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Recap of Basic Mathematical Setting

An observational frame is a structure (X ,U,O) where:

X is a set of “measurement labels” or “variables”

U is a family of subsets of X with
⋃

U = X ; the “measurement contexts”

O is a set of “outcomes” or “values”

In addition, we have some commutative semiring R of “weights”.

Then we can define the presheaf

F : P(X )op −→ Set :: U 7→ DR(OU)

A setting for contextual probability.
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Empirical Models, Global Sections and Contextuality

Given (X ,U,O), an empirical model is a compatible family {dU}U∈U, where
dU ∈ F(U), U ∈ U.

Compatibility means that, for all U.V ∈ U:

dU |U∩V = dV |U∩V .

A global section or local hidden variable model or solution concept for the
model is d ∈ F(X ) such that:

d |U = dU , U ∈ U.

The model is contextual if there is no such global section.
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From Probability to Possibility

There is a semiring homomorphism R≥0 −→ B which induces a natural
transformation

DR≥0
E ·−→ DBE

and hence acts on probabilistic models to produce relational or ‘possibilistic’
models.

The effect of applying this to a probabilistic model is exactly to produce the
boolean model corresponding to its support: for each context C , the probability
distribution eC ∈ DR≥0

(OC ) is mapped to the finite non-empty subset

supp(eC ) ∈ DB(OC ).

Note that this collapse preserves global sections, hence reflects obstructions to
global sections.

This means that no-go theorems proved at the possibilistic level are stronger (in
fact, strictly stronger) than those proved at the probabilistic level.
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Boolean global sections

It is then natural to ask what the existence of global sections on the Boolean level
means for probabilistic models.

In fact, we have already answered this question.

Proposition

The following are equivalent for a probabilistic empirical model:

1 Its boolean image has a global section.

2 The model is logically contextual.

What is the significance of Boolean global sections in their own right,
independently of being derived from probabilistic models?

As we shall now see, they arise very directly in a number of familiar CS settings.
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Relational databases

Samson Abramsky, ‘Relational databases and Bell’s theorem’, Festschrift for
Peter Buneman,Val Tannen (ed), 2013, to appear. Available as CoRR,
abs/1208.6416.

branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53

Hanover 10992-35671 Leibniz e11,245.75

. . . . . . . . . . . .
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Anatomy of a table in a relational database

The columns are determined by a set A of attributes. Assume A ⊂ A for some
global set A specified by the database schema.

For each attribute a, there is a possible set of data values Da. For simplicity, we
collect these into a global set D =

⊔
a∈ADa.

An A-tuple is specified by a function t : A→ D.

A relation instance or table of schema A is a set of A-tuples.

A database schema is given by a family Σ = {A1, . . . ,Ak} of finite subsets of A.

A database instance of schema Σ is given by a family of relation instances {Ri}
where Ri is of schema Ai .

Does this look familiar?
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Databases in the language of presheaves

An A-tuple t is just a local section over A: t ∈ DA = E(A).

A relation table R of schema A is a boolean distribution on A-tuples:

R ∈ DBE(A).

Note that if A ⊆ B, then restriction is just projection. For R ∈ DBE(B)

R|A := {t|A : t ∈ R}.

We can regard a schema Σ as a cover of A.

A database instance of schema Σ is a family of elements {RA}A∈Σ.

The compatibility condition for an instance is projection consistency:

RA|A∩B = RB |A∩B

means that the two relations have the same projections onto their common set of
attributes.
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Universal Relations

A universal relation for an instance {RA : A ∈ Σ} of a schema Σ is a relation
R ∈ DB(DA) such that, for all A ∈ Σ:

R|A = RA.

Thus it is a relation defined on the whole set of attributes from which each of the
relations in the instance can be recovered by projection.

This notion, and related ideas, played an important rôle in early developments in
relational database theory in the 1980’s.

Note that a universal relation instance corresponds exactly to the notion of global
section for the DB instance viewed as a compatible family. (Compatibility is
obviously a necessary condition for such an instance to exist).

