). Let ν be a proof-net with conclusions Γ.

Define an arrow of FA, JνK : I →
⊗

Γ, by recursion on the structure of ν. Consider each

slice s of ν.

— If s is just an axiom link corresponding to the arrow f : A→ B, then let JsK = pfq :

I → A∗ ⊗B.

— If s has several disconnected components s1, . . . , sn then define

JsK =
n

⊗

i=1

JsiK.
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g k

gk

f h l

f l ◦ k ◦ hh ◦ g ◦ f l

l ◦ k ◦ h ◦ g ◦ f

Fig. 1. Confluence of cut elimination step 1(b)

g k

kg

1 1

f h

hgffkh

gfkh khgf

=

Fig. 2. Confluence of cut elimination step 1(a)/1(b)

— If s is built by applying a cut labelled by f : A → B between conclusions A and B∗

of s′, suppose that we have constructed Js′K : I → Γ ⊗A ⊗ B∗ ⊗ ∆. Then define JsK

by the composition

I
Js′K - Γ ⊗A⊗B∗ ⊗ ∆

1Γ ⊗ xgy ⊗ 1∆- Γ ⊗ ∆.

— If s is built by applying a ⊗-link between conclusions A and B of s′ then let JsK = Js′K.
— If s is built by applying a ⊕i link to conclusion Aj of s′, construct Js′K : I → Γ⊗Aj⊗∆

then define JsK by the composition

I
Js′K - Γ ⊗Aj ⊗ ∆

1Γ ⊗ qi ⊗ 1∆- Γ ⊗ (A1 ⊕A2) ⊗ ∆.

— If s is an I-link, then JsK = 1I .

— If s is the empty slice JsK = 1I .

All these constructions commute wherever the required compositions are defined due to

the functoriality of the tensor, hence JsK is well defined. Let ν be the net composed of
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the slices s1, . . . , sn. We define

JνK =

n
∑

i=1

JsiK.

If ν is the empty proof-net (i.e. it has no slices) JνK = 0I,Γ.

Theorem 19 (Soundness). If a net ν →β ν
′ then JνK = Jν′K.

Proof. Each of the one step rewrite rules preserves denotation. For each rewrite rule

we show the corresponding equation.

1 Suppose we have arrows B
e- A

f- B
g- C

h- D in A; then

(a) We have

xey ◦ pfq = ǫA∗ ◦ (1A∗ ⊗ e) ◦ (1A∗ ⊗ f) ◦ ηA

= ǫA∗ ◦ (1A∗ ⊗ (e ◦ f) ◦ ηA

= ǫA∗ ◦ pe ◦ fq

directly from the definition of the name and coname.

(b)The required equation

(1A∗ ⊗ xgy ⊗ 1D) ◦ (pfq ⊗ phq) = ph ◦ g ◦ fq

is lemma 3.(d) verbatim.

2 The case for tensor follows from ǫA⊗B = σ ◦ (ǫA ⊗ ǫB).

3 By using forwards and backwards absorption (lemmas 3.(a),3.(b)) we have

ǫAi⊕Aj
◦ (qi ⊗ qj) = xpj ◦ 1Ai⊕Aj

◦ qiy =

{

ǫAi
if i = j

x0Ai,Aj
y if i 6= j

Consider the case where i 6= j. We note that x0Ai,Aj
y = 0Ai⊗A∗

j
,I , and since any arrow

composed with, or tensored with, a zero map is itself a zero map the denotation of

the entire slice must be zero. Hence we may delete it without altering the denotation

of the net.

4 Since FA is strict, we have that ǫI ◦ (1I ⊗ 1I) = 1I as required.

The result follows by the functoriality of the tensor.

Now we show that the proof-net syntax is a faithful representation of the category

FA. For the purposes of the following proof, by involution on a set X we will mean a

category consisting of a finite coproduct of copies of the category 2 (with objects 0, 1,

and one non-identity arrow 0 → 1), whose objects are in bijective correspondence with

the elements of X .

Lemma 20. In order to specify a normal slice uniquely the following data are required:

1 The list of conclusions Γ;

2 A list of booleans B, indicating, for each occurrence of the connective ⊕ in Γ, whether

the left or right subformula was the premise of the link which introduced it;

3 An involution θ on those atoms of Γ which are not introduced by the ⊕ rules such

that each atom is paired with a copy of 0 iff it is negative, together with a functor

p : θ → A;
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4 A multiset L of loops in A.

Proof. Clearly every normal slice will define the four data above, and do so uniquely.

