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Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995):

Geometry.

ABA−1B−1.

• New efficient synthesis algorithms (ca. 2012):

Algebraic number theory.

a + b
√
2.
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Part I: Some number theory
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Some number theory: Fermat’s theorem on sums of two squares

Which integers can be written as a sum of two squares?
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Some number theory: Fermat’s theorem on sums of two squares

Which integers can be written as a sum of two squares?

Theorem. If n and m can each be written as a sum of two squares, then nm can be

written as a sum of two squares.

4-a



Some number theory: Fermat’s theorem on sums of two squares

Which integers can be written as a sum of two squares?

Theorem. If n and m can each be written as a sum of two squares, then nm can be

written as a sum of two squares.

Proof. This is easiest seen using complex numbers. Note that a2 + b2 = (a + bi)(a − bi).

Therefore, n is a sum of two squares if and only if it can be written in the form t†t, for

some Gaussian integer t = a + bi ∈ Z[i].

The claim follows because nm = (t†t)(u†u) = (tu)†(tu). ✷
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First lesson of number theory

We can learn more about the integers by moving to a larger ring, such as Z[i].

5



Fermat’s theorem on sums of two squares, continued

What about the converse?

Theorem. If nm can be written as a sum of two squares, and if n,m are relatively prime,

and n,m ≥ 0, then n and m can each be written as a sum of two squares.
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Fermat’s theorem on sums of two squares, continued

What about the converse?

Theorem. If nm can be written as a sum of two squares, and if n,m are relatively prime,

and n,m ≥ 0, then n and m can each be written as a sum of two squares.

Proof. Suppose nm = a2 + b2 = (a + bi)(a − bi).

Z[i] is a Euclidean domain, so has greatest common divisors. Let t = gcd(n, a + bi) and

s = gcd(m, a + bi) in Z[i].

An easy argument (using uniqueness of prime factorizations in Z[i]) shows that n = t†t and

m = s†s. Hence both n and m can be written as a sum of two squares.
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Second lesson of number theory

The fact that Z[i] is a Euclidean domain, and in particular, the ability to take greatest

common divisors and prime factorizations in Z[i], is very helpful.
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Definition. A ring is called a Euclidean domain if it is equipped with a notion of division

with remainder. Specifically, such a ring must have:

1. A Euclidean function, i.e., a function f assigning a natural number to each ring element;

2. Division with remainder: For all a, b with b 6= 0, there exist q, r such that

a = bq + r

and f(r) < f(b).

Main properties. In a Euclidean domain, the concepts of divisor, greatest common divisor,

and prime make sense. The Euclidean algorithm can be used to compute greatest common

divisors d = gcd(a, b), as well as x, y such that d = xa + yb. Euclidean domains satisfy unique

prime factorization.
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Fermat’s theorem on sums of two squares, continued

By the previous theorems, it suffices to consider primes. Which primes can be written as a

sum of two squares?

Obvious necessary condition: p > 0.

p a2 + b2

2 = 1 + 1

3 = —
5 = 1 + 4

7 = —
11 = —
13 = 4 + 9

17 = 1 + 16

19 = —
23 = —
29 = 4 + 25

p a2 + b2

31 = —
37 = 1 + 36

41 = 16 + 25

43 = —
47 = —
53 = 4 + 49

59 = —
61 = 25 + 36

67 = —
71 = —

p a2 + b2

73 = 9 + 64

79 = —
83 = —
89 = 25 + 64

97 = 16 + 81

101 = 1 + 100

103 = —
107 = —
109 = 9 + 100

113 = 49 + 64
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Fermat’s theorem on sums of two squares, continued

By the previous theorems, it suffices to consider primes. Which primes can be written as a

sum of two squares?

Obvious necessary condition: p > 0.

p a2 + b2 p (mod 4)

2 = 1 + 1 2

3 = — 3

5 = 1 + 4 1

7 = — 3

11 = — 3

13 = 4 + 9 1

17 = 1 + 16 1

19 = — 3

23 = — 3

29 = 4 + 25 1

p a2 + b2 p (mod 4)

31 = — 3

37 = 36 + 1 1

41 = 25 + 16 1

43 = — 3

47 = — 3

53 = 49 + 4 1

59 = — 3

61 = 36 + 25 1

67 = — 3

71 = — 3

p a2 + b2 p (mod 4)

73 = 9 + 64 1

79 = — 3

83 = — 3

89 = 25 + 64 1

97 = 16 + 81 1

101 = 1 + 100 1

103 = — 3

107 = — 3

109 = 9 + 100 1

113 = 49 + 64 1
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Fermat’s theorem on sums of two squares, continued

Theorem. A positive odd prime p can be written as a sum of two squares if and only if

p ≡ 1 (mod 4).

Proof. “⇒”: a2 ≡ 0, 1 (mod 4), hence a2 + b2 ≡ 0, 1, 2 (mod 4).

