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Recall

» Processes H — H form Frobenius algebra (A, 4,)

(because map-state duality)
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Recall

» Processes H — H form Frobenius algebra (A, 4,)
(because map-state duality)

AT

> In category of Hilbert spaces: A= M, @ - @& M,,
(commutative == A= C & --- ¢ C)

» But can only access observables af = a € M,

SJ-d
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Positivity

» Pure state = (projection on to) unit vector
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Positivity

v

Pure state = (projection on to) unit vector

v

Should take compound systems into account!

(Reduced) state = density matrix ety
= positive semi-definite matrix (with trace 1) KEEP
» Element a € M, positive (semi-definite) C‘;tleM
& a = bfb for some b RADIATE
POSITIVITY
» Processes should take states to states

f: M,, = M, positive map
< f preserves positivity (2 > 0 = f(a) > 0)
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Positivity

v

Pure state = (projection on to) unit vector

v

Should take compound systems into account!

(Reduced) state = density matrix ety
= positive semi-definite matrix (with trace 1) KEEP
» Element a € A positive (semi-definite) C‘;‘NIEM
& a = bfb for some b RADIATE
POSITIVITY
» Processes should take states to states

f: A— B positive map
< f preserves positivity (2 > 0 = f(a) > 0)
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Complete positivity

» Processes should take states of compound systems to states!
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Complete positivity

» Processes should take states of compound systems to states!

» f: A— B completely positive when

feid:AM, - B M,

is positive for all n=1,2,3,...

» Large, well-studied class of processes that
send states of open systems to (possibly unnormalised) states
i.e. account for dynamics
(some debate about whether other maps are unphysical)
e.g. completely positive maps C™ — M, are POVMs!

» Also interesting mathematically: A ®@ M,(C) = M,(A)
a® ejj — block matrix with a in (i,)-th block
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Complete positivity: history
» f: A— B completely positive when

f@id:AoM, - B M,

is positive for all n=1,2,3,...

|zvestiya Rossiiskoi Akademii Nauk USSR Matematicheskaya 7:237-244, 1943

& “Positive definite operator functions on a commutative group”

“Positive functions on C*-algebras”
. Proceedings of the American Mathematical Society 6:211-216, 1955

“Subalgebras of C*-algebras”

Acta Mathematica 123(1):141-224, 1969

§
“General state changes in quantum theory”
Annals of Physics 64(2):311-335, 1971

u “Completely positive linear maps on complex matrices”

[

Linear Algebra and Its Applications 10(3):285-290, 1975

e
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Injectivity
An object A is injective when “arrows into it can be extended”

X —— A

-
-
-
-
-
-

-

Y
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Injectivity
An object A is injective when “arrows into it can be extended”

X —— A

-

-
-
-
-
-

v°

Injective wrt completely positive maps for -algebras iff:
» hyperfinite (dense union of finite-dimensional algebras)
» amenable (all derivations are inner)
» nuclear (good notion of tensor product)

» conditional expectation (from B(H) onto A)

S ‘Subalgebras of C*-algebras”
i ('H’ Acta Mathematica 123(1):141-224, 1969
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Posivity: abstractly

“Element” a: | — A of Frobenius algebra (A, &) is positive when

for some b: | — A.
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Posivity: abstractly

“Element” a: | — A of Frobenius algebra (A, &) is positive when
BN EANTRANRWIR AN

for some b: | — A. This implies (in Hilbert spaces is equivalent to)

DL o R PN,
Ial\bl Ib\\ LN

for some c: | — X ® A. Take this as definition.




Complete positivity: abstractly

f:Mpy— M, — flp)=SK g opog
completely positive for some gj: C" — C™

“General state changes in quantum theory”
Annals of Physics 64(2):311-335, 1971
%

“Completely positive linear maps on complex matrices”
By Linear Algebra and Its Applications 10(3):285-290, 1975

el
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Complete positivity: abstractly

completely positive for some g;: C" — C™
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Complete positivity: abstractly

f: Mpy — M, — f(p):Zf’(zlgiTopog’.
completely positive for some g: C" — Ck® C™

_
Z
[ ¢ ]
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Complete positivity: abstractly

f: Mpy — M, — f(p):Zf’(zlgiTopog’.
completely positive for some g: C" — Ck® C™
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Complete positivity: abstractly

fiMn =M, L f(p) =Yl 8l 0pog
completely positive for some g: C" — Ck @ C™

_

0
0

(g is called Kraus map, CK the ancilla system, they are not unique)
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Complete positivity: abstractly

f: A—>M,,. . — f(a):Z;‘zlgiTOW(a)og,-
completely positive g: C" = CkoM,,, m: A — M,,

