
Socially Responsive, Environmentally Friendly Logic

Samson Abramsky

Oxford University Computing Laboratory

Abstract

We consider the following questions: What kind of logic has a natural semantics in
multi-player (rather than 2-player) games? How can we express branching quantifiers, and
other partial-information constructs, with a properly compositional syntax and semantics?
We develop a logic in answer to these questions, with a formal semantics based on multiple
concurrent strategies, formalized as closure operators on Kahn-Plotkin concrete domains.
Partial information constraints are represented as co-closure operators. We address the
syntactic issues by treating syntactic constituents, including quantifiers, as arrows in a
category, with arities and co-arities. This enables a fully compositional account of a wide
range of features in a multi-agent, concurrent setting, including IF-style quantifiers.

Contents

1 Introduction 2

2 From 2-person to n-person games 3
2.1 The naturalness of 2-person games . 3
2.2 Background: 2-person games . 3
2.3 An Aside . 4
2.4 From 2-person to n-person games . 4

3 Semantics of LA 5
3.1 Static Semantics: Concrete Data Structures as Concurrent Games 6
3.2 Dynamic Semantics: Concurrent Strategies 10

3.2.1 Inductive Construction of Strategy Sets 10
3.2.2 Local conditions on strategies . 11
3.2.3 Global definitions of strategy sets . 12
3.2.4 Comparison of the local and global definitions 14

3.3 Evaluation of Strategy Profiles . 16
3.4 Outcomes and Valuations . 17

4 Towards environmentally friendly logic 19
4.1 Syntax as a Category . 19
4.2 Static Semantics Revisited . 20
4.3 Interlude: Structural Congruence . 21
4.4 Valuations . 22
4.5 Dynamic Semantics Revisited . 24
4.6 Visibility Functions, Occlusion and IF-Quantifiers 24

1

4.6.1 IF-quantifiers . 25

5 Further Directions 26

1 Introduction

We begin with the following quote from the manifesto of a recent Workshop [AdM7]:

“Traditionally, logic has dealt with the zero-agent notion of truth and the one-
agent notion of reasoning. In the last decades, research focus in logic shifted
from these topics to the vast field of “interactive logic”, encompassing logics of
communication and interaction. The main applications of this move to n-agent
notions are logical approaches to games and social software.”

However, while there are certainly applications of multi-modal logics to reasoning about n-
person games (see e.g. [PP03, Paul02]), the more intimate connections between Games and
Logic which manifest themselves in various forms of Game Semantics have all, to the best of
our knowledge, been based on 2-person games. We are therefore led to consider the following
question:

What kind of logic has a natural semantics in multi-player (rather than 2-player) games?

Another topic which has been studied extensively in recent years has been the logical
aspects of games of imperfect information, starting with Henkin-style branching quantifiers
[Hen61], and Hintikka’s game-theoretical interpretation of these, and continuing with the
IF-logic of Hintikka and Sandu [HS89, HS95, HS96]. The issue of whether and how a compo-
sitional semantics for IF-logic can be given has been studied by several authors, particularly
Wilfrid Hodges [Hod97]. However, there is an even more basic question which does not seem
to have received much, if any, attention: namely, how to give a properly compositional syntax
for such constructs. For example, how can we build up a formula with branching quantifiers
piece by piece? It might seem that IF-logic sweeps this question aside, since it does on the
face of it have a compositional syntax. However, more careful consideration shows that the
scope issues raised by the IF quantifiers and connectives do not fit into the usual pattern of
variable-binding operators.

Our aim in the present paper is to develop a logical syntax, and an accompanying formal
semantics, which addresses both these questions. The semantics is naturally phrased in terms
of strategies for n-person games; and it will fit well with our compositional analysis of partial
information constructs. Both our syntactical and semantical explorations will bring to light
some rather unexpected connections to developments in Theoretical Computer Science.

The ideas in this paper were first presented in a lecture given at the 11th Amsterdam
Colloquium in December 1997. Some of the underlying technical notions are developed in
rather different contexts in a number of other papers [AJ94, AM99, Abr00a, Abr03]. One
motivation for writing this paper is to attempt to communicate some of the techniques and
concepts which have been developed within the Theoretical Computer Science semantics
community to a broader audience. We have therefore tried to present the ideas in a self-
contained fashion, and in a fairly expansive expository style.

2

2 From 2-person to n-person games

2.1 The naturalness of 2-person games

The basic metaphor of Game Semantics of Logic is that the players stand for Proponent and
Opponent, or Verifier and Falsifier, or (with Computer Science motivation) for System
and Environment. This 2-agent view sets up a natural duality, which arises by interchanging
the rôles of the two players. This duality is crucial in defining the key notion of composition
of strategies in the Game Semantics developed in Computer Science. It stands as the Game-
Semantical correlate of the logical notion of polarity, and the categorical notions of domain
and codomain, and co- and contra-variance.

So this link between Logic and 2-person games runs deep, and should make us wary of facile
generalization. It can be seen as having the same weight as the binary nature of composition
in Categories, or of the Cut Rule in Logic. Are there good multi-ary generalizations of these
notions?

Nevertheless . . . we shall put forward a simple system which seems to us to offer a natural
generalization. We shall validate this notion to the extent of providing a precise and (in
our opinion) elegant semantics in n-person games. This at least has the merit of broaching
the topic, and putting a clear, if far from comprehensive, proposal on the table. There are
undoubtedly many further subtleties to explore, but it is a start.

2.2 Background: 2-person games

As a starting point, we shall briefly review a Hintikka-style ‘Game-Theoretical Semantics’ of
ordinary first-order logic, in negation normal form. Thus formulas are built from literals by
conjunction, disjunction, and universal and existential quantification. Given a model M, a
game is assigned to each sentence as follows. (We shall be informal here, just as Hintikka
invariably is).

• Literals A(a1, . . . , an), ¬A(a1, . . . , an). The game is trivial in this case. There is a
winning move for Verifier if the literal is true in the model, and a winning move for
Falsifier otherwise.

• Conjunction ϕ1∧ϕ2. The game G(ϕ1∧ϕ2) has a first move by Falsifier which chooses
one of the sub-formulas ϕi, i = 1, 2. It then proceeds with G(ϕi).

• Disjunction G(ϕ1 ∨ ϕ2) has a first move by Verifier which chooses one of the sub-
formulas ϕi, i = 1, 2. It then proceeds with G(ϕi).

• Universal Quantification G(∀x. ϕ) has a first move by Falsifier, which chooses an
element a of M. The game proceeds as G(ϕ[a/x]).

• Existential Quantification Dually, Verifier chooses the element.

The point of this interpretation is that M |= ϕ in the usual Tarskian sense if and only if
Verifier has a winning strategy for G(ϕ).

Note that there is a very natural game-semantical interpretation of negation: G(¬ϕ) is
the same game as G(ϕ), but with the rôles of Verifier and Falsifier interchanged.

3

2.3 An Aside

In fact, the above Game semantics should really be seen as applying to the additive fragment
of Linear Logic, rather than to Classical Logic. Note in particular that it fails to yield a
proper analysis of implication, surely the key logical connective.

Indeed, if we render ϕ → ψ as ¬ϕ ∨ ψ, then note that G(¬ϕ ∨ ψ) does not allow for
any flow of information between the antecedent and the consequent of the implication. At
the very first step, one of ¬ϕ or ψ is chosen, and the other is discarded.1 In order to have the
possibility of such information flow, it is necessary for G(¬ϕ) and G(ψ) to run concurrently.
This takes us into the realm of the multiplicative connectives in the sense of Linear Logic
[Gir87]. The game-theoretical interpretation of negation also belongs to the multiplicative
level.

2.4 From 2-person to n-person games

We shall now describe a simple syntax which will carry a natural interpretation in n-agent
games. We say that the resulting logic is “socially responsive” in that it allows for the actions
of multiple agents.

We fix, once and for all, a set of agents A, ranged over by α, β, . . .
We introduce an A-indexed family of binary connectives ⊕α, and an A-indexed family of

quantifiers Qα. Thus we have a syntax:

ϕ ::= L | ϕ⊕α ψ | Qαx. ϕ.

(Here L ranges over literals).
The intended interpretation of ϕ⊕αψ is a game in which agent α initially chooses either ϕ

or ψ, and then play proceeds in the game corresponding to the chosen sub-formula. Similarly,
for Qαx. ϕ, α initially chooses an instance a for x, and play proceeds as for ϕ[a/x].