“⇐” Suppose p is a positive prime with p ≡ 1 (mod 4).

(1) We can find h ∈ Zp such that h2 = −1. (This follows from Fermat’s Little Theorem).

W.l.o.g. h < p/2.

(2) Therefore, h2 + 1 = kp, for some k ∈ Z. So kp can be written as a sum of two squares. It

follows from the previous theorem that p can be written as a sum of two squares. ✷

Moreover: There is an efficient algorithm to compute a, b.
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Summary: Algorithm for n = a2 + b2

We shows that there exists an efficient (probabilistic) algorithm which,

• given a number n ∈ Z, and

• given a prime factorization of n,

• decides whether there exists a, b ∈ Z with a2 + b2 = n, and

• computes such a, b if they exist.
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Part II: An algebraic characterization of Clifford+T circuits
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Quantum circuits

Let U be the symmetric monoidal category of finite dimensional vector spaces and unitary

maps. Since all morphisms are invertible, this is a groupoid.

The internal language for symmetric monoidal categories consists of linear string diagrams

(no loops). These are more commonly known as quantum circuits.

H T† T T† T

T†

H

T† S

T

There are uncountably many unitary operations. In quantum computing, we usually work

with a fixed discrete gate set.
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The Clifford groupoid

Definition. The Clifford groupoid is the smallest symmetric monoidal subcategory of U
containing:

• The object V = C2;

• The maps H, S : V → V, ω : I → I, and CNot : V ⊗ V → V ⊗ V.

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

, CNot =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






, ω = eiπ/4.

It also contains the Pauli X = HSSH, Y = HSSHSSω2, and Z = SS gates, among others.

Clifford gates are not universal for quantum computing; they can be efficiently simulated on

a classical computer, using the stabilizer formalism.

However, Clifford gates can be very cheaply implemented under all practical error correction

schemes (stabilizer codes and topological codes).
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The Clifford+T groupoid

To get universal quantum computing, we need to add at least one non-Clifford gate. The

gate most commonly used for this purpose is the T-gate:

T =

(

1 0

0 eiπ/4

)

.

Reasons for singling out the T-gate:

• It is maximally noise tolerant among the non-Clifford gates. See

[Buhrman-Cleve-Laurent-Linden-Schrijver-Unger].

• There are known fault-tolerant implementation of the T-gate in all important error

correction schemes.
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A necessary condition for being a Clifford+T operator

Let U be a Clifford+T operator on n qubits. Then the matrix entries of U are made up

from integers, i, and 1√
2
by multiplication and addition. In other words, every Clifford+T

operator takes its matrix entries in the ring

Z[
1√
2
, i] =

{
1√
2k

(a + bi + c
√
2 + di

√
2) | k ∈ N; a, b, c, d ∈ Z

}
.

Proof: trivial, because it is true for the generators:

CNot =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





, H =
1√
2

(

1 1
1 −1

)

,

S =

(

1 0
0 i

)

, ω =
1 + i√

2
, T =

(

1 0

0 eiπ/4

)

.
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Remarkably, the converse is also true

Theorem ([Giles, Selinger 2012], see also [Kliuchnikov, Maslov, Mosca 2012]).

Let U be an n-qubit unitary operator. Then U can be realized by a Clifford+T circuit

(possibly with ancillas initialized and finalized in state |0〉) if and only if the entries of U are

in Z[ 1√
2
, i].

Moreover, one ancilla is always sufficient. If detU = 1, no ancilla is necessary.

Example.

1√
2 7

(

−3 + 4
√
2 + (3 + 5

√
2) i 3 + (−1 + 3

√
2) i

−3 −
√
2 + (3 − 2

√
2) i 9 − (1 + 3

√
2) i

)

= T HT SHT SHT HT SHT HT SHT HT HT SHT SSSω7

Complexity: The Giles-Selinger algorithm produces O(32
n
nk) gates. This was improved to

O(4nnk) by [Kliuchnikov 2013]. Here n is the number of qubits and k is the denominator

exponent.

17



Description of the exact synthesis algorithm

Before we can describe the algorithm, we will need a fair amount of algebra. However, the

basic idea is simple.

Recall from Gaussian elimination:

• A row operation on a matrix correspond to left multiplication by an elementary matrix.

• Therefore, if we can reduce a matrix U to the identity matrix by repeated application of

row operations, we get

A1A2 · · ·AnU = I.

• If each Ai can be converted to a Clifford+T circuit, then U can be converted to a

Clifford+T circuit.

We thus need to define suitable row operations, and show that any given U can be

converted to the identity.
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Row operations

The row operations we will use are the following:

1. Multiply one row by ω (“shift”);

2. Apply a Hadamard gate to a pair of rows (“reduce”);

3. Exchange two rows (“swap”).

ω[j] =

· · · j · · ·
























... I

j ω

... I

, H[j,ℓ] =

· · · j · · · ℓ · · ·
























































... I

j 1√
2

1√
2

... I

ℓ 1√
2

−1√
2

... I

, X[j,ℓ] =

· · · j · · · ℓ · · ·
















































... I

j 0 1

... I

ℓ 1 0

... I

.
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Each of these row operations can be easily represented as a Clifford+T circuit.

