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Contextual Semantics

Foundational results about quantum mechanics, such as Bell’s theorem, the
Kochen-Specker theorem etc., tell us that it is inherently, inescapably contextual.

How to think contextually?

What mathematical tools and methods are available?

Does contextuality arise elsewhere?

Yes!

We can use the same tools and methods more widely.

This is the idea of contextual semantics.
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Alice and Bob look at bits

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

How can we explain this behaviour?
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Classical Correlations

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

0 1 0 1

...

Source
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A Simple Observation

Suppose we have propositional formulas φ1, . . . , φN

Suppose further we can assign a probability pi = Prob(φi ) to each φi .

(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi → ¬φN , or equivalently φN →
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1/2 0 0 1/2

(a, b′) 3/8 1/8 1/8 3/8

(a′, b) 3/8 1/8 1/8 3/8

(a′, b′) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted positions in each row of the
table are represented by the following propositions:

ϕ1 = a ∧ b ∨ ¬a ∧ ¬b = a ↔ b

ϕ2 = a ∧ b′ ∨ ¬a ∧ ¬b′ = a ↔ b′

ϕ3 = a′ ∧ b ∨ ¬a′ ∧ ¬b = a′ ↔ b

ϕ4 = ¬a′ ∧ b′ ∨ a′ ∧ ¬b′ = a′ ⊕ b′.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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Example: the Hardy model
The support of the Hardy model:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

If we interpret outcome 0 as true and 1 as false, then the following formulas all
have positive probability:

a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.

In this model, p2 = p3 = p4 = 1.

Hence the Hardy model achieves a violation of p1 = Prob(a ∧ b) for the logical
Bell inequality.
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Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.

However, if we use quantum rather than classical resources, it is realisable!

More specifically, if we use an entangled qubit as a shared resource between
Alice and Bob, who may be spacelike separated, then behaviour of exactly the
kind we have considered can be achieved.

Alice and Bob’s choices are now of measurement setting (e.g. which direction
to measure spin) rather than “which register to load”.
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The Quantum Case: Spin Measurements

States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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Quantum Entanglement

Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

Important note: this is physically realizable!

Generated by Bell state
|00〉 + |11〉√

2
,

subjected to measurements in the XY -plane, at relative angle π/3.

Extensively tested experimentally.
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Computing the Bell table

|ψ〉

φ

θ

Z = |↑〉

|↓〉

Y

X

Spin measurements lying in the equatorial plane of the Bloch sphere
Spin Up: (|↑〉+ e iφ|↓〉)/

√
2, Spin Down: (|↑〉+ e i(φ+π)|↓〉)/

√
2

X itself, φ = 0:
Spin Up (|↑〉+ |↓〉)/

√
2 and Spin Down (|↑〉 − |↓〉)/

√
2.
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Computing the Bell table

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

Alice: a = X , a′ at φ = π/3 (on first qubit)
Bob: b = X , b′ at φ = π/3 (on second qubit)

The event in yellow is represented by

|↑〉+ |↓〉√
2
⊗ |↑〉+ e i4π/3|↓〉√

2
=
|↑↑〉+ e i4π/3|↑↓〉+ |↓↑〉+ e i4π/3|↓↓〉

2
.

Probability of this event M when measuring (a, b′) on B = (|↑↑〉+ |↓↓〉)/
√

2 is
given by Born rule:

|〈B|M〉|2.
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Computing Bell by Born

Since the vectors |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 are pairwise orthogonal, |〈B|M〉|2 simplifies
to ∣∣∣∣1 + e i4π/3

2
√

2

∣∣∣∣2 =
|1 + e i4π/3|2

8
.

Using the Euler identity e iθ = cos θ + i sin θ, we have

|1 + e iθ|2 = 2 + 2 cos θ.

Hence
|1 + e i4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.
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Mathematical Structure of Probability Tables

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b)
and column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a
given choice of measurements C .
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Presheaves, Sheaves and Gluing

Mathematically, this defines a presheaf. We have:

a set of measurements X (the ‘space’);

a family of subsets of X , the measurement contexts (a ‘cover’);

to each such set C a probability distribution on local sections s : C → O,
where O is the set of outcomes.

a distribution on C restricts to C ′ ⊆ C by marginalization.

