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Abstract. The widespread dissemination of small-scale sensor nodes has sparked
interest in a powerful new database abstraction for sensor networks: Clients “pro-
gram” the sensors through queries in a high-level declarative language permitting
the system to perform the low-level optimizations necessary for energy-efficient
query processing. In this paper we consider multi-query optimization for aggre-
gate queries on sensor networks. We develop a set of distributed algorithms for
processing multiple queries that incur minimum communication while observing
the computational limitations of the sensor nodes. Our algorithms support incre-
mental changes to the set of active queries and allow for local repairs to routes
in response to node failures. A thorough experimental analysis shows that our
approach results in significant energy savings, compared to previous work.

1 Introduction

Wireless sensor networks consisting of small nodes with sensing, computation and
communication capabilities will soon be ubiquitous. Such networks have resource con-
straints on communication, computation, and energy consumption. First, the bandwidth
of wireless links connecting sensor nodes is usually limited, on the order of a few hun-
dred Kbps, and the wireless network that connects the sensors provides only limited
quality of service, with variable latency and dropped packets. Second, sensor nodes
have limited computing power and memory sizes that restrict the types of data pro-
cessing algorithms that can be deployed. Third, wireless sensors have limited supply of
energy, and thus energy conservation is a major system design consideration. Recently,
a database approach to programming sensor networks has gained interest [1-7], where
the sensors are programmed through declarative queries in a variant of SQL. Since en-
ergy is a highly valuable resource and communication consumes most of the available
power of a sensor network, recent research has focused on devising query processing
strategies that reduce the amount of data propagated in the network.

Our Modd and Assumptions. We assume that nodes are stationary and battery-powered,
and thus severely energy constrained. Users inject queries into a special type of node, re-
ferred to as a gateway. The sensor network is programmed through declarative queries
posed in a variant of SQL or an event-based language [1-5]. We concentrate on aggre-
gation queries, and the sensor network performs in-network aggregation while routing
data from source sensors through intermediate nodes to the gateway.
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Existing work has focussed on the execution of a single long-running aggregation
query. In our new usage model, we allow multiple users to pose both long-running
and snapshot queries (i.e. queries executed once). As new queries occur, they are not
sent immediately to the network for evaluation, but are gathered at the gateway node
into batches and are dispatched for evaluation once every epoch. The query optimizer
groups together queries with the same aggregate operator and optimizes each group
separately. Hence, in our presentation of our optimization techniques, we assume that
queries use the same aggregate operator. Each epoch consists of a query preparation
(QP) and a result propagation (RP) phase. In the QP phase, all queries gathered during
the previous epoch are sent to the network together for evaluation. In the RP phase,
query answers are forwarded back to the gateway.

Our model is general enough to include queries with different result frequencies
and different lifespans. Although the algorithms proposed in this paper apply to this
general usage model, for ease of presentation we will restrict our discussion to a simpler
scenario: all queries asked in a QP phase have the same result frequency, and their
computation spans a single (and entire) RP phase. The duration of an RP phase is a
tunable application-specific parameter. Typically, an RP phase includes multiple rounds
of query results. To summarize, an epoch has a QP and an RP phase, and an RP phase
has many rounds in which query results are returned to the gateway.

Thelntelligent National Park. To give an example of a scenario with multiple queries,
consider a sensor network deployed in a national park. Visitors of the park are provided
with mobile devices that allow them to access a variety of information about the sur-
rounding habitat by issuing queries to the network through a special purpose gateway.
For instance, visitors may wish to know counts of certain animal species in different
regions of the park. The region boundaries will vary depending on the location of the
visitors. The queries also change with time, as visitors move to different sections of the
park, and certain queries are more popular than others. In addition, the sensor readings
change probabilistically as animals move around the park, and there might be different
update rates during the day than at night.