H
=

S H T T† H S† .

iX
= S

,

...

...

iX

...

...

=

H T† T T† T H

... ...

... ...

... ...

... ...

,

(a)

...

X

...
=

...

0 iX

X

−iX 0

...

(b)

...

H

...
=

...

0 iX

H

−iX 0

...

(c)

...

T

...
=

...

0 iX T −iX 0.

...
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Some algebra

Definition. A complex number z is called algebraic if it is the root of some polynomial p

with integer coefficients.

Example: z =
√

1
2 +

√
2 is algebraic because

(z2 −
1

2
)2 = 2,

or equivalently,

4z4 − 4z2 − 7 = 0.

Definition. A complex number z is an algebraic integer if it is the root of some monic

polynomial p with integer coefficients. Monic means that the leading coefficient is 1.

Example: w =

√

1 +
√
2 is an algebraic integer, because

w4 − 2w2 − 1 = 0.
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Examples

Field: Ring of algebraic integers:

Q Z (integers)

Q[i] Z[i] (Gaussian integers)

Q[
√
2] Z[

√
2] (quadratic integers of radicand 2)

Q[
√
2, i] = Q[ω] Z[ω] (cyclotomic integers of degree 8)

Recall that ω = eiπ/4.

We have ω = 1+i√
2
. Conversely,

√
2 = ω +ω7, i = ω2. Thus Q[

√
2, i] = Q[ω].
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Properties of algebraic numbers and algebraic integers

• The set of algebraic numbers is closed under addition, subtraction, multiplication, and

division, i.e., it is a subfield of C.

• The set of algebraic integers is closed under addition, subtraction, and multiplication,

i.e., it is a subring of C (but not a field).

• Every rational number is algebraic; it is an algebraic integer iff it is an integer.

• If z is the root of a polynomial whose coefficients are algebraic numbers, then z is an

algebraic number.

• If z is the root of a monic polynomial whose coefficients are algebraic integers, then z is

an algebraic integer.
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The automorphisms of Z[ω]

Because ω4 = −1, the elements of Z[ω] can be uniquely written in the form

aω3 + bω2 + cω + d,

where a, b, c, d ∈ Z.

The ring Z[ω] has four automorphisms:

Complex conjugate. The automorphism † maps i to −i and
√
2 to itself; equivalently, it

maps ω to −ω3. Explicitly:

(aω3 + bω2 + cω + d)† = −cω3 − bω2 − aω + d.

Root-Two-conjugate. The automorphism • maps
√
2 to −

√
2 and i to itself; equivalently,

it maps ω to −ω. Explicitly:

(aω3 + bω2 + cω + d)• = −aω3 + bω2 − cω + d.

The other two automorphisms are (−)†• = (−)•† and the identity.
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Residues

Let Z2 be the ring of integers modulo 2. There is a unique ring homomorphism (−) : Z → Z2,

called the parity map: we have

a =

{
0 if a is even,

1 if a is odd.

This induces a ring homomorphism ρ : Z[ω] → Z2[ω], defined by

ρ(aω3 + bω2 + cω + d) = aω3 + bω2 + cω + d.

We call ρ the residue map, and we call ρ(t) the residue of t.

Convention. For brevity, we write each residue aω3 + bω2 + cω + d as a string of binary

digits abcd.

There are sixteen residues 0000, 0001, 0010, . . . , 1111.
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Dyadic fractions

Definition. The ring of dyadic fractions is D = Z[12].

In other words, a dyadic fraction is a rational number of the form a
2k
, i.e., whose

denominator is a power of 2.
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The ring D[ω] and denominator exponents

Recall that we are interested in matrices whose entries are in the ring Z[ 1√
2
, i]. We have:

Z[
1√
2
, i] = D[ω].

Its subring of algebraic integers is Z[ω].

Each element t of D[ω] can be written in the form

t =
1√
2k

(aω3 + bω2 + cω + d),

where a, b, c, d ∈ Z and k ∈ N. We say that k is a denominator exponent for t. The least such

k is the least denominator exponent of t.