Proposition

Let (R1, . . . ,Rk) be an instance for the schema Σ = {A1, . . . ,Ak}. Define
R := ./ki=1 Ri . Then a universal relation for the instance exists if and only if
R|Ai = Ri , i = 1, . . . , k, and in this case R is the largest relation in R(

⋃
i Ai )

satisfying the condition for a global section.
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A dictionary

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table compatible set of measurements

database schema measurement cover

tuple local section (joint outcome)

relation/set of tuples boolean distribution on joint outcomes

universal relation instance global section/hidden variable model

acyclicity Vorob’ev condition

We can also consider probabilistic databases and other generalisations;
cf. provenance semirings.
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Constraint satisfaction

Given U ∈ U, an assignment on U is a function s ∈ OU .

Boolean assignments can be described by formulas (‘state descriptions’)

φs :=
∧
x∈U

lx

where lx = x if s(x) = tt, lx = ¬x if s(x) = ff.
Note that s is the unique assignment which makes φs true.

This extends to general assignments into a set O using suitable predicates Po .

Now suppose we are given a set of assignments on U, {si}i∈I . This is described by
a formula

φU =
∨
i∈I

φsi .

We shall consider formulas φ =
∧

U∈U φU , where φU specifies a team on U.

These formulas define possibilistic models; and their satisfying assignments

v : X −→ O

correspond exactly to global sections of these models.
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LHV is in NP

In order to simplify notation, we shall consider relational models of the form
(U, e), where e ⊆ Un × Un. Thus we use the same underlying set U for both
measurements and outcomes at each site.

We shall write HV(n) for the class of models of this form which has a local hidden
variable realisation (i.e. a boolean global section). We are interested in the
algorithmic problem of determining if a structure (U, e) of arity n is in HV(n).

Proposition

For each n, HV(n) is in NP.

Proof
From the previous Proposition, it is clear that HV(n) is defined by the following
second-order formula interpreted over finite structures (U, e):

∀~x .∃~y .R(~x , ~y) ∧ ∀~x , ~y .R(~x , ~y) → ∃f1, . . . , fn.
∧

i fi (xi ) = yi ∧ ∀~v .R(~v , f (~v)).

By standard quantifier manipulations, this can be brought into an equivalent Σ1
1

form, and hence HV(n) is in NP. �
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Robust CSP

Samson Abramsky, Georg Gottlob and Phokion Kolaitis, ‘Robust Constraint
Satisfaction and Local Hidden Variables in Quantum Mechanics’, in Proceedings
of IJCAI 2013.

Robust CSP: can every consistent partial assignment of a certain length be
extended to a solution?

Special cases studied previously by Beacham and Gottlob.

Main results: Robust 3-colourability and Robust 2-sat are
NP-complete.

These are used to show that HV(n), n > 2, is NP-complete; smaller instances
are in PTIME.

The robust paradigm is an interesting and non-trivial extension of current
theory, and worthy of further study.
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The robust paradigm is an interesting and non-trivial extension of current
theory, and worthy of further study.
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Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we
can find it everywhere!

Physics, computation, logic, natural language, . . . biology, economics, . . .

The Contextual semantics hypothesis: we can find common mathematical
structure in all these diverse manifestations, and develop a widely applicable
theory.
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Valuation Algebras

Introduced by G. Shafer and P. Shenoy c. 1988 as an algebraic structure providing
a common basis for local computation in Bayesian and belief-propagation
networks.

Subsequently understood to be applicable to a very wide range of inference
problems. E.g. Generic Inference by Marc Pouly and Jürg Kohlas, Wiley 2011;

The inference task can then be described for general valuation
algebras, which leads to a single computational problem that abstracts
numerous important and seemingly different applications in computer
science as for example query answering in databases, the evaluation of
Bayesian and Gaussian networks, the solution of constraint, equation
and inequality systems, satisfiability and theorem proving in logics,
smoothing and filtering in linear dynamic systems and hidden Markov
chains, the computation of discrete Fourier and Cosine transforms,
various applications of path problems and coding schemes, sparse matrix
techniques or numerical and symbolic partial differentiation. The
properties of valuation algebras enable the efficient solution of all these
problems with a single generic algorithm that exploits so-called
tree-decomposition techniques.
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Valuation Algebras

Carriers: Φ (valuations), D (domains, forming a lattice).
In practice, take D ⊆ P(Var), where Var is a set of variables.

