Categorical Quantum Mechanics: Frobenius algebra

Chris Heunen University of Oxford

May 19, 2014

Overview

Today:

- Classical communication
 Frobenius algebra, "spiders"
- Observables operator algebra
- Nonstandard models possibilistic quantum mechanics

Tomorrow:

- Physical processes complete positivity
- Classical vs quantum channels state spaces
- Drawing theories apart nonstandard models

Closure: encode composition of (observable) processes in states

Closure: encode composition of (observable) processes in states

Processes compose \rightarrow states compose \rightarrow algebra

Closure: encode composition of (observable) processes in states

Processes compose \rightarrow states compose \rightarrow algebra

states evolve, observables fixed

states fixed, observables evolve

No cloning

Suppose we could copy systems

No cloning

Suppose we could copy systems uniformly

No cloning

Suppose we could copy systems uniformly

Then our dagger compact category must degenerate (the only processes $A \rightarrow A$ are multiplication by a scalar)

"No-cloning in categorical quantum mechanics" Semantic techniques in quantum computation (eds. Gay, Mackie) 1–28, Cambridge Univ. Press, 2010

No deleting

Suppose we could delete systems

No deleting

Suppose we could delete systems uniformly

No deleting

Suppose we could delete systems uniformly

Then our dagger compact category must degenerate (there is at most one process $A \rightarrow B$)

"No-cloning in categorical quantum mechanics" Semantic techniques in quantum computation (eds. Gay, Mackie) 1–28, Cambridge Univ. Press, 2010

A coalgebra is:

An algebra-coalgebra-pair is:

A Frobenius algebra is:

A dagger Frobenius algebra is:

A special dagger Frobenius algebra is:

A classical structure is:

Frobenius algebra: generators and relations

Any connected diagram built from the components of a special Frobenius algebra equals the following normal form:

"2D topological quantum field theories and Frobenius algebras" Journal of Knot Theory and its Ramifications 5:569–587, 1996

"Frobenius algebras and 2D topological quantum field theories" $_{\rm Cambridge\ University\ Press,\ 2003}$

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \diamond vanish.

$$\mathcal{A}_{\mathbf{r}} = \Big| = \mathcal{L}_{\mathbf{r}} \mathcal{P}$$

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \diamond vanish. This kills all \diamond !

$$\mathcal{S}_{\mathbf{r}} = \Big| = \mathcal{L}_{\mathbf{r}} \mathcal{S}$$

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \triangleleft vanish. This kills all \diamond !

$$\mathcal{A}_{\mathcal{P}} = \Big| = \mathcal{A}_{\mathcal{P}} \mathcal{A}$$

Can push chosen past another by associativity.

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \triangleleft vanish. This kills all \diamond !

$$\zeta_{\gamma} = | = \zeta_{\gamma}$$

Can push chosen past another by associativity.

$$(\mathcal{A}_{\mathcal{A}}) = (\mathcal{A}_{\mathcal{A}})$$

► Can meet a \\ in three ways:

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \triangleleft vanish. This kills all \diamond !

$$\zeta_{\mathcal{P}} = | = \zeta_{\mathcal{P}}$$

Can push chosen past another by associativity.

$$\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$$

► Can meet a \\ in three ways:

Push all \checkmark above all \triangleleft , killing all \circ .

Pick a \triangleleft . Push down past all \checkmark . What can we meet on the way?

• Meeting \diamond makes \diamond vanish. This kills all \diamond !

$$\zeta_{\mathcal{P}} = | = \zeta_{\mathcal{P}}$$

Can push chosen past another by associativity.

$$\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$$

► Can meet a \\ in three ways:

Push all \checkmark above all \land , killing all \circ . Use (co)associativity to end up with desired normal form.

Isolate a swap.

Isolate a swap. By assumption region w connected to x or y.

Isolate a swap. By assumption region w connected to x or y.

Case x: connecting subdiagram has strictly less ⋊, so may assume normal form. Use coassociativity to get ⋊ directly above a ♀. Eliminate ⋊ using commutativity.

