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Abstract

Much interesting work has been done on the use of se-
mantic associations for optimizing query execution. Our
objective is to study the use of association rules to add
or eliminate constraints in the ����� clause of a ������

query. In particular, we take advantage of the following
heuristics presented by Siegel et al. [6]: i) if a selection on
attribute A is implied by another selection condition on at-
tribute B and A is not an index attribute, then the selection
on A can be removed from the query; ii) if a relation R in
the query has a restricted attribute A and an unrestricted
cluster index attribute B, then look for a rule where the re-
striction on A implies a restriction on B. The contribution of
our work is twofold. First, we present detailed algorithms
that apply these heuristics. Hence, our ideas are easy to
implement. Second, we discuss conditions under which it is
worth applying these optimization techniques, and we show
the extent to which they speed up query execution.

1. Introduction

Rules that correlate values of data attributes in large
databases have been investigated for two main purposes.
The first is to aid management and decision-making in large
companies with great amounts of data. The second relates
to query optimization, by exploiting the semantic knowl-
edge expressed in rules [2, 3, 6, 9, 10]. Siegel et al. [6]
have proposed several heuristics to guide rule generation
and so help to transform queries to more efficient forms.
In this paper we investigate algorithms for applying two
of these heuristics to optimize range queries. We express
queries using OQL (Object Query Language); however, our
algorithms and optimization techniques are also applicable
in any relational or object-relational database system. The
form of queries under consideration is:
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The first heuristic (H1) aims to eliminate as many pred-
icates (or constraints) ���	� as possible, when they are im-
plied by other existing predicates. The second heuristic
(H2) finds implications from one or more existing predi-
cates to a new predicate on a cluster index attribute. If the
latter is added to the ����� clause of the query and is tested
first, then the existing predicates will be tested on a smaller
number of objects. In order to take advantage of either of
these heuristics, we use association rules that are relevant to
	���� �.

In our context, association rules express semantic
correlations between the values of the attributes of all
objects belonging to a certain extent. They consist
of two parts, the antecedent, which has one or more
constraints, and the consequent, which has just one
constraint: ������� � � � � � ������� � �������.
The constraints ������� are of the form
����� ��������������� ���� ��� ������, where for
all � �� � �� �, ���� ��� � �������� ����� ���.
Association rules are typically ranked by two measures of
interest: confidence and support. Confidence expresses the
fraction of all objects satisfying the antecedent that also
satisfy the consequent. Support expresses the percentage of
objects of the extent satisfying both the antecedent and the
consequent; hence it indicates how often the rule occurs in
the extent of a certain class. A number of algorithms have
been proposed for mining association rules over categorical
or quantitative data [1, 7, 4, 5, 8]. In the remainder of the
paper, we assume that the process of mining rules has been
completed and that we already have a warehouse with a
set of rules for each extent in the database. Further, in this
warehouse we store the exceptions to each rule, i.e. those
objects that satisfy its antecedent but not its consequent.
We also assume that the rules and their exceptions are
correctly maintained when the database is updated.

Automatic use of these rules by the OQL optimizer raises
many issues. The first concerns mapping the predicates
in the ����� clause of a ������ query to constraints that
could potentially be found in the antecedent (or the conse-
quent) of association rules. This is a step towards identi-



fying the templates of association rules that could help in
our optimizations; this task is slightly different for heuris-
tics H1 and H2, as discussed in section 2. In section 3,
we present a common graph algorithm that goes through all
existing association rules and discovers the ones that fit the
templates along with their exceptions. In section 4, another
graph algorithm combines these rules to discover the possi-
ble optimizations, i.e. the sets of constraints that could be
omitted from (H1) or added to (H2) the query. In section 5
we present the actual transformations of OQL queries for
each of the two optimization techniques. Finally, in sec-
tion 6 we investigate the conditions under which it is worth
applying the optimizations and show the extent to which
they are expected to speed up query execution.