Our Contributions. This paper addresses the problem of processing multiple aggregate
queries in large sensor networks, and makes the following contributions:

e Multi-Query Optimization In Sensor Networks: Concepts and Complexity. We
formally introduce the concept of result sharing for efficient processing of multiple
aggregate queries. We also address the problem of irregular sensor updates by de-
veloping result encoding techniques that send only a minimum amount of data that is
sufficient to evaluate the updated queries. Our result sharing and encoding techniques
achieve optimal communication cost for sum and related queries (such as count and
avg). While some of our techniques also extend to max and min queries, we show
that the problem of minimizing communication cost is NP-hard for these queries [8].

e Distributed Deployment of Multi-Query Optimization. We refine our multi-query
optimization algorithms to account for computational and memory limitations of sen-
sor nodes, and present fully distributed implementations of our algorithms. Besides
a communication-optimal algorithm, we propose a near-optimal algorithm that sig-
nificantly decreases the computational effort. We show how to tune our algorithms
to take into account the node computational capabilities, and the relative energy ex-



pended for communication and for computation. In [8], we show how to adapt our
algorithms to link failures that change the structure of the dissemination tree.

e Implementation Results Validating our Techniques. We present results from an
empirical study of our multi-query optimization techniques with several synthetic
data sets and realistic multi-query workloads. Our results clearly demonstrate the
benefits of effective result sharing and result encoding. We also present a prototype
implementation on real sensor nodes and demonstrate the time and memory require-
ments of running our code with different query workloads.

Relationship to Traditional Approaches for Multi-Query Optimization (MQO).
The problem considered in this paper is significantly different from the traditional MQO
problems. The difficulty in devising efficient MQO algorithms for sensor networks is
not only in finding common subexpressions, but in dealing with the challenges of distri-
bution and resource constraints at the nodes. This paper is, to the best of our knowledge,
the first piece of work to i) formulate this important problem, and ii) give efficient algo-
rithms with provable performance guarantees that are shown to work well in practice.

2 Optimization Problems and Complexity

We now formally present the multi-query optimization, and study its complexity, fo-
cusing on algorithms that aim to minimize the communication cost of query evaluation
ignoring any computation limitations or issues of distributed implementation. In Sect. 3
we will develop fully distributed algorithms that take into consideration the computa-
tion and memory constraints in sensor networks.

We consider a set of aggregate queries Q@ = {qu1, ..., ¢n} Over a set of k distinct
sensor data sources. A set of sensor readings is a vector x = (z 1, ..., z;) € ®*. Each
query g; requests an aggregate value of some subset of the data sources at some desired
frequency. This allows each query g; to be expressed as a k-bit vector: element j of the
vector is 1 if z; contributes to the value of ¢;, and 0 otherwise. The value of query g;
on sensor readings x is expressed as the dot product ¢; - x.

In our multi-query optimization problem, we are given a dissemination tree con-
necting the & sensor nodes and the gateway, over which the aggregations are executed.
Note that our solutions apply to any given tree. The goal is to devise an execution plan
for evaluating queries, that minimizes total communication cost. The communication
cost includes the cost of query propagation in the QP phase and the cost of result prop-
agation in each round of the RP phase. While we discuss the implementation of the QP
phase in detail in Sect. 3.2, we ignore the query propagation cost in the following anal-
ysis, since it is negligible compared to the total result propagation costs, whenever the
RP phase of an epoch consists of a sufficiently large number of rounds. We consider
two classes of aggregation: (i) min queries and (ii) sum queries. Clearly our results for
min queries also apply to max, and our results for sum queries can be extended to count,
average, moments and linear combinations in the usual way. For min queries, we estab-
lish the NP-hardness of the multi-query optimization problem using a straightforrwad
reduction from the Set Basis problem [8].

Complexity of sum Queries: For sum queries the underlying mathematical structure
is a field. We can exploit this fact, using techniques from linear algebra to optimize the



number of data values that must be communicated. Let N be an arbitrary node in the
tree. Let P(IV) denote the parent of V and let 7' denote the subtree rooted at V. We
denote as z(V') the vector of sensor values in the subtree 7' and Q) the set of query
vectors projected only onto sensors in 7'y .

We present a simple method to minimize the amount of data that IV sends to P(V)
in each round. Let B(Q,(n)) = {b1, .- -, b, } be a basis of the subspace of RF spanned
by Q.(n)- Then any query ¢ € Q,(n) can be expressed as a linear combination of
the basis vectors ¢ = >, a; - bj, where a; € R, j = 1,...,n. By linearity of inner
product we get, for sensors z(N) (in the subtree T'y)

q-z(N) =, aj b)) z(N) =3, a; (bj-z(N))

That is, to evaluate the answers of queries in @,y it suffices to know the answers
for any basis of the query space spanned by @ (). Any maximal linearly independent
subset of @, ( ) is a (not necessarily orthogonal or normal) basis of the space and every
such basis has the same cardinality. So we can use any maximal linearly independent
subset of () as our basis, and N can forward the answers of the queries in this basis
to P(N). The parent P(N), using the same set of basis vectors, can easily interpret
the reduced results that it receives from N. We assume that N and P (V) use the same
algorithm in order to identify the basis vectors of @ ,(, and the factors a;;. We refer
to this procedure as linear reduction.

