Part II: Picturing Even More Quantum Processes

Aleks Kissinger

Spring School on Quantum Structures in Physics and CS

May 29, 2014

1. Review quantum maps, quantum/classical maps, and spiders

- 1. Review quantum maps, quantum/classical maps, and spiders
- 2. Enrich our language with multi-coloured spiders and phases

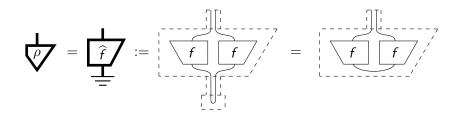
- 1. Review quantum maps, quantum/classical maps, and spiders
- 2. Enrich our language with multi-coloured spiders and phases
- 3. Use these new language features to define **complementarity** and **strong complementarity**

- 1. Review quantum maps, quantum/classical maps, and spiders
- 2. Enrich our language with multi-coloured spiders and phases
- 3. Use these new language features to define **complementarity** and **strong complementarity**
- 4. Specialise to qubits and define the **ZX-calculus**

Review – Quantum states

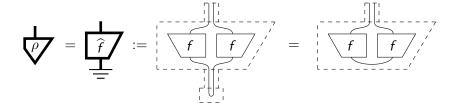
Review - Quantum states

- ▶ Quantum states look like this:
- ▶ They can always be written in terms of a **pure state** + $\underline{\underline{}}$:

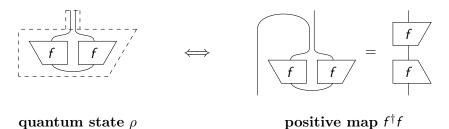


Review - Quantum states

- ► Quantum states look like this:
- ► They can always be written in terms of a **pure state** + <u>_____</u>:



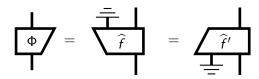
► So 'up to bending', a.k.a. partial transpose:



Review – Quantum maps

Review – Quantum maps

- ▶ Quantum maps look like this: Φ
- ► They can always be **purified**:



Review – Quantum maps

- ▶ Quantum maps look like this: Φ
- ► They can always be **purified**:

 $\overline{T} = \sum_{i} \Lambda$ for any ONB, so Φ has a Kraus form:

$$\Phi$$
 = $\sum_{i} \widehat{f_{i}}$ where $\widehat{f_{i}}$:= $\widehat{f_{i}}$

Review - Quantum maps

- ▶ Quantum maps look like this: Ф
- ► They can always be **purified**:

 $\overline{T} = \sum_{i} \Lambda$ for any ONB, so Φ has a Kraus form:

$$\Phi = \sum_{i} \widehat{f_{i}}$$
 where
$$\widehat{f_{i}} := \widehat{f}$$

▶ Up to bending:

$$\sum_{i} f_{i} \qquad \Longleftrightarrow \qquad \qquad \sum_{i} f_{i}$$

quantum map Φ

CP-map $\sum_{i} f_i(-) f_i^{\dagger}$

Review – Discarding and causality

▶ Physically realisable quantum maps satisfy causality:

$$\frac{\overline{\underline{}}}{\Phi} = \overline{\underline{}}$$

Review – Discarding and causality

▶ Physically realisable quantum maps satisfy causality:

$$\begin{array}{c} \frac{-}{T} \\ \hline \phi \\ \end{array} = \begin{array}{c} -\\ \hline \end{array}$$

▶ **Discarding** a state amounts to taking a **trace**:

$$\frac{=}{P} = \frac{1}{p} = \operatorname{Tr}(\rho)$$

Review – Discarding and causality

▶ Physically realisable quantum maps satisfy causality:

$$\begin{array}{c} \frac{-}{T} \\ \hline \Phi \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

▶ **Discarding** a state amounts to taking a **trace**:

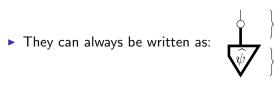
► Causal states ↔ positive operators with trace 1 Causal maps ↔ trace-preserving CP-maps (CPTPs)

Review – Classical states

► Classical states look like this:

Review - Classical states

► Classical states look like this:



Review - Classical states

► Classical states look like this:

...hence the notation. The dot singles out a preferred basis, and in that basis, a classical state is a vector of positive numbers:

$$\frac{\downarrow}{\widehat{\psi}} = \sum_{i} p_{i} \stackrel{\downarrow}{\downarrow_{i}} \leftrightarrow \begin{pmatrix} p_{1} \\ p_{2} \\ \dots \\ p_{n} \end{pmatrix}$$

Review – Classical states

► Classical states look like this:

...hence the notation. The dot singles out a preferred basis, and in that basis, a classical state is a vector of positive numbers:

$$\frac{\downarrow}{\widehat{\psi}} = \sum_{i} p_{i} \stackrel{|}{\downarrow_{i}} \leftrightarrow \begin{pmatrix} p_{1} \\ p_{2} \\ \dots \\ p_{n} \end{pmatrix}$$

▶ Causality forces these numbers to sum to 1:

$$\frac{\hat{\psi}}{\hat{\psi}} = \frac{\bar{-}}{\hat{\psi}} = \begin{bmatrix} \bar{-} & \bar{-} & \bar{-} \\ \bar{-} & \bar{-} \end{bmatrix} \qquad \Longleftrightarrow \qquad \sum_{i} p_{i} = 1$$

Review – Quantum/classical maps

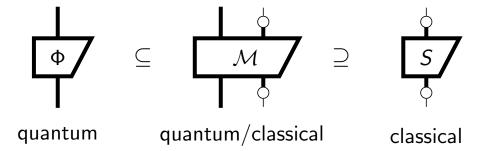
► So, causal classical states are just plain old probability distributions.

Review – Quantum/classical maps

- ► So, causal classical states are just plain old probability distributions.
- ► Similarly, **causal classical maps** are precisely the linear maps that preserve probability distributions, a.k.a. **stochastic maps**.

Review – Quantum/classical maps

- ▶ So, causal classical states are just plain old probability distributions.
- ► Similarly, **causal classical maps** are precisely the linear maps that preserve probability distributions, a.k.a. **stochastic maps**.
- ▶ Quantum/classical maps generalise both CP-maps and stochastic maps.

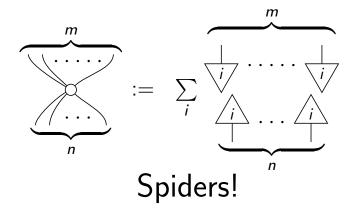


Linear/quantum maps can be defined in terms of basis states (and numbers) using sums.

- Linear/quantum maps can be defined in terms of basis states (and numbers) using sums.
- ► There already exists a family of maps that do much of the same work, but more **elegantly** and **graphically**.

- Linear/quantum maps can be defined in terms of basis states (and numbers) using sums.
- ► There already exists a family of maps that do much of the same work, but more **elegantly** and **graphically**.

- Linear/quantum maps can be defined in terms of **basis states** (and numbers) using **sums**.
- ► There already exists a family of maps that do much of the same work, but more **elegantly** and **graphically**.

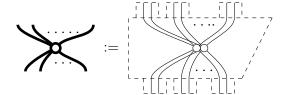


▶ Spiders are 'generalised correlators'. They force all 'legs' to take the same value.

- ▶ Spiders are 'generalised correlators'. They force all 'legs' to take the same value.
- ▶ We have seen classical spiders (single wires):

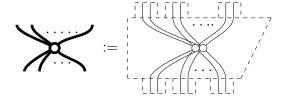
- ▶ Spiders are 'generalised correlators'. They force all 'legs' to take the same value.
- ▶ We have seen classical spiders (single wires):

...quantum spiders (double wires):

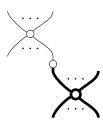


- ▶ Spiders are 'generalised correlators'. They force all 'legs' to take the same value.
- ▶ We have seen classical spiders (single wires):

...quantum spiders (double wires):



...and classical/quantum (a.k.a. bastard) spiders:

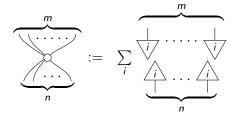


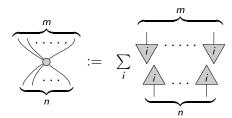
Multi-coloured spiders

▶ Most interesting quantum features appear only when we ditch **preferred bases** for systems and instead study **interaction of multiple bases**.

Multi-coloured spiders

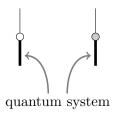
- ▶ Most interesting quantum features appear only when we ditch **preferred bases** for systems and instead study **interaction of multiple bases**.
- ightharpoonup Different bases ightarrow different coloured spiders



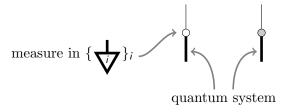


► Each spider induces a basis **measurement**:

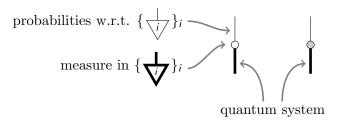
► Each spider induces a basis **measurement**:



Each spider induces a basis **measurement**:

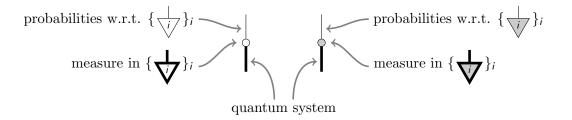


Each spider induces a basis **measurement**:



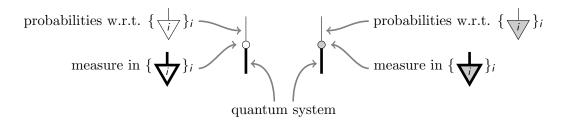
Two kinds of measurement

Each spider induces a basis **measurement**:

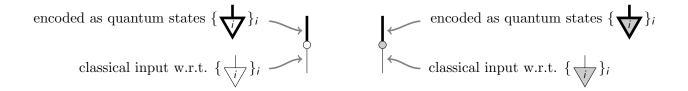


Two kinds of measurement

Each spider induces a basis **measurement**:



► Their adjoints are **preparations**:



Measuring \Rightarrow preparing

▶ What happens when we **measure** then **prepare**? Decoherence.

$$\left(\begin{array}{c} \begin{array}{c} \bullet \\ \hline \rho \end{array}\right) = \sum_{ij} \rho_{ij} \stackrel{\downarrow}{\sqrt{i}} \stackrel{\downarrow}{\sqrt{i}} \right) \quad \mapsto \quad \left(\begin{array}{c} \bullet \\ \hline \rho \end{array}\right) = \sum_{i} \rho_{ii} \stackrel{\downarrow}{\sqrt{i}} \stackrel{\downarrow}{\sqrt{i}} \right)$$

Measuring \Rightarrow preparing

▶ What happens when we **measure** then **prepare**? Decoherence.

▶ Decoherence models the situation where we **forget** the classical in the middle. However, we may have access to this classical data, i.e. if the detector clicks. So, we could just as well **keep a copy**.

Measuring \Rightarrow preparing

▶ What happens when we **measure** then **prepare**? Decoherence.

$$\left(\begin{array}{c} \begin{array}{c} \bullet \\ \hline \\ \end{array} \right) = \sum_{ij} \rho_{ij} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \bullet \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$$

▶ Decoherence models the situation where we **forget** the classical in the middle. However, we may have access to this classical data, i.e. if the detector clicks. So, we could just as well **keep a copy**.

▶ This lets us model **non-demolition** measurement devices. The demolition measurement can be recovered just by discarding the (quantum) output:

▶ What happens when we **prepare** then **measure**? It depends on the choice of bases.

- ▶ What happens when we **prepare** then **measure**? It depends on the choice of bases.
- ▶ When we take the same basis for both:

- ▶ What happens when we **prepare** then **measure**? It depends on the choice of bases.
- ▶ When we take the same basis for both:

► The other extreme is:

- ▶ What happens when we **prepare** then **measure**? It depends on the choice of bases.
- ▶ When we take the same basis for both:

► The other extreme is:

▶ In other words: (encode in \bigcirc) + (measure in \bigcirc) = (no data transfer)

- ▶ What happens when we **prepare** then **measure**? It depends on the choice of bases.
- ▶ When we take the same basis for both:

► The other extreme is:

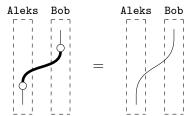
- ▶ In other words: (encode in \bigcirc) + (measure in \bigcirc) = (no data transfer)
- ▶ This is precisely what it means for two bases to be complementary

Complementarity – QKD

▶ This is at the heart of quantum key distribution.

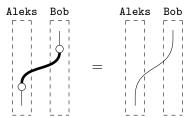
Complementarity - QKD

- ▶ This is at the heart of quantum key distribution.
- ▶ When Bob measures in the **correct** basis, he gets what I send:

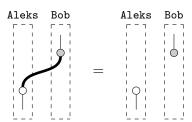


Complementarity – QKD

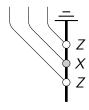
- ▶ This is at the heart of quantum key distribution.
- ▶ When Bob measures in the **correct** basis, he gets what I send:



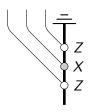
▶ When Bob measures in the **incorrect** basis, he gets noise:



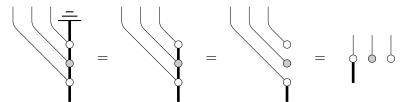
▶ Suppose \bigcirc is a spin-Z measurement and \bigcirc is a spin-X measurement, then we could imagine a Stern-Gerlach type setup:



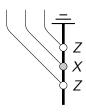
▶ Suppose \bigcirc is a spin-Z measurement and \bigcirc is a spin-X measurement, then we could imagine a Stern-Gerlach type setup:



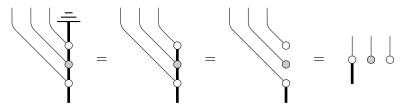
▶ Since Z and X are complementary, this simplifies as:



▶ Suppose \bigcirc is a spin-Z measurement and \bigcirc is a spin-X measurement, then we could imagine a Stern-Gerlach type setup:

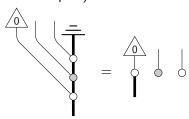


▶ Since Z and X are complementary, this simplifies as:

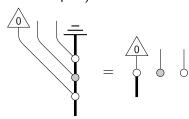


▶ Thus the outcome of final measurement is **uniformly random**. (recall $\Diamond = \text{flat probability distribution w.r.t. } \{ \frac{\bot}{\bigvee j} \}_j).$

▶ Since it disconnects, the output **stays random**, even when we post-select the first measurement to be spin-up (i.e. 'block off the spin-down output'):



▶ Since it disconnects, the output **stays random**, even when we post-select the first measurement to be spin-up (i.e. 'block off the spin-down output'):



▶ We conclude from above that the *X* measurement (maximally) disturbs the system, w.r.t. the final *Z* measurement.

Complementarity ↔ Mutually unbiased bases

Definition

Two bases $\{\frac{1}{\sqrt{j}}\}_j$ and $\{\frac{1}{\sqrt{j}}\}_j$ are called *mutually unbiased* if:

$$\forall i, j.$$
 (i, j)

$$\forall i, j.$$
 $\frac{1}{V} = \frac{1}{D}$ or equivalently, $\forall i, j.$ $\left|\frac{1}{V}\right| = \frac{1}{\sqrt{D}}$

Complementarity ↔ Mutually unbiased bases

Definition

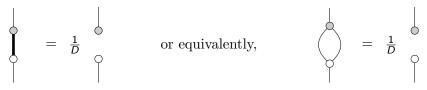
Two bases $\{\frac{1}{\sqrt{j}}\}_j$ and $\{\frac{1}{\sqrt{j}}\}_j$ are called *mutually unbiased* if:

$$\forall i, j. \quad \stackrel{\triangle}{\checkmark } = \frac{1}{2}$$

$$\forall i, j.$$
 $\frac{1}{V} = \frac{1}{D}$ or equivalently, $\forall i, j.$ $\left|\frac{\dot{j}}{\dot{j}}\right| = \frac{1}{\sqrt{D}}$

Theorem

Two bases are mutually unbiased iff they satisfy the *complementarity equation*:



Complementarity ↔ Mutually unbiased bases

Definition

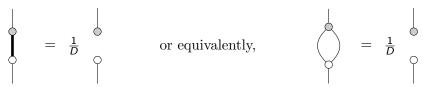
Two bases $\{\frac{1}{\sqrt{j}}\}_j$ and $\{\frac{1}{\sqrt{j}}\}_j$ are called *mutually unbiased* if:

$$\forall i, j. \quad \frac{1}{\sqrt{J}} = \frac{1}{L}$$

$$\forall i, j.$$
 $\frac{1}{V} = \frac{1}{D}$ or equivalently, $\forall i, j.$ $\left|\frac{\dot{j}}{\dot{j}}\right| = \frac{1}{\sqrt{D}}$

Theorem

Two bases are mutually unbiased iff they satisfy the *complementarity equation*:



Proof.

 $(Compl. \Rightarrow MUB)$

 $(MUB \Rightarrow Compl.)$ follows similarly by comparing matrix entries.

General unbiased points

 \blacktriangleright Any pure state $\widehat{\psi}$ is called unbiased w.r.t. to a basis if

$$\forall i. \quad \widehat{\widehat{\psi}} = \lambda$$

where λ doesn't depend on i (and $=\frac{1}{D}$ when $\widehat{\psi}$ is normalised).

General unbiased points

lacktriangle Any pure state $\widehat{\psi}$ is called *unbiased* w.r.t. to a basis if

$$\forall i. \quad \frac{}{\widehat{\psi}} = \lambda$$

where λ doesn't depend on i (and $=\frac{1}{D}$ when $\widehat{\psi}$ is normalised).

 \blacktriangleright This is the same as saying measuring $\widehat{\psi}$ gives no information:

$$\frac{\stackrel{\downarrow}{\Diamond}}{\widehat{\psi}} = \lambda$$

General unbiased points

lacktriangle Any pure state $\widehat{\psi}$ is called *unbiased* w.r.t. to a basis if

$$\forall i. \quad \widehat{\psi} = \lambda$$

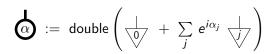
where λ doesn't depend on i (and $=\frac{1}{D}$ when $\widehat{\psi}$ is normalised).

lacktriangle This is the same as saying measuring $\widehat{\psi}$ gives no information:

▶ We could just as easily use this definition of unbiasedness for MUBs. Then, the complementarity equation follows just by evaluating on basis elements:

$$\bigvee_{i} = \bigvee_{i} = \frac{1}{D} = \frac{1}{D}$$

lacktriangle Killing the global phase, unbiased states can be parametrised by D-1 complex phase factors:



lacktriangle Killing the global phase, unbiased states can be parametrised by D-1 complex phase factors:

$$igodelightarrow igodelightarrow := \operatorname{double} \left(igodelightarrow igod$$