We show how to reconstruct the the slice from the data. For each formula X of Γ, the

syntax of X combined with B fix a unique set of logical (⊗, ⊕, I) links which derive the

formula from its constituent atoms. Necessarily, there are an equal number of positive and

negative atoms; θ specifies an arrangement of axiom links between them labelled by p.

This doesn’t totally fix the slice, since we may have additional disconnected components.

Since they have no conclusions, and the slice is normal, any remaining components must

be loops, which are specified by L.

Theorem 21 (Faithfulness). If nets ν, ν′ have the same conclusions Γ then JνK = Jν′K
implies ν =β ν

′.

Proof. Let s be a normal slice. By Def. 18 JsK = c • f , where c is a scalar and f has

the following structure:

I
pf1q⊗···⊗pfnq-

n
⊗

i=1

(A∗
2i−1 ⊗A2i)

σ-
2n
⊗

i=1

Aσ(i)
κ- Γ

upto a scalar multiple, where σ is a permutation, and κ is a tensor product of identities

and injections. This structure suffices to define the data of the preceding lemma.

Every ⊕ in Γ must be introduced by the injections κ, which serve to define B. Given

σ and any ordering on the names pfiq the pair (θ, p) is easily reconstructed.

If c 6= 1I then the free construction of FA guarantees that it is product of arrows of

the form

I
plq- A∗ ⊗A

ǫA∗- I.

Each automorphism l defines a loop, so c defines L. It is easy to verify that the slice

reconstructed from c and f will be the original slice s.

Since the addition is freely constructed, JνK = Jν′K implies that both are equal to

the same formal sum
∑

i fi, where each fi is the denotation of a slice. Since each fi

determines a unique normal slice, we have that the normal forms of ν and ν′ comprise

the same multiset of slices, hence ν =β ν
′.

It should be noted that the faithfulness result required the conclusions of the nets to

be specified. In fact the syntax is not truly injective onto the arrows of FA. For example,

the proof-nets

— —

1A

A∗ A

and
⊗

—

1A

A∗ A

A∗⊗A

both denote the map ηA.
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Let FSCC : Cat → ComClCat be the functor which takes a category to the free

compact closed category generated by it. This functor has been described in detail in

(KL80). We note that FSCCA is a subcategory of FA.

Theorem 22 (Full Completeness). Let f be an arrow of FA, the free compact closed

category with biproducts on A; then there exists a net ν such that pfq = JνK.

Sketch proof We note that each object of FA is canonically isomorphic to an object

in additive normal form; that is where no occurrence of ⊕ occurs in the scope of any

occurrence of ⊗. Hence given an arrow f : A → B in FA one can construct the three

other sides of following square

A
f - B

⊕

i

⊗

ji

Aji

∼=

?
⊕

i fi

-
⊕

i

⊗

ki

Bki

∼=

6

such that each fi is a (possibly empty) sum of arrows of FSCCA. The theorem of Kelly-

Laplaza (KL80) gives an explicit description the arrows in FSCCA and hence immediately

a proof-net for each one. Then each fi yields a collection of slices. From here it is straight-

forward to construct the proof-net of
⊕

i fi.

The appendix contains a more detailed proof of the theorem.

6. Further Work

In the present paper, we have focused on freely generating the structure over a category

with no additional structure. If the category in question has an object for the type of

qubits, then the resulting free structure will not contain, for example, the controlled not

gate, nor any other multi-qubit operation. Without such maps the expressivity of the

system is limited. Therefore an important further step is to consider the structure of the

freely generated strongly compact closed category with biproducts over a category with a

given symmetric monoidal structure. This is carried out in the forthcoming thesis (Dun)

of the second author.

Furthermore, although it has not been discussed here, the model may be further tuned

by the choice of the semiring of scalars I → I. These represent the “amplitudes” of the

different terms of a state, and hence give rise to the probabilities of different outcomes of

a quantum process. The equational structure of the scalars constrains the representable

quantum processes. For example it is known that the category Rel does not have enough

scalars to represent the teleportation protocol. It is possible to specify a desired semiring

R of scalars as a separate parameter to a free construction, together with a map from the

loops of A to R (Abr05). Given a suitable rewriting theory for R, this can be combined

with the proof-net calculus to yield a system in which it should be possible to extract
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concrete probabilities and other quantitative information. These ideas will be developed

in future work.
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Appendix A. Proof of full completeness

Firstly, we remark that there is a well-known description of the free construction BC of a

category with finite biproducts generated by a category C (for which see e.g. (ML97)). The

objects of BC are finite tuples of objects of C, written
⊕n

i=1 Ai; morphisms
⊕n

i=1 Ai →
⊕m

j=1 Bj are n × m matrices whose components are finite multisets of arrows Ai →

Bj , i.e. elements of the free Abelian monoid generated by C(Ai, Bj). Composition is

by “matrix multiplication”, with the composition of C bilinearly extended to multisets.

