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Overview

Today:

I Classical communication
Frobenius algebra, “spiders”

I Observables
operator algebra

I Nonstandard models
possibilistic quantum mechanics

Tomorrow:

I Physical processes
complete positivity

I Classical vs quantum channels
state spaces

I Drawing theories apart
nonstandard models
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Introduction

state (observable) process

Choi–Jamio lkowski←→

Closure: encode composition of (observable) processes in states

Processes compose → states compose → algebra

I states evolve, observables fixed

I states fixed, observables evolve
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No cloning
Suppose we could copy systems

uniformly

= =

f

B

B B

A

=
f f

A A

A

B B

A ⊗ B

A ⊗ B A ⊗ B

=

A B

A B A B

Then our dagger compact category must degenerate
(the only processes A→ A are multiplication by a scalar)

“No-cloning in categorical quantum mechanics”
Semantic techniques in quantum computation (eds. Gay, Mackie) 1–28, Cambridge Univ. Press, 2010
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No deleting
Suppose we could delete systems

uniformly

= =

f

B

A

= A A ⊗ B = A B

Then our dagger compact category must degenerate
(there is at most one process A→ B)

“No-cloning in categorical quantum mechanics”
Semantic techniques in quantum computation (eds. Gay, Mackie) 1–28, Cambridge Univ. Press, 2010
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Frobenius algebra

A coalgebra is:

= = =
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Frobenius algebra

An algebra-coalgebra-pair is:

= = =

= = =
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Frobenius algebra

A Frobenius algebra is:
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Frobenius algebra

A dagger Frobenius algebra is:

= = =

= =
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Frobenius algebra

A special dagger Frobenius algebra is:

= = =

=

=

= =
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Frobenius algebra

A classical structure is:

= = =

= =

= =
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Frobenius algebra: generators and relations

Any connected diagram built from the components of a special
Frobenius algebra equals the following normal form:

“2D topological quantum field theories and Frobenius algebras”
Journal of Knot Theory and its Ramifications 5:569–587, 1996

“Frobenius algebras and 2D topological quantum field theories”
Cambridge University Press, 2003
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Proof of noncommutative spider theorem
Pick a . Push down past all . What can we meet on the way?

I Meeting makes vanish.

This kills all !

= =

I Can push chosen past another by associativity.

=

I Can meet a in three ways:

= = =

Push all above all , killing all .
Use (co)associativity to end up with desired normal form.
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Proof of commutative spider theorem

Isolate a swap.

By assumption region w connected to x or y .

w x

y z

I Case x : connecting subdiagram has strictly less , so may
assume normal form. Use coassociativity to get directly
above a . Eliminate using commutativity.

I Case y : both subdiagrams w and y strictly less , so may
assume normal form. Local situation:

= = = =

Eliminate all one by one; use noncommutative spider theorem.

9 / 22



Proof of commutative spider theorem

Isolate a swap. By assumption region w connected to x or y .

w x

y z

I Case x : connecting subdiagram has strictly less , so may
assume normal form. Use coassociativity to get directly
above a . Eliminate using commutativity.

I Case y : both subdiagrams w and y strictly less , so may
assume normal form. Local situation:

= = = =

Eliminate all one by one; use noncommutative spider theorem.

9 / 22



Proof of commutative spider theorem

Isolate a swap. By assumption region w connected to x or y .

w x

y z

I Case x : connecting subdiagram has strictly less , so may
assume normal form. Use coassociativity to get directly
above a . Eliminate using commutativity.

I Case y : both subdiagrams w and y strictly less , so may
assume normal form. Local situation:

= = = =

Eliminate all one by one; use noncommutative spider theorem.

9 / 22



Proof of commutative spider theorem

Isolate a swap. By assumption region w connected to x or y .

w x

y z

I Case x : connecting subdiagram has strictly less , so may
assume normal form. Use coassociativity to get directly
above a . Eliminate using commutativity.

I Case y : both subdiagrams w and y strictly less , so may
assume normal form. Local situation:

= = = =

Eliminate all one by one; use noncommutative spider theorem.

9 / 22



Proof of commutative spider theorem

Isolate a swap. By assumption region w connected to x or y .

w x

y z

I Case x : connecting subdiagram has strictly less , so may
assume normal form. Use coassociativity to get directly
above a . Eliminate using commutativity.

I Case y : both subdiagrams w and y strictly less , so may
assume normal form. Local situation:

= = = =

Eliminate all one by one; use noncommutative spider theorem.

9 / 22



Frobenius algebras have duals

In any monoidal category, Frobenius algebras are self-dual

A A

:=

⇒ = = =

So Frobenius algebras give more information than compactness.

(And: Frobenius algebras must be finite-dimensional.)
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Frobenius algebra: alternative definitions

Alternative definition 2: a Frobenius algebra is an algebra ( , )
with a nondegenerate form , i.e. is part of a self-duality.

= =

:=

⇒ = = =

Alternative definition 3: a Frobenius algebra is an algebra-coalgebra
pair such that is a homomorphism of -modules.