“Positive functions on C*-algebras”
. Proceedings of the American Mathematical Society 6:211-216, 1955



Complete positivity: abstractly

frA—>B

.. <~ forsomeg: A= X®B
completely positive
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Complete positivity: abstractly

f:A—>B
completely positive

—

for some h: A—- X ®B

g
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Complete positivity: abstractly

The following are equivalent:
» f: (A ) = (B, &) is completely positive
» f®idc: A® C — B® C is positive for all (C, 4,)

» f®idc: A® C — B® C is positive for C = (X* @ X, /)

2 o “ . . "
1 Categories of quantum and classical channels
gzyrl Quantum Information Processing, 2014
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:
» Objects are dagger special Frobenius algebras in C

| ./ !
Ve
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:
» Objects are dagger special Frobenius algebras in C
» Arrows f: A — B in C that are completely positive
» Composition and identities are as in C
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:
» Objects are dagger special Frobenius algebras in C
» Arrows f: A — B in C that are completely positive
» Composition and identities are as in C
» Tensor product is as in C
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:
Objects are dagger special Frobenius algebras in C
Arrows f: A — B in C that are completely positive
Composition and identities are as in C
Tensor product is as in C
Dagger is as in C
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:

» Objects are dagger special Frobenius algebras in C
Arrows f: A — B in C that are completely positive
Composition and identities are as in C
Tensor product is as in C
Dagger is as in C

¥
Dual object of (A, &) is (A*, C2)

g L
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:

» Objects are dagger special Frobenius algebras in C

v

Arrows f: A — B in C that are completely positive

v

Composition and identities are as in C

v

Tensor product is as in C

v

Dagger is as in C

¥
Dual object of (A, &) is (A*, \g)

v

Then: CP*[FHiIb] is *-algebras and completely positive maps

4, 'Categories of quantum and classical channels”
¢ 3 Quantum Information Processing, 2014
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Operator algebra: classical and quantum

» Observables are primitive, states are derived.
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Operator algebra: classical and quantum

» Observables are primitive, states are derived.

» Classical: if X is a state space,

then C(X) = {f: X — C} is a commutative operator algebra.

Any commutative operator algebra is of this form!

(,\* “On normed rings"”
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Operator algebra: classical and quantum

» Observables are primitive, states are derived.

» Classical: if X is a state space,

then C(X) = {f: X — C} is a commutative operator algebra.

Any commutative operator algebra is of this form!

» Can recover states (as maps C(X) — C)
Constructions on states transfer to observables:

X+Y = C(X)® C(Y)
X x Y C(X)®C(Y

States determine everything

€.) “On normed rings’

‘Iﬁ l Doklady Akademii Nauk SSSR 23:430-432, 1939

12 /27



Operator algebra: classical and quantum

» Observables are primitive, states are derived.

» Classical: if X is a state space,
then C(X) = {f: X — C} is a commutative operator algebra.
Any commutative operator algebra is of this form!

» Can recover states (as maps C(X) — C)
States determine everything

» Quantum: if H is a Hilbert space,

then B(H) = {f: H — H} is a noncommutative operator algebra.
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Operator algebra: classical and quantum

» Observables are primitive, states are derived.

» Classical: if X is a state space,
then C(X) = {f: X — C} is a commutative operator algebra.
Any commutative operator algebra is of this form!

» Can recover states (as maps C(X) — C)
States determine everything

» Quantum: if H is a Hilbert space,
then B(H) = {f: H — H} is a noncommutative operator algebra.
Any operator algebra embeds into one of this form!

» Recover states? Do states determine everything?