Operations:

Domain d : Φ→ D; φ 7→ d(φ).

Projection Φ× D → Φ; (φ, x) 7→ φ↓x , for x ⊆ d(φ).

Combination Φ× Φ→ Φ; (φ, ψ) 7→ φ⊗ ψ.

Axioms:

(A1) (Φ,⊗) forms a commutative semigroup.

(A2) d(φ⊗ ψ) = d(φ) ∪ d(ψ).

(A3) d(φ↓x) = x .

(A4) (φ↓y )↓x = φ↓x , (x ⊆ y ⊆ d(φ)).

(A5) (φ⊗ ψ)↓z = φ⊗ ψ↓z∩d(ψ), (d(φ) ⊆ z ⊆ d(φ) ∪ d(ψ)).

(A6) φ↓d(φ) = φ.

In most applications, valuations with domain x are distributions on assignments
ΠX∈xVX valued in a semiring R. Projection is marginalisation.
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Variable Elimination and Fusion

Queries have the form (φ1 ⊗ · · · ⊗ φn)↓x .

Marginalization over the full domain is prohibitively expensive. The key to
tractable inference is to localise the computation using (A5).

A basic form of this localisation is variable elimination:

φ−Y = ψ−Y ⊗

 ⊗
Y 6∈d(φi )

φi

 ,

where
ψ =

⊗
Y∈d(φi )

φi .

This leads to the fusion rule: if x = {X1, . . . ,Xn}, then

(φ1 ⊗ · · · ⊗ φn)↓x =
⊗

FusXn(· · · (FusX1 ({φ1, . . . , φn})) · · · )

where
FusY ({φ1, . . . , φn}) = {ψ−Y } ∪ {φi : Y 6∈ d(φi )}.
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Local Computation

This idea is extended to performing multiple queries on covering join trees using
message passing architectures. A number of these architectures have been
widely used:

The Shafer-Shenoy architecture

The Lauritzen-Spiegelhalter architecture

The HUGIN architecture

The idempotent architecture

The Shafer-Shenoy architecture is the most basic, and works for any valuation
algebra. The L-S and HUGIN architectures achieve more efficiency, assuming
additional properties of the valuation algebra (divisibility), while logical inference
can be performed if we assume idempotence.
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Valuation Algebras are Symmetric Monoidal Presheaves

Valuation algebras fit perfectly in our contextual semantics framework:

The map d : Φ→ D fibres the valuations over sets of variables, and the
axioms (A3), (A4) and (A5) say this forms a presheaf

F : Dop → Set :: x 7→ {φ ∈ Φ : d(φ) = x}.

For x , y ∈ D, combination gives a map (using (A2))

⊗x,y : F(x)×F(y)→ F(x ∪ y).

The properties of this map given by (A1) and (A5) say that it is a natural
transformation making F into a symmetric monoidal functor, with respect
to the monoidal structure on D as a join semilattice, and (Set,×) as a
monoidal category.

In particular, the crucial axiom (A5) is (essentially) naturality.
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Valuation Algebras and Independence

Conditional independence has been axiomatised by Philip Dawid in the notion of
separoid. This is essentially the notion of independence studied in DL.

Notation: s⊥t|u [φ].

As pointed out by Shenoy and Dawid and Studeny, valuation algebras give rise to
separoid structures.

We can define s⊥t|u [φ] if there exist ψ1, ψ2 ∈ Φ with d(ψ1) = s ∪ u,
d(ψ2) = t ∪ u, and

φ↓s∪t∪u = ψ1 ⊗ ψ2.

This generalises the two equivalent ways of defining conditional independence in
probability theory:

p(x , y |z) = p(x |z)p(y |z) vs. p(x |y , z) = p(x |z).

