
software engineering programme courses 2008

“The separation of
practical and theoretical work

is artificial and injurious.”
(Christopher Strachey)

Software Engineering at Oxford

Welcome to the Software Engineering Programme, a centre
for advanced education and applied research at the Univer-
sity of Oxford. Established in 1993, the Programme exists to
make the connection between software engineering theory
and practice, and to make the expertise of the University
available to those who wish to study while continuing in full-
time employment.

Software Engineering
‘Software Engineering’ means the application of scientific
and engineering principles to the development of software
systems: principles of design, analysis, and management.
The application of these principles makes it easier to develop
software that meets its requirements, even when these re-
quirements change; to complete the development on time,
and within budget; and to produce something of lasting
value, by being easy to maintain,
re-use, and re-deploy.

An opportunity to learn
The Programme teaches the princi-
ples of modern software engineer-
ing, together with the tools, meth-
ods, and techniques that support
their application. It offers working
professionals an opportunity to learn more about the tech-
nological advances that are changing their lives, through a
programme of part-time study at Master’s level at one of the
world’s leading universities.

Courses and qualifications
The Programme offers a number of postgraduate qualifica-
tions — Postgraduate Certificates, a Postgraduate Diploma
and a Master of Science. These qualifications can be obtained
through attendance on courses in a variety of software en-
gineering subjects, such as requirements engineering, secu-
rity risk and threat analysis, service-oriented architectures,
design patterns, software testing, formal techniques, and
development management. The courses can also be taken
separately, without registering for a qualification, as short

programmes of advanced profes-
sional training.

Teaching quality
Each course is delivered by an ex-
pert in the subject, and includes an
intensive teaching week of classes,
lectures, and practical work, fol-

lowed by a written assignment. This mode of study is partic-
ularly effective for those with significant professional or per-
sonal commitments. Courses take place at the Programme’s
purpose-built facilities in the centre of Oxford, and class sizes
are kept small to allow for a high degree of interaction.

Intended audience
The Programme is intended for those with an awareness
of software development issues: architects, programmers,
managers, and informed customers. The entry requirements
for the postgraduate qualifications reflect this: industrial ex-
perience is valued as highly as previous education. There
are no formal entry requirements for the individual courses,
although prospective attendees are asked to confirm that
they satisfy the informal requirements for any course that
they wish to attend.

Research activity
The Programme is also a centre for research activity. The
teaching staff are involved in a number of national and in-
ternational projects in the areas of: large-scale data inte-
gration and sharing, particularly regarding authorization;
cancer clinical trials informatics; applications of trusted in-
frastructure technologies in distributed systems; languages
and tools for object model transformation; virtual research
environments; techniques for generic programming; and
model-driven software engineering.

Postgraduate qualifications

All of the courses offered by the Programme are taught at
Master’s level: the five postgraduate qualifications differ only
in focus and extent. All successful applicants for postgradu-
ate study are registered initially for a Postgraduate Certificate.
Students may ask to change their registration at any time;
such a request will be granted provided that the student has
made good progress towards the new qualification.

Postgraduate Certificate in Software Engineer-
ing (PGCSE)
This qualification requires attendance on courses in any four
of the subjects offered by the Programme, and the success-
ful completion of the corresponding written assignments.
The courses and assignments must be completed within two
years of the date of admission.

Postgraduate Certificate in Object Technology
(PGCOT)
Like the PGCSE, this qualification requires attendance on
courses in four subjects. The difference is that at least three
of these subjects must be chosen from the Object Technol-
ogy theme; the fourth subject may be any of those offered.

Postgraduate Certificate in Computer Security
(PGCCS)
Like the PGCSE and PGCOT, this qualification requires attend-
ance on courses in four subjects. At least three of these sub-
jects must be chosen from the Computer Security theme; the
fourth subject may be any of those offered.

Postgraduate Diploma in Software Engineering
(PGDipSE)
This qualification requires courses in eight subjects. The
subjects can be any of those offered by the Programme. The
courses and assignments must be completed within three
years of admission.