2. Converting query predicates to rule con-
straints

The first step towards applying either of the heuristics
is to map the predicates found in the ����� clause of a
������ query to constraints found in the existing associ-
ation rules. Consider the following OQL query:
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(1)
We first need to gather all predicates that refer to the same
attribute into one predicate, and form constraints of the form
��������� ���� �� �����. The resulting constraints in
our example are given below:
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Based on these query constraints, the next step is to
search for similar constraints in the association rules. Sup-
pose that the warehouse contains the association rules illus-
trated in figure 1, which are relevant to the class �������.
The constraints in the antecedent and the consequent of the
rules are labeled with short names, e.g. �	�
�� is a constraint
limiting the values of attribute  to the range !	�. Here a
range is a specified set of values of some attribute. The set
of ranges associated with a particular attribute is partially
ordered under inclusion in the usual way.

To distinguish constraints that are derived from the
����� clause of our query from those in the antecedent or
consequent of the association rules, we refer to the former
as query constraints, and to the latter as rule constraints.
For each heuristic we look for rule constraints correspond-
ing to the query constraints.

2.1. Heuristic H1

We first discuss rule constraints relevant to the con-
straint elimination heuristic. For each constraint � on
��������� ���� with range !, identify the following rule
constraints:

Category 1 - relaxed constraints First, identify the con-
straints whose ranges are the next more general than
(or the same as) the range of the original constraint �.
If there exists such a constraint �� with a range !�, then
for all other constraints �� i �� � on ��������� ����

with ranges !�, if ! � !� then ����!� � !��. That is,
!� is one of the least supersets of ! among all ranges
of constraints referring to the same attribute.

Category 2 - relaxed combinations of constraints
Second, identify minimal combinations of constraints
which have the property that the union of their ranges
is a superset of the range of the original constraint �.
The constraints in any combination must satisfy the
following conditions: firstly, none of the constraints
can be the same as (or with a wider range than the
range of) any constraint identified previously in
category 1; secondly, no combination must include
all the constraints of a smaller combination; thirdly,
if either of two constraints on the same attribute may
take part in a combination, and the range of the one is
a subset of the range of the other, then the one with
the smaller range is selected.

Category 3 - tightened constraints Third, identify the
constraints whose ranges are the next more specific
than (or the same as) the range of the original con-
straint. If there exists such a constraint �� with a range
!�, it means that for all other constraints �� i �� �
on ��������� ���� with ranges !�, if ! � !� then
����!� � !��. That is, !� is one of the greatest sub-
sets of ! among all ranges of constraints referring to
the same attribute.

Category 4 - tightened combinations of constraints
Fourth, identify maximal combinations of constraints
which have the property that the intersection of their
ranges is a subset of the range of the original constraint
�. The constraints in any combination must satisfy the
following conditions: firstly, none of the constraints
can be the same as (or with a range contained in
the range of) any constraint identified previously in
category 3: secondly, no combination must include
all the constraints of a smaller combination: thirdly,
if either of two constraints on the same attribute may
take part in a combination, and the range of the one is
a superset of the range of the other, then the one with
the wider range is selected.
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Figure 1. Association rules relevant to the class Employee

In the example of query 1, the query constraints � �, ��,
�� and �� correspond to the following rule constraints:

Relaxed Constraints
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For each tightened combination of constraints we generate
a new constraint whose range is the intersection of the
ranges of the constraints in the combination. We add this
new constraint to the category of tightened constraints and
create a new temporary rule with the initial constraints
in the antecedent and the new tightened constraint in
the consequent. For instance, based on the tightened
combination ����� �
 ����� �� ������� ��#�������
���,
���� �
 ����� �� ������� ����������
����, we create the
constraint ����� �
 ����� �� ������� ����������
�����.
Repeating this procedure for all tightened combinations of
constraints, we generate a new set of tightened constraints.

The rationale behind finding the constraints in categories
1 to 3 is the following. By definition, the query constraints
imply their corresponding relaxed constraints. Likewise,
the tightened constraints imply the initial query constraints.
Hence if we can find association rules that relate constraints
in the first two categories to those in the third, it is equiv-
alent to finding rules that correlate the initial query con-
straints with each other.

2.2. Heuristic H2

For the purposes of applying the constraint introduction
heuristic, we identify the following rule constraints:

Category 1 - relaxed constraints These are identical to
the relaxed constraints described in section 2.1.

Category 2 - relaxed combination of constraints This
category is the same as its counterpart in section 2.1.

Category 3 - index constraints If the extent has a clus-
ter index on attribute �����, then this category in-
cludes all the constraints on this attribute that oc-
cur as consequents in the existing rules. Assume
that the cluster index of the extent �������� is the
attribute �

�������. Based on the rules of fig-
ure 1, the only index constraints is the constraint
�

������� ������ "��.