This may suggest a novel extension of DL with combination ”built in”, which may
be well adapted to studying generic inference as captured by valuation algebras.
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Applications to Natural Language Semantics

Preliminary work with Mehrnoosh Sadrzadeh.

A presheaf of ‘Basic DRS’.

Need Grothendieck topology: not just inclusions of sets of variables, but
maps allowing for relabelling.

Gluing local sections into global ones as semantic unification.

This is used to express resolution of anaphoric references.

Example: ‘John owns a donkey. It is grey.’

s1 = {John(x),Man(x)}, s2 = {donkey(y),¬Man(y)}, s3 = {grey(z)}}.

Note that a cover which merged x and y would not have a gluing, since the
consistency condition would be violated.

However, using the cover

f1 : x 7→ a, f2 : y 7→ b, f3 : z 7→ b

we do have a gluing:

s = {John(a),Man(a), donkey(b),¬Man(b), grey(b)}.
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The Quantum Set

A subtle convex set sandwiched between two polytopes.

L

Q

NS

Key question: find compelling principles to explain why Nature picks out the
quantum set.

Probability distributions on global assignments give local models.

Signed measures on global assignments give no-signalling models (SA +
Adam Brandenburger).

Quantum measures on global assignments give quantum models?
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Quantum Realizations of Relational Models

A quantum realization of the system type (M,O) of arity n is given by:
Finite dimensional Hilbert spaces H1, . . . ,Hn.
For each i ∈ n, m ∈ Mi , and o ∈ Oi , a unit vector ψm,o in Hi , subject to the
condition that the vectors {ψm,o : o ∈ Oi} form an orthonormal basis of Hi .
A state ψ, i.e. a unit vector in H1 ⊗ · · · ⊗ Hn.

For each choice of measurement m ∈ M, and outcome o ∈ O, the usual
‘statistical algorithm’ of quantum mechanics defines a probability pm(o) for
obtaining outcome o from performing the measurement m on ρ:

pm(o) = |〈ψ : ψm,o〉|2,
where ψm,o = ψm1,o1 ⊗ · · · ⊗ ψmn,on .

To compute the tensor product of vectors:∑
i

ai |i〉 ⊗
∑
j

bj |j〉 =
∑
i,j

aibj |ij〉.

We define a relational empirical model e ⊆ M × O by

e(m, o) ≡ pm(o) > 0.

Thus e arises as the ‘possibilistic collapse’ of the usual quantum formalism.
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Quantum Realization of the Hardy Model

We consider the two-qubit system, with X2 and Y2 measurement in the
computational basis. We take R = 0, G = 1. The eigenvectors for X1 are taken to
be √

3

5
|0〉+

√
2

5
|1〉, −

√
2

5
|0〉+

√
3

5
|1〉

and similarly for Y1. The state is taken to be√
3

8
|10〉 +

√
3

8
|01〉 − 1

2
|00〉.

One can then calculate the probabilities to be

pX1Y2 (RR) = pX2Y1 (RR) = pX2Y2 (GG ) = 0,

and pX1Y1 (RR) = 0.09, which is very near the maximum attainable value.

The possibilistic collapse of this model is thus a Hardy model.
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QM

Proposition

The class QM(d) is in PSPACE. That is, there is a PSPACE algorithm to decide,
given an empirical model, if it arises from a quantum system of dimension d.

Proof Outline
The condition for quantum realization of a relational model can be written as the
existence of a list of complex matrices satisfying some algebraic conditions. These
can be written in terms of the entries of the matrices, and we can use the
standard representation of complex numbers as pairs of reals.

The parameter d allows us to bound the dimensions of the matrices which need to
be considered.

The whole condition can be written as an existential sentence ∃v1 . . . ∃vk .ψ, where
ψ is a conjunction of atomic formulas in the signature (+, 0,×, 1, <), interpreted
over the reals.

This fragment has PSPACE complexity (Canny). Moreover, the sentence can be
constructed in polynomial time from the given relational empirical model. Hence
membership of QM is in PSPACE.
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A Decision Problem

Can we bound the dimension d effectively, so that QM itself is decidable?

Seems hard . . .
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