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Overview

Yesterday:

I Classical communication
Frobenius algebra

I Observables
operator algebra

I Nonstandard models
possibilistic quantum mechanics

Today:

I Physical processes
complete positivity

I Classical vs quantum channels
state spaces

I Drawing theories apart
nonstandard models
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Recall
I Processes H → H form Frobenius algebra (A, )

(because map-state duality)

= =

I In category of Hilbert spaces: A ∼= Mn1 ⊕ · · · ⊕Mnk

(commutative ⇒ A ∼= C⊕ · · · ⊕ C)

I But can only access observables a† = a ∈Mn

a†
:=

a
=

a
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Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix
= positive semi-definite matrix (with trace 1)

I Element a ∈ positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix

= positive semi-definite matrix (with trace 1)

I Element a ∈ positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix
= positive semi-definite matrix (with trace 1)

I Element a ∈ positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix
= positive semi-definite matrix (with trace 1)

I Element a ∈Mn positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix
= positive semi-definite matrix (with trace 1)

I Element a ∈Mn positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : Mm →Mn positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Positivity

I Pure state = (projection on to) unit vector

I Should take compound systems into account!
(Reduced) state = density matrix
= positive semi-definite matrix (with trace 1)

I Element a ∈ A positive (semi-definite)
⇔ a = b†b for some b

I Processes should take states to states
f : A→ B positive map
⇔ f preserves positivity (a ≥ 0⇒ f (a) ≥ 0)

4 / 27



Complete positivity

I Processes should take states of compound systems to states!

I f : A→ B completely positive when

f ⊗ id : A⊗Mn → B ⊗Mn

is positive for all n = 1, 2, 3, . . .

I Large, well-studied class of processes that
send states of open systems to (possibly unnormalised) states
i.e. account for dynamics
(some debate about whether other maps are unphysical)
e.g. completely positive maps Cm →Mn are POVMs!

I Also interesting mathematically: A⊗Mn(C) ∼= Mn(A)
a⊗ eij 7→ block matrix with a in (i , j)-th block
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Complete positivity: history

I f : A→ B completely positive when

f ⊗ id : A⊗Mn → B ⊗Mn

is positive for all n = 1, 2, 3, . . .

“Positive definite operator functions on a commutative group”
Izvestiya Rossiiskoi Akademii Nauk USSR Matematicheskaya 7:237–244, 1943

“Positive functions on C*-algebras”
Proceedings of the American Mathematical Society 6:211–216, 1955

“Subalgebras of C*-algebras”
Acta Mathematica 123(1):141–224, 1969

“General state changes in quantum theory”
Annals of Physics 64(2):311–335, 1971

“Completely positive linear maps on complex matrices”
Linear Algebra and Its Applications 10(3):285–290, 1975
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Injectivity

An object A is injective when “arrows into it can be extended”

X

Y

A

Injective wrt completely positive maps for ∗-algebras iff:

I hyperfinite (dense union of finite-dimensional algebras)

I amenable (all derivations are inner)

I nuclear (good notion of tensor product)

I conditional expectation (from B(H) onto A)

“Subalgebras of C*-algebras”
Acta Mathematica 123(1):141–224, 1969
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Posivity: abstractly

“Element” a : I → A of Frobenius algebra (A, ) is positive when

a

=

b† b

=

bb

for some b : I → A.