If k is a denominator exponent for t, then we define the k-residue of t to be the residue of√
2k t. Similarly for vectors and matrices.
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Example

U =
1√
2 7

(

−3 + 4
√
2 + (3 + 5

√
2) i 3 + (−1 + 3

√
2) i

−3 −
√
2 + (3 − 2

√
2) i 9 − (1 + 3

√
2) i

)

=
1√
2 7

(

ω3 + 3ω2 + 9ω − 3 3ω3 −ω2 + 3ω + 3

−ω3 + 3ω2 − 3ω − 3 −3ω3 −ω2 − 3ω + 9

)

A denominator exponent is 7. The 7-residue is
(

1111 1111
1111 1111

)

But is this the least denominator exponent?
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Example

U =
1√
2 7

(

−3 + 4
√
2 + (3 + 5

√
2) i 3 + (−1 + 3

√
2) i

−3 −
√
2 + (3 − 2

√
2) i 9 − (1 + 3

√
2) i

)

=
1√
2 7

(

ω3 + 3ω2 + 9ω − 3 3ω3 −ω2 + 3ω + 3

−ω3 + 3ω2 − 3ω − 3 −3ω3 −ω2 − 3ω + 9

)

=
1√
2 6

(

3ω3 + 5ω2 + 0ω + 4 −2ω3 + 3ω2 +ω + 0

3ω3 − 2ω2 + 0ω − 1 −5ω3 − 3ω2 + 4ω + 0

)

The least denominator exponent is 6. The 6-residue is
(

1100 0110
1001 1100

)
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Operations on residues

At the heart of the exact synthesis algorithm are the following calculations on residues. For

t ∈ Z[ω], the residues of t,
√
2 t, and t†t are related as follows:

ρ(t) ρ(
√
2 t) ρ(t†t)

0000 0000 0000

0001 1010 0001

0010 0101 0001

0011 1111 1010

ρ(t) ρ(
√
2 t) ρ(t†t)

0100 1010 0001

0101 0000 0000

0110 1111 1010

0111 0101 0001

ρ(t) ρ(
√
2 t) ρ(t†t)

1000 0101 0001

1001 1111 1010

1010 0000 0000

1011 1010 0001

ρ(t) ρ(
√
2 t) ρ(t†t)

1100 1111 1010

1101 0101 0001

1110 1010 0001

1111 0000 0000
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Operations on residues

At the heart of the exact synthesis algorithm are the following calculations on residues. For

t ∈ Z[ω], the residues of t,
√
2 t, and t†t are related as follows:

ρ(t) ρ(
√
2 t) ρ(t†t)

0000 0000 0000

0001 1010 0001

0010 0101 0001

0011 1111 1010

ρ(t) ρ(
√
2 t) ρ(t†t)

0100 1010 0001

0101 0000 0000

0110 1111 1010

0111 0101 0001

ρ(t) ρ(
√
2 t) ρ(t†t)

1000 0101 0001

1001 1111 1010

1010 0000 0000

1011 1010 0001

ρ(t) ρ(
√
2 t) ρ(t†t)

1100 1111 1010

1101 0101 0001

1110 1010 0001

1111 0000 0000

Lemma. For a residue x, the following are equivalent:

(a) x is reducible, i.e., of the form
√
2 y;

(b) x ∈ {0000, 0101, 1010, 1111};

(c)
√
2 x = 0000;

(d) x†x = 0000.
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For k > 0, the k-residues of one column satisfy

u
†
1u1 + . . . + u

†
nun = 2k ≡ 0 (mod 2) (1)

From the table on the previous page:

• If u†u = 0000, then u ∈ {0000, 0101, 1010, 1111}.

• If u†u = 1010, then u ∈ {0011, 0110, 1100, 1001}.

• If u†u = 0001, then u ∈ {0001, 0010, 0100, 1000, 0111, 1011, 1101, 1110}.

From (1), it follows that there are an even number of each kind.

On each such pair, by an appropriate sequence of “shift” and “reduce”, we can decrease

the denominator exponent.

By induction, the whole column can be reduced to denominator exponent 0, then to

(1, 0, . . . , 0). By induction, the whole matrix can be reduced to I.
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Summary: Algebraic characterization of the Clifford+T groupoid

We have proved:

Theorem. The Clifford+T groupoid consists precisely of the unitary 2n × 2n matrices over

the ring D[ω].

Consequence: We can now use number-theoretic methods for solving circuit-theoretic

problems. For example, as we will see in a later lecture, the approximation problem for

circuits has been solved using such methods.
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Gate complexity of exact synthesis

The Giles-Selinger exact synthesis algorithm produces O(32
n
nk) Clifford+T gates, where n is

the number of qubits and k is the least denominator exponent.

Kliuchnikov improved this to O(4nnk).

It is unlikely that there will be an optimal algorithm for this problem, since the problem of

finding minimal Clifford+T circuits is NP-hard.

However: Remarkably, for the case n = 1, there does exist an optimal solution. It was

discovered by Matsumoto and Amano [2008].
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Part III: Matsumoto-Amano normal forms
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The Matsumoto-Amano normal form

Theorem [Matsumoto and Amano 2008]. Every Clifford+T operator U on a single qubit

can be uniquely written of the form

U = (T | ǫ) (HT | SHT)∗ C,

where C is a Clifford operator.

Example.

U = T HT SHT SHT HT SHT HT SHT HT HT SHT SSSω7

We can measure the “length” of an operator U in terms of its T-count; for example, the

above U has T-count 11.