Theorem 1. The size of the query result message sent by the above algorithmin each
round is optimal.

3 Multi-Query Optimization

The linear reduction technique outlined in Sect. 2 provides an elegant solution for min-
imizing the cost of processing multiple sum queries. However, a number of system con-
siderations have to be taken into account to apply to a real sensor network. In this sec-
tion, we develop fully distributed multi-query optimization algorithms for sum queries.
Due to space constraints, we do not consider the impact of failures on our algorithms.
We refer the reader to the full paper for a discussion on failures and detailed experiments
that measure the tradeoff between communication and computation cost in the presence
of failures [8]. We start our discussion by introducing the notion of equivalence class,
which is central to the algorithms proposed in the remainder of the section.

3.1 Queriesand equivalence classes

Rectangular Queries: We have represented each query as a k-bit vector, where k is
the number of sensors. Expressing queries in this form requires that the user have com-
plete knowledge of the sensor topology. It is more natural, and generally more com-
pact, to represent queries spatially. We focus our attention on queries that aggregate
sensor values within a rectangular region, and represent such a query as a pair of points
((zo,¥0), (z1,y1)) at opposite corners of the rectangle. Since queries do no longer enu-
merate nodes specifically, we can even evaluate queries in an acquisitional manner [9],
e.g. by selecting a sample of sensor values generated within a query rectangle.
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Equivalence Classes (ECs): To deal efficiently with rectangular queries and distribu-
tion, we introduce the notion of Equivalence Class (EC). An equivalence class is the
union of all regions covered by the same set of queries. For example, Fig. 1 shows that
queries {q1, g2, g3 } form four ECs {EC,, EC>, EC3, EC,}, each one of which corre-
sponds to a different set of queries. For instance, EC4 is covered only by queries ¢,
and g3, and can be represented by the column bit-vector [0, 1,1]T; EC, is represented
by [1,0,0]%, ECs by [0, 1,0]7 and ECj3 by [0, 0, 1]7. Notice that an equivalence class
is not necessarily a connected region (see EC'5). An equivalence class may contain no
sensors. Equivalence classes are identified based solely on spatial query information;
they are independent of the node locations in the network or of the dissemination tree
that connects nodes. We can, however, speak of the value of an equivalence class — this
is the aggregate of the data values of sensors located in the EC region. The value of an
EC can be obtained by a subset of sensors located in the EC region, if an acquisitional
processing style is adopted.

Query Vectors and Query Values: We can now express queries in terms of ECs as
follows. We number equivalence classes (instead of sensors) from 1 to ¢, where £ is
the number of equivalence classes. Let = denote the column vector in % ¢ representing
the values of the equivalence classes; thus, x; denotes the sum of (all or a sample of)
sensor values in EC;. Each query ¢ is a linear combination of the set of equivalence
classes and can be captured by a row vector in {0, 1} ¢. For example, query ¢s in Fig. 1
can be represented as the vector [0, 0, 1, 1], since it only covers EC'5 and ECy4. The
value of a query ¢ given the EC values z is simply the product ¢ - z. Given the above
representation of the queries and EC values, it is natural to represent a set of m queries
as an m x £ (bit) matrix @, in which the (i, ) element is 1 if the ith query in @ covers
the jth equivalence class. The value of the query set @) given the EC values x is again
given by the product @ - x, which is a column vector in 8. We often refer to the rows
of a query-EC matrix as query vectors, and to the columns as EC vectors.

Bounding Boxes (BBs): Expressing queries in terms of ECs brings out the dependen-
cies among queries. In order to exploit these dependencies fully, each node needs to
view queries in the context of its subtree, rather than the entire network. Therefore, in
our algorithms, a node expresses queries in terms of ECs intersecting with its subtree;
an EC intersects with a subtree if any of the sensor nodes in the subtree lies within the
EC region. A node N can accurately determine which ECs intersect with subtree 7'y,



if it either knows the locations of all nodes in T’y or receives from its children a list of
all ECs intersecting with their subtrees. Both approaches are prohibitive in terms of the
communication involved. An approximation of the set of equivalence classes intersect-
ing T’ can be obtained if we consider the minimum rectangle that contains all sensors
in the subtree. This rectangle is hereafter called the bounding box of T'y and is denoted
as BBy . Figure 2 depicts the bounding boxes of the subtrees rooted at nodes n , and
no. Note that a bounding box may contain nodes that do not belong in the subtree (grey
nodes in Fig. 2).