This implies (in Hilbert spaces is equivalent to)

a

=

b b

=

c c

for some c : I → X ⊗ A. Take this as definition.
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Complete positivity: abstractly

f : Mm →Mn

completely positive
⇐⇒ f (ρ) =

∑k
i=1 g

†
i ◦ ρ ◦ gi

for some gi : Cn → Cm

“General state changes in quantum theory”
Annals of Physics 64(2):311–335, 1971

“Completely positive linear maps on complex matrices”
Linear Algebra and Its Applications 10(3):285–290, 1975
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f : Mm →Mn
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⇐⇒ f (ρ) =

∑k
i=1 g

†
i ◦ ρ ◦ gi

for some g : Cn → Ck ⊗ Cm

f
=

g g

(g is called Kraus map, Ck the ancilla system, they are not unique)
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Complete positivity: abstractly

f : A→Mn

completely positive
⇐⇒ f (a) =

∑k
i=1 g

†
i ◦ π(a) ◦ gi

g : Cn → Ck⊗Mm, π : A→Mm

f
=

g g

“Positive functions on C*-algebras”
Proceedings of the American Mathematical Society 6:211–216, 1955
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Complete positivity: abstractly

f : A→ B
completely positive

⇐⇒ for some g : A→ X ⊗ B

f =
g g
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Complete positivity: abstractly

f : A→ B
completely positive

⇐⇒ for some h : A→ X ⊗ B

f
=

h h
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Complete positivity: abstractly

The following are equivalent:

I f : (A, )→ (B, ) is completely positive

I f ⊗ idC : A⊗ C → B ⊗ C is positive for all (C , )

I f ⊗ idC : A⊗ C → B ⊗ C is positive for C = (X ∗ ⊗ X , )

“Categories of quantum and classical channels”
Quantum Information Processing, 2014
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Complete positivity: categorically
From a dagger compact category C of pure processes,
define a new one CP*[C] of mixed processes:

I Objects are dagger special Frobenius algebras in C

= =

I Arrows f : A→ B in C that are completely positive
I Composition and identities are as in C
I Tensor product is as in C
I Dagger is as in C

I Dual object of (A, ) is (A∗, )

Then: CP*[FHilb] is *-algebras and completely positive maps

“Categories of quantum and classical channels”
Quantum Information Processing, 2014
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Operator algebra: classical and quantum

I Observables are primitive, states are derived.

I Classical: if X is a state space,
then C (X ) = {f : X → C} is a commutative operator algebra.

Any commutative operator algebra is of this form!

I Can recover states (as maps C (X )→ C)
States determine everything

I Quantum: if H is a Hilbert space,
then B(H) = {f : H → H} is a noncommutative operator algebra.

Any operator algebra embeds into one of this form!

I Recover states? Do states determine everything?

“On normed rings”
Doklady Akademii Nauk SSSR 23:430–432, 1939

“Imbedding of normed rings into operators on a Hilbert space”
Matematicheskii Sbornik 12(2):197–217, 1943
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Operator algebra: state spaces

commutative
operator algebras

state spaces

operator algebras
quantum
state spacesF

G

If G continuous, then F degenerates. (F (Mn) = ∅ for n ≥ 3)

“Obstructing extensions of the functor Spec”
Israel Journal of Mathematics 192(2):667–698, 2012

“Extending obstructions to functorial spectra”
Theory and Applications of Categories, 2014

“The problem if hidden variables in quantum mechanics”
Journal of mathematics and Mechanics 17(1):59–87, 1967
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Completely classical systems

I CP∗c [C] := completely classical systems of CP*[C]
= commutative (A, ) with completely positive maps

I simplifies to: arrows

f =
√
f

√
f

I CP∗c [FHilb] = Hilbert spaces with chosen basis
and matrices with entries ≥ 0

I Stochastic matrices = transition probabilities of Markov chains
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Completely quantum systems
I Recall: Mn is (H∗ ⊗ H, ) for H = Cn

I CP∗q[C] := completely quantum systems of CP*[C]
= (H∗ ⊗ H, ) with completely positive maps

I simplifies to: objects are H ∈ C
arrows H → K are

f

K K

H H

=
√
f

√
f

K K

H H

composition, tensor, dagger, etc. as in C
I “Pure” embedding that preserves tensor, dagger, etc.

