
software engineering programme 2009

“Conceptual
integrity
is the most important
consideration
in system design.”
(Fred Brooks)

Software engineering at Oxford

Welcome to the Software Engineering Programme,
a centre for advanced education and applied re-
search at the University of Oxford. Established in
1993, the Programme exists to make the connec-
tion between theory and practice in software en-
gineering, and to make the expertise of the Uni-
versity available to those who wish to study while
continuing in full-time employment.

Software engineering

‘Software engineering’ is the application of scien-
tific and engineering principles to the development
of software systems: principles of design, analysis,
and management. The application of these princi-
ples makes it easier to develop software that meets
its requirements, even when these requirements
change; to complete the development on time, and
within budget; and to produce something of lasting
value, by being easy to maintain, re-use, and re-
deploy.

An opportunity to learn

The Programme teaches the principles of mod-
ern software engineering, together with the tools,
methods, and techniques that support their appli-
cation. It offers working professionals an opportu-
nity to learn more about the technological advances
that are changing their lives, through a programme
of part-time study at Master’s level at one of the
world’s leading universities.

Courses and qualifications

The Programme offers seven postgraduate quali-
fications — Postgraduate Certificate, Postgraduate
Diploma and Master of Science, both in Software
Engineering and in Software and Systems Security,
and a Postgraduate Certificate in Object Technol-
ogy. These qualifications can be obtained through
attendance on courses in a variety of software en-
gineering subjects, such as requirements engineer-
ing, security risk and threat analysis, service-orient-
ed architectures, design patterns, software testing,
formal techniques, and development management.
The courses can also be taken separately, without
registering for a qualification, as short programmes
of advanced professional training.

Mode of study

Each course is delivered by an expert in the subject,
and includes an intensive teaching week of classes,
lectures, and practical work, followed by a written
assignment. This mode of study is particularly ef-
fective for those with significant professional or
personal commitments. Courses take place at the
Programme’s purpose-built facilities in the centre
of Oxford, and class sizes are kept small to allow for
a high degree of interaction.

Who should apply?

The Programme is intended for those with an
awareness of software development issues; ex-
isting students include architects, programmers,
managers, and informed customers. The entry re-
quirements for the postgraduate qualifications re-
flect this: relevant industrial experience is valued as
highly as previous education. There are no formal
entry requirements for the individual courses, al-
though prospective attendees are asked to confirm
that they satisfy the informal requirements for any
course that they wish to attend.

Research activity

The Programme is also a centre for research activ-
ity. The academic staff are involved in a number of
national and international projects in the areas of:
large-scale data integration and sharing; medical
informatics; virtual research environments; ubiqui-
tous computing; applications of trusted infrastruc-
ture technologies in distributed systems; languages
and tools for object model transformation; pro-
gramming languages; and model-driven software
engineering.

Postgraduate qualifications

All of the courses offered by the Programme are
taught at Master’s level: the various postgraduate
qualifications differ only in focus and extent. All
successful applicants for postgraduate study are
registered initially for a Postgraduate Certificate.
Registered students may change from one special-
ism or qualification to another at any time, provided
that they are making satisfactory progress.

Postgraduate Certificate

This qualification requires attendance on courses in
four subjects, and the successful completion of the
corresponding written assignments. For the spe-
cialised Postgraduate Certificates in Software and
Systems Security and Object Technology, at least
three of the subjects must be chosen from the spe-
cialism; the fourth subject may be freely chosen.
The courses and assignments must be completed
within two years of the date of admission.

Postgraduate Diploma

This qualification requires courses in eight subjects.
For the specialised Postgraduate Diploma in Soft-
ware and Systems Security, at least five of these
subjects must be chosen from the specialism; the
remainder may be chosen freely. The courses and
assignments must be completed within three years
of admission.

Master of Science

This qualification requires courses in ten subjects;
it also entails the completion of a project and dis-
sertation, involving participation in a project mod-
ule and a dissertation module. For the specialised
MSc in Software and Systems Security, at least six
of these subjects should be chosen from the spe-
cialism, with the remainder being freely chosen.
The courses and assignments should be completed
within four years of admission; an additional year is
available, if needed, in which to complete the dis-
sertation.

Admission

Applications for part-time, postgraduate study are
invited from anyone with sufficient experience or
proven ability in the field of Software Engineering.