This construction, as is also well-known, extends to the construction of free distributive

biproducts over monoidal categories, with the tensor defined on BC by distributivity:

(
n

⊕

i=1

Ai) ⊗ (
m

⊕

j=1

Bj) =
⊕

i,j

Ai ⊗Bj .

The following is a straightforward extension of this standard result:
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Proposition 23. The matrix construction lifts to strongly compact closed categories.

Proof. The adjoint of a matrix (mij) is (m†
ji), where the adjoint of the generating

strongly compact closed category is applied pointwise to the multiset mji. The unit for
⊕n

i=1 Ai is the diagonal matrix with diagonal elements {ηAi
}.

This yields a factorization of the adjunction

InvCat

F -
⊥�
U

SCCCB

as F = B ◦ FSCC:

InvCat

FSCC -
⊥�

USCC

SCCC

B -
⊥�

USCCB

SCCCB.

This factorization underlies the structure of the following argument. One particular con-

sequence we shall use is the following:

Proposition 24. FSCC(C) embeds faithfully in F (C).

We will refer to the objects of A, their images under (·)∗ and the constants 0 and I as

the literals of FA. Since FA is freely generated, its objects are formed from the literals

by repeated application of the functors (− ⊗ −) and (− ⊕ −). Hence any object may

be described by such a functor and a vector of literals. For the rest of the section, it

will be understood that by functor we refer only to those constructed from tensors and

biproducts‡. Let ⊗n : FA× · · ·×FA → FA be the n-fold tensor; similarly let ⊕n be the

n-fold biproduct. Call N a normal functor if it is has the form

N = ⊕n(⊗m1
(−), . . . ,⊗mn

(−)).

Lemma 25. Every functor G is naturally isomorphic to a normal functor NG.

Sketch proof Use induction on the structure of G; the required isomorphism is con-

structed from the distributivity A⊗ (B ⊕ C) ∼= (A⊗B) ⊕ (A⊗ C).

Long proof We construct NG and a natural isomorphism dG simultaneously, by recur-

sion on the structure of G. There are two principal cases.

If G = G1(−) ⊕ G2(−) then, by induction, we have natural isomorphisms d1 : G1 ⇒

NG1
and d2 : G2 ⇒ NG2

. Then NG1
⊕NG2

is a normal functor, and d1⊕d2 is the required

natural isomorphism.

If G = G1(−) ⊗ G2(−) then we have natural isomorphisms d1 : G1 ⇒ NG1
and

d2 : G2 ⇒ NG2
. Since NG1

is normal it has the form
⊕

iAi, where each Ai is multi-ary

‡ Soloviev has treated the natural transformations of such functors in detail (Sol87), but here we are
only interested in one particular case.
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tensor product; similarly NG2
=

⊕

j Bj . Hence we have a natural isomorphism

d = 〈〈πi ⊗ 1〉i ⊗ πj〉j : NG1
⊗NG2

⇒
⊕

ij

Ai ⊗Bj

to a normal functor, which we take to be NG. The composition d◦(d1⊗d2) is the required

map G⇒ NG.

Lemma 26. Let NF , NG be normal functors. For each arrow f : NFA → NGB there

exist maps g, h, f1, . . . , fn such that

NFA
f - NGB

⊕

i

Ai

g

?
⊕

i fi

-
⊕

i

Bj

h

6

commutes, where the Ai, Bj are multi-ary tensors of literals.

Proof. We will construct the required maps by recursion on the structure of f . There

are three cases.

Case 1. Suppose A = A1⊕A2, and B = B1⊕B2. Then f has a matrix representation
(

f1 f2
f3 f4

)

. We reconstruct f as

A1 ⊕A2
f - B1 ⊕B2

A1 ⊕A1 ⊕A2 ⊕A2

∆A1
⊕ ∆A2

?

f1 ⊕ f2 ⊕ f3 ⊕ f4
- B1 ⊕B2 ⊕B1 ⊕B2

∇B1⊕B2

6

and recurse on each fi.

Case 2. Suppose that A = A1 ⊕ A2, but B is not a biproduct of two other objects.

Since the biproduct structure is freely constructed it is guaranteed that f = [f1, f2] :

A1 ⊕A2 → B. This is reconstructed as

A1 ⊕A2
f1 ⊕ f2- B ⊕B

∇B - B.