C → CP∗q[C]
H 7→ (H∗ ⊗ H, )

f 7→ ff

“Dagger compact closed categories and completely positive maps”
Quantum Physics and Logic, ENTCS 170:139–163, 2007
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Completely quantum systems: map-state duality

f ←→ f̂ := f

f : H∗ ⊗ H → K ∗ ⊗ K f̂ : H∗ ⊗ K → H∗ ⊗ K
Mm →Mn Mmn

f self-adjoint ←→ f̂ preserves adjoints

(f † = f ) (f̂ (a†) = (̂f )(a)†)

f completely positive ←→ f̂ positive

f unital ←→ f̂ has trivial left partial trace

(f (1m) = 1n) (trn(f̂ ) = 1m)

f preserves trace ←→ f̂ has trivial right partial trace

(tr(a) = tr(f (a))) (trm(f̂ ) = 1n)
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(f (1m) = 1n) (trn(f̂ ) = 1m)

f preserves trace ←→ f̂ has trivial right partial trace

(tr(a) = tr(f (a))) (trm(f̂ ) = 1n)
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Completely quantum systems: environment structures

I Can axiomatise dagger compact categories of the form CP∗q[C]
Idea: A = (H∗ ⊗ H, ) always allows map : A→ I

(deleting map partial trace)

I Environment structure: C ↪→ Ĉ with maps A in Ĉ satisfying:

coherence: BA = A B

doubling: f f = g g in C ⇔ f = g in Ĉ

purification: each f̂ in Ĉ is of the form f for some f in C

I If C has environment structure, then CP∗q[C] ∼= Ĉ
I Question: axiomatise CP*[C]

“Environment and classical channels in CQM”
Computer Science Logic LNCS 6247:230–224, 2010
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coherence: BA = A B

doubling: f f = g g in C ⇔ f = g in Ĉ
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Operator algebra: infinite dimension
Different generalisations of Cn and Mn:

I C*-algebras
∗-algebra of operators that is closed

I AW*-algebras
abstract/algebraic version of W*-algebra

I von Neumann algebras / W*-algebras
∗-algebra of operators that is weakly closed

In finite dimension coincide

“On normed rings”
Doklady Akademii Nauk SSSR 23:430–432, 1939

“Projections in Banach algebras”
Annals of Mathematics 53(2):235–249, 1951

“On rings of operators”
Annals of Mathematics 37(1):116–229, 1936

18 / 27



Complete positivity: infinite dimension

I Recall f : (A∗ ⊗ A, )→ (B∗ ⊗ B, ) completely positive if

f =
√
f

√
f

I Can reformulate without cap:

√
f

√
f

I C dagger symmetric monoidal ⇒ CP∗∞[C] symmetric monoidal
C dagger compact ⇒ CP∗∞[C] ∼= CP∗q[C]

I CP∗∞[Hilb] = type I factor W*-algebras and normal c.p. maps

“Pictures of completely positivity in arbitrary dimension”
Information and Computation, 2014
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Quantum and classical interaction: infinite dimension

I If A is an AW*-algebra, so is Mn(A).

I If C ⊆Mn(A) commutative,
then some unitary u ∈Mn(A) makes uCu∗ diagonal.
(and vice versa if A commutative)

I A is injective (and vice versa if A commutative)

“Diagonalizing matrices over AW*-algebras”
Journal of Functional Analysis 264(8):1873–1898, 2013

“Projective topological spaces”
Illinois Journal of Mathematics 2(4):482–489, 1958
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Quantum teleportation
If (A, , ) and (A, , ) are complementary Frobenius algebras in
a dagger compact category C, then the following holds in CP*[C]:

A

input

output

preparation

measurement

correction

classical communication

A

=

A

A

Alice

Bob
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Nonstandard models: complete positivity

Recall Rel:

I Objects are sets

I Arrows are relations

I Tensor product is Cartesian product

I Dagger special Frobenius algebras are groupoids
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Nonstandard models: complete positivity

Recall Rel:

I Objects are sets

I Arrows are relations

I Tensor product is Cartesian product

I Dagger special Frobenius algebras are groupoids

When is a map completely positive?

