Research Workshop on Future TPM Functionality:
Final Report

Chris J. Mitchell (editor)
9th September 2006

1 Introduction

The purpose of this short document is to summarise the discussions on fu-
ture Trusted Platform Module (TPM) functionality held during a Technical
Workshop at the First European Summer School on Trusted Infrastructure
Technologies. It is hoped that this document will serve as a source of in-
formation on possible directions for future research relating to the TPM. It
is also hoped that these topics can be discussed further at a future summer
school.

The discussions at the Technical Workshop covered the following main
topics, and a summary of the points raised on each of these topics is given
below.

e Secure boot;

Certification;

e Privacy;

e TPM command set; and
e TPM command structure.

Finally note that background references for these discussions include
[2, 11, 16], as well as, of course, the TCG specifications themselves!.

2 Secure boot

Secure boot is not currently enabled by the TCG specifications. However,
much work on secure boot has been conducted independently of the TCG.
Most notably, the concept of secure boot has been discussed by Tygar and
Yee [19], Clark [7], Arbaugh, Farber and Smith [1] and Itoi and Arbaugh

Lwww.trustedcomputinggroup.org



[13]. Each of these papers describe a similar process, in which the integrity
of system components is measured, and these measurements then compared
against a set of expected measurements which must be securely stored and
accessed by the platform during the boot process.

Tygar and Yee [19] were amongst the first to describe a secure boot
mechanism [1]. They discuss the possibility of using a secure co-processor
to facilitate a secure boot. The expected integrity measurements of system
components are stored within the secure co-processor non-volatile memory,
where their integrity and privacy can be assured. The secure co-processor
is first to take control of the system, and it verifies the integrity of system
components, for example the boot strap program, the OS kernel and system
utilities, before handing over to the host CPU. Tygar and Yee also dis-
cuss issues surrounding the use of a secure boot floppy, containing system
verification code, rather than using a secure co-processor, which requires
significant architectural revisions to most computer systems [1].

Clark and Hoffman [7] present a system in which a PCMCIA card is used
to facilitate a secure boot. In this case, the host’s boot sector and a series of
checksums for boot files and host executables are stored on a PCMCIA card.
When the card is inserted into the host, the user is initially authenticated
to the card by entering a password. The card is also authenticated to the
host after knowledge of a secret shared between the card and the host has
been demonstrated. If both authentications are successful, the card allows
the host to read the boot sector and any required checksums from the card.
When the boot sequence completes, control is given to the operating system,
whose configuration has been either retrieved from the PCMCIA card or
measured and verified against the expected measurement value stored on
the PCMCIA card [7]. The physical security of both the host and the card
are assumed.

Arbaugh, David and Smith [1] require the addition of a PROM board
and the modification of the system BIOS. Their AEGIS model is based
upon four fundamental assumptions. It is assumed that an attacker is un-
able or unwilling to replace the motherboard, CPU and a portion of the
system ROM/BIOS, which contains a small section of trusted software. It
is also assumed that an expansion card/PROM board, which contains cryp-
tographic certificates and copies of essential boot process components for
recovery, is present. The integrity of this expansion card, called the AEGIS
ROM, must also be maintained. It is implied by Arbaugh, David and Smith
that the cryptographic certificates contained within the PROM board en-
able the identities of entities, trusted to certify trustworthy configurations
of software components on incoming component certificates, to be verified.
These certificates may, for example, take the form of self-signed public key
certificates of entities permitted to certify trustworthy configurations of soft-
ware components. A specific method by which entities are authorised to
certify trustworthy configurations of software components is not specified.



Finally, it is assumed that a trusted source exists to support the recovery of
platform components, for example a network host or a trusted ROM card
located within the host.

Before a secure boot process can be completed the computing platform
must be initialised with a number of items (see [1] and [13]).

1.

For every component on the platform which requires a secure boot,
an authorised entity must generate a hash of that software component
and then create a credential which contains the component hash, a
component identifier and an expiration date. An authorised entity is
one trusted by the system to certify trustworthy configurations of soft-
ware components. Arbaugh, David and Smith imply that this trust
relationship is established through the use of ‘cryptographic certifi-
cates’ installed in the AEGIS ROM. As stated above, details of the
trust establishment mechanism are not defined.

The credential is digitally signed by the authorised entity.

This signed credential is then stored on the host, in the platform com-
ponent to be securely booted or in a data block of a flash memory
device on the host’s motherboard.

The AEGIS ROM and BIOS boot block contain a small section of
trusted software, signed credential(s), authorised entity public key cer-
tificates and recovery code, whose integrity is assumed.

The secure boot process is as follows (see [1] and [13]).

1.