A typical applicant might have an undergraduate
degree in a related subject, and at least two years’
experience of software development in an industrial
context. However, relevant experience may com-
pensate for a lack of formal qualifications, or vice
versa — candidates may contact the Programme
Office for further information.

The open nature of the entry requirements
means that a formal interview is an essential part
of the admissions process. In advance of the in-
terview, applicants are asked to present two refer-
ences from people who are familiar with their work
or study achievements and — if appropriate — to
secure the support of their employer.

Successful applicants will become registered
students of the University with effect from the be-
ginning of the next University term. New students
who have already attended courses on the Pro-
gramme can use those courses as credit towards
their qualification, provided that the course dates
are within one year of the date of admission.

Accreditation

The MSc in Software Engineering is accredited by
the British Computer Society: graduates from the
Programme can use the MSc to gain exemption
from the Professional Graduate Diploma and PGD
Project. The individual courses can be used as credit
in the IEE, IAP and BCS continuing professional de-
velopment schemes, and have a CATS value of 15
points for credit transfer between postgraduate
programmes.

Software engineering methods

The pressing problems in the development of large
and complex systems are typically matters of com-
munication as much as anything else — getting the
right people to talk to each other, addressing the
concerns of multiple stakeholders, producing mod-
els to promote shared understanding and validate
assumptions, and so on. One theme of courses of-
fered by the Programme is in methods for model-
ling, reasoning about, and managing the software
development process.

Software Engineering Mathematics (SEM)

An important characteristic of a specification is the
ability to reason about the objects it describes, and
thus about the system it models. If that specifi-
cation is written mathematically, the reasoning
can take the form of calculation: we can use sim-
ple, logical methods to check consistency, and to
predict the consequences of design decisions. This
course is an introduction to mathematical descrip-
tion, using basic set theory and logic in the Z nota-
tion. It serves as an introduction to the Software
Engineering Methods theme.

Specification and Design (SDE)

We deal with complexity by structuring our specifi-
cations: identifying patterns, and finding appropri-
ate abstractions. This course shows how to organ-
ise specifications using the ‘schema’ language of Z,
to produce descriptions of component functional-
ity that are concise, precise, and comprehensible. It
shows also how these descriptions can be analysed
to check for consistency of requirements, to vali-
date invariants or assertions, and to determine the
preconditions of operations.

Concurrency and Distributed Systems (CDS)

The consequences of design decisions are particu-
larly hard to predict in the presence of concurrency
or complex patterns of interaction. This course
presents a powerful technique for describing the
intended behaviour of concurrent systems, and for
reasoning about the interactions that emerge. The
technique is based upon the language of Commu-
nicating Sequential Processes (CSP).

Model Checking (MCH)

It is impossible to prove the correctness of a com-
plex design without automated reasoning. One of
the most powerful forms of automated reasoning
is model-checking, in which every configuration of
a given design is automatically explored and vali-
dated. This course presents a set of practical tech-
niques for the analysis of patterns of interaction,
and shows how the application of these techniques
can be supported by model-checking tools.

Performance Modelling (PMO)

This course shows how simple techniques from
continuous mathematics can be used to predict
the behaviour of systems. Formulae and theorems
from the theories of probability and random proc-
esses may be applied in software and communica-
tions performance modelling. It explains how to
predict congestion, calculate expected loads, and
develop strategies for integrated services.

“Correctness
is clearly the

prime quality.
If a system
does not do
what it is
supposed to do,
then everything else
about it matters little.”
(Bertrand Meyer)

Software Development Management (SDM)

Management is an essential element of success-
ful software development. This course gives an in-
troduction to the fundamental aspects of project
and people management that are required to suc-
cessfully run a software development project. It is
aimed at those with some experience of working
in a project-based software environment but with
little or no previous experience of project manage-
ment or team leadership.

Agile Methods (AGM)

Agile methods are challenging conventional wis-
dom regarding systems development processes
and practices, effectively ‘putting process on a diet’
and investing in people and teams. This course ena-
bles today’s software development professional to
understand the heart of agility, and covers both the
theory and practice of agile methods such as XP,
Scrum, Crystal, FDD, Lean, and DSDM.

Requirements Engineering (REN)

Establishing firm and precise requirements is an es-
sential component of successful software devel-
opment. Requirements may be technical, although
these are often the least problematic; successful
analysis requires broader investigation, address-
ing the human context of current and future work
practices. This course covers a range of methods
from ‘hard’ semi-formal approaches, to ‘softer’
people-oriented ones.

