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KHs: Compact Hausdorff spaces, continuous functions.
CUCstar: Commutative, unital, (complex) C∗ algebras,
with ∗-homomorphisms as the morphisms.
C(·): continuous complex-valued functions.
Ω: “characters” = “maximal ideal space”.



Stone-Gelfand

• Strangely, there is also a duality between real
(commutative, unital) C∗-algebras and compact Hausdorff
spaces: Stone-Gelfand.

• Very thoroughly treated in Stone Spaces by Johnstone.
• Hence there is an equivalence of categories between the

two types of C∗ algebras.
• In real C∗ algebras the ∗ structure is trivial.
• The complex version uses different mathematics and
• is much more relevant for quantum mechanics.



A word from our sponsor

• In traditional treatments of quantum mechanics the state
space is a Hilbert space.

• Most quantities of interest are modelled by (bounded ?)
operators on the Hilbert space.

• These form a complex C∗ algebra; the ∗ operation is
adjoint.

• Observables are self-adjoint, but these do not form a
sub-algebra of the C∗ algebra of all bounded operators.

• The observables can be viewed as a real C∗-algebra but
one loses the essential role played by the complex
numbers in quantum mechanics.



Rings
Commutative unital rings
A commutative unital ring R is a set containing two
distinguished elements 0 and 1 and two binary operations +
and × satisfying:
• (R,+, 0) forms an abelian group,
• (R,×, 1) forms a commutative monoid,
• × distributes over +.

• Integers Z, reals R, complex numbers C.
• Polynomials in n variables with coefficients in Z or, indeed

any commutative ring.
• A non-example: matrices with entries in a ring.
• Complex-valued continuous functions from a compact

Hausdorff space X to C.



Ideals in a ring

Let R be a fixed commutative ring. Henceforth, all rings are
assumed to be unital unless otherwise stated.

Ideals
An ideal I in R is a subset that is closed under + and if x ∈ I
and r ∈ R then r · x ∈ I.
Typical example: all multiples of, say, 9 in Z. Write (9) for this
ideal; the ideal generated by 9.

We can define ∼I by r ∼I r′ if r − r′ ∈ I and R/I as the set of
equivalence classes of ∼I; R/I is also a (commutative) ring.

The ring Z/(9) has an element [3] with [3] · [3] = [9] = [0]. Such
an element is called nilpotent.



Maximal and prime ideals

Maximal ideal
An ideal I of R is called a maximal ideal if there are no ideals
strictly containing it and strictly contained in R.

The ideal (9) is not maximal, it is contained in (3), which is a
maximal ideal.

Prime ideal
An ideal I is a prime ideal if whenever xy ∈ I then x ∈ I or y ∈ I.

If p is a prime number then (p) is a prime ideal in Z.
Maximal ideals are always prime but not conversely. In Z (0) is
prime but not maximal.



The ring C(X)

• Let X be a compact Hausdorff space and let C(X) be the
ring of complex-valued continuous functions on X.

• C(X) is clearly a commutative unital ring.
• It has a lot more structure than that.
• Fix x ∈ X then Mx := {f ∈ C(X) | f (x) = 0} is a maximal

ideal of C(X).
• It has no nontrivial nilpotent elements.



Points define maximal ideals

• Fix a compact Hausdorff space X.
• In the ring C(X), fix x ∈ X; the set Mx = {f | f (x) = 0} is a

maximal ideal.
• Clearly Mx is an ideal.
• Not hard to see that it is maximal: any attempt to enlarge it

will lead to a nowhere vanishing function f in the ideal.
Then 1

f is a well-defined continuous function so λx.1 in the
ideal.

• We have a map Γ : X −→M(C(X)), where M(R) is the set
of maximal ideals of a ring R.

• By Urysohn’s Lemma, Γ is injective.



Maximal ideals define points

• Given a maximal ideal M there exists x ∈ X such that
M = Mx.