2-person games as a special case If we take A = {V, F}, then we can make the following
identifications:

⊕V = ∨, ⊕F = ∧, QV = ∃, QF = ∀.

Whither negation? In 2-person Game Semantics, negation is interpreted as rôle inter-
change. This generalizes in the multi-agent setting to rôle permutation. Each permutation
π ∈ S(A) (S(X) being the symmetric group on the set X) induces a logical operation π̂(ϕ)
of permutation of the rôles of the agents in the game corresponding to A. In the 2-agent
cases, there are two permutations in S({V, F}), the identity (a ‘no-op’), and the transposi-
tion V ↔ F , which corresponds exactly to the usual game-theoretical negation.

Other connectives In the light of our remarks about the essentially additive character (in
the sense of Linear Logic) of the connectives ⊕α and their game-semantical interpretation,
it is also natural to consider some multiplicative-style connectives. We shall introduce two
very basic connectives of this kind, which will prove particularly useful for the compositional
analysis of branching quantifiers:

1This is of course quite analogous to the “paradoxes of material implication”. Our point is that the game
structure, if taken seriously as a way of articulating interactive behaviour, rather than merely being used as a
carrier for standard model-theoretic notions, opens up new and more interesting possibilities.

4

1. Parallel Composition, ϕ‖ψ. The intended semantics is that G(ϕ‖ψ) is the game in
which play in G(ϕ) and G(ψ) proceeds in parallel.

2. Sequential Composition, ϕ · ψ. Here we firstly play in G(ϕ) to a conclusion, and
then play in G(ψ).

It will also be useful to introduce a constant 1 for a “neutral” or “vacuously true” proposition.
The intended semantics is an empty game, in which nothing happens. Thus we should expect
1 to be a unit for both sequential and parallel composition.

Thus the syntax for our multi-agent logic LA stands as follows.

ϕ ::= 1 | A | ϕ⊕α ψ | Qαx. ϕ | ϕ · ψ | ϕ‖ψ | π̂(ϕ).

Here A ranges over atomic formulas, and π ∈ S(A).

Quantifiers as Particles The syntax of LA is more powerful than may first appear. Con-
sider an idea which may seem strange at first, although it has also arisen in Dynamic Game
Logic [vBen03] and implicitly in the semantics of non-deterministic programming languages
[AP81]. Instead of treating quantifiers as prefixing operators Qαx.ϕ in the usual way, we can
consider them as stand-alone particles Qαx ≡ Qαx.1. We should expect to have

(Qαx) · ϕ ≡ (Qαx.1) · ϕ ≡ Qαx.(1 · ϕ) ≡ Qαx. ϕ. (1)

Thus this particle view of quantifiers does not lose any generality with respect to the usual
syntax for quantification. But we can also express much more.

Example 2.1 (2-agent case).

[(∀x∃y) ‖ (∀u∃v)] · A(x, y, u, v).

This is the Henkin quantifier, expressed compositionally in the syntax of LA.

More generally:

Proposition 2.2 Every partially-ordered quantifier prefix in which the partial order is a
series-parallel poset can be expressed in the syntax of LA.

We could therefore recast the grammar of LA as follows:

ϕ ::= A | ϕ⊕α ψ | Qαx | ϕ · ψ | ϕ‖ψ | π̂(ϕ).

However, we shall stick to the previous syntax, as this is more familiar, and will provide us
with an independent check that the expected equivalences (1) hold.

3 Semantics of LA

We shall now develop a semantics for this logic. This semantics will be built in two levels:

1. Static Semantics of Formulas To each formula ϕ ∈ LA, we shall assign a form of
game rich enough to allow for concurrent actions, and for rather general forms of tempo-
ral or causal dependency between moves. This assignment will be fully compositional.

5

2. Dynamic Semantics We then formulate a notion of strategy for these games. For each
agent α ∈ A there will be a notion of α-strategy. We shall show to build strategies for the
games arising from formulas, compositionally from the strategies for the sub-formulas.
We shall also define the key notion of how to evaluate strategy profiles, i.e. a choice of
strategy for each agent, interacting with each other to reach a collective outcome. We
shall find an elegant mathematical expression for this, prima facie very complicated,
operational notion.

We shall also discuss the notion of valuation of an outcome, on the basis of which logical
notions of validity, or game-theoretical notions of equilibria can be defined. However, we
shall find that a fully compositional account of valuations will require the more refined
analysis of syntax to be given in the next Section.

3.1 Static Semantics: Concrete Data Structures as Concurrent Games

The structures we shall find convenient, and indeed very natural, to use as our formal repre-
sentations of games were introduced by Gilles Kahn and Gordon Plotkin in 1975 (although
their paper only appeared in a journal in 1993) [KP78]. They arose for Kahn and Plotkin
in providing a representation theory for their notion of concrete domains. The term used by
Kahn and Plotkin for these structures was information matrices; subsequently, they have usu-
ally been called concrete data structures, and we shall follow this latter terminology (although
in some ways, the original name is more evocative in our context of use).

What, then, is a concrete data structure (CDS)? It is a structure

M = (C, V,D,⊢)

where:

• C is a set of cells, or ‘loci of decisions’—places where the agent can make their moves.
These cells have a spatio-temporal significance: they both allow the distributed nature
of multi-agent interactions to be articulated, and also capture a causal or temporal flow
between events, as we shall see.

• V is a set of ‘values’, which label the choices which can be made by the agents from
their menus of possible moves: for example, choosing the first or second branch of a
compound formula ϕ⊕α ψ, or choosing an instance for a quantifier.

• D ⊆ C × V is a set of decisions, representing the possible choices which can be made
for how to ‘fill’ a cell. Note that specifying D allows some primitive typing for cells;
only certain choices are appropriate for each given cell. (The more usual terminology
for decisions is ‘events’; here we have followed Kahn and Plotkin’s original terminology,
which is very apt for our purposes.)

• The relation ⊢ ⊆ Pf(D) × C is an enabling relation which determines the possible
temporal flows of events in a CDS. (Pf(X) is the set of finite subsets of X.)

A state or configuration over a CDS M is a set s ⊆ D such that:

• s is a partial function, i.e. each cell is filled at most once.

6

• If (c, v) ∈ s, then there is a sequence of decisions

(c1, v1), . . . , (ck, vk) = (c, v)

in s such that, for all j, 1 ≤ j ≤ k, for some Γj ⊆ {(ci, vi) | 1 ≤ i < j}:

Γj ⊢ cj .

This is a “causal well-foundedness” condition. (Kahn and Plotkin phrase it as: “c has
a proof in x”.) Note that, in order for there to be any non-empty states, there must be
initial cells c0 such that ∅ ⊢ c0.

We write D(M) for the set of states, partially ordered by set inclusion. This is a concrete
domain in the sense of Kahn and Plotkin. In particular, it is closed under directed unions
and unions of bounded families, and the finite states form a basis of compact elements, so it
is algebraic.

To obtain a structure to represent a multi-agent game, we shall consider a CDS M aug-
mented with a labelling map

λM : CM −→ A

which indicates which agent is responsible for filling each cell. We call (M,λM) an A-game.
We are now ready to specify the compositional assignment of an A-game to each formula

of LA. We assume a set I which will be used as the domain of quantification. We shall use
⊎ for the disjoint union of sets.

• Constant 1. This is assigned the empty CDS (∅,∅,∅,∅).

• Atomic formulas A. These are assigned the empty CDS (∅,∅,∅,∅).

• Choice connectives ϕ⊕α ψ. Let

M = JϕK, N = JψK

be the CDS assigned to ϕ and ψ, with labelling functions λM and λN . Then the CDS
M ⊕α N is defined as follows:

(CM ⊎ CN ⊎ {c0}, VM ∪ VN ∪ {1, 2},DM ⊎DN ⊎ {(c0, 1), (c0, 2)},⊢M⊕αN)

where

⊢M⊕αN c0

(c0, 1),Γ ⊢M⊕αN c ⇐⇒ Γ ⊢M c

(c0, 2),Γ ⊢M⊕αN c ⇐⇒ Γ ⊢N c.

This is the standard separated sum construction on CDS as in [KP78]. Pictorially:

c0

M N

7

Initially, only the new cell c0 is enabled. It can be filled with either of the values 1 or 2.
If it is filled by 1, we can proceed as in M = JϕK, while if it is filled with 2, we proceed
as in N = JψK. This makes the usual informal specification precise, in a rather general
setting.

To complete the specification of M⊕αN as an A-game, we specify the labelling function
λM⊕αN :

c0 7→ α

c 7→ λM (c) (c ∈ CM)

c 7→ λN (c) (c ∈ CN).