MSc in Software Engineering (MScSE)
This qualification requires courses in ten subjects; it also en-
tails the completion of a project and dissertation, involving
participation in two project weeks. The subjects can be free-
ly chosen from the schedule. The courses and assignments
should be completed within four years of admission; an ad-
ditional year is available, if needed, in which to complete the
project and dissertation.

Admission
Applications for part-time, postgraduate study are invited
from anyone with sufficient experience or proven ability in
the field of Software Engineering.

A typical applicant might have an undergraduate de-
gree in a related subject, and at least two years’ experience
of software development in an industrial context. However,
relevant experience may compensate for a lack of formal
qualifications, or vice versa — concerned candidates should
contact the Programme Office for further information.

The open nature of the entry requirements means that a
formal interview is an essential part of the admissions proc-
ess. In advance of the interview, applicants are asked to
present two references from people who are familiar with
their work or study achievements and — if appropriate — to
secure the support of their employer.

Successful applicants will become registered students
of the University with effect from the beginning of the next
University term. New students who have already attended
courses on the Programme can use those courses as credit
towards their qualification, provided that the course dates
are within one year of the date of admission.

Previous study
A student on the Programme may be able to use a course
taken elsewhere as credit, provided that: the course was
taught and assessed at the same level; the subject fits within
the Programme curriculum; and the course is not used as
credit towards any other qualification. For the Postgraduate
Certificates, no more than one course taken elsewhere may
be used; for the Postgraduate Diploma or the MSc, no more
than two.

Accreditation
The MSc in Software Engineering is accredited by the Brit-
ish Computer Society: graduates from the Programme can
use the MSc to gain exemption from the Professional Gradu-
ate Diploma and PGD Project. The individual courses can be
used as credit in the IEE, IAP and BCS continuing professional
development schemes, and have a CATS value of 15 points
for credit transfer between postgraduate programmes.

Examination

A student who has completed the required number of cours-
es and written assignments may enter for examination as
soon as the minimum period of study has elapsed: for a Post-
graduate Certificate or Postgraduate Diploma, this means
one year after first admission; for the MSc, at least two years
after first admission, and at least one year after transferring
registration to the MSc.

Each written assignment is treated as part of an exami-
nation at the University of Oxford. Assignment submissions
and assessment reports are reviewed by a board of exam-
iners — all subject specialists — before a grade is assigned,
and a copy is returned to the student.

When a student enters the examination for a postgradu-
ate qualification, the examiners consider their performance
at the next formal meeting; there is a meeting at the end of
each University term. They may also wish to interview the
student, to ask about the work that they have submitted and
the courses that they have attended.

There is a straightforward progression mechanism from
the Postgraduate Certificate through the Postgraduate Di-
ploma to the MSc: a student who has completed a lower
award will be able to upgrade it, using the courses and as-
signments that they have completed as credit towards a
higher award. Should a student fail to satisfy the examiners,
they would be given an additional year in which to under-
take further study.

Courses

Courses in each subject are offered according to demand;
most subjects are taught at least twice a year. Class sizes are
limited, so advanced booking is essential. Outline descrip-
tions of the subjects are presented later in this brochure;
more detailed descriptions can be found on the Programme
website.