• Suppose not, then ∀x ∈ X, ∃fx ∈ M with fx(x) 6= 0.
• Since fx is continuous there is an open set Ox 3 x where fx

is non-vanishing.
• The {Ox|x ∈ X} form a cover of X, so by compactness,

there is a finite subcover: {(x1, f1,O1), . . . , (xk, fk,Ok)}.

•
k∑

i=1

f 2
i is nowhere vanishing and in M.

• Γ is bijective.



Getting the topology of X

• Given f ∈ C(X), define Of = {x ∈ X|f (x) 6= 0}: base for the
topology of X.

• Let Uf = {M ∈M(C(X))|f 6∈ M}: base for a topology on
M(C(X)).

• Easy to see that Γ(Of ) = Uf , so Γ is a homeomorphism.



Are we there yet?

• No! The inverse image of a maximal ideal is not
necessarily a maximal ideal so we cannot make these
constructions functorial.

• That’s why algebraic geometers use the prime ideals and
define the spectrum of a ring in terms of prime ideals.

• Before I get mired in scheme theory let me beat a hasty
retreat!

• C(X) cannot possibly produce arbitrary commutative rings:
there will never be nilpotent elements.

• So what kind of rings do arise as C(X) for some compact
Hausdorff space X?

• Answer: C∗-algebras. This is Gelfand duality.



Algebras
All vector spaces are assumed to be over the field of complex
numbers.

Algebras
An algebra is a vector space equipped with an associative
multiplication operation ·, that is bilinear in its arguments.

Matn: n× n matrices with entries in C; a noncommutative
example.

Bounded linear operators on a Hilbert space H; written as
B(H). The multiplication is composition. This is also
noncommutative.

The space C(X) with pointwise multiplication; a commutative
algebra.



Banach algebras

Norm and Banach space
A norm on a vector space V is a function ‖·‖ : V −→ R
satisfying:
• ‖αv‖ =| α | ‖v‖
• ‖u + v‖ ≤ ‖u‖+ ‖v‖
• ‖v‖ = 0 iff v = 0.

A vector space with a norm is called a normed space and a
normed space that is complete in the metric induced by the
norm is called a Banach space.

A Banach algebra A is an algebra and a Banach space with a
norm ‖·‖ : A −→ R+ such that ‖ab‖ ≤ ‖a‖ ‖b‖.
It is easy to see that the multiplication operation is jointly
continuous in the topology induced by the norm.



Examples of Banach algebras
• If X is any set then l∞(X) the set of bounded

complex-valued functions with pointwise operations and
the sup norm is a unital Banach algebra.

• If X is a topological space then Cb(X) the space of all
bounded continuous complex-valued functions is a unital
Banach algebra, in fact a closed subalgebra of l∞(X).

• If X is compact, then the space of all continuous
complex-valued functions of X (written C(X)) is a unital
Banach algebra, being the same as Cb(X).

• If X is a locally compact Hausdorff space we say that a
function f : X −→ C vanishes at infinity if
∀ε > 0, {x ∈ X| | f (x) |≥ ε} is compact.

• The set of continuous functions that vanish at infinity is
written C0(X).

• C0(X) is a closed subalgebra of Cb(X) and is unital if and
only if X is compact.



Star algebras

• An involution on an algebra A is a map ∗ : A −→ A such
that

1 ∀a ∈ A, α ∈ C, (αa)∗ = αa∗,
2 ∀a ∈ A, (a∗)∗ = a and
3 ∀a, b ∈ A, (ab)∗ = b∗a∗.

• An algebra with an involution is called a ∗-algebra.
• An element a ∈ A is called self-adjoint or hermitian if

a = a∗.
• Every element a in a ∗-algebra can be written as a = b + ic

where b, c are hermitian.
• A self-adjoint element p is called a projection if p2 = p.
• Note that aa∗ and a∗a are always self-adjoint; they are

called positive elements.