Rule constraints imply relaxed (combinations of) con-
straints, by definition. If we succeed in finding paths from
relaxed (combinations of) constraints to an index constraint,
then we can add the latter to the ����� clause of the query.
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Figure 2. Graph of Constraints

This allows us to profit from its properties without altering
the results of the query.

2.3. Discussion

Constraints in categories 1 and 2 play an identical role
for heuristics H1 and H2. However, the other categories
play a different role in the two cases. Tightened constraints
are similar to existing query constraints that can potentially
be eliminated. Index constraints are new constraints that
can potentially be added to the ����� clause of the query.
In the next section we present a graph algorithm that finds
associations from the relaxed constraints to the tightened
(H1) or the index (H2) constraints respectively. Since the
algorithm is common to both heuristics, tightened and index
constraints are hereafter referred to as target constraints.

3. Identifying associations between constraints

In this section, we present an algorithm that goes through
the association rules in the warehouse and identifies direct
or indirect correlations between the relaxed and the target
constraints discussed in the previous section. Before pre-
senting this algorithm, we discuss an alternative graphical
representation of the association rules. Consider for exam-
ple the association rules in figure 1. They can be represented
using a directed graph of constraints, see figure 2.

A rule having a single constraint in its antecedent (e.g.
���
�� � ���
��) is represented by two vertices, labeled with

the constraints (���
�� and ���
��) and linked together by an
edge from the antecedent constraint (���
��) to the conse-
quent constraint (���
��). A rule with more than one con-
straint in its antecedent uses an additional vertex to denote
the conjunction. The link � denotes the fact that a con-
straint in the antecedent of a rule implies the consequent
only in combination with the other conjuncts forming the
antecedent. The dashed edges link pairs of nodes that rep-
resent constraints on the same attribute, with the source con-
straint implying the destination constraint.

The notion of path in our context requires one extension
to the standard notion for a directed graph. A path from a
constraint ������� to a constraint ����� is any sequence of
vertices linked by directed edges, provided that no vertex
represents a composite constraint. If a path contains a com-
posite constraint, say � � �� � � � � � ��, then there must be
� paths from �������, one to each of the conjuncts ��. These
subpaths merge at the node representing the composite con-
straint, and from there the path continues towards �����.

We consider also paths from a set of constraints
���� � � � ��� to a single constraint. Such a path consists of
subpaths starting from the source constraints ���� � � � ���
which merge at various composite constraints before reach-
ing the destination constraint.

We can now develop an algorithm that navigates over
a graph of constraints, finds paths linking relaxed (combi-
nations of) constraints to target constraints and combines
them to derive association rules useful for the purposes of
optimization. It consists of three basic steps as shown in
figure 3. The algorithm is discussed in detail in section 3.1.
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Figure 3. An abstract view of the algorithm

At the end of each step we give an example to show how it
can be applied for heuristic H1. It is equally applicable to
heuristic H2.

Relaxed constraints and constraints in relaxed combina-
tions often play the same role in the following algorithm,
and we use the term source constraint in such contexts.

3.1. Algorithm

For each constraint �	�
�� in the target constraints take
the following steps:

Step 1

Navigate backwards from �	�
�� in the graph of con-
straints, i.e. navigate against the direction of the edges
and annotate any source constraints encountered with
information about the reverse path traversed so far. On
encountering a composite constraint navigate backwards
from all of its conjuncts. If a particular constraint is
encountered more than once, or if there is no incoming link,
then backtracking from the current constraint terminates.

Step 1 may be implemented as a recursive method
��� ���� on a class ����������. We demonstrate its
functionality by an example. Consider the target constraint
��
�� in the constraint graph (figure 2). We recursively
apply ��� ���� to all the constraints leading to it, i.e.
���
�� , ���
�� and ������ . The argument for the method is
the path traversed so far, i.e. ���
���. ���
�� is not a source
constraint, so no path annotation is assigned to it. No con-
straint leads to it (there is no incoming link), so there is no
further recursive call from it. However, ���
�� is a constraint
in a relaxed combination, so it is annotated with the path
���
���. No recursive call occurs from it either. ������ is a
composite constraint, so we recursively call ��� ���� on
each of the conjuncts ���
�� and ���
�� , passing as argument

the updated path traversed ������� 	 ��
���. Recursive
calls of ��� ���� continue until the constraint on which a
call is made has no incoming link or the constraint appears
in the argument path annotation. In figure 4, we present the
path annotations assigned to source constraints by the time
Step 1 is completed for the target constraint ��
�� .