Course dates in 2008

14 Jan-18 Jan SPR Security Principles

21 Jan-25 Jan CDS Concurrency and Distr. Systems

21 Jan-25 Jan OOR Object Orientation

18 Feb-22 Feb XML Extensible Markup Language

25 Feb-29 Feb PSE Practical Software Engineering

03 Mar-07 Mar AGM Agile Methods

03 Mar-07 Mar STE Software Testing

10 Mar-14 Mar ACT Advanced Concurrency Tools

10 Mar-14 Mar SDM Software Development Mgmt.

31 Mar-04 Apr FPR Functional Programming

07 Apr-11 Apr DES Design for Security

14 Apr-18 Apr OOD Object-Oriented Design

21 Apr-25 Apr OOR Object Orientation

21 Apr-25 Apr SEM Software Engineering Maths

28 Apr-02 May SPR Security Principles

12 May-16 May DAT Database Design

12 May-16 May REN Requirements Engineering

19 May-23 May MRQ Managing Risk and Quality

19 May-23 May PAS People and Security

02 Jun-06 Jun XML Extensible Markup Language

09 Jun-13 Jun RIS Security Risk Analysis & Mgmt.

16 Jun-20 Jun SPL Software Product Lines

16 Jun-20 Jun SDE Specification and Design

23 Jun-27 Jun OOP Object-Oriented Programming

23 Jun-27 Jun PSE Practical Software Engineering

07 Jul-11 Jul PRO Process Quality & Improvement

14 Jul-18 Jul OOD Object-Oriented Design

21 Jul-25 Jul DPA Design Patterns

01 Sep-05 Sep SDM Software Development Mgmt.

08 Sep-12 Sep PW Project Week

08 Sep-12 Sep PMO Performance Modelling

22 Sep-26 Sep MOB Mobile and Sensor Networks

29 Sep-03 Oct SPR Security Principles

29 Sep-03 Oct SEM Software Engineering Maths

06 Oct-10 Oct AGM Agile Methods

06 Oct-10 Oct TCI Trusted Comp. Infrastructure

13 Oct-17 Oct OOP Object-Oriented Programming

13 Oct-17 Oct REN Requirements Engineering

20 Oct-24 Oct DAT Database Design

27 Oct-31 Oct XML Extensible Markup Language

03 Nov-07 Nov MRQ Managing Risk and Quality

03 Nov-07 Nov SCS Safety Critical Systems

10 Nov-14 Nov STE Software Testing

17 Nov-21 Nov CDS Concurrency and Distr. Systems

24 Nov-28 Nov SOA Service-Oriented Architecture

01 Dec-05 Dec DES Design for Security

01 Dec-05 Dec OOD Object-Oriented Design

08 Dec-12 Dec PSE Practical Software Engineering

08 Dec-12 Dec SRO Secure & Robust Programming
Dates are correct at time of press, but may change; check the
website for up to date information.

“The job of formal methods is
to elucidate the assumptions upon
which formal correctness depends.”

(Tony Hoare)

Formal Techniques

The Programme offers four courses on the theme of formal
techniques: practical applications of mathematics, designed
specifically for the task of modelling software systems. The
courses cover: mathematical description and reasoning; stat-
ic models of component states; dynamic models of compo-
nent interactions; and analysis tools for process verification
and validation.

Software Engineering Mathematics (SEM)
An important characteristic of a specification is the ability
to reason about the objects it describes, and thus about the
system it models. If that specification is written mathemati-
cally, the reasoning can take the form of calculation: we can
use simple, logical methods — and tool support — to check
that a specification is consistent, and to predict the conse-
quences of our design decisions. This course is an introduc-
tion to mathematical description, using basic set theory and
logic. It serves as an excellent foundation for other courses
in the Formal Techniques theme.

Specification and Design (SDE)
We deal with complexity by adding structure and organisa-
tion to our specifications, identifying patterns, and finding
appropriate abstractions. This course shows how to struc-
ture and organise specifications, using the pattern, or ‘sche-
ma’, language of the Z notation to produce descriptions of
component functionality that are
concise, precise, and comprehen-
sible. It shows also how these de-
scriptions can be analysed to check
for consistency of requirements, to
validate invariants or assertions,
and to determine the preconditions
of operations.

The course assumes familiar-
ity with the concepts and notations presented in Software
Engineering Mathematics (SEM). Participants who have not
previously attended SEM are asked to confirm that they have
sufficient experience before attending SDE.

Concurrency and Distributed Systems (CDS)
The consequences of design decisions are particularly hard
to predict when a system consists of several concurrently-
executing components, or when there is a complex pattern

of interaction between a system
and its environment. This course
presents a powerful technique for
describing the intended behaviour
of concurrent systems, and for rea-
soning about the patterns of inter-
action that may emerge.

The technique is based upon
the language of CSP (Communi-

cating Sequential Processes): an economical, precise nota-
tion with practical theories of correctness, calculation, and
refinement. No previous knowledge is assumed, although
familiarity with the basic concepts of sets, sequences, and
logic would be useful.

