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Outline



What am I trying to do?

1 Describe the general notion of duality
2 Work through three specific dualities:

• Stone,
• Gelfand and
• Pontryagin.



What I am not trying to do

• Review all possible dualities.
• Discuss my recent work on automata minimization or

Markov processes.
• Prove everything in detail.
• Discuss all the physical connections in detail.



Examples of duality principles

• “and” vs “or” in propositional logic
• Linear programming
• Electric and magnetic fields
• Controllability and observability in control theory: Kalman
• State-transformer and weakest-precondition semantics:

Plotkin, Smyth
• Forward and backward dataflow analyses
• Induction and co-induction.



What is duality intuitively ?

• Two types of structures: Foo and Bar.
• Every Foo has an associated Bar and vice versa.
• V −→ S, S −→ V ′; V and V ′ are isomorphic.
• Two apparently different structures are actually two

different descriptions of the same thing.
• More importantly, given a map: f : S1 −→ S2 we get a map

f̂ : V2 −→ V1 and vice versa;
• note the reversal in the direction of the arrows.
• The two mathematical universes are mirror images of each

other.
• Two completely different sets of theorems that one can

use.



Examples of such dualities

• Vector spaces and vector spaces.
• Boolean algebras and Stone spaces. [Stone]
• State transformer semantics and weakest precondition

semantics. [DeBakker,Plotkin,Smyth]
• Logics and Transition systems. [Bonsangue, Kurz,...]
• Measures and random variables. [Kozen]
• LP and Lq spaces with 1

p + 1
q = 1.

• Commutative unital C*-algebras and compact Hausdorff
spaces. [Gelfand, Stone]



Background

• Basic category theory: functors, natural transformations,
adjunctions.

• Elementary algebra: linear algebra, very basic group
theory.

• Topology: open neighbourhood, closed sets,
connectedness, separation axioms, compactness,
continuous functions, homeomorphisms.

• “The reader should not be discouraged if (s)he does not
have the prerequisites to read the prerequisites.” - Paul
Halmos.



Maps matter!

• An essential aspect of mathematics: structure-preserving
maps between objects.

• Interesting constructions on objects (usually) have
corresponding constructions on the maps.

• Compositions are preserved or reversed.
• This is functoriality.
• From this one can often conclude invariance properties.



Duality categorically
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Duality categorically

Given
A ∈ C

f
��

B ∈ C



Duality categorically

We get
A ∈ C

f
��

F(A) ∈ D

B ∈ C F(B) ∈ D



Duality categorically

and
A ∈ C

f
��

F(A) ∈ D

B ∈ C F(B) ∈ D.

F(f )
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Duality categorically

Similarly, given
C ∈ D

g
��

D ∈ D



Duality categorically

We get
G(C) ∈ C C ∈ D

g
��

G(D) ∈ C D ∈ D



Duality categorically

and
G(C) ∈ C C ∈ D

g
��

G(D) ∈ C

G(g)

OO

D ∈ D.



Isomorphisms

We have isomorphisms

A ' G(F(A)) and C ' F(G(C)).



Duality categorically

Categorical Duality

We have a (contravariant) adjunction between categories C and
D, which is an equivalence of categories.

Often obtained by looking at maps into an object living in both
categories: a schizophrenic object.



A duality that you know and love (I)

• Finite-dimensional vector space V over, say, C.
• Dual space V∗ of linear maps from V to C.
• V∗ has the same dimension as V and a (basis-dependent)

isomorphism between V and V∗.
• The double dual V∗∗ is also isomorphic to V
• with a “nice” canonical isomorphism:

v ∈ V 7→ λσ ∈ V∗.σ(v).



A duality that you know and love (II)

U θ // V

U∗ V∗
θ∗
oo

Given a linear maps θ between vector spaces U and V we get a
map θ∗ in the opposite direction between the dual spaces:

θ∗(σ ∈ V∗)(u ∈ U) = σ(θ(u)).