As expected, the initial cell c0 must be filled by the agent α; other cells are filled as in
the corresponding sub-games.

• Quantifiers Qαx. ϕ. Let M = JϕK.

Qα(M) = (CM ⊎ {c0}, VM ∪ I,DM ⊎ ({c0} × I),⊢Qα(M)).

⊢Qα(M) c0

(c0, a),Γ ⊢Qα(M) c ⇐⇒ Γ ⊢M c (a ∈ I).

This is a variant of the standard lifting construction on CDS.

c0

M

Initially, only the new cell c0 is enabled. It can be filled with any choice of individual
a from the domain of quantification I. Subsequently, we play as in M . The labelling
function, λQα(M):

c0 7→ α, c 7→ λM (c) (c ∈ CM).

Although the interpretation of the quantifier particle Qαx ≡ Qαx.1 can be derived from
the definitions already given, we set it out explicitly to show how simple and natural it
is:

JQαxK = ({c0},I, {c0} × I, {⊢ c0}),

with labelling function c0 7→ α. Thus the game consists of a single cell, labelled by
α, initially enabled, in which any element from I can be chosen — a true “particle of
action” in a multi-agent setting.

• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK: we define

M‖N = (CM ⊎ CN , VM ⊎ VN ,DM ⊎DN ,⊢M ⊎ ⊢N).

The labelling function is defined by:

λM‖N (c) =

{

λM (c) (c ∈ CM)

λN (c) (c ∈ CN).

Pictorially:

8

M N

Decisions in M and N can be made concurrently, with no causal or temporal constraints
between them. This is the standard product construction on CDS.

• Sequential Composition ϕ · ψ. We say that a state s ∈ D(M) is maximal if

∀t ∈ D(M)[s ⊆ t ⇒ s = t].

We write Max(M) for the set of maximal elements of D(M).

Let M = JϕK, N = JψK: we define

M ·N = (CM ⊎ CN , VM ⊎ VN ,DM ⊎DN ,⊢M ·N),

where

Γ ⊢M ·N c ⇐⇒ ΓM ⊢ c ∨ (Γ = s ∪ ∆ ∧ s ∈ Max(M) ∧ ∆ ⊢N c).

Pictorially:

M

N

The idea is that firstly we reach a maximal state in M—a “complete play”—and then
we can continue in N . Note that this construction makes sense for arbitrary CDS M ,
N . Even if M has infinite maximal states, the finitary nature of the enabling relation
means that no events from N can occur in M ·N following an infinite play in M .

The labelling function is defined by:

λM ·N (c) =

{

λM (c) (c ∈ CM)

λN (c) (c ∈ CN).

Note that the difference between M‖N and M · N is purely one of temporality or
causality : when events can occur (or, in the alternative terminology, decisions can be
made) relative to each other.

• Role Switching π̂(ϕ), π ∈ S(A). The CDS Jπ̂(ϕ)K is the same as M = JϕK. However:

λπ̂(M) = π ◦ λM .

9

3.2 Dynamic Semantics: Concurrent Strategies

We now turn to the task of defining a suitable notion of strategy for our games. We shall view
a strategy for an agent α on the game M as a function σ : D(M) → D(M). The idea is that
σ(s) shows the moves which agent α would make, in the situation represented by the state s,
when following the strategy represented by σ. Some formal features of σ follow immediately
from this:

• (S1) Since past moves cannot be undone, we must have s ⊆ σ(s), i.e. σ is increasing.

• (S2) If (c, v) ∈ σ(s)\s, it must be the case that λM (c) = α, since α is only able to make
decisions in its own cells.

We shall impose two further conditions. While not quite as compelling as the two above, they
also have clear motivations.

• (S3) Idempotence: σ(σ(s)) = σ(s). Since the only information in σ(s) over and above
what is in s is what σ put there, this is a reasonable normalizing assumption. It avoids
situations where σ proceeds ‘slowly’, making decisions in several steps which it could
have taken in one step (since the information from the Environment, i.e. the other
agents, has not changed).

• (S4) Monotonicity: s ⊆ t ⇒ σ(s) ⊆ σ(t). This condition reflects the idea that states
only contain positive information. The fact that a cell c has not been filled yet is not
a definite, irrevocable piece of information. Another strategy, working on behalf of
another agent, may be running concurrently with us, and just about to fill c.

Finally, there is a more technical point, which is a necessary complement to the above condi-
tions. We take σ to be a function on D(M)⊤, which is obtained by adjoining a top element
⊤ to D(M). Note that, since σ is increasing, we must have σ(⊤) = ⊤. The significance
of adding a top element to the codomain is that it allows for partial strategies, which are
undefined in some situations.

The following result is standard.

Proposition 3.1 D(M)⊤ is an algebraic complete lattice.

Taking the conditions (S1), (S3), (S4) together says that σ is a closure operator on D(M)⊤.
A closure operator additionally satisfying (S2) is said to be an α-closure operator. We write
Clα(M) for the set of α-closure operators on D(M)⊤.

The full specification of the game based on a CDS M will comprise a set of strategies
Sα(M) ⊆ Clα(M) for each agent α. By limiting the set of strategies suitably, we can in effect
impose constraints on the information available to agents.

3.2.1 Inductive Construction of Strategy Sets

There are several approaches to defining the strategy sets Sα. We are interested in composi-
tional definitions of Sα(JϕK). There are two main approaches to such defitions, both of which
have been extensively deployed in Game Semantics as developed in Computer Science.

1. We can define the strategy sets themselves directly, by induction on the construction
on ϕ. This is the “global” approach. It is akin to realizability, and in general leads
to strategy sets of high logical complexity. See [AM99, Abr00] for examples of this
approach.

10

2. We can use an indirect, more “local” approach, in which we add some structure to
the underlying games, and use this to state conditions on strategies, usually phrased
as conditions on individual plays or runs of strategies. Sα(JϕK) is then defined to be
the set of strategies in Clα(JϕK) satisfying these conditions. This has in fact been the
main approach used in the Game Semantics of programming languages [AJM00, HO00].
However, this approach has not been developed for the kind of concurrent, multi-agent
games being considered here.

It seems that both of these approaches may be of interest in the present context. We therefore
show how both can be applied to the semantics of LA. We begin with the local approach,
which is perhaps closer to the intuitions.

3.2.2 Local conditions on strategies

The idea is to capture, as part of the structure of the underlying game, which information
about the current state should be available to agent α when it makes a decision at cell c. This
can be formalized by a function

γM : CM −→ [D(M) −→ D(M)]

which for each cell c assigns a function γM (c) on states. The idea is that, if λM (c) = α,
γM (c)(s) restricts s to the part which should be visible to agent α, and on the basis of which
he has to decide how to fill c. It follows that γM (c) should be decreasing : γM (c)(x) ⊆ x.
Note the duality of this condition to (S1). We add the assumptions of monotonicity and
idempotence, with much the same motivation as for strategies. It follows that γM (c) is a
co-closure operator.

Notation Remembering that a state s ∈ D(M) is a partial function, we write sցc to mean
that s is defined at the cell c, or that “s fills c”, as it is usually expressed. Also, we write Cα

M

for the set of α-labelled cells in CM .
Now, given such a function γM , we can define the strategy set Sα(M):

Sα(M) = {σ ∈ Clα(M) | ∀s ∈ D(M).∀c ∈ Cα
M .[σ(s)ցc ⇒ σ(γM (c)(s))ցc]}. (2)

Thus the information constraint imposed by γM is expressed by the condition that σ can only
make a decision at cell c in state s if it would have made the same decision in the smaller (less
information) state γM (c)(s).2 This is a direct analogue of the use of views in Hyland-Ong style
games [HO00] to define ‘innocent strategies’. However, apart from the more general format
of our games, there is greater flexibility in the provision of the function γM as a separate
component of the game structure, whereas specific view functions are built into the fabric of
HO-games.

We now show how the functions γJϕK can be defined, compositionally in ϕ.

• Atomic formulas, and constant 1. This case is trivial, since the set of cells is empty.

• Choice connectives ϕ⊕α ψ. Let M = JϕK, N = JψK. We define γM⊕αN by:

γM⊕αN (c)(s) =















∅, c = c0

{(c0, 1)} ∪ γM (c)(s \ (c, 1)), (c ∈ CM)

{(c0, 2)} ∪ γN (c)(s \ (c, 2)), (c ∈ CN).