Process Quality and Improvement (PRO)

Every software development organisation needs
to be focused on the delivery of quality. The soft-
ware engineering discipline responds by calling for
a managed process for the construction and testing
of software, and for the improvement of that proc-
ess. This course explains the necessary concepts
within the frameworks provided by three important
international standards.

Management of Risk and Quality (MRQ)

Too many project planning approaches concen-
trate on just the estimating and network aspects of
planning. This is of little value if the project is given
the wrong shape or the wrong activities are chosen
in the first place. The Strada method taught in this
course builds the project from an analysis of the
specific risks to be faced. It then uses an analysis of
the specific quality requirements to complete the
planning. The two perspectives of risk and quality
prove sufficient to give the basis for a reliable and
robust plan.

Software engineering tools

For the fundamental principles of computing to
scale up to the engineering of industrial-size sys-
tems, it is essential to make good use of tools to
automate the mechanical aspects of development,
freeing up the human involvement to address the
more challenging aspects that require creativity
and insight. A second theme of courses offered by
the Programme covers tools for software develop-
ment, particularly languages for design and pro-
gramming.

Object Orientation (OOR)

Object orientation involves the encapsulation of
functionality and associated data as objects, and
the classification of those objects into a hierarchy
of classes. This makes it easier to control com-
plexity, and encourages the development of flex-
ible, robust, and re-usable components. This course
covers the principles of object orientation, offering
both an introduction for beginners and a wider per-
spective for experienced users of object technolo-
gy; it also serves as an introduction to the Software
Engineering Tools theme.

Object-Oriented Design (OOD)

This course teaches standard techniques for the
specification of software from a variety of perspec-
tives: conceptual and physical, static and dynamic,
requirements and designs. The course is based
around a carefully-chosen subset of the Unified
Modeling Language (UML), and places the tech-
niques in a formal software engineering context.

Object-Oriented Programming (OOP)

This course teaches the concepts and principles of
object-oriented programming. The language used
is Java, although most of the material covered will
apply equally well to any other object-oriented lan-
guage: objects, methods, interfaces, messages, and
events.

Design Patterns (DPA)

This is an advanced course in the structure and be-
haviour of object-oriented systems, covering both
design and programming. It is based around the no-
tion of a design pattern: an abstraction of a proven
solution to a recurring problem in a specific context
in system design.

Software Testing (STE)

This course presents realistic, pragmatic steps for
rigorous and organised software testing. It clarifies
testing terminology and covers the different types
of testing performed at each phase of the soft-
ware lifecycle, together with the issues involved in
these types of testing. The course discusses how
tests can be derived from requirements and speci-
fications, design artifacts, or the source code, and
introduces appropriate testing tools with hands-on
exercises.

Database Design (DAT)

Relational database technology is the dominant ap-
proach to information storage, with products that
offer an unmatched combination of abstraction and
performance. To use these products effectively,
however, requires an understanding of the under-
lying principles and concepts: relational modelling,
normalisation, query optimisation, transactions,
and distribution.

“If you don’t
think carefully,
you might think that

programming
is just typing
statements in a
programming language.”
(Ward Cunningham)

Functional Programming (FPR)

In functional programming, computations are mod-
elled as expressions rather than actions. This of-
fers significant opportunities for parametrisation
and modularisation, beyond those available in con-
ventional, imperative programming. It also results
in the production of programs that are clearer,
simpler, and often surprisingly concise. The tech-
niques taught in this course will be useful in any
language — particularly for the definition of trans-
formations on structured data.

Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a nota-
tion for the definition of document structures, and
the production of structured documents. It can be
used to define application-specific representations
that are easy to process and transform, facilitating
the interchange of information between different
systems and components. This course teaches the
essentials of the language, document validation,
the creation of stylesheets, and the use of core
XML technologies to solve software engineering
problems.

Service-Oriented Architecture (SOA)

The current consensus on best practice for build-
ing component-based distributed applications is to
use a service-oriented architecture. Services are
encapsulated behind carefully-designed simple in-
terfaces, and the realities of heterogeneity, decen-
tralisation and fault tolerance are embraced rather
than ignored. This course provides an understand-
ing of the strengths and weaknesses of service ori-
entation, informed by an ability to implement and
deploy simple web services using a suitable devel-
opment platform.