These local sections correspond to the directly observable joint outcomes of
compatible measurements, which can actually be performed jointly on the
system.

The different sets of compatible measurements correspond to the different
contexts of measurement and observation of the physical system.

The fact that the behaviour of these observable outcomes cannot be accounted
for by some context-independent global description of reality corresponds to the
geometric fact that these local sections cannot be glued together into a global
section.
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The different sets of compatible measurements correspond to the different
contexts of measurement and observation of the physical system.

The fact that the behaviour of these observable outcomes cannot be accounted
for by some context-independent global description of reality corresponds to the
geometric fact that these local sections cannot be glued together into a global
section.
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Gluing functional sections

sU

sV

U

V

U ∩ V O

If sU |U∩V = sV |U∩V , they can be glued to form

s : U ∪ V −→ O

such that s|U = sU and s|V = sV .
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Obstructions to gluing distributions

In geometric language, Bell’s theorem and related results corresponds to the fact
that there is a local section which cannot be extended to a global section which
is compatible with the family of boolean distributions.

In other words, the space of local possibilities is sufficiently logically ‘twisted’ to
obstruct such an extension.

The quantum phenomena of non-locality and contextuality correspond exactly
to the existence of obstructions to global sections in this sense.

This geometric picture and the associated methods can also be applied to a wide
range of situations in classical computer science.

We can vary the notion of distribution d : X → R by taking the weights in a
commutative semiring R.

Examples: R≥0 (probability distributions), B (non-empty subsets), R (signed
measures).
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Restriction Of Distributions As Marginalization

We write the restriction maps of the presheaf DRE explicitly:

Given U ⊆ U ′ we have a map

DRE(U ′)→ DRE(U) :: d 7→ d |U,

where for each s ∈ E(U):

d |U(s) :=
∑

s′∈E(U′),s′|U=s

d(s ′).

Thus d |U is the marginal of the distribution d , which assigns to each section s in
the smaller context U the sum of the weights of all sections s ′ in the larger
context which restrict to s.

This is functorial, hence defines a presheaf.

In fact, it is the composition of E : U 7→ OU and the covariant distribution functor
DR .
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Measurement Structures

A measurement structure M on X is a family of measurement contexts which
covers X ,

⋃
M = X .

Example: Bell scenarios
If XA, XB are disjoint sets of labels for measurements by Alice and Bob, the set of
contexts will be

{{a, b} : a ∈ XA, b ∈ XB}.

This generalises immediately to multipartite scenarios.

Example: Kochen-Specker configurations
Given a set X of vectors, the set of contexts will be

{C ⊆ X : C forms an orthonormal basis}

N.B. Vorob’ev theorem.
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Example: the 18-vector configuration in R4

This uses the following measurement cover U = {U1, . . . ,U9}:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

We can label these letters with vectors in R4 such that the vectors in each column
are orthogonal.

Yields a proof of the Kochen-Specker theorem.
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The Distribution Functor

Fix a commutative semiring R. An R-distribution on X is a function φ : X → R
which has finite support, and such that∑

x∈X

φ(x) = 1.

We write DR(X ) for the set of R-distributions on X .
Examples: R≥0 (probability distributions), B (non-empty subsets), R (signed
measures).

Functorial action: Given a function f : X → Y , we define

DR(f ) : DR(X )→ DR(Y ) :: d 7→ [y 7→
∑

f (x)=y

d(x)].

This yields a functor DR : Set −→ Set.

We can compose this functor with U 7→ OU , to form a presheaf
F : P(X )op −→ Set.

Contextual Probability Theory!
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Basic Mathematical Setting

An observational frame is a structure (X ,M,O) where:

X is a set of “measurement labels” or “variables”

M is a family of subsets of X with
⋃
M = X ; the “measurement contexts”

O is a set of “outcomes” or “values”

In addition, we have some commutative semiring R of “weights”.