“Theorie der hyperkomplexen Größen I”
Sitzungsberichte der Preussischen Akademie der Wissenschaften 504–537, 1903

“On Frobeniusean algebras II”
Annals of Mathematics 42(1):1–21, 1941
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Frobenius algebra: minimal definition

I Compactness implies unitality: :=

I Speciality and Frobenius law imply associativity

I Commutativity implies one equation suffices for Frobenius law

For a it suffices to check:

= =
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Frobenius algebra: abstract examples
I If (A, ) is a Frobenius algebra and A

f−→ B is unitary,
then B is a Frobenius algebra with

B

BB

:=

f

f † f †

B

:= f

I If A is any object in a dagger compact category,
then A∗ ⊗ A is a Frobenius algebra with

A∗ ⊗ A

A∗ ⊗ AA∗ ⊗ A

:=
A∗ ⊗ A

:=
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Operator algebra: embedding
Any Frobenius algebra (A, ) embeds into (A∗ ⊗ A, ):

e :=

I is embedding: = =

I preserves multiplication: = =

I preserves unit: = =

“On the theory of groups as depending on the equation θn = 1”
Philosophical Magazine 7(42):40–47, 1854

“Categorical formulation of finite-dimensional quantum algebras”
Communications in Mathematical Physics 304(3):765–796, 2011
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Operator algebra: concretely

A ∗-algebra is a subset A ⊆Mn(C) closed under multiplication,
addition, adjoints, scalar multiplication, and contains the identity.
(1 ∈ A, and a, b ∈ A, λ ∈ C⇒ ab, a + b, λa, a† ∈ A)

Special dagger Frobenius algebras (A, ) in the category of
Hilbert spaces are precisely ∗-algebras:

i := ⇒
i

e

= = =
e
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Operator algebra: abstractly

I Can axiomatize ∗-algebras without acting on a Hilbert space.

I Any ∗-algebra is of the form A ∼= Mn1(C)⊕ · · · ⊕Mnk (C)

I Commutative ∗-algebras are of the form A ∼= C⊕ · · · ⊕ C

I Classical structures of Hilbert spaces copy an orthonormal basis

: | i 〉 7→ | i 〉 ⊗ | i 〉 : | i 〉 7→ 1

“On normed rings”
Doklady Akademii Nauk SSSR 23:430–432, 1939

“Imbedding of normed rings into operators on a Hilbert space”
Matematicheskii Sbornik 12(2):197–217, 1943

“A new description of orthogonal bases”
Mathematical Structures in Computer Science 23(3):555–567, 2013
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Operator algebra: infinite dimension

I Frobenius algebras in Hilb with a unit are finite-dimensional

I An H*-algebra is an associative special (A, ) with an
involution i : Hom(I ,A)→ Hom(I ,A) on its states such that

i(a)
=

a
=

a

I H*-algebras in Hilb are of the form A ∼=
⊕

k Mk with

Mi = {a : J ⊗ J → C |
∑

i ,j |aij |2 <∞}

I Commutative H*-algebras in Hilb copy an orthonormal basis

“Structure theorems for a special class of Banach algebras”
Transactions of the American Mathematical Society 57(3):364–386, 1945

“H*-algebras and nonunital Frobenius algebras”
Clifford Lectures, American Mathematical Society Proceedings 71:1–24, 2012
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Drawing theories apart

Possibilistic quantum theory:

I systems: sets A

I processes A→ B: relations R ⊆ A× B

I composition: S ◦ R = {(a, c) | ∃b : (a, b) ∈ R, (b, c ∈ S)}

A B B C
R S

I parallel composition: Cartesian product

18 / 22



Nonstandard models
Category of sets and relations:

I scalars: Boolean values ({true, false},∧,∨)

(S ◦R)a,c =
∨

b Sb,c ∧Ra,b is composition of matrices over {0, 1}!

I cups:

= {(∗, (a, f (a))) | a ∈ A} ⊆ 1× (A× B)

for bijection f : A→ B (“one-time pad”)

a

a f−1(a) = b f (b)

f (b)

=

a

f (b) = f (f−1(a)) = a

I trace: detects whether relation has fixed point

I dimension: detects whether set is empty

19 / 22
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Groupoids

A groupoid is a category whose processes are invertible

20 / 22



Frobenius algebras: possibilistic
The set of arrows of a groupoid is a Frobenius algebra in Rel:

g ◦ f

fg

,
idx

⇒

l = h ◦ g−1

h = l ◦ g

g

k = g ◦ f

f = g−1 ◦ k

, l ◦ k = h ◦ f

l k

h f

A Frobenius algebra in Rel is the set of arrows of a groupoid:
is a partial function because of speciality, and for f : x → y

h ◦ g

h

g

f

g ◦ f

=
(h ◦ g) ◦ f

= h ◦ (g ◦ f )

h ◦ g f

h g ◦ f

f

f idx

idy f

=

f

idy

f−1

idx

f

“Quantum and classical structures in nondeterministic computation”
Lecture Notes in Artificial Intelligence 5494:143–157, 2009

“Relative Frobenius algebras are groupoids”
Journal of Pure and Applied Algebra 217:114–124, 2013
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Conclusion

What have we learnt?

I Frobenius law very powerful

I In Hilbert spaces: operator algebra

I In possibilistic mechanics: groupoids

I Classical structures: copy orthonormal basis

Tomorrow:

I Physical processes: maps between state spaces

I Complete positivity: channels between operator algebras

I Nonstandard models: different quantum information theory
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