(,\* “On normed rings"

) I Doklady Akademii Nauk SSSR 23:430-432, 1939

Matematicheskii Sbornik 12(2):197-217, 1943

%\! & “Imbedding of normed rings into operators on a Hilbert space”

12 /27



Operator algebra: state spaces

commutative

«—————— state spaces
operator algebras

' G

quantum
operator algebras ----------- >
F state spaces

If G continuous, then F degenerates. (F(M,,) = () for n > 3)
“Obstructing extensions of the functor Spec”
I

“@

srael Journal of Mathematics 192(2):667-698, 2012

| “Extending obstructions to functorial spectra”
Theory and Applications of Categories, 2014

m & 8§ 'The problem if hidden variables in quantum mechanics”

Journal of mathematics and Mechanics 17(1):59-87, 1967
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Completely classical systems

» CPZ[C] := completely classical systems of CP*[C]
= commutative (A, &) with completely positive maps
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Completely classical systems

» CPZ[C] := completely classical systems of CP*[C]
= commutative (A, &) with completely positive maps

» simplifies to: arrows

* oA

1

N

/

N

| = VAV

> S -

o

B

N

B

N
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Completely classical systems

v

CPZ[C] := completely classical systems of CP*[C]
= commutative (A, &) with completely positive maps

v

simplifies to: arrows

\\.J/ Afz\,?/\
L] = /Ay \
F’O\R A A

CPZ[FHilb] = Hilbert spaces with chosen basis
and matrices with entries > 0

> S -

v

v

Stochastic matrices = transition probabilities of Markov chains

14 /27



Completely quantum systems
» Recall: M, is (H* @ H,/,.\) for H=C"
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Completely quantum systems

» Recall: M, is (H* @ H,/,.\) for H=C"
» CP,[C] := completely quantum systems of CP*[C]
= (H*® H, /.\) with completely positive maps
» simplifies to: objects are H € C
arrows H — K are
K+ K /(-\ +K
L | / A RN 7N
H +H
comp05|t|on, tensor, dagger, etc. asin C

'

Quantum Physics and Logic, ENTCS 170:139-163, 2007

“Dagger compact closed categories and completely positive maps”

15 /27



Completely quantum systems

» Recall: M, is (H* @ H,/,.\) for H=C"
» CP,[C] := completely quantum systems of CP*[C]
= (H*® H, /.\) with completely positive maps
» simplifies to: objects are H € C
arrows H — K are
K* K /(-\ +K
L | / A RN 7N
H +H
comp05|t|on, tensor, dagger, etc. asin C
> “Pure” embedding that preserves tensor, dagger, etc.

C — CPic]
H o (H @ H,/\)

1. AR

Quantum Physics and Logic, ENTCS 170:139-163, 2007

3 “Dagger compact closed categories and completely positive maps”
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Completely quantum systems:

—

frH"'QH— K'®QK
M, — M,

map-state duality

fFHOK > H @K
an
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Completely quantum systems:

frH"'QH— K'®QK
M, — M,

f self-adjoint
(F1=1)

map-state duality

FHOK S H QK
an

f pr preserves adjoints
¥

(F(a") = (A(a)")
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f-H"QH—- K@K
M, — M,

f self-adjoint
(F1 =)

f completely positive

Completely quantum systems:

—

map-state duality

frH @K = H* ® K
an
f pr preserves adjoints
?

(F(a") = (A(a)")

f positive
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Completely quantum systems:

frH"'QH— K'®QK
M, — M,

f self-adjoint
(F1=1)
f completely positive

f unital
(f(lm) - 1n)
f preserves trace

(tr(a) = t(£(2)))

—

map-state duality

frH @K = H* ® K
Mmn
f pr preserves adjoints
(F(ah) = (M2
f positive
¥ has trivial left partial trace

(trn(?) =1p)

f has trivial right partial trace

(trm(F) = 1,)

16 /27



Completely quantum systems: environment structures

» Can axiomatise dagger compact categories of the form CP’;[C]
ldea: A= (H*® H,/.\) always allows map ~: A — |

(deletingap partial trace)

17 /27



Completely quantum systems: environment structures

» Can axiomatise dagger compact categories of the form CPg[C]

> Environment structure: C < C with maps Ta in C satisfying:

coherence: , 115 = T, T,

doubling: 7 :/Jgﬁ?;\inC@ —ine
| | |

purification: each in C is of the form for some f in C

& " . . . "
Environment and classical channels in CQM
?:Yj‘, . Computer Science Logic LNCS 6247:230-224, 2010
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Completely quantum systems: environment structures

» Can axiomatise dagger compact categories of the form CP[C]