Advanced Concurrency Tools (ACT)
It is impossible to prove the correctness of a complex de-
sign without automated reasoning. One of the most pow-
erful forms of automated reasoning is model-checking, in
which every configuration of a given design is automatically
explored and validated. This course presents a set of practi-
cal techniques for the analysis of patterns of interaction, and
shows how the application of these techniques can be sup-
ported by model-checking tools.

The course assumes familiarity with the concepts and
notations presented in Concurrency and Distributed Systems
(CDS). Participants who have not previously attended CDS
are asked to confirm that they have sufficient experience be-
fore attending ACT.

“A language that doesn’t affect
the way you think about programming

isn’t worth knowing.”
(Alan Perlis)

Object Technology

Object orientation is a widely-used approach to solving the
problems of software construction. It involves the encap-
sulation of functionality and associated data as objects, and
the classification of those objects into a hierarchy of classes.
This makes it easier to control complexity, and encourages
the development of flexible, robust, and re-usable compo-
nents. The Programme offers five different courses on the
theme of object technology, addressing: essential concepts;
programming principles; design techniques; patterns of
structure and behaviour; and modularity across a family of
software systems.

Object Orientation (OOR)
This is a general course in object
orientation, offering both an intro-
duction for beginners and a wider
perspective for experienced users
of object technology. It takes a ‘big
picture’ approach to programming
and design, rather than dwelling
on language-specific details, and
serves as a framework for the other courses in the Object
Technology theme.

No previous experience with object-oriented languages
or tools is necessary, although some familiarity with basic
programming concepts is expected. Programme staff will be
happy to provide advice and preliminary study material to
those who wish to attend the course, but who may lack suf-
ficient programming experience.

Object-Oriented Programming (OOP)
This course teaches the concepts and principles of object-
oriented programming. The language used is Java, although
most of the material covered will apply equally well to any
other object-oriented language: objects, methods, interfac-
es, messages, and events.

The course assumes familiarity with object-oriented con-
cepts, and some knowledge of the notations of the Unified
Modeling Language (UML). Participants who have not previ-
ously attended Object Orientation (OOR) are asked to confirm
that they have sufficient experience before attending OOP.

Object-Oriented Design (OOD)
This course teaches standard techniques for the specification
of software. The course is based around a carefully-chosen
subset of the UML (Unified Modeling Language), and places
the techniques in a formal software engineering context.

The course assumes familiarity with object-oriented con-
cepts — such as classes, inheritance, and polymorphism —
and some basic knowledge of the Java language. Partici-
pants who have not previously attended Object Orientation
(OOR) are asked to confirm that they have sufficient experi-
ence before attending OOD.

Design Patterns (DPA)
This is an advanced course in the structure and behaviour
of object-oriented systems, covering both design and pro-
gramming. It is based around the notion of a design pattern:
an abstraction of a proven solution to a recurring problem in
a specific context in system design.

This course will assume considerable experience in ob-
ject-oriented design and programming; the courses Object-
Oriented Design (OOD) and Object-Oriented Programming
(OOP) are suitable preparation.

Software Product Lines (SPL)
Software Product Lines are an increasingly important trend

in software development, system-
atically identifying and exploit-
ing commonalities and variations
among similar software systems.
They have the potential to pro-
mote asset reuse throughout the
software life cycle, reduce time to
market, and ease product customi-
zation.

This course presents a thorough and comprehensive cov-
erage of state-of-the-art practices in SPLs, from analysis and
design to implementation. It assumes knowledge of Java
and UML comparable to Object-Oriented Programming (OOP)
and Object Orientation (OOR), respectively.

“A system is composed of
components; a component is
something you understand.”

(Howard Aiken)

Software Architecture

Modern software systems operate in a complex environ-
ment, interacting and interoperating with a wide variety of
services and processes over which the designer of a single
component may have little control. The successful develop-
ment of such systems requires: an understanding of system
architecture; languages and tools for the representation and
interchange of data, metadata, and computation; and effec-
tive techniques for reasoning about performance.

The Programme offers six courses on the theme of software
architecture, addressing: programs as data; metalanguages
for information interchange; service-oriented architectures;
relational database technology; mobile networks; and net-
work performance modelling.