Case 3. If B = B1 ⊕B2 but A is not a biproduct the treatment is dual to that of case

2.

Now consider the fi constructed above. Each one has the form

fi : ⊗nA→ ⊗mB.

Suppose that 0 is a component of A. In that case ⊗nA = 0 and hence fi is completely

determined; a similar situation applies to B. Let us suppose then, that 0 does not occur

in either A or B.
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Since the hom sets of FA form a (freely generated) commutative monoid, f is a finite

sum of non-zero arrows, fi =
∑

j fij , or else is zero itself. Furthermore, every fij must

be an arrow of the subcategory FSCCA, that is the free strongly compact closed category

upon A. (Here we are relying on Proposition 24). At this point we appeal to a theorem

of (KL80; Abr05):

Theorem. Each arrow f : A → B of the free (strongly) compact closed category on a

category A is completely described by the following data:

1 An involution θ on the atoms of A∗ ⊗B;

2 A functor p : θ → A agreeing with θ on objects (i.e. a labelling of θ with arrows of

A.);

3 A multiset L of loops from A.

Lemma 27. Suppose that A has an identity on objects, contravariant, involutive functor

()†. Then FSCCA is strongly compact closed.

Proof. It suffices to show how to extend ()† to FSCCA. Using the description of mor-

phisms in FSCCA given in the previous theorem, we define

(θ, p, L)† = (θ−1, ()† ◦ p ◦ ()−1, L†).

Lemma 28. For each arrow f in FSCCA there is a proof-net ν such that JνK = pfq.

Proof. By Kelly-Laplaza f ≈ (θ, p, L). The involution θ specifies the axiom links,

labelled as per the functor p. We add tensor links to join up all the conclusions which

are subformulae of A, and likewise B. For each loop h : A→ A in L, an h-axiom link is

added; the loop is closed up with an identity cut. Since ps • fq = s • pfq this suffices.

Lemma 29. Given f1 : X1 → Y1 and f2 : X2 → Y2, if there exist proof-nets π1, π2 such

that JπK = pfq and Jπ2K then there exists π such that JπK = pf1 ⊕ f2q.

Proof. First note that

f1 ⊕ f2 = (q1 ◦ f1 ◦ p1) + (q2 ◦ f2 ◦ p2),

where pi, qj are the biproduct projections and injections. Hence

pf1 ⊕ f2q = (1X∗

1
⊕X∗

2
⊗ ((q1 ◦ f1 ◦ p1) + (q2 ◦ f2 ◦ p2))) ◦ ηX1⊕X2

= ((1X∗

1
⊕X∗

2
⊗ (q1 ◦ f1 ◦ p1)) ◦ ηX1⊕X2

) + ((1X∗

1
⊕X∗

2
⊗ (q1 ◦ f1 ◦ p2)) ◦ ηX1⊕X2

)

= ((p∗1 ⊗ (q1 ◦ f1)) ◦ ηX1
) + ((p∗2 ⊗ (q2 ◦ f2)) ◦ ηX2

)

= ((p∗1 ⊗ (q1 ◦ f1)) ◦ ηX1
) + ((p∗2 ⊗ (q2 ◦ f2)) ◦ ηX2

)

= ((q1 ⊗ q1) ◦ (1X∗

1
⊗ f1) ◦ ηX1

) + ((q2 ⊗ q2) ◦ (1X∗

2
⊗ f2) ◦ ηX2

)

= ((q1 ⊗ q1) ◦ pf1q) + ((q2 ⊗ q2) ◦ pf2q).

= ((q1 ⊗ q1) ◦ Jπ1K) + ((q2 ⊗ q2) ◦ Jπ2K).
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X∗

1

si

Y1

⊕1

— —

⊕1

X∗

1
⊕X∗

2
Y1⊕Y2

Fig. 3. Proof-net for lemma 29

If π1 has slices si then

(q1 ⊗ q1) ◦ Jπ1K = (q1 ⊗ q1) ◦
∑

i

JsiK =
∑

i

(q1 ⊗ q1) ◦ JsiK.

hence we require a slice s′i such that Js′iK = (q1 ⊗ q1) ◦ JsiK. We assume that si has

conclusions X∗
1 and Y1; if it does not, then necessarily its conclusions differ from this

only by the arrangement of the tensor links, and since these have no impact on the

denotation we can rearrange them as needed. Then the required slice is shown in Fig. 3.

The required proof-net π is formed by combining all the s′i into a single proof-net, along

with similarly constructed slices for f2. By its construction we have JπK = pf1 ⊕ f2q.