> Environment structure: C < C with maps 'I'A in C satisfying:

coherence: T 1 T T

doubling: /#ﬁ?‘\\ /J‘ﬁ?‘\\ inC& ﬁ ﬁ in C

purification: each in C is of the form for some f in C

> If C has environment structure, then CP[C] = C

— -
“Environment and classical channels in CQM”
. Computer Science Logic LNCS 6247:230-224, 2010
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Completely quantum systems: environment structures

» Can axiomatise dagger compact categories of the form CP[C]

> Environment structure: C < C with maps 'I'A in C satisfying:

coherence: T 1 T T

doubling: /#ﬁ?‘\x /lﬁ_P‘R inC& ﬁ ﬁ in C

purification: each in C is of the form for some f in C

> If C has environment structure, then CP[C] = C

> Question: axiomatise CP*[C]

“Environment and classical channels in CQM”
. Computer Science Logic LNCS 6247:230-224, 2010
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Operator algebra: infinite dimension
Different generalisations of C” and M:

» C*-algebras
x-algebra of operators that is closed

» AW*-algebras
abstract/algebraic version of W*-algebra

» von Neumann algebras / W*-algebras
x-algebra of operators that is weakly closed

In finite dimension coincide

.) “On normed rings”
Doklady Akademii Nauk SSSR 23:430-432, 1939

A

=} “Projections in Banach algebras”
< Annals of Mathematics 53(2):235-249, 1951

-
v,'(

“On rings of operators”
Annals of Mathematics 37(1):116-229, 1936

18 /27



Complete positivity: infinite dimension
» Recall f: (A*® A, /) — (B*® B,/.\) completely positive if

Yy 4

Information and Computation, 2014

g ) 3: “Pictures of completely positivity in arbitrary dimension”
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Complete positivity: infinite dimension
» Recall f: (A*® A, /) — (B*® B,/.\) completely positive if

¥ 4
i/

~

» Can reformulate without cap: ' |

N -

e

[ up: e . . . R
Pictures of completely positivity in arbitrary dimension
@74> Information and Computation, 2014
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Complete positivity: infinite dimension
> Recall f: (A*® A, /) — (B* ® B,/.\) completely positive if

¥ 4
i/

~
\

» Can reformulate without cap: «_ )

e

» C dagger symmetric monoidal = CP}_[C] symmetric monoidal
C dagger compact = CP7[C] = CP[C]

Information and Computation, 2014

ﬁ “Pictures of completely positivity in arbitrary dimension”
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Complete positivity: infinite dimension
> Recall f: (A*® A, /) — (B* ® B,/.\) completely positive if

¥ 4
i/

~
\

» Can reformulate without cap: «_ )

e

» C dagger symmetric monoidal = CP}_[C] symmetric monoidal
C dagger compact = CP7[C] = CP[C]

» CP} [Hilb] = type | factor W*-algebras and normal c.p. maps

[ “p: e . . o
Pictures of completely positivity in arbitrary dimension
@._ ‘ Information and Computation, 2014

19/27



Quantum and classical interaction: infinite dimension

» If Ais an AW*-algebra, so is M,(A).
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Quantum and classical interaction: infinite dimension

» If Ais an AW*-algebra, so is M,(A).

» If C C M,(A) commutative,
then some unitary u € M,(A) makes uCu* diagonal.
(and vice versa if A commutative)

S . . .
el ‘Diagonalizing matrices over AW*-algebras”
J ? Journal of Functional Analysis 264(8):1873-1898, 2013
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Quantum and classical interaction: infinite dimension

» If Ais an AW*-algebra, so is M,(A).
» If C C M,(A) commutative,
then some unitary u € M,(A) makes uCu* diagonal.

(and vice versa if A commutative)

» A is injective (and vice versa if A commutative)

“@x

Journal of Functional Analysis 264(8):1873-1898, 2013

A “Diagonalizing matrices over AW*-algebras”
(. Projective topological spaces
Illinois Journal of Mathematics 2(4):482-489, 1958
P\
[%*Y

20/27



Quantum teleportation

If (A, 45,8) and (A, 4,6) are complementary Frobenius algebras in
a dagger compact category C, then the following holds in CP*[C]:

A A
output

classical communication = == ===

preparation

input

21/27



Nonstandard models: complete positivity

Recall Rel:
» Objects are sets
» Arrows are relations
» Tensor product is Cartesian product

» Dagger special Frobenius algebras are groupoids
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Nonstandard models: complete positivity

Recall Rel:
» Objects are sets
> Arrows are relations
» Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?