Functional Programming (FPR)
In functional programming, computations are modelled as
expressions rather than actions. This offers significant op-
portunities for parameterisation and modularisation, beyond
those available in conventional, imperative programming. It
also results in the production of programs that are clearer,
simpler, and often surprisingly concise. The techniques
taught in this course will be useful in any language — par-
ticularly for the definition of trans-
formations on structured data.

Programming experience in a
traditional programming language
is expected. In addition, some fa-
miliarity with basic mathematical
concepts such as functions, predi-
cates, and lists will be helpful; these
concepts are taught from first prin-
ciples in Software Engineering Mathematics (SEM).

Extensible Markup Language (XML)
The Extensible Markup Language (XML) is a language de-
signed for the definition of document structures, and the
production of structured documents. It can be used to define
application-specific representations that are easy to process
and transform, facilitating the interchange of information
between different systems and components. This course
teaches the essentials of the language, document validation,
the creation of stylesheets, and the use of core XML technol-
ogies to solve software engineering problems.

Service-Oriented Architecture (SOA)
The current consensus on best practice for building compo-
nent-based distributed applications is to use a service-orient-
ed architecture. Services are encapsulated behind carefully-
designed simple interfaces, and the realities of heterogeneity,
decentralization and fault tolerance are embraced rather
than ignored. The course provides an understanding of the
strengths and weaknesses of service orientation, informed
by an ability to implement and deploy simple web services
using a suitable development platform.

The course assumes familiarity with the XML language,
and with the basic concepts of object-oriented program-

ming, to a level equivalent to the courses Extensible Markup
Language (XML) and Object-Oriented Programming (OOP) re-
spectively.

Database Design (DAT)
Relational database technology is the dominant approach to
information storage, with products that offer an unmatched
combination of abstraction and performance. To use these
products effectively, however, requires an understanding of
the underlying principles and concepts: relational modelling,

normalisation, query optimisation,
transactions, and distribution. This
course covers these fundamentals,
rather than providing a working
knowledge of specific products
and proprietary solutions.

This course assumes some fa-
miliarity with basic mathematical
concepts such as sets, predicates,

and relations. These concepts are taught from first principles
in Software Engineering Mathematics (SEM).

Mobile and Sensor Networks (MOB)
Recent advances in wireless mobile and sensor technologies
have changed computing, enabling application scenarios in
which large numbers of pervasive computing devices are
connected to a wireless networking infrastructure in an ad
hoc manner. This course covers communication protocols for
mobile ad hoc networks, and provides an overview of distrib-
uted data management techniques for resource-constrained
sensor networks.

Performance Modelling (PMO)
This course shows how simple techniques from continuous
mathematics can be used to predict the behaviour of net-
works and systems. It presents basic formulae and theorems
from the theories of probability and random processes, and
shows how these may be applied in software and communi-
cations performance modelling. It explains how to predict
congestion, calculate expected loads, and develop strategies
for integrated services.

Familiarity with basic notions of probability are assumed,
along with an ability to manipulate linear equations and fa-
miliarity with exponential functions. Basic calculus would be
helpful but is not essential.

Bo
dl

ei
an

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f O
xf

or
d

“Security is not a product;
it itself is a process.”

(Bruce Schneier)

Computer Security

As computing systems become more essential to our daily
lives, it becomes ever more important that the services they
provide are available whenever we need them. We must also
be able to rely on the integrity of the systems, and thus the
information that they hold and provide. What is more, our
society and our economy depend upon certain pieces of
information being held in confidence. The Programme of-
fers six courses on the theme of computer security, covering
different aspects of availability, integrity, and confidentiality.
There is also a related course on safety-critical systems in the
Development Processes theme.

Security Principles (SPR)
This course combines a treatment of the fundamental princi-
ples of cryptography and security protocols with a practical
treatment of current best practice. It explains the need for
computer security, and the scope of the available technical
solutions; presents techniques for evaluating security solu-
tions; and provides an overview of the current leading tech-
nologies and standards in the security arena.

People and Security (PAS)
A very high proportion of failures in
security can be attributed to human
weakness, misunderstanding, mis-
information, or failure to grasp the
importance of the processes individu-
als are expected to follow. This course
draws on work from human-computer
interaction, and more widely from psychology, relating these
issues back to hard technical implementation decisions.