C∗-algebras

• A C∗-algebra A is a Banach algebra with an involution
satisfying

• ∀a ∈ A, ‖a∗a‖ = ‖a‖2: the C∗ identity.
• It follows that ‖a‖ = ‖a∗‖.
• A ∗-homomorphism is a map preserving multiplication and

the involution.
• They are automatically contractive: ‖φ(a)‖ ≤ ‖a‖ (hence

continuous) and,
• if φ is injective then ‖φ(a)‖ = ‖a‖.
• C∗-algebras may or may not be unital, if they are ‖1‖ = 1.
• There is a unique norm on a C∗-algebra!
• More precisely, given a ∗-algebra, there is at most one way

of endowing it with a norm satisfying the C∗ identity.



Spectrum

• We fix a unital C∗-algebra A with unit 1.
• An element a ∈ A is said to be invertible if ∃b such that

ab = ba = 1, we write a−1 for b.
• Write Inv(A) for the set of invertible elements of A. Note

that it is a group.

Spectrum
The spectrum of a is

σ(a) := {λ ∈ C|λ1− a 6∈ Inv(A)}.



Examples of spectra

• If A is the algebra of n× n matrices then σ(a) is the set of
eigenvalues of a.

• If X is a compact Hausdorff space and A is the algebra
C(X) then σ(f ) = range(f ).

• Thus the notion of spectrum generalizes the notion of
range of a function as well as eigenvalues of a matrix.

• For operators on infinite-dimensional spaces the spectrum
is not just the set of eigenvalues. In fact there may be no
eigenvalues.

• Consider L2(R) and the bounded linear map f 7→ ( 1
1+x2 · f ).

This has no eigenvalues.



Spectrum is non-empty

Gelfand
If A is a unital Banach algebra then σ(a) is non-empty.
The proof uses some basic complex analysis.

Gelfand-Mazur
If a Banach algebra is a field then it is isomorphic to C.
This is an immediate corollary.



Characters

Definition
A character on an a commutative algebra A is a non-zero
homomorphism τ : A −→ C. We write Ω(A) for the set of
characters on A.
Just as we moved from ultrafilters to boolean algebra
homomorphisms in Stone duality, we have

Proposition
For a commutative unital Banach algebra (CUBA) τ 7→ ker(τ) is
a bijection between Ω(A) and the set of maximal ideals.

Proposition
For a CUBA A, ∀a ∈ A, σ(a) = {τ(a)|τ ∈ Ω(A)}.



Topologizing Ω(A)

A general strategy for defining topologies
Choose a set of functions F from a set X to a topological space
Y. Define the weakest (fewest open sets) topology that makes
every function in F continuous: σ(X,F).

The Gelfand topology
Weakest topology that makes all the maps

Ω(A) −→ C : evala(τ) = τ(a)

continuous.



Compactness

Theorem
A is a CUBA if and only if Ω(A) is a compact Hausdorff space.
If A is not unital then Ω(A) is locally compact. Adding a unit to A
is the same as the “one-point compactification” of Ω(A).



Functoriality

Ω(·) as a functor
If h : A −→ B is a Banach algebra map then Ω(h) : Ω(B) −→ Ω(A)
is f 7→ h ◦ f .

C(·) as a functor
If f : X −→ Y is a continuous function between compact
Hausdorff spaces then C(f ) : C(Y) −→ C(X) given by
C(f )(g) = g ◦ f is a Banach algebra map, i.e. a
norm-decreasing homomorphism.
But wouldn’t we like it to be an isometry?



Finally! Gelfand duality
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Theorem
For a commutative unital C∗-algebra A the map a 7→ evala : A
−→ C(Ω(A)) is an isometric ∗-isomorphism.
This is even true for non-unital algebras if one uses C0.

Corollary
For two commutative C∗ algebras A and B, Ω(A) and Ω(B) are
homeomorphic iff A and B are isometrically ∗-isomorphic.
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