2It appears that our condition only requires that the cell c be filled somehow in γM (c)(x); however, mono-
tonicity of σ ensures that if it is filled in γM (c)(s), then it must be filled with the same value in s.

11

• Quantifiers Qα.ϕ. Let M = JϕK.

γQα(M)(c0)(s) = ∅, γQα(M)(c)({(c0, a)} ⊎ s) = {(c0, a)} ∪ γM (c)(s) (c ∈ CM).

Thus the choice initially made by α to decide the value of the quantifier is visible to all
the agents.

• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK. We define γM‖N by:

γM‖N (c)(s) =

{

γM (c)(πM (s)), c ∈ CM

γN (c)(πN (s)), c ∈ CN

Here πM , πN are the projection functions; e.g.

πM(s) = {(c, v) ∈ s | c ∈ CM}.

Thus the view at a cell in the sub-game M or N is what it would have been if we were
playing only in that sub-game. This implements a complete block on information flow
between the two sub-games. It can be seen as corresponding directly to the Linear Logic
connective ⊗.

• Sequential Composition ϕ · ψ. Let M = JϕK, N = JψK. We define γM ·N by:

γM ·N(c)(s) =

{

γM (c)(πM (s)), c ∈ CM

πM (s) ∪ γN (c)(πN (s)), c ∈ CN .

Thus while we are playing in M , visibility is at it was in that sub-game. When we have
finished a complete play s in M and start to play in N , we can see the whole completed
play s, together with what is visible in the sub-game N .

• Role Permutation π̂(ϕ). We set γJπ̂(ϕ)K = γJϕK. The same information is available
from each cell; but, for example, if agent α had more information available than agent
β in M , that advantage will be transferred to β in π̂(M) if π interchanges α and β.

3.2.3 Global definitions of strategy sets

We define the strategy sets Sα(JϕK) compositionally from the construction of ϕ. The main
point to note is the constructions on strategies which arise in making these definitions; these
show the functorial character of the game-semantical interpretation of the connectives, and
point the way towards a semantics of proofs—or indeed, in the first instance, to what the
proof system should be— for the logic.

• Atomic formulas and constant 1. These cases are trivial, since the set of cells is
empty. Thus D(JAK) = D(J1K) = {∅}. We set Sα(JAK) = Sα(J1K) = {id{∅}}.

• Choice connectives ϕ⊕αψ. Let M = JϕK, N = JψK. We firstly define some construc-
tions on closure operators:

in1 : Clα(M) −→ Clα(M ⊕α N), in2 : Clα(N) −→ Clα(M ⊕α N)

⊕ : Clβ(M) × Clβ(N) −→ Clβ(M ⊕α N) (β 6= α).

12

For i = 1, 2:

ini(σ)(s) =

{

{(c0, i)} ∪ σ(s \ {(c0, i)}), (c0, j) ∈ s ⇒ j = i

⊤ otherwise.

σ ⊕ τ(∅) = ∅

σ ⊕ τ({(c0, 1)} ⊎ s) = {(c0, 1)} ∪ σ(s)

σ ⊕ τ({(c0, 2)} ⊎ t) = {(c0, 2)} ∪ τ(t).

Thus in1(σ) is the strategy for α in M ⊕α N which firstly decides to play in M , and
then subsequently plays like σ, which is (“inductively”) assumed to be a strategy for
α in M . Similarly for in2(τ). Note that both these strategies are “non-strict”: that is,
ini(σ)(∅) will at least contain (c0, i). This reflects the idea that agent α must play the
first move in M ⊕α N , and nothing can happen until he does. The strategy σ ⊕ τ for
another agent β 6= α must on the other hand “wait” at the initial state ∅ until α has
made its decision. Once this has happened, it plays according to σ if the decision was
to play in M , and according to τ if the decision was to play in N .

Note how the definitions of in1, in2 show why strategies must in general be partial; there
is a “self-consistency” condition that we should only be confronted with situations in
which the decisions ascribed to us are indeed those we actually made.

We now define the strategy sets for M ⊕α N :

Sα(M ⊕α N) = {in1(σ) | σ ∈ Sα(M)} ∪ {in2(τ) | τ ∈ Sα(N)}

Sβ(M ⊕α N) = {σ ⊕ τ | σ ∈ Sβ(M) ∧ τ ∈ Sβ(N)} (β 6= α).

• Quantifiers Qα(ϕ). Let M = JϕK. We define operations

⊕a∈I : Clβ(M)I −→ Clβ(Qα(M)), (β 6= α),

and, for each a ∈ I:
upa : Clα(M) −→ Clα(Qα(M)).

upa(σ)(s) =

{

{(c0, a)} ∪ σ(s \ {(c0, a)}), (c0, b) ∈ s ⇒ b = a

⊤ otherwise.

(⊕a∈Iσa)(∅) = ∅

(⊕a∈Iσa)({(c0, b)} ⊎ s) = {(c0, b)} ∪ σb(s).

Note the similarity of these operations to those defined for the choice connectives. (In
fact, the separated sum M ⊕N can be seen as the composite (M +N)⊥ of disjoint sum
and lifting constructions.) Note also, in the definition of ⊕a∈Iσa, the dependence of the
strategy σb used to continue the play on the element b ∈ I initially chosen by α.

We define the strategy sets as follows:

Sα(Qα(M)) = {upa(σ) | a ∈ I, σ ∈ Sα(M)}

Sβ(Qα(M)) = {⊕a∈Iσa | ∀a ∈ I. σa ∈ Sβ(M)} (β 6= α).

13

• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK. We define an operation

‖ : Clα(M) × Clα(N) −→ Clα(M‖N)

σ‖τ(s) = σ(πM (s)) ∪ τ(πN (s)).

This is just the functorial action of the product, and gives the “information indepen-
dence” of play in the two sub-games. Now we define the strategy sets:

Sα(M‖N) = {σ‖τ | σ ∈ Sα(M) ∧ τ ∈ Sα(N)}.

• Sequential Composition ϕ · ψ. Let M = JϕK, N = JψK. Given σ ∈ Clα(M), and a
family (τs)s∈Max(M) ⊆ Clα(N) indexed by maximal states in M , we define:

(σ · (τs)s)(t) =















σ(t), t ∈ D(M), σ(t) 6∈ Max(M)

σ(t) ∪ τσ(t)(∅), t ∈ D(M), σ(t) ∈ Max(M)

s ∪ τs(u), t = s ∪ u, s ∈ Max(M), u ∈ D(N).

This allows for arbitrary dependency of agent α’s play in N on what previously occurred
in M . Note that in the case that σ completes a maximal play s in M , control passes
immediately to τs to continue in N . We then define

Sα(M ·N) = {σ · (τs)s | σ ∈ Sα(M) ∧ ∀s ∈ Max(M).[τs ∈ Sα(N)]}.

• Role Permutation π̂(ϕ). Let M = JϕK. Here we simply set Sα(π̂(M)) = Sπ−1(α)(M).

3.2.4 Comparison of the local and global definitions

Having defined strategy sets in these two contrasting fashions, we must compare them. Let
ϕ be a formula of LA. We write Sg

α(JϕK) for the strategy set for JϕK defined according to
the global construction, and similarly S l

α(JϕK) for the local definition (2) using the visibility
function γJϕK.

Proposition 3.2 For all ϕ ∈ LA, Sg
α(JϕK) ⊆ S l

α(JϕK).

Proof A straightforward induction on ϕ. Note in particular that σ‖τ satisfies the local
condition (2) with respect to the parallel composition. �

The converse is false in general. The strategies in Sg
α(JϕK) have two important global

properties which strategies satisfying the local condition (2) need not possess.

Safety We define the domain dom(σ) of a closure operator σ ∈ Clα(M) to be the least
subset of D(M)⊤ satisfying the following conditions:

(D1) ∅ ∈ dom(σ)

(D2) s ∈ dom(σ) ⇒ σ(s) ∈ dom(σ)

(D3) S ⊆ dom(σ), S directed ⇒
⋃

S ∈ dom(σ)

(D4) s ∈ dom(σ), s ⊆ t ∈ D(M), [(c, v) ∈ t \ s ⇒ λM (c) 6= α] ⇒ t ∈ dom(σ)

14

Note that (D1)–(D3) are the usual inductive definition of the set of iterations leading to the
least fixpoint of σ. The condition (D4) gives this definition its game-theoretic or multi-agent
character.

We say that σ is safe if ⊤ 6∈ dom(σ). Thus if σ is never confronted by α-moves that it
would not itself have made, then whatever the other agents do it will not “crash” or “abort”
(which is how we think of ⊤).