▶ Thus, unbiased states are also called *phase states*

 \triangleright Killing the global phase, unbiased states can be parametrised by D-1 complex phase factors:

$$\bigcirc$$
 := double $\left(\bigcirc \bigcirc \right) + \sum_{j} e^{i\alpha_{j}} \bigcirc \bigcirc \right)$

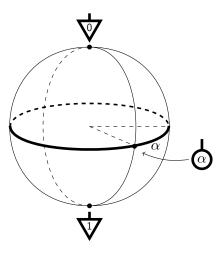
$$\bigcirc$$
 := double $\left(\begin{array}{c} \downarrow \\ 0 \end{array} + \begin{array}{c} \sum\limits_{j} e^{i \alpha_{j}} \end{array} \begin{array}{c} \downarrow \\ \downarrow \end{array} \right)$

- ▶ Thus, unbiased states are also called *phase states*
- ► Specialising to the 2D case:

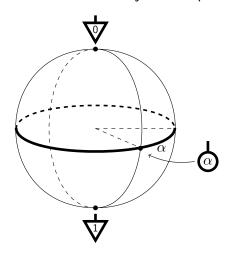
$$\bigcirc$$
 := double $\left(\frac{1}{0} + e^{i\alpha} \frac{1}{1} \right)$

$$\bigcirc$$
 := double $\left(\begin{array}{cc} \downarrow \\ \hline 0 \end{array} + e^{i\alpha} \begin{array}{cc} \downarrow \\ \hline 1 \end{array} \right)$

▶ The phase states for the computational basis in 2D are just the equator of the Bloch sphere.

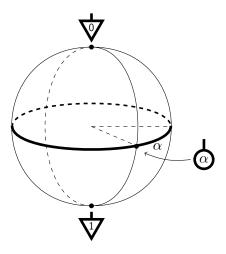


▶ The phase states for the computational basis in 2D are just the equator of the Bloch sphere.



▶ Since decoherence projects to the axis of the Bloch ball, in particular:

▶ The phase states for the computational basis in 2D are just the equator of the Bloch sphere.



▶ Since decoherence projects to the axis of the Bloch ball, in particular:

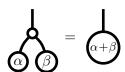
► So, phases get clobbered in the quantum/classical passage

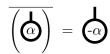
The phase group

► How do we define **phase rotations**?

The phase group

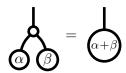
- ► How do we define **phase rotations**?
- ▶ A clue comes from the the **phase group** structure of spiders

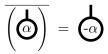




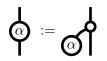
The phase group

- ► How do we define **phase rotations**?
- ▶ A clue comes from the the **phase group** structure of spiders

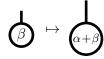


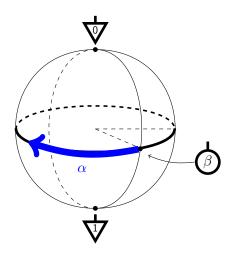


▶ If we multiply on the left (or the right) with a phase-state α , it performs an α rotation:



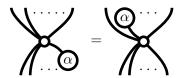
::





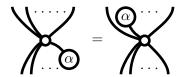
...watch as they get eaten by spiders

▶ Note that is doesn't matter where we attach a phase-state to a spider:



...watch as they get eaten by spiders

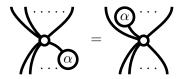
▶ Note that is doesn't matter where we attach a phase-state to a spider:



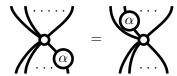
▶ A consequence is that **phase maps** commute through spiders:

...watch as they get eaten by spiders

▶ Note that is doesn't matter where we attach a phase-state to a spider:



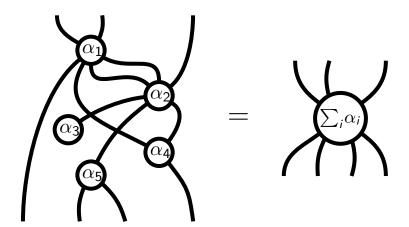
▶ A consequence is that **phase maps** commute through spiders:



▶ We simplify our notation by letting spiders **eat connected phases**:

Generalised spider law

(phase group) + (spider fusion) = (phase-spider fusion)

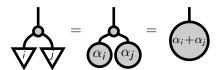


▶ For a complementary pair \bigcirc/\bigcirc the **basis states** of \bigcirc are unbiased w.r.t. \bigcirc , so we could also write them as **phase states**. For $\bigcirc := Z$ and $\bigcirc := X$,

▶ For a complementary pair \bigcirc/\bigcirc the **basis states** of \bigcirc are unbiased w.r.t. \bigcirc , so we could also write them as **phase states**. For $\bigcirc := Z$ and $\bigcirc := X$,

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

▶ So, since ○ gives us a way multiply phases, we can multiply ○-basis elements.