The first section of the BIOS executes, i.e. the part which contains
small section of trusted software, and computes a checksum over its
address space and the address space of the AEGIS ROM. This process
protects against ROM failures.

. The hash of the remainder of the BIOS, is then computed.

Execution control is then passed to this second section of the BIOS if:

e Its associated credential has not expired;
e The signature on the credential is valid;
e The hash value stored in the credential matches the value com-

puted in step 2.

This BIOS component then hashes each of the expansion ROMs and
verifies them against their expected values.

This hashing and verification continues until the system has been
booted into an expected state.



If at any stage during the boot process there is an integrity failure, the
failed component is replaced using components either stored on an AEGIS
expansion card/PROM board, or retrieved from a trusted network host. Itoi
and Arbaugh [13] extend the AEGIS system to work with smartcards.

We now examine suggested methods for secure boot implementation us-
ing either a version 1.1 or 1.1b compliant TPM. Versions 1.1 and 1.1b of
the TCG TPM specifications define a data integrity register (DIR) to be
a storage register that holds a 20 byte digest value. These versions of the
TCG specifications require that the TPM contains only one 20-byte DIR in
a TPM-shielded location, although the TPM could incorporate more than
one DIR. While the exact purpose of DIRs was not specified, their use in
the implementation of a secure boot process is briefly examined in [2], and
is now described.

If a TPM contains the same number of DIRs as PCRs, the expected value
of every PCR can be written to its corresponding DIR. Every time a PCR
is filled and its final value computed, it is compared to its corresponding
DIR value. If the two values match, the boot process continues; otherwise
an exception is called and the boot process halted.

Alternatively, if the TPM has access to non-volatile memory, all expected
PCR values may be held in unprotected non-volatile memory, and a sum-
mary, i.e. a cumulative digest, is held in a single DIR. Every time a PCR is
filled and its final value computed, it is checked that:

1. Each PCR value, when calculated, matches the expected value held in
the non-volatile memory; and

2. The cumulative digest of the expected table of PCR values matches
the value held in the DIR.

Read access to DIRs must be provided without the need for any au-
thorisation data to be input as, typically, no authorisation information is
available at the early stage in the boot process when the DIR value must
be read. In the version 1.2 specifications, use of the DIR has been dep-
recated. The TPM must still, however, support DIR functionality in the
general-purpose non-volatile storage area.

Before discussing the concept of secure boot further, a set of use cases,
in which a secure boot mechanism may be useful/necessary/advantageous,
would be desirable. This would allow us to assess whether the requirement
for the addition of secure boot functionality to the TCG specifications is
justified.

Secondly, we need to potentially consider a fourth root of trust — a root
of trust for verification (RTV). To prevent boot continuing, the RTV has to
be able to affect flow of the boot process. What additional properties do you
need to provide the RTV function? If the TCG TPM specifications were to
support a secure boot mechanism the TPM would be transformed from a



passive to an active component. That is, it would need to affect other PC
components — this could cause major issues. Alternatively, a root of trust
for verification may be implemented outside of the TPM, as is the case with
the RTM. Should the RTV be defined by the TCG?

In order to enable a secure boot process, reference integrity metrics must
also be discussed. How should they be certified? What is the infrastructure
needed to support this? Does it have to be standardised?

Finally, it is interesting to consider whether the LaGrande Technology
(LT) processor extensions [11] make the situation any different. Intel LT
provides a kind of secure boot, which bypasses the existed authenticated
boot. Does this mean that the current authenticated boot needs revisiting?
Of course, this secure boot process is Intel processor-specific, so it would be
‘good’ if we could extend the idea to other architectures/vendors.

3 Certification

The concept of certification works relatively well when one considers closed
systems. A comment was made that the immediate goals of Trusted Com-
puting infrastructures would be centred on closed systems, effectively cre-
ating islands of trust. Whilst this may obviate certain shortcomings in
developing a PKI infrastructure within a single organisation, things can be-
come significantly more complicated when one considers cross certification.
Suddenly issues such as re-parenting, subordination of one CA to another,
revocation and re-issuance/replacement and the hierarchy of trust all be-
come major hurdles that need to be addressed. Different CAs and paths
have different validity periods and constraints; certificate paths can contain
loops and certificate semantics can change on different iterations through
the loop.

It is vital to realise that a PKI is not just another IT project; it re-
quires a combined organisational, procedural, and legal approach in which
the complexity is enormous. Initial PKI efforts vastly underestimated the
amount of work involved [12].