Discussion of step 2

The objective of step 2 is to combine the annotations of
source constraints to identify complete paths from sets of
these constraints to a target constraint �	�
�� . The first step
of the algorithm annotated the source constraints with com-
plete or incomplete paths from them to a particular target
constraint. For instance, ���
�� , which is a relaxed con-
straint, is annotated with four paths, as shown in figure 4.
Paths that include � links are called incomplete; they are
useful only in combination with other incomplete paths that
include the related conjuncts. One of the objectives of step
2 is to combine incomplete paths in order to identify (com-
plete) paths from a source constraint like ���
�� to a target
constraint like ��
�� . In fact, we can combine paths from
more than one source constraint to a destination constraint.

Each edge	 stands for an association rule which possi-
bly has a list of exceptions . A series of consecutive edges
	 corresponds to an indirect association from the source
constraint to the destination one. The exceptions to this rule
are evaluated from the exceptions of the association rules
involved. In particular, if constraint $ leads to constraint %
based on a rule with exceptions ���, and % leads to � based
on a rule with exceptions ���, then the exception set of the
indirect path $	 � (or the indirect rule $� �) is:

 � ��	�
�	�� ���� ��� ���	���

���	�
�	�� ���� $��	��� (2)

Note that ���  ��� � ��, since all exceptions of ���
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Figure 5. Truth table which shows the correct-
ness of formula 2

satisfy $, but do not satisfy %. Therefore they are not
exceptions of ���. The correctness of formula 2 is proved
by the truth table in figure 5.

Step 2

Path annotations derived from step 1 are combined to
form complete paths by repeating steps 2.1 and 2.2:

Step 2.1 For all path annotations we omit all the initial con-
straints, until the first constraint which is followed by
a� edge (this constraint is maintained). To omit these
initial constraints, we must first evaluate the excep-
tions involved in the rules until the� link (equation 2).
The resulting paths are either empty or start with sub-
constraints leading to composite constraints.

When this step is executed for the first time the resulting

paths in our example are the following:
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If a path annotation is empty, it means that there is a com-
plete path from the source constraint (e.g. ���
��) to the des-
tination one (��
��). A new rule is created from the for-
mer to the latter (���
�� � ��
��) and the exceptions eval-
uated so far for this path annotation (�) are assigned to
the new association rule. The path annotation and its ex-
ceptions are deleted. If an empty annotation corresponds to
more than one source constraint then the rule that is gen-
erated has a composite antecedent, i.e. it is of the form:
�� � � � � � �� � ��.

Step 2.2 For each composite constraint ����� at the second
position of some path annotation, we try to find a set of
path annotations having at their first positions the com-
ponent constraints of �����. These path annotations
are combined into new path annotations as follows: i)
the subconstraints at their first positions are omitted;



ii) the resulting exceptions of the remaining paths are
the union of the exceptions evaluated so far for each
combined path that satisfy the source constraints of the
other combined paths.

���� � �� � �� �

����� ���� � ��� �������

����� ���� � ��� ������ (3)

When step 2.2 is executed for the first time in our exam-
ple, the following path annotations are generated:

������ � �	���� ��� ������ � �������
�� � ����� ��� ����������
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� �������� � ������ �

If two path annotations which are combined do not have
the same paths after the composite constraint (after the sec-
ond position), then two combinations of paths should be
generated, one for each annotation.

Path annotations (� to (� are retained so that they can be
combined with the new annotations at a later execution of
step 2.2.

Substeps 2.1 and 2.2 are repeated until neither of them
has any effect on the path annotations. This happens when
all paths that have not been converted to rules in step 2.1
cannot be further combined in step 2.2.

Step 3

Not all the rules derived in step 2.1 are useful for the
purposes of our optimization. The aim of this step is to fil-
ter and combine the rules derived from the previous step,
referred to as !�, in order to generate rules relating query
constraints with each other (H1), or query constraints to
new index constraints (H2). The resulting set of rules is
referred to as !�. We first give a detailed account of step 3
in the context of heuristic H1. We then point out a detail
that should be changed so that the step is also applicable for
H2.