Mobile and Sensor Networks (MOB)

Recent advances in wireless mobile and sensor
technologies have changed computing, enabling
application scenarios in which large numbers of
pervasive computing devices are connected to
a wireless networking infrastructure in an ad hoc
manner. This course covers communication proto-
cols for mobile ad hoc networks, and provides an
overview of distributed data management tech-
niques for resource-constrained sensor networks.

Bo
dl

ei
an

 L
ib

ra
ry

, U
ni

ve
rs

it
y

of
 O

xf
or

d

Software and systems security

As computing systems become more essential to
our daily lives, it becomes ever more important
that the services they provide are available when-
ever we need them. We must also be able to rely
on the integrity of the systems, and thus the infor-
mation that they hold and provide. What is more,
our society and our economy depend upon certain
pieces of information being held in confidence. The
third theme of courses on the Programme concerns
software and systems security, from both social
and technical points of view.

Security Principles (SPR)

This course combines a treatment of the funda-
mental principles of cryptography and security
protocols with a practical treatment of current best
practice. It explains the need for computer secu-
rity, and the scope of the available technical solu-
tions; presents techniques for evaluating security
solutions; and provides an overview of the current
leading technologies and standards in the security
arena. It also provides an introduction to the whole
Software and Systems Security theme.

Design for Security (DES)

This course explores how cost-effective solutions
to security needs can be achieved by following
well-established architectural practices and de-
tailed security principles. Central to these consid-
erations is meeting requirements with established
solutions, and striking a balance between security
and other system requirements.

Secure and Robust Programming (SRO)

Many system failures and security vulnerabilities
arise at the programming level. These can often be
attributed to inadequate handling of exceptional
situations, poor understanding of the details of the
programming language in use, and incomplete de-
scriptions of the interfaces between components.
This course addresses those problems from a pro-
gramming perspective, with the aim of improving
the practitioner’s capability in writing and review-
ing code. Topics include animation of specifications,
static analysis, design by contract, run-time asser-
tion checking, and compile-time verification.

Trusted Computing Infrastructure (TCI)

A secure system is the product of numerous layers
that operate together to provide in-depth protec-
tion. This course looks at the various platforms upon
which a secure system operates, with an emphasis
on practical and repeatable means of implementing
these platforms securely. Topics covered include
buffer overflows, cryptographic libraries, sand-
boxing, virtualisation, trusted computing, and da-
tabase security, building towards a toolkit of sound
principles for secure systems implementation.

Security Risk Analysis and Management (RIS)

Security is a property of an entire system in con-
text, rather than of a software product, so a thor-
ough understanding of system security risk analy-
sis is necessary for a successful project. This course
introduces the basic concepts and techniques of
security risk analysis, and explains how to manage
security risks through the project lifecycle.

“If you think
technology can solve
your security problems,
then you don’t

understand the
problems
and you don’t

understand the
technology.”
(Bruce Schneier)

People and Security (PAS)

A very high proportion of failures in security can be
attributed to human weakness, misunderstanding,
misinformation, or failure to grasp the importance
of the processes individuals are expected to follow.
This course draws on work from human-computer
interaction, and more widely from psychology, re-
lating these issues back to hard technical imple-
mentation decisions.

Network Security (NES)

Networking technologies play a critical role in al-
most all modern software-based systems, whether
the fixed networks of computers we now regard as
commonplace, or the growing cloud of pervasive
devices which have increasingly diverse profiles of
network connectivity. As a result, networks provide
a potential vector for many forms of attack, and are
an ideal location for many threat mitigations and
isolation technologies. Much benefit has been de-
rived from a layered approach to network architec-
ture, and most approaches to security are aligned
to those boundaries. This course will consider the
prevention, detection, mitigation, and remediation
of security problems in the network at each level
of abstraction, as well as looking at cross-cutting
concerns across the whole stack.

Safety Critical Systems (SCS)

Computers are often placed in control situations
within safety-critical systems. Safety is an emer-
gent property of whole systems; software may play
only a small part. This course will enable the sys-
tems engineer to determine whether a safe system
can be built, and what requirements must be placed
on software in order to keep risk at an acceptable
level.