Proposition 3.3 For all ϕ ∈ LA, every strategy in Sg
α(JϕK) is safe.

Progress We consider the following assumptions on strategies σ ∈ Clα(M):

• (WP) If s ∈ D(M) contains an enabling of some α-cell c which is not filled in s, then
σ(s) 6= s. In other words, σ does something (makes at least one decision) whenever it
can.

• (MP) For all s ∈ D(M), if σ(s) contains an enabling of some α-cell c, then it fills c.
Thus σ decides every α-cell as soon as it becomes accessible.

We call (WP) the weak progress assumption and (MP) the maximal progress assumption.
Clearly (MP) implies (WP).

Lemma 3.4 The weak progress assumption implies the maximal progress assumption, and
hence the two conditions are equivalent.

Proof Let σ be an α-strategy not satisfying (MP). Then there must be a state s such that
some α-cells are accessible but not filled in σ(s). By idempotence, σ(σ(s)) = σ(s), and hence
σ does not satisfy (WP). �

Proposition 3.5 For all ϕ ∈ LA, every strategy in Sg
α(JϕK) satisfies the maximal progress

assumption (MP).

Given an A-game M , we define S lsp
α (M) to be the set of all strategies in S l

α(M) which are
safe and satisfy the weak progress assumption.

Theorem 3.6 (Characterization Theorem) For all ϕ ∈ LA, Sg
α(JϕK) = S lsp

α (JϕK).

Proof By induction on ϕ. We indicate some cases.

1. Parallel composition. For a strategy σ ∈ S lsp
α (M‖N), the visibility condition implies

that σ = σ1‖σ2. The safety of σ implies that of σ1 and σ2, and similarly (MP) for σ
implies (MP) for σ1 and σ2. Thus σ1 ∈ S lsp

α (M) and σ2 ∈ S lsp
α (N), and we can apply

the induction hypothesis. The case for sequential composition is similar.

2. Choice connectives. Here the progress assumption implies that the strategy holding the
initial cell must fill it. Safety implies that strategies for other players must have the
form σ ⊕ τ . Play after the initial cell is filled reduces to play in the chosen sub-game,
and we can apply the induction hypothesis.

�

15

Thus we explicitly characterize the “immanent” properties of the strategy sets Sg
α(JϕK) in

terms of local conditions on information visibility, plus safety and liveness properties.

3.3 Evaluation of Strategy Profiles

Consider a CDS M with a strategy set Sα for each agent α ∈ A. A strategy profile is an
A-tuple

(σα)α∈A ∈
∏

α∈A

Sα

which picks out a choice of strategy for each α ∈ A. The key operation in “bringing the
semantics to life” is to define the result or outcome of playing these strategies off against
each other. Given the concurrent nature of our games, and the complex forms of temporal
dependency and information flow which may arise in them, it might seem that a formal
definition of this operation will necessarily be highly complex and rather messy. In fact, our
mathematical framework allows for a very elegant and clean definition. We shall use the
notation 〈σα〉α∈A for this operation. It maps strategy profiles to states of M . The idea is
that the state arising from 〈σα〉α∈A will be that reached by starting in the initial state ∅,
and repeatedly playing the strategies in the profile until no further moves can be made. The
formal definition is as follows.

Definition 3.7 We define 〈σα〉α∈A to be the least common fixpoint of the family of closure
operators (σα)α∈A; i.e. the least element s of D(M)⊤ such that σα(s) = s for all α ∈ A.

The following Proposition (which is standard) guarantees that this definition makes sense.

Proposition 3.8 Any family of closure operators C on a complete lattice L has a common
least fixpoint. In case the lattice has finite height, or C = {c1, . . . , cn} is finite and the closure
operators in C are continuous (i.e. preserve directed joins) this common least fixpoint can be
obtained constructively by the expression

∨

k∈ω

ck(⊥), where c = c1 ◦ · · · ◦ ck.

Any permutation of the order of the composition in defining c, or indeed any “schedule” which
ensures that each closure operator is applied infinitely often, will lead to the same result.

We recall the notion of safety from the previous Section.

Proposition 3.9 Let (σα)α∈A be a strategy profile in which σα is safe for all α ∈ A. Then
〈σα〉α∈A 6= ⊤.

Proof We prove by transfinite induction on the iterations towards the least fixpoint that
every state which is reached is in the domain of every strategy in the profile. The base case is
(D1), and the limit ordinal case is (D3). Applying some σα to the current state stays in the
domain of σα by (D2), and in the domain of every other strategy in the profile by (D4). �

In particular, we know by Proposition 3.3 that this applies to our setting, where we have
a formula ϕ ∈ LA, with corresponding CDS M = JϕK and strategy sets Sα(JϕK), α ∈ A.
Furthermore, we have:

Proposition 3.10 For all ϕ ∈ LA, and every strategy profile (σα)α∈A ∈ Sg
α(JϕK) = S lsp

α (JϕK):

〈σα〉α∈A ∈ Max(JϕK).

16

Proof Firstly, we know by Proposition 3.9 that 〈σα〉α∈A 6= ⊤. Let s = 〈σα〉α∈A. If s is not
maximal, some cell c must be accessible but not filled in s. Suppose c is an α-cell. Since σα

satisfies (WP), we must have σα(s) 6= s, contradicting the definition of 〈σα〉α∈A as a common
fixpoint of all the strategies in the profile. �

Thus the outcome of evaluating a strategy profile in the game arising from any formula is
always a well-defined maximal state.

Remark We pause to mention another connection with Theoretical Computer Science.
Our use of closure operators as strategies, and the definition of the evaluation of strategy
profiles as least common fixpoints, builds on ideas which arose originally in the semantics of
dataflow [JPP89] and concurrent constraint programming [SRP]. They have also been applied
extensively to constraint programming and constraint propagation algorithms over the past
decade [Apt97]. Our own previous development of these ideas appears in a number of papers
[AM99, Abr00a, Abr03].

3.4 Outcomes and Valuations

One ingredient which has been missing thus far in our account of the semantics of LA has been
any notion of payoff or utility in game-theoretic terms, or of truth-valuation in logical terms,
which may serve as a basis for game-theoretical notions of equilibria or logical notions such as
validity. The status of the standard notions on the logical side is far from clear when we pass
to multi-agent games. However, we can certainly provide support for studying equilibrium
notions in our framework, in such a way that these specialize to the usual logical notions in
the two-agent case. We shall only enter into a preliminary discussion here, simply to indicate
some of the possibilities.

As we have just seen, for the games arising from formulas in LA, evaluation of strategy
profiles always leads to maximal states. Moreover, the CDS corresponding to any formula has
only finitely many cells (although if I is infinite, so also will be the sets of values, decisions
and states). Hence any state consists of only finitely many decisions.

Proposition 3.11 For any closed formula ϕ ∈ LA, a maximal state in JϕK corresponds to
a combination of atomic sentences, built by series and parallel composition from (instances
of) atomic subformulas of ϕ. If ϕ is built from atomic formulas using only the choice con-
nectives and quantifiers, maximal states will correspond exactly to single instances of atomic
subformulas.

Proof Given a maximal state s, we argue by induction on ϕ. We indicate some cases:

• ϕ ⊕α ψ. Then s contains (c0, i). If i = 1, we continue with the formula ϕ and the
maximal state of JϕK obtained by removing (c0, 1) from s. Similarly if i = 2.

• Qαx. ϕ. Then s contains (c0, a). We continue inductively with ϕ[a/x] and the maximal
state of Jϕ[a/x]K obtained by removing (c0, a) from s.

• ϕ‖ψ. We continue inductively with ϕ and πM (s), and with ψ and πN (s), and glue the
results back together with parallel composition.

• ϕ · ψ. Essentially the same as for parallel composition.
�

17

Example We take A = {V, F}, and use standard notation for choice connectives and quan-
tifiers. Consider the formula

∀x.∃y.[A(x, y) ∧ B(y)] ‖ ∃z.C(z).

The corresponding CDS has four cells:

∀x

∃y

∧

∃zF

V

F

V

In a maximal state of this CDS, these cells are all filled. If the ∀x cell is filled with a ∈ I,
∃y with b ∈ I, ∧ with 1, and ∃z with c ∈ I, then the state will correspond to the following
parallel composition of atomic sentences:

A(a, b) ‖ C(c).

In the usual Hintikka-style Game semantics, a model M is used to evaluate atomic sentences.
We can see that in our setting, this work can equivalently be done by a Boolean valuation
function

val : Max(JϕK) −→ {0, 1}.