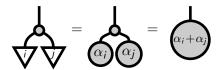


▶ For a complementary pair \bigcirc/\bigcirc the **basis states** of \bigcirc are unbiased w.r.t. \bigcirc , so we could also write them as **phase states**. For $\bigcirc := Z$ and $\bigcirc := X$,

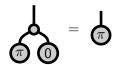
$$\frac{\Delta}{\Gamma} = \frac{0}{\Gamma}$$

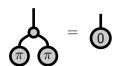
$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{2}}$$

▶ So, since ○ gives us a way multiply phases, we can multiply ○-basis elements.



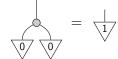
▶ While in general, $\alpha_i + \alpha_j$ won't be another basis element, this *is* the case for Z/X:

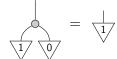


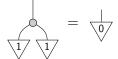


▶ So, ives a double life. On the one hand, it's single version can be seen as an operation on classical data:

namely, \mathbb{Z}_2 -multiplication.







namely, \mathbb{Z}_2 -multiplication.

▶ On the other hand, it is a quantum operation on phase-states:

$$= \frac{1}{\sqrt{1/2}}$$

$$= \frac{1}{1}$$

namely, \mathbb{Z}_2 -multiplication.

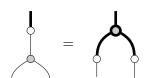
▶ On the other hand, it is a quantum operation on phase-states:

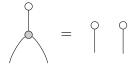


▶ ...and since $\{\frac{1}{\sqrt{j}}\}_j$ encodes the phase-states (via \circ preparation):

Definition

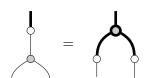
A pair of spiders is said to be strongly complementary if the following equations are satisfied:

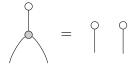




Definition

A pair of spiders is said to be strongly complementary if the following equations are satisfied:





Definition

A pair of spiders is said to be strongly complementary if the following equations are satisfied:

▶ Unfolding this doubled-stuff yields some equations that will be familiar to some:

Definition

A pair of spiders is said to be strongly complementary if the following equations are satisfied:

▶ Unfolding this doubled-stuff yields some equations that will be familiar to some:

► Strongly complementary pairs of spiders form **bi-algebras**!

Strong complementarity ⇒ complementarity

Theorem

Strongly complementarity \implies complementarity.

Strong complementarity ⇒ complementarity

Theorem

Strongly complementarity \implies complementarity.

Proof.

▶ Unlike MUBs, strongly complementary bases are easy to classify.

- ▶ Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2

- ▶ Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2
- ...and these pairs are classified in all dimensions.

- ▶ Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2
- ...and these pairs are classified in all dimensions.

- ▶ Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2
- ...and these pairs are classified in all dimensions.

Theorem

Strongly complementary pairs of basis of dimension D are in 1-to-1 correspondence with Abelian groups of order D.

- ▶ Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2
- ...and these pairs are classified in all dimensions.

Theorem

Strongly complementary pairs of basis of dimension D are in 1-to-1 correspondence with Abelian groups of order D.

- Unlike MUBs, strongly complementary bases are easy to classify.
- ▶ For one thing, maximal sets of bases that are pairwise-SC are always size 2
- ...and these pairs are classified in all dimensions.

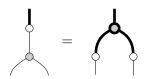
Theorem

Strongly complementary pairs of basis of dimension D are in 1-to-1 correspondence with Abelian groups of order D.

Proof.

(sketch) \bigwedge acts as a group operation on $\{\bigvee_{j}\}_{j}$. Fixing which group operation totally characterises

▶ We tried to give some (pseudo-)operational interpretation of this equation:



▶ We tried to give some (pseudo-)operational interpretation of this equation:

▶ But it falls down because, while 🋕 is a good quantum map, it isn't causal:

$$\overline{\overline{T}} = \overline{\overline{T}} \overline{\overline{T}}$$

So it isn't physical.

▶ We tried to give some (pseudo-)operational interpretation of this equation:

▶ But it falls down because, while 🛕 is a good quantum map, it isn't causal:

$$\overline{\overline{T}} = \overline{T} = \overline{T}$$

So it isn't physical.

▶ This is because, it is both **pure**, and **it throws stuff away**. E.g. for the Z/X example before, it is \mathbb{Z}_2 -multiply, a.k.a. XOR.