Trusted Computing assumes the presence of Endorsement CAs (the ma-
jority of which will probably be manufacturers, but not necessarily all of
them), Privacy CAs, including possibly DAA Issuers, and SKAE CAs. In
this environment, an SKAE CA is ‘reliant’ on a Privacy CA, which in turn
is ‘reliant’ on an Endorsement CA. Given some of the requirements of
some of the TCG specifications, such as: a Privacy-CA MUST check that
the TPM manufacturer, model and version numbers are acceptable [18], it
would appear that a close relationship is needed between Endorsement CAs
and Privacy CAs.

If the Endorsement CA is not a manufacturer, how are the trust relations
affected when a platform wishes to communicate with another entity that



does not exist within their trust island? Additionally, whilst it may be
acceptable to say for the time being that entities will evolve to fulfil the roles
of the different CAs, it is important that we consider the incentives necessary
for someone to do so. To be accepted, a PKI must provide perceived value,
lest Trusted Computing heads the way of SET.

4 Privacy

A great deal of TPM functionality is present to keep the privacy advocates
happy. Indeed, much of it is present as a result of specific requests relating to
privacy. Given the high complexity of TPM, this raises the question ‘Are all
these mechanisms really necessary?’ To put it another way, whilst privacy
is clearly /undeniably important, is the current set of privacy-supporting
features too heavy?

One widely discussed example of a technology present purely to address
privacy concerns is the DAA protocol. It would appear that DAA may
not be needed in all environments, e.g. that defined by the Mobile Phone
Working Group (MPWG), but it may, nevertheless, be valuable elsewhere.
One key question would appear to be ‘Do we have convincing real-world use
cases where DAA is necessary?’ One interesting use case of DAA is where
it is used to validate an AIK to a privacy CA; the privacy CA then does not
have the ability to link this AIK to a platform or to any other AIKs (since
it does not see the EK).

More generally, use cases relevant to all aspects of privacy functionality
would be highly desirable.

One other aspect of privacy-related functionality relates to the presence
of three switches causing reboot. Is this really necessary?

The point was also made that the potential lack of complete control over
the operation of TPM may cause privacy concerns.

Finally, how much is privacy a user perception issue, and how much is
it a genuine issue relating to potential use/abuse of Personally Identifying
Information (PII)?

5 TPM command set

The TPM has a complex and rich set of commands. This API is, in some
ways, rather similar to a Crypto API for a hardware security module. It
is well know that such APIs are extremely hard to design from a security
perspective, and security vulnerabilities have been discovered in apparently
very well-designed such APIs. The interested reader is referred to [3, 4, 5,
6, 8, 9, 14, 15] as well as chapter 15 of [10].

This raises the obvious question: is the TPM API cryptographically
sound? That is, are there sequences of command calls which can be used to:



e Learn information about the secrets (keys or data) stored within the
TPM:;

e Make unauthorised modifications to data stored within the PM, and/or
to modify data stored externally to the TOM but protected by it;

e Produce unauthorised signatures or MACs on data strings; and/or

e In general, perform any function which breaks the security policy of
the TPM.

It would appear that some work has already been done both to detect vul-
nerabilities and to try to verify selected parts of the command set (including
the ‘get AIK’ protocols). However, this work is far from complete or con-
clusive.

TPM command set design decisions of some relevance include the fol-
lowing.

o It was designed to minimise the need to store state between commands.
It is hoped that this will reduce the risk of unfortunate combinations
of commands.

e The TPM is not permitted to sign externally provided data strings
without first ‘wrapping’ them.

The issue of error codes merits further consideration. There is always a
tension between security requirements (which suggest minimising the num-
ber of error codes), and usability requirements (which suggest maximising
the informativeness of error codes). How many should there be? Is the
current set the right balance between being helpful without giving too much
away? This appears to be an area that has not really been explored.

Finally, there may be a requirement for an extra command relating to
monotonic counters. It would be nice to have a means of verifying the
correctness of a counter value exported by a TPM, by being able to obtain
a TPM signature on the value (assuming the channel between the TPM and
the recipient of the counter is not trusted). More specifically, it would be
potentially useful to have a command to get the TPM to sign a statement
saying this is the current counter (probably including an externally supplied
nonce for freshness checking). Does this apply to any other information
one might retrieve from a TPM, e.g. random data? Adding such signed
reports from the TPM (signed using an AIK) would appear not to break
any fundamental security policies. However, there has been no requirement
for such extra commands. To convince the TCG to add such commands
would require the construction of a use case.



6 TPM command structure

A number of questions were raised about the structure of individual TPM
commands. It was stated that, when designing the commands, there seemed
to be plenty of choice. Thus it is important to consider whether or not
the right design decisions been made. That is, how might the commands
be wrongly structured? This is a particular matter of concern because,
when choices are made arbitrarily, sometimes a sub-optimal decision is made
because the choice has not been analysed completely.