We wish to find (groups of) rules in !� of the following
kinds:

� A rule from a relaxed constraint to the target constraint
��, i.e. of the form �� ��. Such a rule is used to gen-
erate a new rule �� � ���, such that ��, ��� are the query
constraints that refer to the same attributes as � and ��

respectively, � is one of the relaxed constraints of � �

and �� is one of the target constraints of ���. Indeed,

�� � �

�� �� �
������ ���
�
�� � ��

�

��
� �

� � �
�

�

If the rule �� �� has exceptions , the exceptions of
the new rule �� � ��� are � � ��
�� � ������.

� A group of rules of the form �� � ��� � � �� � � � � �,
such that �� are all constraints in the same re-
laxed combination of size �. This group of
rules is used to generate the new rule �� � ���,
in which ��, ��� are the query constraints that re-
fer to the same attribute as the �� and �� respec-
tively. If the corresponding exception lists of the rules
�� � ��� � � �� � � � � � are �, the exceptions of the
new rule are  � ��
�� � � � � � � �� �

�����.

� A rule from a set of relaxed constraints on differ-
ent attributes to a target one, i.e. �� � � � � � �� � ��.
This rule is converted to the corresponding rule
��� � � � � � ��� � ���, such that ���� � � � � �

�

� are the query
constraints on the same attributes as ��� � � � � �� re-
spectively. The exceptions of the new rule are
those of the initial rule that satisfy ��� � � � � � ���, i.e.
� � ��
�� � ������� � � � � �

�

�����.

� A group of rules whose antecedents contain both re-
laxed constraints and constraints in relaxed combina-
tions is useful if it consists of the rules:

������� 	
�������� �� �
�� � � � ��

�
������� �� ������� 	
������
��� �� �
��������� � � � ��������

� ��

where � � )� � �� for all � � � � �.

The constraints ��	������ � � � � ��	�����	 form the
relaxed combination �. The group contains
�� � � � �� �� rules, such that each constraint in
a relaxed combination occurs in all possible com-
binations with constraints from the other relaxed
combinations. In some of the rules some (or all) of the
relaxed constraints �� � � ��� may not be present.

Such a group of rules in !� results in the new
rule ��� � � � ��	 �

�

	�� � � � ��	�� � ��� , such that
���� � � � � �

�

	��� �
�

� are the query constraints that refer
to the same attributes as ��� � � � � ��	������ � �� respec-
tively. If the exception lists of the original rules are
�� � � � � ��������� , the exceptions of the resulting rule
are  � ��
�� � � � � � � ��������� � �

�

����� � � � �
��	������.

Evaluating exceptions appears very expensive in this
case. However, given that the value for � is usually �,
the cost of finding exceptions to the new rule is similar
to the cost in the second case of step 3.

Note that in the context of heuristic H2, �� is a constraint
on the cluster index attribute; it does not correspond to any
of the existing query constraints. Hence, step 3 is applicable
to H2, provided that in all four cases above, � �� � ��.
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Figure 6. Correlations of query constraints

4. Identifying optimization solutions

In the previous section, we gave an algorithm that nav-
igates over a constraint graph and extracts a set of useful
association rules along with their exceptions. This section
combines these rules to identify all possible solutions to the
constraint elimination or constraint introduction problem.

Consider an OQL ������ query with say 15 predi-
cates. We combine all predicates referring to the same
attribute into a single constraint ����� �� ������ (���
	).
Assume that we derive the following set of constraints:
���
� � � � � � ����
�� , say. Since there is just one range for each
attribute, ranges are presented as !� instead of !��. We first
identify the rule constraints of possible interest for H1 or
H2, then apply the graph algorithm presented in section 3.
The next step is discussed separately for each heuristic.

4.1. Heuristic H1

Say that the graph algorithm (section 3) results in the as-
sociations illustrated in figure 6. Not all query constraints
need be related; in our example only the first nine are. Note
that the association graph (figure 6) is transitive; if there is a
direct link from constraint $ to constraint %, and another one
from % to �, then $ and � are also directly connected. This is
a property of the graph algorithm in section 3. We now de-
fine an algorithm that produces a set of constraint elimina-
tion solutions ��*�� ���, where *�� � stand for Maintained
Constraints and Exceptions respectively. Each pair �*�� ��
implies a solution of the following form:

We may eliminate all but the constraints *�
from the ����� clause of the query, given that we
take into account the exceptions �.