Queriesand ECs projected to thebounding box of a subtree: Let X 5 denote the set
of equivalence classes that intersect with the bounding box of the subtree T' . It is easy
to see that X is a superset of the equivalence classes that actually intersect with the
subtree T'y. For given query set @), we let Q 5 denote the projection of () on to X y;
that is, we obtain @ 5 by setting all entries of ) that appear in columns not in X y to
be zero. Duplicate and zero rows are removed. We extend the notation to let = ;- denote
the vector of projected EC values onto the subtree T'5 (not onto BB since a node N
can only receive values generated by its descendants). The ith entry corresponds to the
sum of sensor values lying in the intersection of EC'; and the subtree T'. The entries of
ECs that do not intersect with T' are set to 0. If we denote the values of queries () that
are contributed from sensors in the subtree 7'y as V(Q, V), then the vector of values
of Q x contributed from subtree T is V(Qn,N) = QN - TN.

3.2 The Query Preparation (QP) phase

The query preparation phase consists of three steps: a bounding-box calculation step, a
query propagation step, and an EC evaluation step. Some of our algorithms for the RP
phase do not require the evaluation of ECs, in which case the last step is omitted.

Bounding-box calculation: A dissemination tree is first created using a simple flood-
ing algorithm. Given the dissemination tree, each node N computes the bounding box
BBy of its subtree Ty from the bounding boxes of the subtrees of its children (if
any) as follows. If z, (resp., z') and y (resp, y’) are the smallest (resp., largest) z- and
y-coordinates of the child bounding boxes, then (x,y) and (z',y") form two opposite
corner points of the bounding box of N.

Query propagation: The next step is to send query information down the dissem-
ination tree. We distinguish query propagation schemes based on whether bounding
boxes are used to reduce the query propagation cost: (i) AllQueries: flood all queries to
the entire network; (ii) BBQueries: each node propagates down only queries that have
a non-empty intersection with its bounding box. This is performed using semantic rout-
ing information, discussed in detail in [9]. Once a node receives query information, it
computes for each round in the epoch the set of queries that are active in the round.

EC computation: Given a set of m query rectangles, we can compute all the ECs
formed by the m queries using a two-dimensional sweep algorithm in O(m?) time
using O(m?) space. Due to space constraints, we defer the algorithm description and
its analysis to the full paper. Using this algorithm, each node locally computes the ECs
intersecting with its bounding box.



3.3 TheResult Propagation (RP) phase

Each RP phase consists of a number of rounds, in which aggregation results are for-
warded through the tree paths from the leaves to the gateway. Consider a result message
sent by a node N to its parent P(IN). The forwarded data should be sufficient to eval-
uate V(Qn, N), i.e. the contribution of sensors in Ty to the values of the projected
queries Qn. A result message consists of a pair (RESULTCODE, RESULTDATA);
RESULTDATA includes updated values, and RESULTCODE encodes what has been up-
dated, showing how to interpret the values in RESULTDATA.

We now propose a series of result propagation algorithms, all of which use the above

message format. These algorithms can be classified according to four dimensions. The
first two dimensions are the methods employed for computing the REsuLTCoODE and
RESULTDATA components. The third dimension is whether the linear reduction tech-
nique of Sect. 2 is applied. The last dimension is whether these choices are identical for
all nodes, yielding a pure algorithm, or these choices may differ across nodes, yielding
a hybrid algorithm.
Pure algorithms without reduction: We consider two methods for determining the
ResuLTCODE component of a result message. In Query-encoding, a node sends to its
parent information about which queries have been updated since the last round. For-
mally, let UpdRows(Q n) be the matrix derived from @) 5 after removing all queries
(row vectors) that are not affected by the current sensor updates in T'n. Both N
and P(N) agree on unique labels for the queries in @y from the integer interval
[1,|@n]|]. Then, RESULTCODE consists of a set of 1g | x|-bit labels listing the queries
in UpdRows(Q ). We note that Query-encoding does not require computation of
equivalence classes. In EC-encoding, a node sends to its parent information about
which equivalence classes have been updated since the last round. Let UpdCols(Q n)
be the matrix derived from @  after removing all ECs (column vectors) that do not
include any updated sensors in T',y (and after removing duplicate and zero rows). Since
both N and P(NN) can compute X  (i.e. the set of equivalence classes that intersect
with BBy) they can agree on a unique label in the range [1, | X n|] for each equivalence
class in X . In EC-encoding, RESULTCODE includes the identifiers of ECs (columns)
of UpdCols(Qn).