Theorem. Of all the possible single-qubit circuits for a given operator, the

Matsumoto-Amano normal form has the smallest T-count.
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Proof idea, Matsumoto and Amano normal form

Existence: By rewriting. Generators: S, H, T , ω. Rewrite rules:

T T −→ S

S T −→ T S

ω T −→ T ω

H HT −→ T

ω HT −→ HT ω

H SHT −→ SHT HSSH

S SHT −→ HT HSSHSω7

ω SHT −→ SHT ω.

This terminates and leads to a normal form. It can be done efficiently (linear time).

Also, the rewriting rules do not increase T-count.
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Proof idea, Matsumoto and Amano normal form

Uniqueness: Consider the Bloch sphere representation of the generators:

^H =





0 0 1
0 −1 0
1 0 0





^S =





0 −1 0
1 0 0
0 0 1





^T =
1√
2





1 −1 0
1 1 0

0 0
√
2



 ω̂ =





1 0 0
0 1 0
0 0 1





Convert a Matsumoto-Amano normal form M to a Bloch sphere operator. The matrix

entries are therefore in the ring Z[
√
2]. Write it with least denominator exponent k:

^M =
1√
2k







a + a ′√2 b + b ′√2 c + c ′
√
2

d + d ′√2 e + e ′
√
2 f + f ′

√
2

g + g ′√2 h + h ′√2 i + i ′
√
2







Consider the parity matrix






a b c
d e f
g h i
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Uniqueness, continued

Lemma (by easy induction on normal form M):

• If M starts with HT , then (a, b, c) = (0, 0, 0) and (d, e, f) = (g, h, i) 6= (0, 0, 0).

• If M starts with SHT , then (d, e, f) = (0, 0, 0) and (a, b, c) = (g, h, i) 6= (0, 0, 0).

• If M starts with T , then (g, h, i) = (0, 0, 0) and (a, b, c) = (d, e, f) 6= (0, 0, 0).

• If M is Clifford, then (a, b, c) 6= (d, e, f) 6= (g, h, i) 6= (a, b, c).

Moreover, each syllable HT , SHT , or T increases the denominator exponent k by exactly 1.
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As a graph:

Start:





1 0 0
0 1 0
0 0 1





T
k++

C





1 1 0
1 1 0
0 0 0





H




0 0 0
1 1 0
1 1 0





S

T
k++





1 1 0
0 0 0
1 1 0





T
k++

This shows the left action of Matsumoto-Amano normal forms on k-parities over SO(3). All

matrices are written modulo the right action of the Clifford group, i.e., modulo a

permutation of the columns.
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Counting normal forms

Theorem [Matsumoto and Amano 2008]. Every Clifford+T operator U on a single qubit

can be uniquely written of the form

U = (T | ǫ) (HT | SHT)∗ C,

where C is a Clifford operator.

Corollary [Matsumoto and Amano 2008]. There are exactly

192 · (3 · 2n − 2)

distinct Clifford+T operators of T-count ≤ n.
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Part IV: Approximation of unitary operators: geometric methods
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The näıve method

Theorem. If A, B are two rotations by an irrational multiple of π, about two different axes,

then A and B span a dense subgroup of SO(3).

Proof. Obvious. Since the angle is irrational, operators of the form Am can be used to

approximate any angle of rotation about the given axis up to ǫ/3. We can then use an

operator of the form

AmBpAq

to approximate an (almost) arbitrary rotation up to ǫ.
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How good is the näıve method?

Runtime: very efficient.

Gate count: How do m, p, and q scale with ǫ?

m ≤ 10

ǫ ∼ 1
10
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How good is the näıve method?

Runtime: very efficient.

Gate count: How do m, p, and q scale with ǫ?

m ≤ 20

ǫ ∼ 1
20
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How good is the näıve method?

Runtime: very efficient.

Gate count: How do m, p, and q scale with ǫ?

m ≤ 30

ǫ ∼ 1
30
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How good is the näıve method?

Runtime: very efficient.

Gate count: How do m, p, and q scale with ǫ?

m ≤ 40

ǫ ∼ 1
40
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How good is the näıve method?

Runtime: very efficient.

Gate count: How do m, p, and q scale with ǫ?

m ≤ 50

ǫ ∼ 1
50

So the total number of gates is n +m + q = O(1/ǫ). How good is this?
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Lower bounds

Another way to look at the approximation problem:

• SO(3) is a 3-dimensional manifold.

• Therefore, the volume of an ǫ-ball is O(ǫ3).

• Therefore, we need O(1/ǫ3) ǫ-balls to cover SO(3).

• Therefore, we need O(1/ǫ3) distinct operators to ap-

proximate all unitaries up to ǫ.
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Lower bounds, continued

• Words of the form A∗B∗A∗. There are ≤ n3 such words of length up to n.