► However, ★ is part of a physical map, if we play a standard trick from quantum computing. We simply **copy** (some of) the input:

► However, ★ is part of a physical map, if we play a standard trick from quantum computing. We simply **copy** (some of) the input:

► Causality is restored! At least, whenever ○ and ○ are complementary.

$$\frac{\overline{\overline{T}}}{\overline{\overline{T}}} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array}$$

► However, ★ is part of a physical map, if we play a standard trick from quantum computing. We simply **copy** (some of) the input:

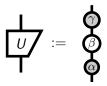
► Causality is restored! At least, whenever ○ and ○ are complementary.

$$\frac{\overline{\overline{T}}}{\overline{T}} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array} = \begin{array}{c} \overline{\overline{T}} \\ \overline{\overline{T}} \end{array}$$

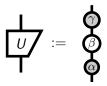
 \blacktriangleright Returning to the Z/X example, this in fact gives us a CNOT gate:

ightharpoonup Using just Z-spiders and X-spiders, we can build CNOT gates.

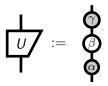
- ▶ Using just Z-spiders and X-spiders, we can build CNOT gates.
- ▶ Also, we can build any single-qubit unitary using phase maps (via the Euler decomposition):



- ▶ Using just Z-spiders and X-spiders, we can build CNOT gates.
- ▶ Also, we can build any single-qubit unitary using phase maps (via the Euler decomposition):



- ▶ Using just Z-spiders and X-spiders, we can build CNOT gates.
- ▶ Also, we can build any single-qubit unitary using phase maps (via the Euler decomposition):

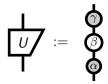


Theorem

The following maps suffice to build any **quantum circuit** (i.e. unitary quantum map from qubits to qubits):

where $\alpha \in [0, 2\pi)$.

- ▶ Using just Z-spiders and X-spiders, we can build CNOT gates.
- ▶ Also, we can build any single-qubit unitary using phase maps (via the Euler decomposition):



Theorem

The following maps suffice to build any **quantum circuit** (i.e. unitary quantum map from qubits to qubits):

where $\alpha \in [0, 2\pi)$.

Corollary

The following maps suffice to build any qubit quantum map:

Completeness?

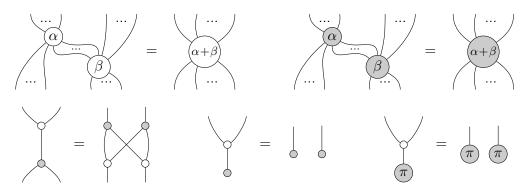
▶ So, we have enough **generators** to build any quantum map.

Completeness?

- ▶ So, we have enough **generators** to build any quantum map.
- ► However, do we have enough **relations** (i.e. diagram equations) to prove that two quantum maps are equal?

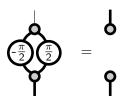
Completeness?

- ▶ So, we have enough **generators** to build any quantum map.
- ► However, do we have enough **relations** (i.e. diagram equations) to prove that two quantum maps are equal?
- ▶ We already have a fair few:



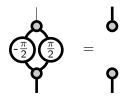
Clifford maps

▶ But there there are still some equations that can't be proven, e.g.



Clifford maps

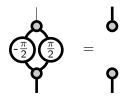
▶ But there there are still some equations that can't be proven, e.g.



► Whether a finite, complete set of equations exists for the general phases is still an open problem. (My prediction: **no**)

Clifford maps

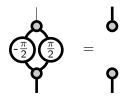
▶ But there there are still some equations that can't be proven, e.g.



- ► Whether a finite, complete set of equations exists for the general phases is still an open problem. (My prediction: **no**)
- ▶ We can make our job easier by restricting to...

Clifford maps

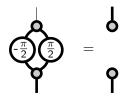
▶ But there there are still some equations that can't be proven, e.g.



- ► Whether a finite, complete set of equations exists for the general phases is still an open problem. (My prediction: **no**)
- ▶ We can make our job easier by restricting to...

Clifford maps

▶ But there there are still some equations that can't be proven, e.g.



- ► Whether a finite, complete set of equations exists for the general phases is still an open problem. (My prediction: **no**)
- ▶ We can make our job easier by restricting to...

Definition

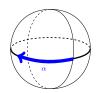
Let the family of *Clifford maps* consist of any map generated by:

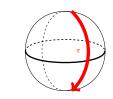
(Clifford circuit := unitary Clifford map)

▶ We nearly have a complete set of equations for the Clifford maps, but we're missing some info about the **geometry of the Bloch sphere**

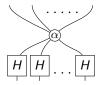
- ▶ We nearly have a complete set of equations for the Clifford maps, but we're missing some info about the **geometry of the Bloch sphere**
- ► The first:

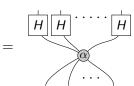
- ▶ We nearly have a complete set of equations for the Clifford maps, but we're missing some info about the **geometry of the Bloch sphere**
- ► The first:



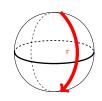


▶ The second concerns the Hadamard gate, which interchanges the two colours:

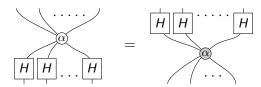




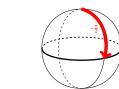
- ▶ We nearly have a complete set of equations for the Clifford maps, but we're missing some info about the **geometry of the Bloch sphere**
- ► The first:

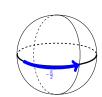


▶ The second concerns the Hadamard gate, which interchanges the two colours:



▶ Since it is a unitary rotation, we can give its Euler decomposition:



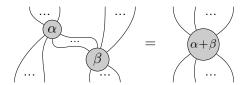


The ZX-Calculus

Definition

The ZX-calculus consists of:

► Two **spider-fusion** rules:



35 / 37

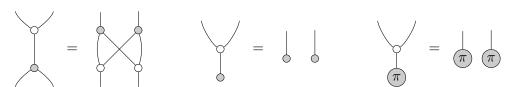
The ZX-Calculus

Definition

The ZX-calculus consists of:

► Two **spider-fusion** rules:

► Three rules coming from **strong complementarity**:

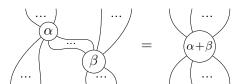


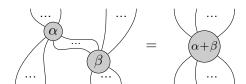
The ZX-Calculus

Definition

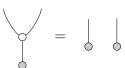
The ZX-calculus consists of:

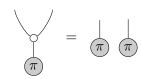
► Two **spider-fusion** rules:



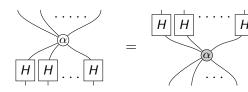


► Three rules coming from **strong complementarity**:





► Two **Bloch sphere** rules:



Theorem

Theorem

The ZX-calculus is complete for Clifford maps.

► The proof makes use of a graph-theoretic trick called **local complementation**, borrowed from MBQC. (We'll see the relationship between ZX and MBQC next time.)

Theorem

- ► The proof makes use of a graph-theoretic trick called **local complementation**, borrowed from MBQC. (We'll see the relationship between ZX and MBQC next time.)
- ▶ Thus ZX is complete for the classically simulable/Clifford/stabiliser fragment of the theory.

Theorem

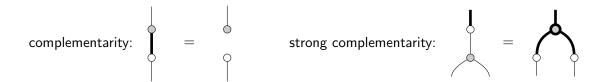
- ► The proof makes use of a graph-theoretic trick called **local complementation**, borrowed from MBQC. (We'll see the relationship between ZX and MBQC next time.)
- ▶ Thus ZX is complete for the classically simulable/Clifford/stabiliser fragment of the theory.
- ▶ It is provably *incomplete* for arbitrary phases

Theorem

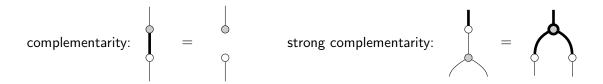
- ▶ The proof makes use of a graph-theoretic trick called **local complementation**, borrowed from MBQC. (We'll see the relationship between ZX and MBQC next time.)
- ▶ Thus ZX is complete for the classically simulable/Clifford/stabiliser fragment of the theory.
- ▶ It is provably *incomplete* for arbitrary phases
- ▶ ...but it is complete for at least one other fragment: **single-qubit unitaries** with $\frac{\pi}{4}$ **phase maps** (a.k.a. Clifford + T).

▶ We built up to the ZX-calculus, which is a graphical swiss army knife for calculating with qubits.

- ▶ We built up to the ZX-calculus, which is a graphical swiss army knife for calculating with qubits.
- ▶ Along the way, we met two important relationships between pairs of measurements:

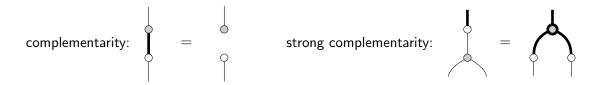


- ▶ We built up to the ZX-calculus, which is a graphical swiss army knife for calculating with qubits.
- ▶ Along the way, we met two important relationships between pairs of measurements:



- ▶ Next time, we'll look at how to use the ZX-calculus in four areas:
 - 1. Quantum algorithms
 - 2. Measurement-based quantum computing
 - 3. Security protocols
 - 4. Non-locality

- ▶ We built up to the ZX-calculus, which is a graphical swiss army knife for calculating with qubits.
- ▶ Along the way, we met two important relationships between pairs of measurements:



- ▶ Next time, we'll look at how to use the ZX-calculus in four areas:
 - 1. Quantum algorithms
 - 2. Measurement-based quantum computing
 - 3. Security protocols
 - 4. Non-locality
- ▶ ...and demonstrate a tool for automating calculation in ZX: QuantoDerive