Algorithm

Step 1 Identify all constraints that do not have any incom-
ing links. These constraints should be maintained (not
eliminated), since no other constraint implies them. In
figure 6, these constraints are ���
� � ���

 � ���
� .

Step 2 Identify all cyclic paths that have no incoming link
from any external constraint. If two cyclic paths
have at least one common constraint, they are con-
sidered as a single cyclic path. This case does not
occur in our example. Form combinations of con-
straints by choosing one constraint from every cyclic
path identified. In our example there is just one
such path containing the constraints ���
� � ���
� � ���
 ;
therefore the combinations consist of just one ele-
ment: ����
��, ����
��, ����
�. Extend each of these
combinations with the constraints without incoming
links, identified in step 1. The resulting combinations
are ����
� � ���
� � ���

 � ���
��, ����
� � ���
� � ���

 � ���
��
and ����
 � ���
� � ���

 � ���
��. Each combination is a
minimal set of constraints that implies all the remain-
ing constraints in the graph (figure 6).

Step 3 For each combination evaluate the exceptions that
are involved in removing the implied constraints. If
a constraint is implied by more than one constraint
in a combination, then consider the exceptions of the
strongest implication (the implication with the fewest
exceptions). For example, the exceptions correspond-
ing to the combination ����
� � ���
� � ���

 � ���
�� are
evaluated by forming the union of the exception lists:
� for the elimination of ��; ��� ������ �� for the
elimination of ��; ��� ������ �� �� for the elimi-
nation of �; � for the elimination of ��; �� for the
elimination of ��.

Step 4 Form the final solutions to the elimination prob-
lem by adding to each combination the remaining
query constraints that are not related to each other
�����
�� � ����
�� � ����
���. The exceptions corresponding
to each solution are filtered so that they satisfy all the
maintained constraints, i.e. all the constraints in the
combination.

Note that all the solutions identified in the algorithm have
the same number of constraints. We assume that the car-
dinality of the extent against which the query is run is far
greater than any of the exception lists annotating the op-
timization solutions. Therefore, there is no advantage in
eliminating only a subset of the constraints in a solution in
order to decrease the number of exceptions involved.

4.2. Heuristic H2

Assume that in the context of H2 the graph algorithm
(section 3) results in the associations illustrated in fig-
ure 7. The constraints of the form ���
	 are existing query
constraints, while the constraints ���
�� � ) � 	� � � � � 

are new constraints on the cluster index attribute. The
additional subscript ) is needed because the constraints on
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Figure 7. Correlations between query con-
straints and new indexed constraint

the index attribute may have different ranges. We iden-
tify all possible constraint introduction solutions as follows:

Algorithm

For each constraint on the index attribute ���
��

Step 1 find the least expensive association from a query
constraint to ���
�� , i.e. find the incoming link
���
	 � ���
�� with the fewest exceptions. For exam-
ple if the cardinalities of �� � � � � � are ��� � � � � �� and
� � �� � ��, then the least expensive association for
���
�� is ���

 � ���
��� � �.

Step 2 filter out all the exceptions that do not satisfy at least
one of the query constraints ���
� � � � � � ����
�� . We do
not need to test the exceptions for the antecedent of the
corresponding rule, since they satisfy it by definition.

The constraint introduction solutions identified in our
example are the following:

Introduced
Constraints

Exceptions

������ ����� ��� ��������� � � � � ������� ����
������ ����� ��� ����� ���� � � � � �	��� ����

��������� � � � � ������� ����
������ ����� �	� ����� ���� � � � � �	��� ����

��������� � � � � ������� ����

5. Optimizing OQL queries

In the previous sections, a series of algorithms were
given to find a collection of constraint elimination or con-
straint introduction solutions. In this section, we show how
the original query is transformed to its optimized form using
the optimal solution. Consider the OQL query:

������ 	


��� 	���� � �� 	

����� ���
� ��� � � � ��� ���
�

5.1. Heuristic H1

Let � ����� � � � � ����� � � be the maintained con-
straints and the exceptions of a solution �. Only the main-

tained constraints of the optimization solution should be
tested on the objects of the whole extent; however, all the
constraints should be tested on the exception cases and the
objects that satisfy the maintained constraints but not the
ones omitted should be removed from the result. Hence, the
original query should be converted to the following one:

������� 	 
��� 	���� � �� 	

����� ��� ��� � � � ��� ����
�	���� �

If we assume that tests on the query constraints take
roughly the same time, the optimal solution is the one with
fewest exceptions �.