’

KNP ++ t
R —/ || \‘:)I
¥ %

a a a

a



Nonstandard models: complete positivity

Recall Rel:

>

>

v

>

Objects are sets
Arrows are relations
Tensor product is Cartesian product

Dagger special Frobenius algebras are groupoids

When is a map completely positive?

}g
f\i & glog =g
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Nonstandard models: complete positivity

Recall Rel:
> Objects are sets

» Arrows are relations

v

Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?

g

+g2 —~8=8 °8&
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Nonstandard models: complete positivity

Recall Rel:
> Objects are sets
> Arrows are relations
» Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?

—1
© 82
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Nonstandard models: complete positivity

Recall Rel:
» Objects are sets

» Arrows are relations

v

Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?
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Nonstandard models: complete positivity

Recall Rel:
» Objects are sets

» Arrows are relations

v

Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?

ht o by +h21 o hy +h; o hy
@j [}j - [
+§ gt + -1 + -1
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Nonstandard models: complete positivity

Recall Rel:
» Objects are sets

» Arrows are relations

v

Tensor product is Cartesian product
» Dagger special Frobenius algebras are groupoids

When is a map completely positive?

+h +h71 +iddom(h)

[r]= L&) . [&]

g g71 iddom(g)



Nonstandard models: complete positivity

Recall Rel:
» Objects are sets
» Arrows are relations
» Tensor product is Cartesian product

» Dagger special Frobenius algebras are groupoids

A relation R C G x H between groupoids respects inverses when
(g.h) € R implies (g1, h™) € R and (idgom(g), iddom(n)) € R.

CP*[Rel] = groupoids and relations respecting inverses.



Nonstandard models: completely quantum systems

Question: What are the algebras (A* x A, /.\) in Rel?

b2, 31 if b1 = a»
[ \ m undeflned otherwise

(b2, b1) (a2, a1)
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Nonstandard models: completely quantum systems

Question: What are the algebras (A* x A, /.\) in Rel?

bg,al) if b1 = a»
[ \ m undeflned otherwise

(b2, b1) (a2, a1)

= identity arrows are (a, a)

= objects correspond to a € A

= dom(ap, a;) = a1, cod(az, a1) = a2
= (ap, a1) is the unique arrow a; — a,
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Nonstandard models: completely quantum systems

Question: What are the algebras (A* x A, /.\) in Rel?

bg,al) if b1 = a»
[ \ m undeflned otherwise

(b2, b1) (a2, a1)

= identity arrows are (a, a)

= objects correspond to a € A

= dom(ap, a;) = a1, cod(az, a1) = a2
= (ap, a1) is the unique arrow a; — a,

Answer: indiscrete groupoids (exactly one process a — b)

23 /27



Nonstandard models: subsystems
» Copyable states X C G

W)

) x

“Relative Frobenius algebras are groupoids”
Journal of Pure and Applied Algebra 217:114-124, 2013
“Compositional quantum logic"
'?y‘ Computation, Logic, Games, and Quantum Foundations 21-36, 2013
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Nonstandard models: subsystems
» Copyable states X C G

= X?>={(g,h)|gohe X}
.

) x

o ‘Relative Frobenius algebras are groupoids”
Eh Journal of Pure and Applied Algebra 217:114-124, 2013

’ m e = n

=Ny Y Compositional quantum logic

'ﬂ?i-l ) Computation, Logic, Games, and Quantum Foundations 21-36, 2013
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Nonstandard models: subsystems
» Copyable states X C G

“Relative Frobenius algebras are groupoids”
‘- Journal of Pure and Applied Algebra 217:114-124, 2013
‘ ’

“Compositional quantum logic"
Computation, Logic, Games, and Quantum Foundations 21-36, 2013

24 /27



Nonstandard models: subsystems
» Copyable states X C G are connected components
= X2={(g,h)|gohe X}
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Nonstandard models: subsystems
» Copyable states X C G are endohomset connected components
= X>={(g.h)|goheX}
\J {(fgof )| Fex)
[ = = if f € X and dom(f) = dom(g)

|X| |X||X| then g € X
if f € X then f o f defined

| u . . Y
- Relative Frobenius algebras are groupoids
| Journal of Pure and Applied Algebra 217:114-124, 2013
7
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Nonstandard models: subsystems