Then we can define the presheaf

F : P(X )op −→ Set :: U 7→ DR(OU)

A setting for contextual probability.
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Empirical Models: Reconstructing Probability Tables

We are given a measurement structure M:

An empirical model for M is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.
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Hidden Variables: The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1
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Global Sections

We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable — an instruction set!

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).
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Global Sections Subsume Hidden-Variable Theories

Note also that this is a local model:

δs |C (s ′) =
∏
x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.
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Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.
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Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

So:

existence of a local hidden-variable model for a given empirical model
IFF

empirical model has a global section
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The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Hence:

No such h.v. model exists (the empirical model is non-local/contextual)
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Methods for showing obstructions to global sections

1 S. Abramsky and L. Hardy, Logical Bell Inequalities, Phys. Rev. A 85, 062114
(2012).

Theorem
Every Bell inequality is equivalent to a logical Bell inequality.

2 Linear algebra/programming.
S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of
non-locality and contextuality. New Journal of Physics, 13(2011):113036,
2011.

Theorem

Probabilistic models have local hidden-variable realizations with negative
probabilities if and only if they satisfy no-signalling.

3 Sheaf cohomology.
S. Abramsky, S. Mansfield and R. Soares Barbosa, The Cohomology of
Non-Locality and Contextuality, in Proc. QPL 2011, EPTCS v. 95:1–15,
2012.
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Degrees of contextuality

Firstly, we say that a global assignment t ∈ OX is consistent with the support
of a model if for all C ′ ∈M, t|C ′ is in the support at C ′.

An empirical model is

logically contextual if some possible joint outcome s ∈ OC in the support is
not accounted for by any global assignment t ∈ OX which is consistent with
the support of the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a
global one. Equivalently, that the support of the model cannot be covered by
the consistent global assignments.

It is strongly contextual if its support has no global section; that is, there
is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global
section!

Obviously, strong non-locality implies logical non-locality.
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A Hierarchy

We can distinguish three degrees of non-locality among models:

Strong non-locality implies logical non-locality, which implies (probabilistic)
non-locality.

The Bell model is non-local, but not logically non-local.

The Hardy model is logically non-local, but not strongly non-local.

Thus we have a strict hierarchy

non-locality < logical non-locality < strong non-locality

The model arising from the GHZ state (with 3 or more parties) with X , Y
measurements at each site is strongly non-local.

Thus in terms of well-known examples, we have

Bell < Hardy < GHZ
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GHZ States

In each finite dimension n > 2 we have the GHZ state, written in the Z basis as

: ↑ · · · ↑〉 + : ↓ · · · ↓〉√
2

.

Physically, this corresponds to n particles prepared in a certain entangled state.

If we measure each particle with a choice of X or Y observable, the probability for
each outcome is given by the inner product

|〈GHZ|b1 · · · bn〉〉|2.
This computation is controlled by the product of the |↓〉-coefficients of the basis
vectors: cyclic group generated by i ∼= Z4.

1−1

−i

i

|↑〉

|↓〉
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Logical Specification Of GHZ Models

The GHZ model of type (n, 2, 2) can be specified as follows. We label the two
measurements at each part as X (i) and Y (i), and the outcomes as 0 and 1.

For each maximal context C , every s in the support of the model satisfies the
following conditions:

If the number of Y measurements in C is a multiple of 4, the number of 1’s
in the outcomes specified by s is even.

If the number of Y measurements is 4k + 2, the number of 1’s in the
outcomes is odd.

NB: a model with these properties can be realized in quantum mechanics.
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GHZ Models Are Strongly Contextual
We consider the case where n = 4k . Assume for a contradiction that we have a
global section.

If we take Y measurements at every part, the number of R outcomes under the
assignment has a parity P. Replacing any two Y ’s by X ’s changes the residue
class mod 4 of the number of Y ’s, and hence must result in the opposite parity
for the number of R outcomes under the assignment.