So for 2-agent games, we could simply use such a valuation to give a notion of winning strategy
for Verifier, and hence of logical validity.

The multi-agent case More generally, in the multi-agent case we should consider valua-
tions

valα : Max(JϕK) −→ Vα

for each agent α, into some set of preferences or utilities. Given an outcome

o = 〈σα〉α∈A ∈ Max(JϕK),

we can evaluate it from the perspective of each agent α as valα(o), and hence formulate notions
such as Nash equilibrium and other central game-theoretical notions.

Compositionality? Until now our semantics has been fully compositional. However, as
things stand, valuation functions cannot be described in a compositional fashion. The problem
becomes clear if we consider our treatment of atomic formulas. Their current representation in
our semantics is vacuous — the empty CDS. This carries no information which can be used by
a valuation function to express the dependence of an outcome on the values previously chosen
for the variables appearing in the atomic formula. We can recover this correspondence globally,
as in Proposition 3.11, but not compositionally, by gluing together a valuation function defined
for an atomic formula with those arising from the context in which it occurs.

We shall now give a reformulation of the syntax of LA which will allow us to take full
account of the role of variables and variable-binding in our semantics, and hence provide the
basis for a compositional treatment both of valuation functions, and of IF-quantifiers and
other partial-information constructs.

18

4 Towards environmentally friendly logic

It is, or should be, an aphorism of semantics that:

The key to compositionality is parameterization.

Choosing the parameters aright allows the meaning of expressions to be made sensitive to
their contexts, and hence defined compositionally. While this principle could—in theory—
be carried to the point of trivialization, in practice the identification of the right form of
parameterization does usually represent some genuine insight into the structure at hand.

We shall now describe an approach to making the syntax of quantifier particles, including
IF-quantifiers, fully compositional. This can then serve as a basis for a fully compositional
account of valuations on outcomes.

4.1 Syntax as a Category

Note firstly a certain kind of quasi-duality between quantifiers and atomic formulas. Quanti-
fiers Qαx project the scope of x inwards over sequential compositions (but not across parallel
compositions). Atomic formulas A(x1, . . . , xn) depend on variables coming from an outer
scope.

Now consider IF-quantifiers ∀x/y which bind x, but also declare that it does not depend
on an outer quantification over y. This is a peculiar binding construct, quite apart from its
semantic interpretation. The bidirectional reach of the scope—inwards for x, outwards for
y—is unusual, and difficult to make sense of in isolation from a given context of use. So in
fact, it seems hard to give a decent compositional syntax for IF-quantifiers, before we even
start to think about semantics.

Once again, there is work coming from Theoretical Computer Science which is suggestive:
namely the π-calculus [MPW92, MPW92a], with its scope restriction and extrusion. The
action calculi subsequently developed by Milner [Mil93] are even more suggestive, although
only certain features are relevant here.

We shall reformulate our view of logical syntax as follows. Each syntactic constituent will
have an arity and a co-arity. Concretely, we shall take these arities and co-arities to be finite
sets of variables, although algebraically we could just take them to be natural numbers. We
shall write a syntactic expression as

ϕ : X −→ Y

where X is the arity, and Y is the co-arity. The idea is that the arity specifies the variables
that ϕ expects to have bound by its outer environment, while the co-arity represents variables
that it is binding with respect to its inner environment.

The quantifier particle Qαx can be described in these terms as

Qαx : ∅ −→ {x} (3)

or more generally as
Qαx : X −→ X ⊎ {x}.

An atom A(x1, . . . , xn) will have the form

A(x1, . . . , xn) : {x1, . . . , xn} −→ ∅,

19

so we indeed see a duality with (3).
We specify “typed” versions of sequential and parallel composition with respect to these

arities and co-arities:

ϕ : X −→ Y ψ : Y −→ Z

ϕ · ψ : X −→ Z

ϕ : X1 −→ Y1 ψ : X2 −→ Y2

ϕ‖ψ : X1 ⊎X2 −→ Y1 ⊎ Y2

The constant 1 has the form
1 : X −→ ∅

for any X.
We take these syntactic expressions modulo a notion of structural congruence, as in the

π-calculus and action calculi. We impose the axioms

ϕ · (ψ · θ) ≡ (ϕ · ψ) · θ, 1 · ϕ ≡ ϕ ≡ ϕ · 1

wherever these expressions make sense with respect to the typing with arities and co-arities.
Thus we are in fact describing a category C(LA). The objects are the arities—“co-arities”

are simply arities appearing as the codomains of arrows in the category. The arrows are the
syntactic expressions modulo structural congruence; and the composition in the category is
sequential composition.

To complete the picture: for the choice connectives, we have

ϕ : X −→ ∅ ψ : X −→ ∅

ϕ⊕α ψ : X −→ ∅

and for role interchange
ϕ : X −→ Y

π̂(ϕ) : X −→ Y
.

For the IF-quantifier we have

∀x/y : X ⊎ {y} −→ X ⊎ {x} ⊎ {y},

which makes explicit the fact that y occurs free in ∀x/y.
The arrows in C(LA) will be the well-formed formulas (both open and “co-open”) of

our logic. In particular, the sentences or closed formulas will be the arrows of the form
ϕ : ∅ −→ ∅.

4.2 Static Semantics Revisited

We consider the static semantics of a syntactic constituent ϕ : X → Y . The A-game JϕK
defined as in Section 3.1 remains unchanged. In particular, atomic formulas are still assigned
the empty A-game. The new ingredient in the static semantics will reflect the intentions
behind the arities and coarities, which we now set out in greater detail. The arity X is the set
of variables being imported (as “free variables”) from the outer environment by ϕ. Thus an
“open formula” in the usual sense will be an arrow of type X → ∅. The novel feature in our
approach to logical syntax, following Milner’s action calculi, are the co-arities. In ϕ : X → Y ,
it is useful to write

Y = (X ∩ Y) ⊎ (Y \X).

Now:

20

• X ∩Y represents those variables imported from the outer environment which we simply
“pass on through” to be imported in turn by the inner environment. (The variables in
X \ Y are hidden from the inner environment).

• Y \X represents the variables which are being defined by ϕ, and exported to the inner
environment, where they will bind free occurrences of those variables.

As we have seen, variables bound by quantifiers are interpreted in our semantics by cells where
localized decisions can be made. Hence the act of defining a variable amounts to binding it
to a cell. Thus the single new component in the static semantics of ϕ : X → Y will be a
function

bindM : Y \X −→ CM

where M = JφK. We now show how bind is defined compositionally.

• Atomic formulas, constant 1, choice connectives ⊕α. These cases are all trivial,
since the types are of the form X → ∅, and ∅ \X = ∅.

• Quantifiers Qαx : X → X ⊎ {x}. As we saw in Section 3.1, JQαxK has a single cell c0.
We set

bindJQαxK(x) = c0.

• Parallel Composition ϕ‖ψ : X1 ⊎X2 −→ Y1 ⊎ Y2, where ϕ : X1 → Y1, ψ : X2 → Y2.
Let M = JϕK, N = JψK. We define

bindM‖N (y) =

{

bindM (y), y ∈ Y1 \ (X1 ∪X2)

bindN (y), y ∈ Y2 \ (X1 ∪X2).

• Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and ψ : Y → Z. This is
the key case. Let M = JϕK, N = JψK. We can write

Z \X = (Z \ (X ∪ Y)) ⊎ (Z ∩ (Y \X)).

Hence we can define:

bindM ·N(z) =

{

bindM (z), z ∈ Z ∩ (Y \X)

bindN (z), z ∈ Z \ (X ∪ Y).

• Role Interchange π̂(ϕ). Let M = JϕK.

bindπ̂(M) = bindM .

4.3 Interlude: Structural Congruence

We have already introduced a notion of structural congruence ≡ in defining the sysntactic
category C(LA). We now consider the interpretation of the structural congruence using the
static semantics, and the issue of axiomatization.

We say that our semantics validates a structural congruence

ϕ ≡ ψ : X −→ Y

if JϕK ∼= JψK, that is if the A-games they denote are isomorphic (in the usual sense of isomor-
phism for relational structures).