Familiarity with basic security principles and standard
mechanisms, as covered in Security Principles (SPR), is as-
sumed.

Security Risk Analysis and Management (RIS)
Security is a property of an entire system in context, rather
than of a software product, so a thorough understanding
of system security risk analysis is necessary for a successful
project. This course introduces the basic concepts and tech-
niques of security risk analysis, and explains how to manage
security risks through the project lifecycle.

Participants should have a basic understanding of top-
ics in security, as provided by the Security Principles (SPR)
course.

Trusted Computing Infrastructure (TCI)
A secure system is the product of numerous layers that op-
erate together to provide in-depth protection. This course
looks at the various platforms upon which a secure system
operates, with an emphasis on practical and repeatable
means of implementing these platforms securely. Topics
covered include buffer overflows, cryptographic libraries,
sand-boxing, virtualisation, trusted computing, and data-
base security, building towards a toolkit of sound principles
for secure systems implementation.

Participants should have a basic understanding of top-
ics in security, as provided by the Security Principles (SPR)
course.

Design for Security (DES)
Capability in the design of systems which will meet secu-
rity goals is an increasingly important skill. This course ex-
plores how cost-effective solutions to security needs can be
achieved by following well-established architectural practic-
es and detailed security principles. Central to these consid-
erations is the need for requirements to be met with estab-
lished solutions, and how a balance can be struck between
security and other system requirements.

Participants should have a basic understanding of top-
ics in security, as provided by the Security Principles (SPR)
course.

Secure and Robust Programming (SRO)
Many system failures and security vulnerabilities arise at
the programming level. These can often be attributed to
inadequate handling of exceptional situations, poor under-
standing of the details of the programming language in use,
incomplete descriptions of the interfaces between compo-
nents, and insufficient care in the treatment of concurrency

and threading issues. This course ad-
dresses those problems from a pro-
gramming perspective, with the aim of
improving the practitioner’s capability
in writing and reviewing code.

Because of the discrete mathematics
needed to understand and apply these

ideas, prior attendance on the Software Engineering Math-
ematics course is advisable. Participants should also have a
good, detailed understanding of programming, to the level
offered by the Object-Oriented Programming.

Bo
dl

ei
an

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f O
xf

or
d

“Adding manpower
to a late software project

makes it later.”
(Fred Brooks)

Development Processes

There is more to software development than the purely
technical aspects of system design and implementation,
programming languages and data formats. Successful devel-
opment projects depend as much on human, process and
managerial considerations as on technical ones.

The Programme offers seven courses on the theme of de-
velopment processes, addressing this wider view of software
development: managing people, projects, plans and proc-
esses; lightweight development processes; managing risk
and quality; standardised processes such as the Capability
Maturity Model; eliciting system requirements from people;
testing techniques for measuring the success of a system de-
sign or implementation; and industry standards for safety-
critical development.

Software Development Management (SDM)
Management is an essential ele-
ment of successful software devel-
opment. This course gives an intro-
duction to the fundamental aspects
of project and people management
that are required to successfully
manage a software development
project.

While no experience of project
management or team leadership is
necessary, some experience of working in a project based
software environment is highly desirable.

Agile Methods (AGM)
Agile methods are challenging conventional wisdom regard-
ing systems development processes and practices, effec-
tively ‘putting process on a diet’ and investing in people and
teams. This course enables today’s software development
professional to understand the heart of agility, and covers
both the theory and practice of agile methods such as XP,
Scrum, Crystal, FDD, Lean and DSDM.

Management of Risk and Quality (MRQ)
Too many project planning approaches concentrate on just
the estimating and network aspects of planning. This is of lit-
tle value if the project is given the wrong shape or the wrong

activities are chosen in the first place. The Strada method
taught in this course builds the project from an analysis of
the specific risks to be faced. It then uses an analysis of the
specific quality requirements to fill out the detail. The two
perspectives of risk and quality prove sufficient to give the
basis for a reliable and robust plan.