We also consider two methods for populating the RESULTDATA component of a re-
sult message that a node sends to its parent. In the Query-data approach, RESULTDATA
is the set of values of updated queries. In the EC-data approach, RESULTDATA is the
set of values of updated EC values.

One can combine the two dimensions above to obtain four different algorithms for
the RP phase: QueryQuery, QueryEC, ECQuery and ECEC, respectively, where the first
part of the name refers to the encoding, and the second part to the data. EC-encoding
results in messages with smaller RESULTDATA components than Query-encoding, inde-
pendent of whether the Query-data or EC-data policy is used. This is because both (row
and column) dimensions of UpdCols(Q n') are smaller than those of UpdRows(Q n ).
Therefore, if the computational capabilities of the sensor nodes allow EC-computations,
then we only consider ECQuery and ECEC. On the other hand, if the computational lim-
itations of the sensor nodes do not allow them to compute the ECs, then QueryQuery



is the only algorithm of interest. Consequently, we focus our attention on three of these
four algorithms, namely, QueryQuery, ECQuery, and ECEC.

e ECQuery: Inthe RESuLTCODE component, each node N sends to P(N) the iden-
tifiers of the updated ECs in the subtree rooted at N. In the RESULTDATA com-
ponent, node N includes delta values only of the distinct row vectors of matrix
UpdCols(Qn). That is, query vectors are projected only onto the updated ECs
(columns), and one value is sent for each distinct projected query vector.

e QueryQuery: In the RESULTCODE component of the message that N sends to
P(N), it includes the identifiers of updated queries. In RESULTDATA, node N in-
cludes delta values of the distinct row vectors of matrix UpdRows(Q n). Since the
number of distinct query (row) vectors in UpdRows(Q n) is larger or equal to their
number in UpdCols(Q n), the size of RESULTDATA in QueryQuery is larger or equal
to its counterpart in ECQuery.

e ECEC: The RESULTCODE here is identical to that of ECQuery. Unlike ECQuery,
ECEC sends up EC values in the RESULTDATA component of the message. For each
updated EC in the subtree, it sends up the aggregate value of all sensors in the inter-
section of the EC and the subtree T'y.

An optimal pure algorithm using linear reduction: Both ECQuery and ECEC de-
crease the communication cost of result propagation by explicitly encoding irregular
updates. Additional communication savings can be achieved by carefully applying the
linear reduction technique (introduced in Sect. 2) in a distributed manner to reduce the
size of propagated irregular updates. We now present the algorithm ECReduced which
uses EC-encoding, and is provably optimal with respect to the amount of result data
that is communicated. The RP phase of ECReduced at each node consists of two steps:
i) a basis evaluation step and ii) a result evaluation step. Detailed pseudocode for both
steps is presented in [8]. The basis evaluation step is executed whenever the set of active
queries changes or the set of updated ECs changes. Thus, if every query has the same
frequency and all sensors are updated regularly (D-scenario), then the basis evaluation
step is executed only once at the beginning of the RP phase. This step is the most com-
putationally demanding part of our algorithm since it involves matrix linear reduction;
the complexity of reducing a matrix with m rows and n columns is O(mn ?).

Basis evaluation step: Consider a node N with ¢h children nodes. Node NV initially
performs ch row-based linear reductions on matrices UpdCols(@Q n, ), k = 1,...,ch,
in order to interpret the results received from its children Ny,..., Ng,. It derives a
coefficient matrix Ay, for each child &, such that the product of A n, and the basis vec-
tors B(UpdCols(Q n,,)) yields the original projected queries UpdCols(Q n, ). Node N
then reduces its own query-EC matrix UpdC'ols(Q n) into a set of linearly independent
query vectors. Overall, N performs ch + 1 matrix reductions.