21

Proposition 4.1 The following axioms for structural congruence are valid in the static se-
mantics:

ϕ · (ψ · θ) ≡ (ϕ · ψ) · θ

1 · ϕ ≡ ϕ

ϕ ≡ ϕ · 1

ϕ‖(ψ‖θ) ≡ (ϕ‖ψ)‖θ

1‖ϕ ≡ ϕ

ϕ ≡ ϕ‖1

ϕ‖ψ ≡ ψ‖ϕ

ϕ⊕α ψ ≡ ψ ⊕α ϕ

π̂1(π̂2(ϕ)) ≡ π̂1 ◦ π2(ϕ)

π̂(ϕ⊕α ψ) ≡ π̂(ϕ) ⊕π(α) π̂(ψ)

π̂(Qαx) ≡ Qπ(α)x

π̂(ϕ · ψ) ≡ π̂(ϕ) · π̂(ψ)

π̂(ϕ‖ψ) ≡ π̂(ϕ)‖π̂(ψ)

Remark 4.2 The following are in general not valid in the static semantics (which we write
colourfully if imprecisely as 6≡):

ϕ⊕α ϕ 6≡ ϕ

ϕ⊕α 1 6≡ ϕ

ϕ⊕α (ψ ⊕α θ) 6≡ (ϕ⊕α ψ) ⊕α θ

(ϕ⊕α ψ) · θ 6≡ (ϕ · θ) ⊕α (ψ · θ)

ϕ · (ψ ⊕α θ) 6≡ (ϕ · ψ) ⊕α (ϕ · θ)

ϕ‖(ψ ⊕α θ) 6≡ (ϕ‖ψ) ⊕α (ϕ‖θ)

(ϕ1‖ψ1) · (ϕ2‖ψ2) 6≡ (ϕ1 · ϕ2)‖(ψ1 · ψ2)

Remark 4.3 If we weaken the notion of validity of ϕ ≡ ψ to D(JϕK) ∼= D(JϕK) (order-
isomorphism), then the only one of the above non-equivalences which becomes valid is

(ϕ⊕α ψ) · θ ≡ (ϕ · θ) ⊕α (ψ · θ).

Conjecture 4.4 The axioms listed in Proposition 4.1 are complete for validity in the static
semantics.

4.4 Valuations

We are now in a position to give a compositional definition of valuation functions on outcomes.
For each agent α ∈ A we shall fix a set Vα of values (utilities, payoffs, truth-values . . .). What

22

structure should Vα have? In order to express preferences between outcomes, and hence to
capture the classical game-theoretic solution concepts such as Nash equilibrium, we would
want Vα to carry an order structure. For our present purposes, we need only that Vα carries
two binary operations

⊙,⊗ : V2
α −→ Vα

and an element 1 ∈ Vα, such that (Vα,⊙, 1) is a monoid, and (Vα,⊗, 1) is a commutative
monoid.3

Now let M : X → Y be an A-game, e.g. M = JϕK, for ϕ : X → Y in C(LA). Then for
each α ∈ A, an α-valuation function will have the form

valM,α : IX × Max(M) −→ Vα. (4)

Note firstly that we are only considering valuations applied to maximal states, which is
reasonable since by Proposition 3.10, these are the only possible outcomes of evaluating
strategy profiles,. However, in a more general setting where infinite plays are possible, e.g. in
the games arising from fixpoint extensions of LA, one should consider continuous valuations
defined on the whole domain of states D(M).

The form of valM,α expresses the dependency of the valuation both on the values of the
variables being imported from the environment, and on the final state of play. There are two
extremal cases:

1. If X = ∅, then the valuation simply reduces to a function Max(M) −→ Vα on maximal
states. In particular, this will be the case for closed formulas.

2. If CM = ∅, the valuation reduces to a function IX −→ Vα. This is exactly the usual
kind of function from assignments to variables to (truth)-values induced by an atomic
formula evaluated in a first-order model M.

By allowing a range of intermediate cases between these two extremes, we can give a compo-
sitional account which, starting with given assignments of the form (2) for atomic formulas,
ends with valuations of the form (1) for sentences.

We now give the compositional definition of the valuation function. We use η ∈ IX to
range over assignments to variables.

• Atomic formulas. We take the valuation functions IX −→ Vα as given. Thus atomic
formulas are operationally void—no moves, no plays—but valuationally primitive—
generating the entire valuation function of any complex formula. This seems exactly
right.

• Constant 1. We set valJ1K,α(η,∅) = 1.

• Choice connectives ϕ⊕β ψ : X → ∅. Let M = JϕK, N = JNK.

valM⊕βN,α(η, {(c0, 1)} ⊎ s) = valM,α(η, s)

valM⊕βN,α(η, {(c0, 2)} ⊎ s) = valN,α(η, s).

3A plausible general suggestion is to identify these two algebraic structures, and to take Vα to be a (com-
mutative) quantale, i.e. a sup-lattice-enriched monoid. These structures have been used fairly extensively in
Computer Science over the past 15 years [AV93, BCS05].

23

• Quantifiers Qβx : X → X ⊎ {x}.

valJQβxK,α(η, {(c0, a)}) = 1.

• Parallel Composition ϕ‖ψ : X1 ⊎X2 → Y1 ⊎ Y2, where ϕ : X1 → Y1, ψ : X2 → Y2.
Let M = JϕK, N = JψK. Note that η ∈ IX1⊎X2 can be written as η = (η1, η2), where
η1 ∈ IX1, η2 ∈ IX2.

valM‖N,α(η, s) = valM,α(η1, πM (s)) ⊗ valN,α(η2, πN (s)).

• Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and ψ : Y → Z. Let
M = JϕK, N = JψK.

valM ·N,α(η, s) = valM,α(η, πM (s)) ⊙ valN,α(η′, πN (s)

where η′ ∈ IY is defined as follows:

η′(y) =

{

η(y), y ∈ X

s(bindM (y)), y ∈ Y \X.

This is the key case—the only one where the bind function is used.

• Role Interchange π̂(ϕ). Let M = JϕK.

valπ̂(M),α = valM,π−1(α).

4.5 Dynamic Semantics Revisited

Given an A-game M : X → Y , an α-strategy is a family (ση)η∈IX , where ση ∈ Clα(M) for all
η. The definition of evaluation of strategy profiles is simply carried over pointwise to these
families, so that we get an outcome for each η ∈ IX . The global definition of the strategy sets
Sα(M) can also be carried over pointwise in a straightforward fashion. However, the explicit
dependence on the values assigned to free variables also creates some new possibilities, in
particular for giving semantics to IF-quantifiers. This is best discussed in terms of the local
definition of information constraints via visibility functions, to which we now turn.

4.6 Visibility Functions, Occlusion and IF-Quantifiers

We recall that the visibility function for an A-game M : X → Y has the form

γM : CM −→ [D(M) −→ D(M)]

and assigns a co-closure operator to each cell, specifying the information which is visible in
any state to the agent wishing to fill the cell. We now augment this with an assignment

OccM : CM −→ P(X).

The idea is that OccM (c) ⊆ X is the set of variables which are occluded at the cell c; hence
the decision made at c cannot depend on the values of these variables. This leads to the
following refinement of the information constraint (2) on a family of strategies (ση)η . Note
firstly that, given c ∈ CM , with X1 = X \ OccM (c) and X2 = OccM (c), we can write η ∈ IX

24

as η = (ηc, η¬c), where ηc ∈ IX1, η¬c ∈ IX2. Now we can write the condition on (ση)η as
follows:

∀η, η′ ∈ IX , c ∈ CM , s ∈ D(M).[ση(s)(c) = σηc,η′

¬c
(γM (c)(s))(c)]. (5)

(Here equality of partial functions is intended: either both states are undefined at c, or both
are defined and have the same value.)

We now give the compositional definition of the occlusion function (non-trivial cases only).

1. Choice connectives.

OccM⊕αN (c) =















∅, c = c0

OccM (c), c ∈ CM

OccN (c), c ∈ CN

2. Quantifiers Qαx : X → X ⊎ {x}.

OccQαx(c0) = ∅.

3. Parallel Composition ϕ‖ψ : X1 ⊎X2 → Y1 ⊎ Y2, where ϕ : X1 → Y1, ψ : X2 → Y2.
Let M = JϕK, N = JψK.

OccM‖N (c) =

{

OccM (c) ∪X2, c ∈ CM

OccN (c) ∪X1, c ∈ CN .

4. Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and ψ : Y → Z. Let
M = JϕK, N = JψK.

OccM ·N (c) =

{

OccM (c), c ∈ CM

(X ∩ OccN (c)) ∪ (X \ Y), c ∈ CN .