Experience of working in a software development envi-
ronment, preferably with management responsibility, is de-
sirable.

Process Quality and Improvement (PRO)
Every software development organization needs to be fo-
cused on the delivery of quality. The software engineering
discipline responds by calling for a managed process for the
construction and testing of software, and for the improve-
ment of that process. This course explains the necessary con-
cepts within the frameworks provided by three important
international standards.

Experience of working in a software development envi-
ronment is desirable. It would be
beneficial (but not necessary) to
have some experience of software
project management.

Requirements Engineering
(REN)
Establishing firm and precise re-

quirements is an essential component of successful software
development. Although many aspects of the requirements
process involve the resolution of purely technical issues,
these are often the least problematic; successful analysis
requires expertise and investigations of a broader nature,
addressing the human context of current and future work
practices. This course covers a range of methods from ‘hard’
semi-formal approaches, to ‘softer’ people-oriented ones.

Previous knowledge of requirements is not necessary, but
experience in some aspect of software design is desirable.

Software Testing (STE)
This course presents realistic, pragmatic steps for rigorous
and organized software testing. It clarifies testing terminol-
ogy and covers the different types of testing performed at
each phase of the software lifecycle, together with the issues
involved in these types of testing. The course discusses how
tests can be derived from requirements and specifications,
design artifacts, or the source code, and introduces appro-
priate testing tools with hands-on exercises.

There are no formal prerequisites for this course, but fa-
miliarity with programming in an imperative or object-ori-
ented language will be very beneficial.

Safety Critical Systems (SCS)
Computers are often placed in control situations within safe-
ty-critical systems. Safety is an emergent property of whole
systems; software may play only a small part. This course will
enable the systems engineer to determine whether a safe
system can be built, and what requirements must be placed
on software in order to keep risk at an acceptable level.

Background

The Programme is the result of a collaboration, established
in 1992, between Oxford University Computing Laboratory
(OUCL) and Oxford University Department for Continuing
Education (OUDCE). OUCL has an international reputation
for linking mathematical theory to industrial practice. OUD-
CE has a distinguished history in promoting life-long learn-
ing, including delivering high-quality education to working
professionals.

The discipline of software engineering has changed con-
siderably since the early 90s: although the principles remain
the same, the context in which they are applied is evolving.
As a result, the Programme is in a state of constant develop-
ment, placing greater emphasis on different principles, and
finding new ways to relate them to industrial practice.

Programme staff
There are eighteen core members of staff, all of whom
work exclusively for the Programme: Alessandra Cavarra,
Lecturer; Andrew Cooper, Teaching Assistant; Edward Crich-
ton, Researcher; Jim Davies, Professor and Director; Melissa
Endacott, Administrator; Ivan Flechais, Lecturer; Jeremy Gib-
bons, Reader and Deputy Director; Ralf Hinze, Lecturer; Jackie
Jordan, Manager; Eric Kerfoot, Teaching Assistant; Roberto
Lopez-Herrejon, Teaching Assistant; Andrew Martin, Lecturer
and Deputy Director; Steve McKeever, Lecturer; Shirley Sardar,
Administrator; Clint Sieunarine, Teaching Assistant; Andrew
Simpson, Lecturer; Niki Trigoni, Lecturer; Chen-Wei Wang,
Teaching Assistant.

Subject specialists
There are also a number of subject specialists who teach
courses in their particular areas of expertise: Paul Beaven, In-
dependent Consultant; Rob Collins, Director, Entelechia Ltd;
Marina Jirotka, University Lecturer, Oxford; Nigel Kermode,
Independent Consultant; Robert Leese, Director, Smith In-
stitute; Angela Martin, Independent Consultant; Bill Roscoe,
Professor, Oxford; Angela Sasse, Professor, London; Mark Slay-
maker, Researcher, Oxford; Pete Verey, Programme Consult-
ant, Oxford.

Organisations
The Programme benefits greatly, in terms of advice and
sponsorship, from a number of leading companies and or-

ganisations: EPSRC, IBM, Motorola, Marconi, QinetiQ, SEEDA,
the Smith Institute, and Symbian. Representatives from most
of these organisations sit on the advisory panel for the Pro-
gramme, helping to ensure that its teaching reflects and an-
ticipates industrial needs.