5.2. Heuristic H2

Let � ���
�	 � � � be the index constraint and the corre-
sponding exceptions of a constraint introduction solution.
Instead of testing the query constraints ���
� � � � � � ���
� on
the entire extent 	���� �, we apply them only on the re-
sults of the subquery

������ 	


��� 	���� � �� 	 �+��
����� ���
�	

Since ���
�	 is a constraint on a cluster index attribute, the
select operation is expected to be quite fast. The original
query is transformed to its more efficient form:

������� 	

��� +� �� 	

����� ���
� ��� � � � ��� ���
��
����� �

The exceptions � are merged to the result because they
satisfy the query constraints, but not the new index con-
straint ���
�	 . Since the ����� operation is relatively cheap,
the optimal solution is the one that introduces the index con-
straint with the highest selectivity.

6. Discussion

We now look at two different scenarios, and estimate the
extent to which heuristics H1 and H2 speed up query exe-
cution.

The first scenario concerns frequently executed queries.
Assume that the association rules which are used by algo-
rithm 3 are not modified. We may optimize a query once
at compilation time, then execute its optimized form. It is
worth optimizing provided that the execution time of the
optimized query is less than the execution time of the orig-
inal query. For heuristic H1 this happens only if the time



saved by omitting some constraints is greater than the time
needed to remove the exceptions from the result (�	����
operation). The more the eliminated constraints and the
fewer the exceptions, the better the optimization. As one
of the referees pointed out, the time saved by the elimina-
tion of constraints is CPU-related. Since query execution
is dominated by data access time, this optimization is not
expected to alter performance significantly. It would help
only in contexts rich in associations with few exceptions, in
which users express many constraints in their queries.

Heuristic H2 is expected to bring more significant ben-
efits. Firstly, this optimization involves a ����� operation,
which is much cheaper than the �	���� operation used in
H1. Secondly, instead of retrieving all the objects of an
extent from the database, we need only look at the subset
retrieved through an indexed constraint. Hence, we save a
considerable amount of data access time, spending a negli-
gible amount of CPU time in evaluating the additional con-
straint.

The second scenario concerns queries which are exe-
cuted only once. In this case, the time required for opti-
mization is significant. This time depends on the algorithm
that finds associations between relaxed constraints and tight
constraints (see section 3), since this is the most expensive
step in the optimization process. This algorithm finds paths
in a directed graph, and combines the exceptions associated
with each edge of the path to derive the total exceptions for
the path. Therefore its complexity is a function of i) the av-
erage number of exceptions in the existing association rules
and ii) the number of different constraints found in the an-
tecedents and the consequents of the rules.

We have already implemented the algorithms for apply-
ing H1; the next step is to implement the corresponding al-
gorithms for H2. This should not be difficult, since the main
algorithm - finding associations between rule constraints -
is common to the two heuristics. We intend to set up an
experimental model in order to evaluate H1 and H2 in the
scenarios discussed above.

7. Conclusion

The use of association rules for query optimization is rel-
evant to both relational and object-oriented database sys-
tems. There has been a lot of research on generating asso-
ciation rules and maintaining them in the presence of up-
dates. Research has also focused on finding heuristics that
take advantage of rules in order to optimize a query. Most
of this work ([2, 3]) has considered integrity rules, rather
than association rules with exceptions. Semantic optimiza-
tion heuristics were also applied without considering indi-
rect associations. In this paper, we implement algorithms
that apply two optimization heuristics presented by Siegel
et al., taking account of both exceptions and indirect asso-

ciations. We show how to use these heuristics to optimize
an OQL query. The complexity of the optimization process
is closely related to the complexity of the constraint graph,
which represents the set of association rules in the data. It
also depends on the number of exceptions associated with
each rule. We have designed an experimental framework to
evaluate the two optimization techniques, both in the con-
text of queries repeated frequently over a period of time, and
in the context of ad-hoc queries executed once only. The re-
sults of this experimental work will be presented in a later
paper.
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