R

h

g

⇒ R

h−1

g−1

, R

iddom(h)

iddom(g)
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Nonstandard models: complete positivity

Recall Rel:

I Objects are sets

I Arrows are relations

I Tensor product is Cartesian product

I Dagger special Frobenius algebras are groupoids

A relation R ⊆ G×H between groupoids respects inverses when
(g , h) ∈ R implies (g−1, h−1) ∈ R and (iddom(g), iddom(h)) ∈ R.

CP*[Rel] = groupoids and relations respecting inverses.

22 / 27



Nonstandard models: completely quantum systems

Question: What are the algebras (A∗ × A, ) in Rel?

(b2, b1) (a2, a1)

=

b2 a1b1 a2

=

{
(b2, a1) if b1 = a2
undefined otherwise

⇒ identity arrows are (a, a)
⇒ objects correspond to a ∈ A
⇒ dom(a2, a1) = a1, cod(a2, a1) = a2
⇒ (a2, a1) is the unique arrow a1 → a2

Answer: indiscrete groupoids (exactly one process a→ b)
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Nonstandard models: subsystems
I Copyable states X ⊆ G

are connected components

X

=

X X

⇒ X 2 = {(g , h) | g ◦ h ∈ X}
= {(f , g ◦ f −1) | f ∈ X}

⇒ if f ∈ X and dom(f ) = dom(g)
then g ∈ X

⇒ if f ∈ X then f ◦ f defined
I Projections P ⊆ G

are subgroupoids

I (G, ) is commutative 89 Proj(G, ) is distributive

“Relative Frobenius algebras are groupoids”
Journal of Pure and Applied Algebra 217:114–124, 2013

“Compositional quantum logic”
Computation, Logic, Games, and Quantum Foundations 21–36, 2013
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Nonstandard models: subsystems
I Copyable states X ⊆ G are endohomset connected components
I Projections P ⊆ G are subgroupoids
I (G, ) is commutative 89 Proj(G, ) is distributive

(a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c))

Z2 × Z2

{(0, 0)}

Z2 × {0} {(0, 0), (1, 1)} {0} × Z2

{1x , 1y , f , f
−1}

{1x , 1y}

∅

{1x} {1y}

“Relative Frobenius algebras are groupoids”
Journal of Pure and Applied Algebra 217:114–124, 2013

“Compositional quantum logic”
Computation, Logic, Games, and Quantum Foundations 21–36, 2013
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Nonstandard models: direct sums

I CP∗q(FHilb) with direct sums
= CP∗(FHilb)
= ranges of projections in CP∗q(FHilb)

I But CP∗q(Rel) with direct sums
6= CP∗(Rel)
6= ranges of projections in CP∗q(Rel)

I Instead of direct sums, use 2-categories (caveats)

“Completely positive projections and biproducts”
Quantum Physics and Logic, EPTCS 2013

“Mixed quantum states in higher categories”
Quantum Physics and Logic, EPTCS 2014
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No broadcasting?

I Classical mechanics has cloning, quantum mechanics does not
(cannot copy unknown state), nor statistical mechanics!

I (A, ) broadcastable when b = = b for some c.p. b

I Commutative algebras are always broadcastable (take b = )

I In FHilb: if Mn broadcastable, then n = 1
(if (H∗ ⊗ H, ) broadcastable, then H ∼= C)

I In Rel: G broadcastable ⇔ G totally disconnected (only A→ A)

I (A, ) commutative 8→ (A, ) broadcastable

“A generalized no-broadcasting theorem”
Physical Review Letters 99:240501, 2007
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Conclusion

What have we learnt?

I Frobenius algebras model classical and quantum information

I Physical processes are completely positive channels

I Teleportation uses both classical and quantum information

I In Hilbert spaces: operator algebra

I In possibilistic mechanics: groupoids

I Nonstandard models break distributivity, no-broadcasting

Open questions: interaction between classical and quantum
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