Result evaluation step: This step is executed once per round of the RP phase, and
it includes simple operations wrt time and memory space. Relying on the output of the
basis evaluation step, node N combines the incoming (delta) values received from its
children and forwards a minimum number of values to its parent P(N). Details of this
step are given in [8]. In summary, for each child N, node N evaluates the values of
queries (row vectors of) UpdCols(Q n, ), based on the values of the basis vectors (re-
ceived from child &) and matrix A, (from previous step). Combining the values of



UpdCols(Qn,) (and the node’s own sensor value), node N proceeds to evaluate the
results of queries UpdCols(Q n) for the entire subtree T'y. It is sufficient to evaluate
only the values of queries that belong to the basis B(UpdCols(Q n)). Only those val-
ues are finally forwarded to the parent node P(IV'). Notice that if all nodes use the same
algorithm to linearly reduce a query matrix, there is no need to communicate the se-
lected basis vectors; a node only forwards up the values of these vectors to its parent.
The following result is derived from Theorem 1.

Theorem 2. The size of the RESULTDATA component in the ECReduced algorithmis
optimal; it isalower bound on the size of the optimal result message.

Hybrid algorithmswith no reduction: The algorithms introduced so far are executed
in an identical manner at all nodes. We now consider two hybrid algorithms that perform
differently across nodes, depending on the load of results contributed by the underlying
subtrees. The first algorithm, referred to as HybridBasic, attempts to approximate the
optimal cost achieved by the ECReduced algorithm, while avoiding the high computa-
tional requirements for linear reduction.

e HybridBasic: Consider the bounding box of a node and the set of queries and ECs
intersecting with the bounding box. For a given sensor update rate, when the num-
ber of (projected) queries is small, the number of (projected) ECs is greater than the
number of queries. In this case, the ECQuery algorithm is expected to outperform
the ECEC algorithm. However, for a large number of queries the equivalence classes
might be fewer than the queries. In this case, the ECEC algorithm is expected to out-
perform the ECQuery algorithm. The point where the two algorithms cross depends
on the sensor update frequency. The HybridBasic algorithm combines the ECEC and
ECQuery approaches. A node selects the approach that locally yields the least cost,
and sends an additional bit to denote its choice. The only constraint is that if a child
uses the ECQuery approach, it only provides information about the values of up-
dated queries; hence, its parent can only implement the ECQuery approach. On the
contrary, a parent of a node that implements ECEC can implement either of the two
approaches.

Surprisingly, HybridBasic performs extremely well in terms of communication; as
will be shown in Sect. 4, it closely approximates the cost of the ECReduced algorithm,
without requiring a linear reduction task. In fact, HybridBasic can be viewed as an
approximate application of linear reduction in the following sense: the rank of a matrix
is always smaller or equal to the smallest dimension of the matrix; given a query-EC
matrix, HybridBasic effectively chooses to propagate values of row vectors (queries),
or of column vectors (ECs) depending on which ones are fewer. In practice, this policy
works well, since the cardinality of the smallest matrix dimension often coincides with
the matrix rank.

HybridBasic assumes that each node is able to evaluate equivalence classes within
the bounding box of its subtree. The following algorithm, named HybridWithThreshold,
lifts this requirement for nodes close to the gateway, whose bounding boxes overlap
with many queries.

e HybridWithThreshold: If the input query workload is light, EC evaluation for the
entire network is easy to perform locally at each node. Otherwise, nodes close to the



leaves may opt for local EC computation, i.e. computation of ECs within the context
of the bounding box of the node’s subtree. As we approach the gateway, the bounding
box of a node’s subtree increases, and so do the number of query rectangles that inter-
sect with the bounding box. The computational cost of evaluating ECs may become
prohibitively expensive for nodes close to the gateway. The HybridWithThreshold
algorithm behaves like the HybridBasic algorithm at nodes that are able to perform
EC computation. When the effort for EC computation exceeds a certain threshold at a
node (its computational capability), the node switches to Query-encoding and sends
up one result per updated query.

4 Experimental Evaluation

In this section we measure the communication cost of the proposed algorithms using
a home-grown simulator. We also present our feasibility test of the linear reduction
technique, which we performed on the Mica2 mote. In the full version of our paper [8]
we evaluate how the proposed algorithms trade communication for computation; we
also show the benefits of our techniques by drawing data from a real sensor network
infrastructure deployed in the Intel Berkeley Research Lab.