Forensics (FOR)

Investigating computer crime is a delicate and in-
volved process that requires an understanding of
the evidential standards necessary in various con-
texts where electronic forensic data may be need-
ed. This course describes the current best practice
in both understanding and deconstructing an attack
whilst preserving evidence, and also explores how
to design and evaluate systems in order to facilitate
forensic examination.

Background

The Software Engineering Programme is the result
of a collaboration between Oxford University Com-
puting Laboratory (OUCL) and Oxford University
Department for Continuing Education (OUDCE).
OUCL has an international reputation for linking
mathematical theory to industrial practice. OUDCE
has a distinguished history in promoting life-long
learning, including delivering high-quality educa-
tion to working professionals.

The discipline of software engineering has
changed considerably during the lifetime of the Pro-
gramme: although the principles remain the same,
the context in which they are applied is evolving.
As a result, the Programme is in a state of constant
development, placing greater emphasis on differ-
ent principles, and finding new ways to relate them
to industrial practice.

Programme staff

There are seventeen core members of staff, all of
whom work exclusively for the Programme: Ales-
sandra Cavarra, Lecturer; Andrew Cooper, Teaching
Assistant; Edward Crichton, Researcher; Jim Davies,
Professor and Director; Melissa Endacott, Admin-
istrator; Ivan Flechais, Lecturer; Jeremy Gibbons,
Reader and Deputy Director; Ralf Hinze, Reader;
Jackie Jordan, Manager; Eric Kerfoot, Teaching As-
sistant; Andrew Martin, Lecturer and Deputy Di-
rector; Steve McKeever, Lecturer; Shirley Sardar,
Administrator; Clint Sieunarine, Teaching Assistant;
Andrew Simpson, Lecturer; Niki Trigoni, Lecturer;
Chen-Wei Wang, Teaching Assistant.

Subject specialists

There are also a number of subject specialists, who
teach courses in their particular areas of expertise:
Paul Beaven, Independent Consultant; Rob Collins,
Independent Consultant; Gareth Digby, Director,
Packer Engineering; Paul Gibson, Development Op-
erations Manager, IBM; Conrad Hughes, Research
Fellow, Edinburgh; Marina Jirotka, Reader, Oxford;
Nigel Kermode, Independent Consultant; Robert
Leese, Director, Smith Institute; Angela Martin, In-
dependent Consultant; Bill Roscoe, Professor, Ox-
ford; Angela Sasse, Professor, London; Mark Slay-
maker, Researcher, Oxford; Perdita Stevens, Reader,
Edinburgh.

Organisations

The Programme benefits greatly, in terms of advice
and sponsorship, from a number of leading com-
panies and organisations, especially EPSRC, IBM,
Motorola, Marconi, QinetiQ, SEEDA, the Smith In-
stitute, and Symbian. Representatives from most
of these organisations sit on the advisory panel for
the Programme, helping to ensure that its teaching
reflects and anticipates industrial needs.

The students come from a wide range of organi-
sations: software companies; healthcare providers;
finance houses; government agencies; bioinfor-
matics start-ups; management consultants; power
companies; car manufacturers. A significant number
are self-employed, or work for small enterprises.
They share an awareness of software engineering
practice, and a desire to learn more about the un-
derlying principles.

Kellogg College

Every student registered for an MSc degree must
become a member of an Oxford college. There are
nearly forty colleges, each with its own style and
tradition. Not all of them take part-time students;
one of them is particularly associated with part-
time study. It was named in honour of William Keith
Kellogg, industrialist and philanthropist, in recogni-
tion of the support given to adult and continuing
education by the W. K. Kellogg Foundation.

Kellogg College has approximately 100 fellows
(including all of the Programme’s University Lec-
turers) and approximately 430 registered students.
Most of the Programme’s students who progress
to the MSc apply to Kellogg. The College organises
regular events, and acts as an additional point of
contact between MSc students and the University.

Testimonials

Hundreds of students have taken part in the Soft-
ware Engineering Programme since it has started.
They have benefited in a variety of different ways.
Here are some testimonials from past and present
students.

Formal qualifications

A significant proportion of students on the Pro-
gramme do not have formal qualifications in soft-
ware engineering or computer science, but have
moved into the software industry from other fields.
Many of them value the opportunity to validate
their experience with a recognised academic quali-
fication.

“I joined the Programme because I work in IT, •	
but my background is in physics. It was an ideal
opportunity to get a formal qualification in the
area that I work in.”