Isolate a swap. By assumption region w connected to x or y.

- Case x: connecting subdiagram has strictly less ⋊, so may assume normal form. Use coassociativity to get ⋊ directly above a ♀. Eliminate ⋊ using commutativity.
- ► Case y: both subdiagrams w and y strictly less X, so may assume normal form. Local situation:

Isolate a swap. By assumption region w connected to x or y.

- Case x: connecting subdiagram has strictly less ⋊, so may assume normal form. Use coassociativity to get ⋊ directly above a ♀. Eliminate ⋊ using commutativity.
- ► Case y: both subdiagrams w and y strictly less ≻, so may assume normal form. Local situation:

Eliminate all \succ one by one; use noncommutative spider theorem.

Frobenius algebras have duals

In any monoidal category, Frobenius algebras are self-dual

Frobenius algebras have duals

In any monoidal category, Frobenius algebras are self-dual

Frobenius algebras have duals

In any monoidal category, Frobenius algebras are self-dual

So Frobenius algebras give more information than compactness.

(And: Frobenius algebras must be finite-dimensional.)

Frobenius algebra: alternative definitions

Alternative definition 2: a Frobenius algebra is an algebra $(,\diamond,\diamond)$ with a nondegenerate form φ , *i.e.* $\overset{\circ}{\otimes}$ is part of a self-duality.

"Theorie der hyperkomplexen Größen I" Sitzungsberichte der Preussischen Akademie der Wissenschaften 504–537, 1903

"On Frobeniusean algebras II" Annals of Mathematics 42(1):1-21, 1941

Frobenius algebra: alternative definitions

Alternative definition 2: a Frobenius algebra is an algebra $(,\diamond,,\diamond)$ with a nondegenerate form φ , *i.e.* $\overset{\circ}{\otimes}$ is part of a self-duality.

"Theorie der hyperkomplexen Größen I" Sitzungsberichte der Preussischen Akademie der Wissenschaften 504–537, 1903

"On Frobeniusean algebras II" Annals of Mathematics 42(1):1-21, 1941

Frobenius algebra: alternative definitions

Alternative definition 2: a Frobenius algebra is an algebra $(,\diamond,,\diamond)$ with a nondegenerate form φ , *i.e.* $\overset{\circ}{\underset{\sim}{\sim}}$ is part of a self-duality.

Alternative definition 3: a Frobenius algebra is an algebra-coalgebra pair such that $\forall \forall$ is a homomorphism of \triangleleft -modules.

"Theorie der hyperkomplexen Größen I" Sitzungsberichte der Preussischen Akademie der Wissenschaften 504–537, 1903

"On Frobeniusean algebras II" Annals of Mathematics 42(1):1-21, 1941

• Compactness implies unitality:
$$1 := 6$$

• Compactness implies unitality:
$$1 = 6$$

Speciality and Frobenius law imply associativity

Speciality and Frobenius law imply associativity

For a special dagger Frobenius algebra \triangleleft it suffices to check:

$$\begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix} = \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix} \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix} = \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix} = \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix} = \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix}$$

- Speciality and Frobenius law imply associativity
- Commutativity implies one equation suffices for Frobenius law

For a classical structure \triangleleft it suffices to check:

Frobenius algebra: abstract examples

▶ If (A, \diamondsuit) is a Frobenius algebra and $A \xrightarrow{f} B$ is unitary, then *B* is a Frobenius algebra with

Frobenius algebra: abstract examples

▶ If (A, \diamondsuit) is a Frobenius algebra and $A \xrightarrow{f} B$ is unitary, then *B* is a Frobenius algebra with

► If A is any object in a dagger compact category, then A* ⊗ A is a Frobenius algebra with

Any Frobenius algebra (A, \triangleleft) embeds into $(A^* \otimes A, \triangleleft)$:

"On the theory of groups as depending on the equation $\theta^n=1$ " $_{\rm Philosophical Magazine 7(42):40-47,\ 1854}$

Any Frobenius algebra (A, \triangleleft) embeds into $(A^* \otimes A, \triangleleft)$:

"On the theory of groups as depending on the equation $\theta^n=1$ " $_{\rm Philosophical Magazine 7(42):40–47, 1854}$

Any Frobenius algebra (A, \triangleleft) embeds into $(A^* \otimes A, \triangleleft)$:

"On the theory of groups as depending on the equation $\theta^n=1$ " $_{\rm Philosophical Magazine 7(42):40–47, 1854}$

Any Frobenius algebra (A, \triangleleft) embeds into $(A^* \otimes A, \triangleleft)$:

"On the theory of groups as depending on the equation $\theta^n=1$ " $_{\rm Philosophical Magazine 7(42):40–47,\ 1854}$

Operator algebra: concretely

A *-algebra is a subset $A \subseteq \mathbb{M}_n(\mathbb{C})$ closed under multiplication, addition, adjoints, scalar multiplication, and contains the identity. $(1 \in A, \text{ and } a, b \in A, \lambda \in \mathbb{C} \Rightarrow ab, a + b, \lambda a, a^{\dagger} \in A)$

Operator algebra: concretely

A *-algebra is a subset $A \subseteq \mathbb{M}_n(\mathbb{C})$ closed under multiplication, addition, adjoints, scalar multiplication, and contains the identity. $(1 \in A, \text{ and } a, b \in A, \lambda \in \mathbb{C} \Rightarrow ab, a + b, \lambda a, a^{\dagger} \in A)$

Special dagger Frobenius algebras (A, \checkmark) in the category of Hilbert spaces are precisely *-algebras:

Can axiomatize *-algebras without acting on a Hilbert space.

"Imbedding of normed rings into operators on a Hilbert space" Matematicheskii Sbornik 12(2):197–217, 1943

- Can axiomatize *-algebras without acting on a Hilbert space.
- Any *-algebra is of the form $A \cong \mathbb{M}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{M}_{n_k}(\mathbb{C})$

"Imbedding of normed rings into operators on a Hilbert space" Matematicheskii Sbornik 12(2):197–217, 1943

- ► Can axiomatize *-algebras without acting on a Hilbert space.
- Any *-algebra is of the form $A \cong \mathbb{M}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{M}_{n_k}(\mathbb{C})$
- Commutative *-algebras are of the form $A \cong \mathbb{C} \oplus \cdots \oplus \mathbb{C}$

"On normed rings" Doklady Akademii Nauk SSSR 23:430–432, 1939

"Imbedding of normed rings into operators on a Hilbert space" Matematicheskii Sbornik 12(2):197–217, 1943

- ► Can axiomatize *-algebras without acting on a Hilbert space.
- Any *-algebra is of the form $A \cong \mathbb{M}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{M}_{n_k}(\mathbb{C})$
- Commutative *-algebras are of the form $A \cong \mathbb{C} \oplus \cdots \oplus \mathbb{C}$
- Classical structures of Hilbert spaces copy an orthonormal basis

 $\begin{array}{c} \left\langle \varphi' \colon \left| \, i \right. \right\rangle \mapsto \left| \, i \right. \right\rangle \otimes \left| \, i \right. \rangle \qquad \varphi \colon \left| \, i \right. \rangle \mapsto 1 \end{array}$

"On normed rings" Doklady Akademii Nauk SSSR 23:430-432, 1939

"A new description of orthogonal bases" Mathematical Structures in Computer Science 23(3):555–567, 2013

► Frobenius algebras in **Hilb** with a unit are finite-dimensional

- ► Frobenius algebras in **Hilb** with a unit are finite-dimensional
- An H*-algebra is an associative special (A, , ,) with an involution i: Hom(I, A) → Hom(I, A) on its states such that

"H*-algebras and nonunital Frobenius algebras" Clifford Lectures, American Mathematical Society Proceedings 71:1–24, 2012

- ► Frobenius algebras in **Hilb** with a unit are finite-dimensional
- An H*-algebra is an associative special (A, , ,) with an involution i: Hom(I, A) → Hom(I, A) on its states such that