The TCG architecture is predicated on the assumption that the TPM
is trusted, but that the TSS, even if malicious, cannot damage trust in
the TPM. It is important to note that implementations of the TSS will
be large and complex (the specification contains 800 pages). Commends
and responses exchanged between a calling application and he TOM are
protected (encrypted and MACed) using a secret shared by the application
and the TOM; hence tampering of TPM commands by an untrustworthy
TSS will be detbected. Of course, if authorisation values are cached in the
TSS, then protection against a malicious TSS is lost.

Are some TPM error conditions more serious than others? If the random
number generator (RNG) fails, then it is clearly very serious. There is a
requirement to do something analogous to FIPS 140 [17] internally to the
TPM to check the operation of the RNG. However, the detailed design of
the RNG functional blocks not mandated.]

Other particularly critical functionality includes the implementations of
cryptography, notably hashing and RSA. Is there anything that can be done
(analogously to redundancy) to improve hardware reliability.

Finally, if users download malicious software which corrupts the TSS,
then it might misuse any authorisation values which it sees. Of course, if
software is measured then the PCR values will detect this, and if a hypervisor
is present then it would only damage one ‘compartment’.

Acknowledgements

The contents of this document have been produced as a collaborative effort
by all the participants in the technical workshop. Special thanks are due to
Shane Balfe and Eimear Gallery, for writing big chunks of this document,
and to Shane Balfe, Eimear Gallery, David Grawrock and Graeme Proudler,
for leading the technical discussions.

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable
bootstrap architecture. In Proceedings of the 1997 IEEE Symposium



on Security and Privacy, pages 65—71, Oakland, California, USA, May
1997. IEEE Computer Society Press.

B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted
Computing Platforms: TCPA Technology in Context. Prentice Hall,
Upper Saddle River, New Jersey, USA, 2003.

M. Bond. Attacks on cryptoprocessor transaction sets. In C. K. Koc,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Em-
bedded Systems — CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes
in Computer Science, pages 220-234. Springer-Verlag, Berlin, 2001.

M. Bond and R. Anderson. API-level attacks on embedded systems.
IEEE Computer Magazine, 34(10):67-75, October 2001.

M. Bond and P. Zielinski. Decimalisation attacks for PIN cracking,
2002. Preprint, Computer Laboratory, University of Cambridge.

K. Brincat and C. J. Mitchell. Key recovery atacks on MACs based
on properties of cryptographic APIs. In B. Honary, editor, Cryptogra-
phy and Coding, 8th IMA International Conference, Cirencester, UK,
December 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in
Computer Science, pages 63—-72. Springer-Verlag, Berlin, 2001.

P. C. Clark and L. J. Hoffman. BITS: A smartcard protected operating
system. Communications of the ACM, 37(11):66-94, November 1994.

J. Clulow. The design and analysis of cryptographic APIs for security
devices, 2003. M.Sc. Dissertation, University of Natal, Durban, South
Africa.

J. Clulow. On the security of PKCS #11. In C. D. Walter, C. K. Koc,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems
— CHES 2003, 5th International Workshop, volume 2779 of Lecture
Notes in Computer Science, pages 411-425. Springer-Verlag, 2003.

A. W. Dent and C. J. Mitchell. User’s Guide to Cryptography and
Standards. Artech House, Boston, MA, 2005.

D. Grawrock. The Intel safer computing initiative: Bulding blocks for
trusted computing. Intel Press, Hillsboro, OR, 2006.

Peter Gutman. PKI: It’s not dead, just resting. Computer, 35(8):41-49,
2002.

N. Itoi, W. A. Arbaugh, S. J. Pollack, and D. M. Reeves. Personal
secure booting. In Proceedings of the 6th Australasian Conference on



[14]

[15]

[16]

[17]

[18]

[19]

Information Security and Privacy, volume 2119 of Lecture Notes In
Computer Science, pages 130-141. Springer-Verlag, Berlin, 2001.

C. J. Mitchell. Key recovery attack on ANSI retail MAC. FElectronics
Letters, 39:361-362, 2003.

C. J. Mitchell. Truncation attacks on MACs. FElectronics Letters,
39:1439-1440, 2003.

C. J. Mitchell, editor. Trusted Computing. IEE, London, 2005.

National Institute of Standards and Technology (NIST). Federal In-
formation Processing Standards Publication 140-2 (FIPS PUB 140-2):
Security Requirements for Cryptographic Modules, June 2001.

Trusted Computing Group. TCG Credential Profiles, January 2006.
Version 1.0: Revision 0.981.

J. Tygar and B. Yee. Dyad: A system for using physically secure co-
processors. Technical report CMU-CS-91-140R, Carnigie Mellon Uni-
versity, May 1991.

10