Thus for any Y (i), Y (j) assigned the same value, if we substitute X’s in those
positions they must receive different values. Similarly, for any Y (i), Y (j) assigned
different values, the corresponding X (i), X (j) must receive the same value.

Suppose not all Y (i) are assigned the same value. Then for some i, j, k, Y (i) is
assigned the same value as Y (j), and Y (j) is assigned a different value to Y (k).
Thus Y (i) is also assigned a different value to Y (k). Then X (i) is assigned the
same value as X (k), and X (j) is assigned the same value as X (k). By transitivity,
X (i) is assigned the same value as X (j), yielding a contradiction.

The remaining cases are where all Y’s receive the same value. Then any pair of
X’s must receive different values. But taking any 3 X’s, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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Degrees of contextuality/non-locality for quantum states

We can lift these concepts to define a novel way of classifying quantum states in
terms of their degree of non-locality.

In particular, we shall focus on n-qubit pure states. If we fix local observables for
each party, such a state gives rise to a probability model as above.

We can lift the properties of models to states.

We say that a state is strongly non-local if for some choice of local
observables for each party, the resulting empirical model is strongly non-local.

We can similarly define logical non-locality for states; we say that a state is
logically non-local if for some choice of local observables, the resulting
empirical model is logically non-local; while the state is not strongly
non-local.

Finally, a state is weakly non-local if it is non-local, but neither of the
previous two cases apply.
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The Characterization Problem

This gives rise to a natural and challenging problem:

Problem
Characterize the multipartite states in terms of their maximum degree of
non-locality.

We believe that an answer to this problem will shed considerable light on the
structure of multipartite states, not least because it will necessitate solving the
following task:

Given a multipartite state, find local observables which witness its
highest degree of non-locality.
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The bipartite case is a special case!

Part of the thinking behind this conjecture is that the bipartite case may actually
be anomalous within the landscape of multipartite entangled states.

For example, the only strongly contextual bipartite models are the PR-boxes,
which are of course not quantum realizable. By contrast, for all n > 2, the
n-partite GHZ states are strongly contextual.

Proposition

All bipartite entangled states except the maximally entangled ones are logically
non-local.

The negative part of this result is ‘folklore’, but actually proved by Shane
Mansfield and Carmen Constantin.

However, as we shall see, for n > 2 a different picture emerges.
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A Striking Result

Let P(n) be the class of n-qubit pure states which, up to permutation, can be
written as tensor products of 1-qubit and 2-qubit maximally entangled states. Let
L(n) be the set of logically non-local n-qubit states.

Theorem

For all n ≥ 1, P(n) and L(n) partition the set of n-qubit pure states.

Thus every pure state is either a state whose only form of entanglement is
bipartite maximal entanglement in 2-qubit subsystems; or it is logically non-local.

Forthcoming papers by SA, Carmen Constantin and Shenggang Ying.

Constructive proofs of some special cases (SA and Carmen Constantin, QPL
2013).

The general result is proved non-constructively.
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Permutation Symmetric States

A permutation-symmetric n-qubit state is invariant under the action of Sn. A
natural basis for the permutation-symmetric states is provided by the Dicke states.

For each n ≥ 2, 0 < k < n the Dicke state S(n, k) is defined as:

S(n, k) := K
∑
perm

|0k1n−k〉.

where K =
(
n
k

)−1/2
is a normalization constant, and we sum over all products of k

0-kets and n − k 1-kets.

The well-known W state is the S(3, 2) Dicke state in the above notation.

Proposition

For each n > 2, and 0 < k < n, the Dicke state S(n, k) is logically non-local.

Proposition

All permutation symmetric states are logically non-local.
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All permutation symmetric states are logically non-local.
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Functionally dependent balanced states

A balanced n + 1-qubit quantum state with a functional dependency given by an
n-ary Boolean function F : {0, 1}n → {0, 1}has the form

ΨF =
1√
2n

11...1∑
q1q2...qn=00...0

|q1q2 . . . qnF (q1, q2, . . . , qn)〉

Proposition

All balanced functionally dependent states are in P(n) or L(n).
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