The information bound gives:

n3 ≥ C

ǫ3
⇒ n = Ω(1/ǫ).

This is very redundant! Such words carry only logn bits of information.
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Lower bounds, continued

• Words of the form A∗B∗A∗. There are ≤ n3 such words of length up to n.

The information bound gives:

n3 ≥ C

ǫ3
⇒ n = Ω(1/ǫ).

This is very redundant! Such words carry only logn bits of information.

• Arbitrary words (A|B)∗. There are 2n+1 − 1 words of length up to n.

The information bound gives:

2n+1 − 1 ≥ C

ǫ3
⇒ n ≥ 3 log2(1/ǫ) + K.
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ǫ3
⇒ n = Ω(1/ǫ).

This is very redundant! Such words carry only logn bits of information.

• Arbitrary words (A|B)∗. There are 2n+1 − 1 words of length up to n.

The information bound gives:

2n+1 − 1 ≥ C

ǫ3
⇒ n ≥ 3 log2(1/ǫ) + K.

• Matsumoto-Amano normal forms. Up to a phase, there are 24 · (3 · 2n − 2) Clifford+T

operators of T-count ≤ n. The information bound gives:

24 · (3 · 2n − 2) ≥ C

ǫ3
⇒ n ≥ 3 log2(1/ǫ) + K.
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The Solovay-Kitaev algorithm in a nutshell

Basic observation:

If ‖A − A ′‖, ‖B − B ′‖ = O(ǫ), then ‖ABA−1B−1 − A ′B ′A ′−1B ′−1‖ = O(ǫ1.5).

Rough strategy for approximating U up to ǫ1.5:

• Find C approximating U up to ǫ.

• Write UC−1 in the form A ′B ′A ′−1B ′−1.

• Find A, B approximating A ′, B ′ up to ǫ.

• Then ABA−1B−1C approximates U up to ǫ1.5.

This gives a recursive procedure for approximating U up to ǫ, ǫ1.5, ǫ1.5
2
, ǫ1.5

3
, . . .
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Gate complexity of Solovay-Kitaev

While ABA−1B−1C is less redundant than A∗B∗A∗, it is still redundant.

Each recursive step multiplies the accuracy (in digits) by 1.5, and multiplies the gate count

by 5.

Thus, the gate count is dc, where d = log(1/ǫ) is the accuracy (in digits), and

c = log 5/ log 1.5 ≈ 3.96.

Gate count = O(log3.96(1/ǫ)).

Compare with the information-theoretic lower bound:

Gate count = O(log(1/ǫ)).
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Gate complexity, in numbers.

Precision Solovay-Kitaev Lower bound

ǫ = 10−10 ≈ 4, 000 ≈ 102

ǫ = 10−20 ≈ 60, 000 ≈ 200

ǫ = 10−100 ≈ 37, 000, 000 ≈ 1000

ǫ = 10−1000 ≈ 350, 000, 000, 000 ≈ 9974
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Part V: Grid problems

Neil J. Ross and Peter Selinger
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The ring Z[
√
2]

Consider the ring Z[
√
2] = {a + b

√
2 | a, b ∈ Z}.

It has an automorphism (“conjugation”): (a + b
√
2)• = a − b

√
2. Automorphism properties:

(α + β)• = α• + β•
(α − β)• = α• − β•
(αβ)• = α•β•

Note that α•α = a2 − 2b2 is an integer, called the norm of α.
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Dense or discrete?

The ring Z[
√
2] is dense in the real numbers.

α = a + b
√
2
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The automorphism “•”

The function α 7→ α• is extremely non-continuous. In fact, it can never happen that |α − β|

and |α• − β•| are small at the same time (unless α = β).

Proof: let α− β = a+ b
√
2. Then |α− β| · |α• − β•| = (a+ b

√
2)(a− b

√
2) = a2 − 2b2, which is an

integer.

a

b
√
2

α − β = a + b
√
2

α• − β• = a − b
√
2
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find

bla bla bla bla bla such that

xyzα ∈ A and α• ∈ B.
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B A

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find

α ∈ Z[
√
2] such that

α ∈ A and α• ∈ B.
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1-dimensional grid problems

Given finite intervals A and B of the real numbers, the 1-dimensional grid problem is to find

α ∈ Z[
√
2] such that

α ∈ A and α• ∈ B.