» Copyable states X C G are endohomset connected components
» Projections P C G

Lo
NN

A g

S “ . . cqn
Relative Frobenius algebras are groupoids
Journal of Pure and Applied Algebra 217:114-124, 2013
[ S u - -
\ Compositional quantum logic
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Nonstandard models: subsystems

» Copyable states X C G are endohomset connected components

» Projections P C G are subgroupoids

» (G, 4,) is commutative 7 Proj(G, /&) is distributive
(an(bVvc)=(anb)V(aAc))

-1
%7, {Lo1,,f.F1)

|
/ | \ {1,,1,}

Zy x {0} {(0,0),(1,1)} {0} x Z,

| e Rt
{(0,0)} ~.

- Relative Frobenius algebras are groupoids
J'fﬂv Journal of Pure and Applied Algebra 217:114-124, 2013
[ | u ‘e T
\ Compositional quantum logic
?T?" Computation, Logic, Games, and Quantum Foundations 21-36, 2013
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Nonstandard models: direct sums

» CPy(FHilb) with direct sums
= CP*(FHilb)
= ranges of projections in CPg(FHilb)
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= ranges of projections in CP7(FHilb)

» But CPy(Rel) with direct sums
# CP*(Rel)
# ranges of projections in CP7(Rel)
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Nonstandard models: direct sums

» CPy(FHilb) with direct sums
— CP*(FHilb)
= ranges of projections in CP7(FHilb)

» But CPy(Rel) with direct sums
# CP*(Rel)
# ranges of projections in CP7(Rel)

» Instead of direct sums, use 2-categories (caveats)

Completely positive projections and biproducts
&4 ). Quantum Physics and Logic, EPTCS 2013

| | L e . . s
. .. Mixed quantum states in higher categories
& '/ Q Quantum Physics and Logic, EPTCS 2014
N -
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No broadcasting?

» Classical mechanics has cloning, quantum mechanics does not
(cannot copy unknown state), nor statistical mechanics!
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No broadcasting?

» Classical mechanics has cloning, quantum mechanics does not
(cannot copy unknown pure state), nor statistical mechanics!

v

(A, &) broadcastable when =|= for some c.p. b

v

Commutative algebras are always broadcastable (take b = /)

In FHilb: if M,, broadcastable, then n =1

(if (H* @ H,/.\) broadcastable, then H = C)

In Rel: G broadcastable < G totally disconnected (only A — A)

g 1x g

v

v

g:A— B

‘ “A generalized no-broadcasting theorem”
Ii Physical Review Letters 99:240501, 2007
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(cannot copy unknown pure state), nor statistical mechanics!

» (A, ) broadcastable when =|= for some c.p. b
» Commutative algebras are always broadcastable (take b = ¢/)
» In FHilb: if M,, broadcastable, then n =1
(if (H* @ H,/.\) broadcastable, then H = C)
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No broadcasting?

» Classical mechanics has cloning, quantum mechanics does not
(cannot copy unknown pure state), nor statistical mechanics!
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(A, &) broadcastable when =|= for some c.p. b

v

Commutative algebras are always broadcastable (take b = /)

In FHilb: if M,, broadcastable, then n =1
(if (H* @ H,/.\) broadcastable, then H = C)

In Rel: G broadcastable < G totally disconnected (only A — A)

g 1x g 1x 1p g lx 1g1x
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No broadcasting?

» Classical mechanics has cloning, quantum mechanics does not
(cannot copy unknown pure state), nor statistical mechanics!

v

(A, A,) broadcastable when =|= for some c.p. b

» Commutative algebras are always broadcastable (take b = “¢/)

In FHilb: if M,, broadcastable, then n =1
(if (H* ® H,/.\) broadcastable, then H = C)

In Rel: G broadcastable < G totally disconnected (only A — A)
(A, &) commutative 5 (A, &) broadcastable

v

v

v

= “A generalized no-broadcasting theorem”
8 I”i ) Physical Review Letters 99:240501, 2007
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Conclusion

What have we learnt?
» Frobenius algebras model classical and quantum information

» Physical processes are completely positive channels

v

Teleportation uses both classical and quantum information

v

In Hilbert spaces: operator algebra

v

In possibilistic mechanics: groupoids

v

Nonstandard models break distributivity, no-broadcasting

Open questions: interaction between classical and quantum
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