Boolean algebras

A Boolean algebra is a set A equipped with two constants, 0, 1,
a unary operation (·)′ and two binary operations ∨,∧ which
obey the following axioms, p, q, r are arbitrary members of A:

0′ = 1 1′ = 0
p ∧ 0 = 0 p ∨ 1 = 1
p ∧ 1 = p p ∨ 0 = p

p ∧ p′ = 0 p ∨ p′ = 1
p ∧ p = p p ∨ p = p



Boolean algebras II

p′′ = p

(p ∧ q)′ = p′ ∨ q′

(p ∨ q)′ = p′ ∧ q′

p ∧ q = q ∧ p

p ∨ q = q ∨ p

p ∧ (q ∧ r) = (p ∧ q) ∧ r

p ∨ (q ∨ r) = (p ∨ q) ∨ r

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

The operation ∨ is called join, ∧ is called meet and (·)′ is called
complement. Maps are Boolean algebra homomorphisms.



Order

A Boolean algebra has a natural order.

Order from the algebraic structure

p ≤ q iff p = p ∧ q (or q = p ∨ q).

Boolean algebra homomorphisms are order preserving.



Examples of Boolean algebras

• All subsets of a set X, the powerset : P(X).
• The regular (int(cl(A)) = A) open sets of a topological

space.
• The collection of (equivalence classes of) formulas of

classical propositional logic.
• A non-example: all the open sets of R.



Atoms

Definition
An element a of a Boolean algebra B that satisfies (i) 0 < a and
(ii) if 0 ≤ p ≤ a then 0 = p or a = p is called an atom.

Example

Singleton set in P(X).

Definition
A Boolean algebra in which every element is the join of atoms
below it is called atomic.

Example

A non-example: the Boolean algebra generated by the
half-closed intervals of R is not atomic.



CABAs

Definition
An atomic Boolean algebra that is complete (every subset has
a meet and a join) is called a CABA.
Every finite Boolean algebra is a CABA.



Representation theorem for CABAs

Theorem
A CABA is isomorphic to the set of all subsets of some set with
the usual set-theoretic operations as the Boolean algebra
structure.

Proof idea: If B is a Boolean algebra and A is its set of atoms
then B is isomorphic to the power set of A.

Corollary

A Boolean algebra is isomorphic to the power set of some set
iff it is complete and atomic.



Compact Hausdorff space

Compact

A topological space is said to be compact if every open cover
has a finite subcover.

Closed and bounded subsets of Rn are compact.

Hausdorff
A topological space X is said to be Hausdorff (T2) if for every
pair of distinct points x, y there are disjoint open sets U,V with
x ∈ U and y ∈ V.

Compact Hausdorff spaces are “on the edge”: if you add more
open sets the topology fails to be compact and if you remove
some open sets it fails to be Hausdorff.



Separation axioms

T0

A topological space X is said to be T0 if for every pair of distinct
points x and y there is an open set containing one of them but
not the other.

T1

A topological space X is said to be T1 if for every pair of distinct
points x, y there is an open set that contains x but not y and
another open set that contains y but not x.

The conditions T0, T1 and T2 form a natural progression: each is
strictly more stringent that its predecessor.



Regular and normal spaces

Regular (T3)

A topological space X is said to be regular if it is T1 and for
every point x and closed set C with x 6∈ C there are disjoint open
sets U and V such that x ∈ U and C ⊂ V.

Normal (T4)

A topological space X is said to be normal if for every pair of
disjoint closed subsets C,D there are disjoint open subsets
U,V such that C ⊂ U and D ⊂ V.

A compact Hausdorff space is automatically normal, hence also
regular.



Connectedness

Connected
A topological space is said to be connected if there is no
proper subset that is both open and closed. Equivalently, there
are not two disjoint open sets whose union is the whole space.

A maximal connected subset (in the subspace topology) is
called a connected component.

Totally disconnected

A topological space is said to be totally disconnected if the
only connected components are the singletons.

The Cantor set is totally disconnected. The irrational numbers
are another example of a totally disconnected space.



Zero dimensional spaces

A set that is both closed and open is called clopen. The
existence of a non-trivial clopen set means that the space is not
connected.

Zero dimensional space

A topological space X is said to be zero dimensional if there is
a base for the topology consisting of clopen sets.

For (locally) compact Hausdorff spaces we have

Proposition

A locally compact Hausdorff space is totally disconnected iff it
is zero dimensional.



Stone spaces

Stone spaces

A Stone space is a zero-dimensional compact Hausdorff
space (hence totally disconnected).

These were called Boolean spaces by early authors.

Profinite groups are an example of a Stone space.