Equivalently, find a, b ∈ Z such that:

a + b
√
2 ∈ A and a − b

√
2 ∈ B.

a

b
√
2

y0 y1 x0 x1

A = [x0, x1], B = [y0, y1]

It is clear that there will be solutions when |A| and |B| are large. The number of solutions is

O(|A| · |B|) in that case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

a

b
√
2

Solution: scaling. lambda=1+sqrt2 is a unit of the ring Z[sqrt2], with lambda=sqrt2-1. So

multiplication by lambda maps the grid to itself. So we can equivalently consider the

problem for lambdaA and
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

a

b
√
2

Solution: scaling. λ = 1 +
√
2 is a unit of the ring Z[

√
2], with λ−1 =

√
2− 1. So multiplication

by λ maps the grid to itself. So we can equivalently consider the problem for λnA and λ•nB,
which takes us back to the “fat” case.
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√
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a long and skinny rectangle:

a

b
√
2

Solution: scaling. λ = 1 +
√
2 is a unit of the ring Z[

√
2], with λ−1 =

√
2− 1. So multiplication

by λ maps the grid to itself. So we can equivalently consider the problem for λnA and λ•nB,
which takes us back to the “fat” case.
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Solution of 1-dimensional grid problems

Theorem. Let A and B be finite real intervals. There exists an efficient algorithm that

enumerates all solutions of the grid problem for A and B.
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2-dimensional grid problems

Consider the ring Z[ω], where ω = eiπ/4 = 1+i√
2
. Z[ω] is a subset of the complex numbers,

which we can identify with the Euclidean plane R2.

Definition. Let B be a bounded convex subset of

the plane. Just as in the 1-dimensional case, the grid

for B is the set

grid(B) = {α ∈ Z[ω] | α• ∈ B}.

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B
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2-dimensional grid problems

Given bounded convex subsets A and B of the plane, the 2-dimensional grid problem is to

find u ∈ Z[ω] such that

u ∈ A and u• ∈ B.

A
B
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The easiest case: upright rectangles

If A = Ax × Ay and B = Bx × By, the problem reduces to two 1-dimensional problems:

α ∈ Ax, α• ∈ Bx and β ∈ Ay, β• ∈ By,

where u = α + iβ ∈ Z[ω]. (This means α, β ∈ Z[
√
2] or α, β ∈ Z[

√
2] + 1/

√
2).

B

A
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of its bounding box. If A and

B are upright, the grid problem reduces to that of rectangles.

B

A
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of its bounding box. If A and

B are upright, the grid problem reduces to that of rectangles.

B

A
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The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this case, finding grid points is a

priori a hard problem.

B

A
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Our solution: grid operators

A linear operator G : R2 → R2 is called a grid operator if G(Z[ω]) = Z[ω].

Some useful grid operators:

R =
1√
2

[

1 −1

1 1

]

A =

[

1 −2

0 1

]

B =

[

1
√
2

0 1

]

K =
1√
2

[

−λ−1 −1

λ 1

]

X =

[

0 1

1 0

]

Z =

[

1 0

0 −1

]

Proposition. Let G be a grid operator. Then the grid problem for A and B is equivalent to

the grid problem for G(A) and G•(B).

Proof: obvious, because α ∈ A iff G(α) ∈ G(A), and α• ∈ B iff G(α)• ∈ G•(B).

62



Effect of a grid operator

B =

[

1
√
2

0 1

]

B• =

[

1 −
√
2

0 1

]

A
B
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Effect of a grid operator

B =

[

1
√
2

0 1

]

B• =

[

1 −
√
2

0 1

]

G(A)

G•(B)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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Demo
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Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with non-empty interior. Then there

exists a grid operator G such that G(A) and G•(B) are 1/15-upright.

Moreover, if A and B are M-upright, then G can be efficiently computed in O(log(1/M)) steps.

Corollary (Solution of 2-dimensional grid problems). Let A and B be bounded convex

sets with non-empty interior. There exists an efficient algorithm that enumerates all

solutions of the grid problem for A and B.
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Part VI: An algorithm for optimal Clifford+T approximations
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Recall: Exact synthesis for single-qubit Clifford+T operators

Definition. The Clifford+T group on one qubit is generated by the Hadamard gate H, the

phase gate S, the scalar ω = eiπ/4, and the T- or π/8-gate:

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

, ω = eiπ/4 =
1 + i√

2
, T =

(

1 0
0 ω

)

.

Theorem (Matsumoto and Amano). Every Clifford+T operator U : C2 → C2 can be uniquely

written of the form

U = (T | ǫ) (HT | SHT)∗ C.

Theorem (Kliuchnikov, Maslov, Mosca). A unitary operator U =

(

u v
t s

)

is a Clifford+T

operator if and only if u, v, t, s ∈ 1√
2k
Z[ω].

Moreover, if detU = 1, then the T-count of the resulting operator is equal to 2k − 2.
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The approximate synthesis problem

Problem.Given an operator U ∈ SU(2) and ǫ > 0, find a Clifford+T operator U ′ of small

T-count, such that ‖U ′ − U‖ ≤ ǫ.

Näıve idea

Given

U =

(

u v
t s

)

,

first approximate u, v, t, s up to ǫ in D[ω], then use exact synthesis to convert

U ′ =
(

u ′ v ′
t ′ s ′

)

to a circuit.

This does not work: U ′ is not unitary!
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The approximate synthesis problem

Problem.Given an operator U ∈ SU(2) and ǫ > 0, find a Clifford+T operator U ′ of small

T-count, such that ‖U ′ − U‖ ≤ ǫ.