4.1 Synthetic experimental setup

We deploy 400 sensors in a square region of 400 m 2 and randomly select their z and
y coordinates to be any real numbers in [0, 20]. We ensure that with a communication
range of 2m the random deployment of nodes results in a (100%) connected network
(otherwise the random deployment is repeated). A flooding algorithm is used to gener-
ate a minimum spanning tree that connects all nodes to the gateway. Each node selects
as its parent a randomly chosen neighbor that lies on a shortest path to the root. The
queries considered in our framework are sum queries that cover all sensors in a rect-
angular area. In our experiments we test a number of different query workloads, each
defined as a set of tuples of the form (numberOfQueries, minQueryWidth, maxQuery-
Width, minQueryHeight, maxQueryHeight). We assume that all the queries in a work-
load have the same frequency. We set the minimum values of the query dimensions
(minQueryWidth, minQueryHeight) to 1m and the maximum values to 20m. Given
query input patterns, a random workload generator generates specific instancesin each
epoch that satisfy the patterns. The sensor update workload defines the probability that
a sensor is updated at the end of a round. Given a sensor update input pattern, a random
workload generator selects a specific set of sensors to be updated in a round.

For simplicity, we assume long-running queries that are propagated once at the be-
ginning of an epoch (in the QP phase) and are evaluated at every round of the RP phase
until the end of the epoch. Since the query propagation cost occurs once per epoch, it
is negligible compared to the result propagation cost and is not accounted for. In our
evaluation, we measure the result (communication) cost per round, averaged over 200
rounds (10 epochs of 20 rounds each).
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Fig. 3. Comm. cost of algorithms (D-scenario). Fig.4. Comm. cost of algorithms (I-scenario).

4.2 Communication cost

To make the measurements of communication cost realistic, we consider a packet size
of 34 bytes (similar to the size of TOS _M sg used for Mica motes) that consists of a
5-byte header and a 29-byte payload. If the number of bits in a message is x, then the
communication cost is [2/29] x 34; that is, we account for a fixed header cost (5 bytes)
and only consider fixed size packets. The size of each query result is set to 16 bytes.
Deterministic sensor updates: In Fig. 3, we compare the performance of different
algorithms as we increase the number of queries sent together for evaluation at the
beginning of an epoch. In this initial experiment, we assume that all sensors are up-
dated in each round with probability 1 (D-scenario). We first compare our techniques
with the existing approach, namely an extension of the TAG algorithm [3] to process
multiple queries. Since this algorithm, which we refer to as NoOptimization, performs
in-network aggregation independently for each query, the average (per round) result
propagation cost increases linearly in the number of queries. The performance advan-
tage of our proposed techniques is apparent even for light query workloads.

Figure 3 validates our analysis of Sect. 3.3 that EC-encoding outperforms Query-
encoding, if we restrict our attention to communication cost. Between ECQuery and
ECEC, Fig. 3 shows that ECQuery outperforms ECEC for query workloads with less
than 80 queries, but as we increase the number of queries, the number of ECs became
smaller than the number of queries and ECEC wins.

We now consider the cost and benefit of the reduction technique in the D-scenario.
Figure 3 shows that the proposed ECReduced algorithm performs better than all the
other algorithms, thus validating Theorem 2. An interesting observation is that the
HybridBasic algorithm performs almost as well as the ECReduced algorithm, without
requiring any computational cost for linear reduction (Fig. 3). This shows that a very
simple distributed algorithm, which can easily be implemented on constrained sensor
nodes, gives a very good approximation of the optimal solution.

In addition to our simulations, we implemented the linear reduction technique on the
Berkeley Mica2 motes (4AMHz ATMEL processor128kB flash, 4kB RAM, 4kB ROM)
using the NesC programming language. We measured the time in seconds required for
reducing an m x m matrix of floats as a function of m. The observed time grows as
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Fig. 5. HybridWithThreshold (D-scenario). Fig. 6. HybridWithThreshold (I-scenario).

©(m3), which is consistent with the complexity of the reduction algorithm. The code
for matrix reduction was compiled with "make mica” to 12604 bytes in ROM and 428
bytes in RAM. For matrices of dimension from 5 to 15, the linear reduction algorithm
takes 0.07 to 1 seconds, but the algorithm time increases rapidly for larger matrices.
Probabilistic sensor updates: In Fig. 4, we compare algorithms as we vary the proba-
bility that a sensor generates an updated reading in a given round. We set the number of
queries to 50. Recall that in the D-scenario (Fig. 3), which corresponds to the I-scenario
with probability 1, ECQuery is preferred to ECEC for workloads of less than 80 queries.
As we decrease the sensor update probability to less than 0.6, however, Fig. 4 shows
that it becomes beneficial for nodes to send up EC values instead of query values in
RESULTDATA. For an update rate of 10%, ECEC is 30% cheaper than ECQuery. The
ECReduced algorithm, which applies the linear reduction technique in a distributed
manner, outperforms all other algorithms (Fig. 4). Moreover, the HybridBasic algo-
rithm has a very good performance, approaching closely the cost of ECReduced.