► H*-algebras in **Hilb** are of the form $A \cong \bigoplus_k M_k$ with $M_i = \{a: J \otimes J \to \mathbb{C} \mid \sum_{i,j} |a_{ij}|^2 < \infty\}$

"Structure theorems for a special class of Banach algebras" $\ensuremath{\mathsf{Transactions}}$ of the American Mathematical Society 57(3):364–386, 1945

"H*-algebras and nonunital Frobenius algebras" Clifford Lectures, American Mathematical Society Proceedings 71:1–24, 2012

- ► Frobenius algebras in **Hilb** with a unit are finite-dimensional
- An H*-algebra is an associative special (A, , ,) with an involution i: Hom(I, A) → Hom(I, A) on its states such that

► H*-algebras in **Hilb** are of the form $A \cong \bigoplus_k M_k$ with $M_i = \{a: J \otimes J \to \mathbb{C} \mid \sum_{i,j} |a_{ij}|^2 < \infty\}$

Commutative H*-algebras in Hilb copy an orthonormal basis

"Structure theorems for a special class of Banach algebras" $\ensuremath{\mathsf{Transactions}}$ of the American Mathematical Society 57(3):364–386, 1945

"H*-algebras and nonunital Frobenius algebras" Clifford Lectures, American Mathematical Society Proceedings 71:1–24, 2012

Drawing theories apart

Possibilistic quantum theory:

- systems: sets A
- ▶ processes $A \rightarrow B$: relations $R \subseteq A \times B$
- ▶ composition: $S \circ R = \{(a, c) \mid \exists b : (a, b) \in R, (b, c \in S)\}$

parallel composition: Cartesian product

Category of sets and relations:

▶ scalars: Boolean values ($\{true, false\}, \land, \lor$)

Category of sets and relations:

▶ scalars: Boolean values ($\{true, false\}, \land, \lor$)

 $(S \circ R)_{a,c} = \bigvee_b S_{b,c} \wedge R_{a,b}$ is composition of matrices over $\{0,1\}!$

Category of sets and relations:

Scalars: Boolean values ({true, false}, ∧, ∨) (S ∘ R)_{a,c} = ∨_b S_{b,c} ∧ R_{a,b} is composition of matrices over {0,1}!

cups:

for bijection $f: A \rightarrow B$

Category of sets and relations:

Scalars: Boolean values ({true, false}, ∧, ∨) (S ∘ R)_{a,c} = ∨_b S_{b,c} ∧ R_{a,b} is composition of matrices over {0,1}!

cups:

for bijection $f: A \rightarrow B$ ("one-time pad")

trace: detects whether relation has fixed point

dimension: detects whether set is empty

Groupoids

A groupoid is a category whose processes are invertible

Frobenius algebras: possibilistic

The set of arrows of a groupoid is a Frobenius algebra in Rel:

"Quantum and classical structures in nondeterministic computation" Lecture Notes in Artificial Intelligence 5494:143–157, 2009

"Relative Frobenius algebras are groupoids" Journal of Pure and Applied Algebra 217:114–124, 2013

Frobenius algebras: possibilistic

The set of arrows of a groupoid is a Frobenius algebra in Rel:

A Frobenius algebra in **Rel** is the set of arrows of a groupoid: \diamondsuit is a partial function because of speciality, and for $f: x \rightarrow y$

"Quantum and classical structures in nondeterministic computation" Lecture Notes in Artificial Intelligence 5494:143–157, 2009

"Relative Frobenius algebras are groupoids" Journal of Pure and Applied Algebra 217:114–124, 2013

Conclusion

What have we learnt?

- Frobenius law very powerful
- In Hilbert spaces: operator algebra
- In possibilistic mechanics: groupoids
- Classical structures: copy orthonormal basis

Conclusion

What have we learnt?

- Frobenius law very powerful
- In Hilbert spaces: operator algebra
- In possibilistic mechanics: groupoids
- Classical structures: copy orthonormal basis

Tomorrow:

- Physical processes: maps between state spaces
- Complete positivity: channels between operator algebras
- Nonstandard models: different quantum information theory