5. Role Interchange. Occπ̂(M) = OccM .

The only case in the definition of the visibility function which needs to be revised to take
account of the occlusion function is that for sequential composition:

γM ·N(c)(s) =

{

γM (c)(πM (s)), c ∈ CM

(πM (s) \ S) ∪ γN (c)(πN (s)) c ∈ CN

where
S = {(c′, v) ∈ DM | ∃y ∈ (OccN (c) ∩ (Y \X)). bindM (y) = c′}.

4.6.1 IF-quantifiers

It is now a simple matter to extend the semantics to multi-agent versions of the IF-quantifiers.
We consider a quantifier of the form Qαx/Y : X ⊎Y → X ⊎Y ⊎{x}. Thus agent α is to make
the choice for x, and must do so independently of what has been chosen for the variables in
Y . The A-game M = JQαx/Y K is the same as for the standard quantifier Qαx, as are the
bind and val functions. The difference is simply in the occlusion function:

OccM (c0) = Y.

This is then propagated by our compositional definitions into larger contexts in which the
quantifier can be embedded, and feeds into the partial information constraint (5) to yield
exactly the desired interpretation.

25

5 Further Directions

There are numerous further directions which it seems interesting to pursue. We mention a
few.

• Some extensions are quite straightforward. In particular, an extension of LA with
fixpoints

µP (x1, . . . , xn). ϕ(P)

can be considered. The standard theory of solutions of domain equations over CDS
[KP78] can be used to extend the static semantics to such fixpoint formulas. Moreover,
our semantic constructions work for arbitrary CDS with infinite states. The only point
which needs to be reconsidered in this setting is how the valuation functions are defined.
The best idea seems to be to define valuations on all states, not only maximal ones. The
value space should itself include partial values and form a domain, and the valuation
function should be continuous. For example, we could take Vα to be the interval domain
I[0, 1] on the unit interval.

An extension to full second-order logic, although technically more demanding, is also
possible [AJ05].

• What is the full spectrum of possible connectives which can be used to explore the
resources of our semantics? The logic LA we have introduced is quite natural, but this
question remains wide open. Here is one precise version:

Question 5.1 Which set of connectives and quantifiers is descriptively complete, in
the sense that every finite CDS is the denotation of a formula built from these quantifiers
and connectives?

Another dimension concerns the information-flow structures and constraints expressible
in the logic. The multiplicative connectives for sequential and parallel composition
which we have studied are very basic. The parallel composition corresponds to the
Linear Logic ⊗. The Linear Logic O does allow for information flow between the parallel
components; and there are surely a whole range of possibilities here.

Problem 5.2 Classify the possibilities for multiplicative connectives and information-
flow constraints in the semantic space of concurrent games and strategies.

As one illustration, consider a connective M �N which combines features of sequential
and parallel composition. The A-game is defined as for M‖N , while the visibility
function γM�N is defined as for M · N . Play can proceed concurrently in both sub-
games; there is information flow from M to N , but not vice versa.

• We have only considered deterministic strategies in this paper. Mixed, non-deterministic,
probabilistic, and perhaps even quantum strategies should also be considered.

• The whole question of proof theory for the logic LA has been left open. In a sense, we
have given a semantics of proofs without having given a syntax! How multi-agent proof
theory should look is conceptually both challenging and intriguing.

26

• Viewed from a model-theoretic perspective, IF-logic seems dauntingly complex. Our
more intensional and operational view may offer some useful alternative possibilities.
Just as the shift from validity to model-checking often replaces an intractable problem
by an efficiently solvable one, so the shift from model-theoretic validity or definability
of IF-formulas to constructing, reasoning about and running strategies for concurrent
games described by proofs of formulas seems a promising approach to making this rich
paradigm computationally accessible.

• The logic and semantics we have developed appears to flow from very natural intuitions.
These should be supported by a range of convincing examples and applications.

References

[AdM7] Seventh Augustus De Morgan Workshop: “Interactive Logic: Games
and Social Software”, King’s College, London, November 4–7 2005. URL:
http://www.illc.uva.nl/ADMW05/.

[AV93] Samson Abramsky, Steven Vickers: Quantales, Observational Logic and Process Se-
mantics. Mathematical Structures in Computer Science 3(2): 161-227 (1993)

[AJ94] S. Abramsky, R. Jagadeesan, New foundations for the Geometry of Interaction, In-
formation and Computation, 111(1):53-119, 1994. Conference version appeared in LiCS
‘92.

[AM99] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. Proceedings
of the 14th Annual IEEE Symposium on Logic in Computer Science, 431–44, 1999.

[Abr00] S. Abramsky, Process Realizability, in Foundations of Secure Computation: Proceed-
ings of the 1999 Marktoberdorf Summer School, F. L. Bauer and R. Steinbruggen, eds.
(IOS Press) 2000, 167–180.

[Abr00a] S. Abramsky, Concurrent Interaction Games, in Millennial Perspectives in Com-
puter Science, J. Davies, A. W. Roscoe and J. Woodcock, eds. (Palgrave) 2000, 1–12.

[AJM00] Samson Abramsky, Radha Jagadeesan, Pasquale Malacaria: Full Abstraction for
PCF. Inf. Comput. 163(2): 409-470 (2000)

[Abr03] Samson Abramsky: Sequentiality vs. Concurrency In Games And Logic. Mathemat-
ical Structures in Computer Science 13(4): 531-565 (2003)

[AJ05] S. Abramsky and R. Jagadeesan, A Game Semantics for Generic Polymorphism, in
Annals of Pure and Applied Logic, vol 133, 3–37, 2005.

[AP81] Krzysztof R. Apt, Gordon D. Plotkin: A Cook’s Tour of Countable Nondeterminism.
ICALP 1981: 479-494

[Apt97] Krzysztof R. Apt: From Chaotic Iteration to Constraint Propagation. ICALP 1997:
36-55

[BCS05] Alexandru Baltag, Bob Coecke, Mehrnoosh Sadrzadeh: Algebra and Sequent Cal-
culus for Epistemic Actions. Electr. Notes Theor. Comput. Sci. 126: 27-52 (2005)

27

[vBen03] Johan van Benthem: Logic Games are Complete for Game Logics. Studia Logica
75(2): 183-203 (2003)

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

[Hen61] L. Henkin, Some remarks on infinitely long formulas, Infinitistic Methods, Pergamon,
1961.

[HS89] Jaakko Hintikka, Gabriel Sandu: Informational independence as a semantical phe-
nomenon, Logic, Methodology and Philosophy of Science VIII, J. E. Fenstad et al., eds,
Elsevier, Amsterdam, 1989:571–589.

[HS95] Jaakko Hintikka, Gabriel Sandu: What is the Logic of Parallel Processing? Int. J.
Found. Comput. Sci. 6(1): 27-49 (1995)

[HS96] Jaakko Hintikka, Gabriel Sandu: Game-theoretical Semantics, in van Benthem and
ter Meulen, Handbook of Logic and Language, Elsevier 1996.

[Hod97] Wilfrid Hodges: Compositional Semantics for a Language of Imperfect Information.
Logic Journal of the IGPL 5(4): (1997)

[HO00] J. M. E. Hyland, C.-H. Luke Ong: On Full Abstraction for PCF: I, II, and III. Inf.
Comput. 163(2): 285-408 (2000)

[JPP89] Radha Jagadeesan, Prakash Panangaden, Keshav Pingali: A Fully Abstract Seman-
tics for a Functional Language with Logic Variables LICS 1989: 294-303

[KP78] G. Kahn and G. Plotkin. Concrete Domains. Theoretical Computer Science, 121:187–
277, 1993. Appeared as TR IRIA-Laboria 336 in 1978.

[MPW92] Robin Milner, Joachim Parrow, David Walker: A Calculus of Mobile Processes, I
Inf. Comput. 100(1): 1-40 (1992)

[MPW92a] Robin Milner, Joachim Parrow, David Walker: A Calculus of Mobile Processes,
II Inf. Comput. 100(1): 41-77

[Mil93] Robin Milner: Action Calculi, or Syntactic Action Structures. MFCS 1993: 105-121

[Paul02] Marc Pauly: A Modal Logic for Coalitional Power in Games. J. Log. Comput. 12(1):
149-166 (2002)

[PP03] Marc Pauly, Rohit Parikh: Game Logic - An Overview. Studia Logica 75(2): 165-182
(2003)

[Res01] Pedro Resende: Quantales, finite observations and strong bisimulation. Theor. Com-
put. Sci. 254(1-2): 95-149 (2001)

[SRP] Vijay A. Saraswat, Martin C. Rinard, Prakash Panangaden: Semantic Foundations of
Concurrent Constraint Programming. POPL 1991: 333-352

28