In Figs. 5 and 6, we consider the limited computational power of sensor nodes.
From the two algorithms that do not require EC computation (NoOptimization and
QueryQuery), we only consider QueryQuery because it has smaller communication
cost. Among the algorithms that do not perform reduction but require EC computa-
tion, we only consider HybridBasic because it has similar computational cost with the
others yet smaller communication cost. We omit ECReduced because it requires ma-
trix reduction without yielding noteworthy cost savings compared to HybridBasic. In
Figs. 5 and 6, we set the sensor update probability to 1 and 0.1 respectively. In both
figures, QueryQuery has a higher cost than HybridBasic. The former algorithm does
not require knowledge of ECs, whereas the latter assumes knowledge of ECs inde-
pendent of the nodes’ computational capabilities. We study the performance of the
HybridwithThreshold algorithm, where the significance of the threshold value is as
follows: if the effort of computing ECs at a node N (measured as m >, where m is the
number of distinct projected queries onto the local bounding box BB y) exceeds the
threshold value at IV, then EC computation cannot be performed, and the node switches
to using the QueryQuery algorithm. Figure 5 shows that as we increase the threshold
value (plotted on a logarithmic scale), more nodes are able to compute ECs, and the
cost of HybridWithThreshold approaches the cost of HybridBasic.



5 Redated work

Query processing in sensor networks. Several research groups have focused on in-
network query processing as a means of reducing energy consumption. The TinyDB
Project at Berkeley investigates query processing techniques for sensor networks in-
cluding an implementation of the system on the Berkeley motes and aggregation queries
[1-5]. An acquisitional approach to query processing is proposed in [9], in which
the frequency and timing of data sampling is discussed. The sensor network project at
USC/ISI group [10, 11] proposes an energy-efficient aggregation tree using data-centric
reinforcement strategies (directed diffusion). A two-tier approach (TTDD) for data dis-
semination to multiple mobile sinks is discussed in [12]. An approximation algorithm
for finding an aggregation tree that simultaneously applies to a large class of aggre-
gation functions is proposed in [13]. Duplicate insensitive skethches for approximate
aggregate queries are discussed in [14, 15]. Our study differs from previous work in
that we consider multi-query optimization for sensor networks.

Communication protocols for sensor networks. The data dissemination algorithms
that we study in this paper are all aimed at minimizing energy consumption, a pri-
mary objective in communication protocols designed for sensor (and ad hoc) networks.
A number of MAC and routing protocols have been proposed to reduce energy con-
sumption in sensor networks [16-23] While these studies consider MAC and routing
protocols for arbitrary communication patterns, our study focuses on multi-query opti-
mization to minimize the amount of data.

6 Conclusionsand Future Work

Our work addresses several issues in the area of Sensor Databases. We have introduced
two major extensions to the standard model of executing a single long-running query: A
workload of multiple aggregate queries and a workload of sensor data updates. We have
given efficient algorithms for multi-query optimization, and tested their performance in
several scenarios. To the best of our knowledge this is the first work to formally examine
the problem of multi-query optimization in sensor networks.

The main conclusions drawn in this paper are the following: First, the notion of
equivalence class (EC) is important for distributed query evaluation; encoding sensor
updates in terms of ECs enables better compression of the result messages. Second,
the result data size is minimized for a certain class of aggregate queries (sum, count
and avg) by applying the linear reduction technique in a distributed manner. Third, in
applications where the computationally expensive task of linear reduction is infeasible
for the nodes, a very good approximation of the optimal can be obtained by having each
node select an appropriate local data encoding strategy. This encoding strategy can itself
be defined in terms of a threshold that specifies the computational limitation.

There are a number of directions for further research. First, we would like to extend
our ideas to a wider class of aggregation functions. Second, our paper has focused on
accurate query evaluation. It would be worthwhile to study approximate query process-
ing and obtain error-energy tradeoffs. We would also like to adapt our techniques to
multi-path aggregation methods that provide more fault-tolerance.
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