The students come from a wide range of organisations:
software companies; healthcare providers; finance houses;
government agencies; bioinformatics start-ups; manage-
ment consultants; power companies; car manufacturers. A
significant number are self-employed, or work for small en-
terprises. They share an awareness of software engineering
practice, and a desire to learn more about the underlying
principles.

Kellogg College
A student requesting a change to MSc registration will be re-
quired to complete a college application form. If the request
is appropriate, it will be forwarded to the University’s Gradu-
ate Studies Office, who will deal with the college in question.
If the application is approved, then the student will be re-
quired to matriculate, normally during the next University
term. The student then becomes a member of their chosen
college.

There are many different colleges, each with its own style
and tradition, and one of them is closely associated with part-
time study. It was named in honour of William Keith Kellogg,
industrialist and philanthropist, in recognition of the support
given to adult and continuing education by the W. K. Kellogg
Foundation.

Kellogg has approximately ninety fellows (including all
of the Programme’s University Lecturers) and approximately
four hundred registered students. Most of the Programme’s
students who progress to the MSc apply to Kellogg. The Col-
lege organises regular events, and acts as an additional point
of contact between MSc students and the University.

Taking part

To reserve a place on a course without first becoming a reg-
istered student, you should complete the course booking
form. If a place is available, you will receive a confirmation
from the Programme Office. For courses in certain subjects
— ACT, DES, DPA, OOD, OOP, PAS, RIS, SDE, SOA, SPL, SRO and
TCI — you may be asked to confirm that you have sufficient
experience before your reservation can be approved.

Students who are registered for a postgraduate qualifi-
cation do not need to submit booking forms for individual
courses: they can make reservation requests via the Pro-
gramme website.

Postgraduate study
To apply to study for a postgraduate qualification, you should
follow the procedure on the Programme website, or request
an information pack from the Programme Office. Either route
provides instructions on what supporting documentation
you should supply.

Only those applicants with an appropriate combination
of education and experience will be called to interview. Ap-
plicants should not make travel plans, or accept contingent
financial (or other) commitments, unless a formal, written of-
fer of a place has been made. The allocation of a place on an
individual course does not imply admission to a postgradu-
ate qualification.

Fees
There is a standard fee of £1350 for each course attended,
payable in advance. This includes course materials, and
lunches during the teaching week, but not accommoda-
tion. The fee applies whether or not the attendee is work-
ing towards a postgraduate qualification, and regardless of
nationality and residency. The Postgraduate Certificate will
typically entail four course attendance fees, the Postgradu-
ate Diploma eight, and the MSc ten.

Students may cancel attendance, provided that the can-
cellation is received well enough in advance. Cancellations
at short notice may not receive a full refund of the course
attendance fee.

The examination and assessment of the course assign-
ment is included in the course attendance fee. Should a
student be granted permission to take the assignment for a
later course in the same subject, an additional examination
fee of £100 will apply.

There is an annual award fee of £2500 for any of the post-
graduate qualifications; this is payable for one year for a Post-
graduate Certificate, two years for a Postgraduate Diploma,
and four years for an MSc. Students who are citizens of a
member state of the European Community, and have been
ordinarily resident in the European Economic Area for the
past three years, may qualify for Home/EU status, and a re-
duction of this annual award fee to £1250.

All payments must be completed before any postgradu-
ate qualification will be awarded by the University. Payments
made towards one qualification will be counted towards the
total amount due should the student subsequently register
for another.

The above rates apply for course attendance and student
registration between October 2007 and September 2008; the
fees will change in October 2008. Award fees are based upon
the date of admission. Attendance fees are based upon the
date of the course, and may increase during the period of
study, typically in line with the rate of inflation in the UK.

Contact

Enquiries should be addressed to the Programme Office:
Software Engineering Programme
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
+44 1865 283525 (phone), 283531 (fax)

The most effective means of contact is email:
info@softeng.ox.ac.uk

Further information about the Programme, together with
course booking and application forms, can be found on
the Programme website:

www.softeng.ox.ac.uk/about