“When I started the Programme, I didn’t know •	
anything about software engineering apart
from what I learned on the job. I thought that
it was about time that I found out really how to
engineer software, so that I could lay claim to
the title of software engineer.”

“I started the Programme at a time in my life •	
when I had just entered the software industry. I
had a background in industrial engineering, but
no formal knowledge of software engineering.
It provided an excellent background for me, al-
lowing me to choose the subjects that were
most important to my career.”

Promotion and mobility

Students often find the additional qualification a
help when it comes to promotion or to changing
jobs.

“Studying on the Programme has made people •	
treat me differently: they see that I am invest-
ing in my long-term career.”

“The Programme has had a significant effect on •	
my career. Just after I got my degree, I went for
a new job; the one thing I was told in my inter-
view was that the Oxford University MSc looks
very impressive on a resumé. It has certainly
opened a number of doors for me.”

Practical applications

Many students have found immediate practical ap-
plications of the material they have studied on the
Programme.

“Just after the XML course, I had a contract that •	
involved building a report generator. The skills I
gained on the course helped me solve that prob-
lem better and faster. My client was so happy
that they extended my contract. The additional
income far outweighs the cost of studying.”

“The Programme has provided a lot of techni-•	
cal advantages to my company — the knowl-
edge I have gained has been put to good use.
We’ve had a huge amount of fun in applying all
the techniques we have learned. We now have
the basis of what we believe to be a unique and
world-beating product and we are in the proc-
ess of marketing it.”

Contact

For enquiries, contact the Programme Office:
Software Engineering Programme
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
+44 1865 283525 (phone), 283531 (fax)

The most effective means of contact is email:
office@softeng.ox.ac.uk

Further information about the Programme, togeth-
er with application forms, can be found on the Pro-
gramme website:

www.softeng.ox.ac.uk

Fees

There is a standard fee of £1400 for each course
attended, payable in advance. This includes course
materials, and lunches during the teaching week,
but not accommodation. The fee applies whether or
not the attendee is working towards a postgraduate
qualification, and regardless of nationality and resi-
dency. The Postgraduate Certificate will typically
entail four course attendance fees, the Postgradu-
ate Diploma eight, and the MSc ten. The MSc also
requires attendance at a week-long project module
in Oxford, and passing a dissertation module. There
is no course fee for either of these modules — the
cost is included in the student registration fee for
the MSc.

Students may cancel attendance, provided that
the cancellation is received well enough in advance.
Cancellations at short notice may not receive a full
refund of the course attendance fee.

The examination and assessment of the course
assignment is included in the course attendance fee.
Should a student be granted permission to take the
assignment for a later course in the same subject,
an additional examination fee of £100 will apply.

There is an annual student registration fee of

Taking part

To reserve a place on a course, you need first to be
registered with the Programme (just click on Sign
in or Register on the front page of the website). If
a place is available, you will receive a confirmation
from the Programme Office. For courses in certain
subjects, you may be asked to confirm that you
have sufficient experience before your reservation
can be approved.

Postgraduate study

To apply to study for a postgraduate qualification,
you should follow the procedure on the Programme
website, or request an information pack from the
Programme Office. Either route provides instruc-
tions on what supporting documentation you
should supply.

Only those applicants with an appropriate combi-
nation of education and experience will be called to
interview. Applicants should not make travel plans,
or accept contingent financial (or other) commit-
ments, unless and until a formal, written offer of a
place has been made. The allocation of a place on
an individual course does not imply admission to a
postgraduate qualification.

£2520 for any of the postgraduate qualifications;
this is payable for one year for a Postgraduate Cer-
tificate, two years for a Postgraduate Diploma, and
four years for an MSc. Students who are citizens of
a member state of the European Community, and
have been ordinarily resident in the European Eco-
nomic Area for the past three years, may qualify
for Home/EU status, and a reduction of this annual
award fee to £1490.

The following table gives the current cost of
each qualification, assuming the expected, mini-
mum number of course attendances.

Home Overseas
PGCert 7090 8120
PGDip 14180 16240
MSc 19960 24080

All payments must be completed before any
postgraduate qualification will be awarded by the
University. Award fees are based upon the date of
admission. Attendance fees are based upon the
date of the course, and may increase during the
period of study, typically in line with the rate of in-
flation in the UK.