Basic construction

We will approximate a z-rotation

Rz(θ) =

(

e−iθ/2 0

0 eiθ/2

)

by a matrix of the form

U =
1

√
2
k

(

u −t†

t u†

)

,

where u, t ∈ Z[ω].
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Observation. The error is a function of u (and not of t). Indeed, setting z = e−iθ/2 and

u ′ = u√
2
k, we have

‖U − Rz(θ)‖ ≤ ǫ iff ~u ′ · ~z ≥ 1 −
ǫ2

2
.

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

The problem then reduces to:

(1) Finding u ∈ Z[ω] such that u√
2
k ∈ Rǫ, with small k;

(2) Solving the Diophantine equation t†t + u†u = 2k.
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Diophantine equations are computationally easy

(if we can factor)

Consider a Diophantine equation of the form

t†t = ξ (2)

where ξ ∈ Z[
√
2] is given and t ∈ Z[ω] is unknown.

Necessary condition. The equation (2) has a solution only if ξ ≥ 0 and ξ• ≥ 0.

Theorem. There exists a probabilistic polynomial time algorithm which decides whether

the equation (2) has a solution or not, and produces the solution if there is one, provided

that the algorithm is given the prime factorization of n = ξ•ξ.

This is okay, because factoring random numbers is not as hard as worst-case numbers.

Proof. Exactly like Fermat’s theorem on sums of two squares, except we replace the

Euclidean domains Z and Z[i] by Z[
√
2] and Z[ω].
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The candidate selection problem

The only remaining problem is to find suitable u. Note that ξ• = (2k − u†u)• ≥ 0 iff u•/
√
2k is

in the unit disk.

Candidate selection problem. Find k ∈ N and u ∈ Z[ω] such that

1. u/
√
2k is in the epsilon-region Rǫ;

2. u•/
√
2k is in the unit disk;

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

But this is a 2-dimensional grid problem, so can be solved efficiently.
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Algorithm 1

(1) For all k ∈ N, enumerate all u ∈ Z[ω] such that u/
√
2k ∈ Rǫ and u•/

√
2k ∈ D.

(2) For each u:

(a) Compute ξ = 2k − u†u and n = ξ•ξ.
(b) Attempt to find a prime factorization of n.

(c) If a prime factorization is found, attempt to solve the equation t†t = ξ.

(3) When step (2) succeeds, output U.
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Results

• In the presence of a factoring oracle (e.g., a quantum computer), Algorithm 1 is optimal

in an absolute sense: it finds the solution with the smallest possible T-count whatsoever,

for the given θ and ǫ.

• In the absence of a factoring oracle, Algorithm 1 is nearly optimal: it yields T-counts of

m +O(log(log(1/ǫ))), where m is the second-to-optimal T-count.

• The algorithm yields an upper bound and a lower bound for the T-count of each

problem instance.

• The runtime is polynomial in log(1/ǫ).
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Experimental results

ǫ T-count T-bound Actual error Runtime Candidates Time/Cand.

10−10 102 ≥ 102 0.91180 · 10−10 0.0190s 3.0 0.0064s

10−20 200 ≥ 198 0.87670 · 10−20 0.0433s 7.0 0.0061s

10−30 298 ≥ 298 0.99836 · 10−30 0.0600s 7.0 0.0085s

10−40 402 ≥ 400 0.77378 · 10−40 0.0976s 11.7 0.0084s

10−50 500 ≥ 500 0.82008 · 10−50 0.1353s 20.3 0.0067s

10−60 602 ≥ 596 0.61151 · 10−60 0.1548s 16.0 0.0097s

10−70 702 ≥ 698 0.40936 · 10−70 0.1931s 20.9 0.0093s

10−80 804 ≥ 794 0.92372 · 10−80 0.2402s 27.2 0.0088s

10−90 898 ≥ 898 0.96607 · 10−90 0.2696s 22.2 0.0121s

10−100 1000 ≥ 998 0.78879 · 10−100 0.3443s 31.2 0.0110s

10−200 1998 ≥ 1994 0.73266 · 10−200 1.1423s 62.3 0.0183s

10−500 4990 ≥ 4986 0.67156 · 10−500 8.6509s 170.4 0.0508s

10−1000 9974 ≥ 9966 0.80457 · 10−1000 47.9300s 270.4 0.1773s

10−2000 19942 ≥ 19934 0.88272 · 10−2000 383.1024s 556.7 0.6881s
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10−1 10−10 10−100 10−1000 ǫ

10

100

1000

10000

T

RS2014: K + 3 log2(1/ǫ)

Sel2012: K + 4 log2(1/ǫ)

KMM2012: K + 3.21 log2(1/ǫ)

Fow2004: K + 3 log2(1/ǫ)

SK1995: O(log3.97(1/ǫ))
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