Note that the collection of clopen sets forms a Boolean algebra.

Stone spaces with continuous maps as the morphisms form a
category called Stone.



A useful fact

Lemma
A continuous bijection from a compact space to a Hausdorff
space is a homeomorphism.

Corollary

A continuous bijection from a Stone space to a compact
Hausdorff space is a homeomorphism and hence, maps
clopens to clopens.



The grand theorem

BA

U

$$
Stoneop

Cl

cc

We need to describe the functors U and Cl and establish the
existence of natural isomorphisms.



Filters and ultrafilters
Filter
A filter F in a Boolean algebra is a subset of B such that:

1 1 ∈ F,
2 p, q ∈ F implies that p ∧ q ∈ F and
3 p ∈ F and p ≤ q implies that q ∈ F.

Ultrafilters
An ultrafilter U in a Boolean algebra B is a filter of B such that
for every element b ∈ B, either b ∈ U or b′ ∈ U.

Observation
If B is a Boolean algebra and 2 is the two-element Boolean
algebra and h : B −→ 2 is a homomorphism then h−1({1}) is an
ultrafilter. All ultrafilters can be described this way.



From Boolean algebras to Stone
spaces

1 View 2 as a topological space with the discrete topology.
2 Let B be a Boolean algebra; the space 2B of arbitrary

functions, endowed with the product topology, is a Stone
space.

3 The basic clopens are of the form {f | f (b) = δ(b), b ∈ L},
where L is a finite subset of B and δ : L −→ 2 is any function.

4 The subset S ⊂ 2B of homomorphisms forms a closed
subset and hence is a Stone space in its own right.

5 We can identify S with the space of ultrafilters of B.



And back

1 The basic clopens of S are ∀b ∈ B. Ub = {u | b ∈ u}.
2 In short, the clopens of S correspond to the elements of B.
3 Not all opens are clopen of course.
4 Note that clopens always form a Boolean algebra.
5 S is called the dual space of B.
6 Given a Stone space S the Boolean algebra of its clopens

is called the dual algebra of S.



Isomorphisms

Isomorphism theorem 1

If B is a Boolean algebra and S its dual space and A is the dual
algebra of S, then B and A are isomorphic as Boolean algebras.

Isomorphism theorem 2

If S is a Stone space and A its dual algebra and X is the dual
space of A, then S and X are homeomorphic as topological
spaces.

Uses the “useful fact.”



Functorial version

1 Cl from Stone to BA: given f : X −→ Y in Stone,
define Cl(f ) = f−1 : Cl(Y) −→ Cl(X).

2 U : BA −→ Stone: given h : A −→ B in BA, define
U(h) : U(B) −→ U(A) by g : B −→ 2 7→ g ◦ h(: A −→ 2).

Stone duality

Let S be a Stone space and B a Boolean algebra. There is a
natural bijection between the hom-sets BA(B, Cl(S)) and
Stone(S,U(B))) (or Stoneop(U(B), S).

We have an adjunction Uop a Cl, in fact we have an equivalence
of categories, because the natural transformations associated
with the adjunction are isomorphisms.



Schizophrenia

• What is 2?
• It is a two-element Boolean algebra: U(B) = BA(B, 2).
• It is also a two-point topological space, in fact a Stone

space
• and Cl(S) = Stone(S, 2).
• Many dualities are mediated by such “schizophrenic”

objects.



Prime spectrum

• In a lattice a filter, F, is said to be prime if a ∨ b ∈ F implies
that a ∈ F or b ∈ F.

• Unlike in Boolean algebras, prime filters are not the same
thing as maximal filters.

• The prime spectrum of a lattice is the collection of prime
filters of the lattice.



Priestley duality

• Priestley defined a new topology on the prime spectrum of
a bounded distributive lattice.

• This topology is both compact and Hausdorff.
• However, there is also an order structure that plays a

crucial role.
• A Priestley space is a compact ordered topological space

where the clopen down-sets separate points.
• One gets a duality theorem between Priestley spaces and

bounded distributive lattices.



Stonean spaces

• A compact Hausdorff space is said to be Stonean if the
closure of every open set is open (hence clopen).

• Every Stonean space is a Stone space but not vice versa.
• There is a duality between Stonean spaces and complete

Boolean algebras: important in the theory of C∗ algebras.
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