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Introduction

* The three lectures will focus on three well known no-go theorems
for quantum theory:

— Bell’s theorem (nonlocality)
— The Kochen-Specker theorem (contextuality)
— The PBR theorem (psi-ontology)

* Roughly speaking, a no-go theorem states that some class of
theories/models either doesn’t exist (KS) or must make different
predictions from quantum theory (Bell, PBR). Experimental results
have always confirmed quantum theory.

e Significant for two reasons:

— Foundational. There is no underlying theory waiting to be discovered
that is locally causal/non-contextual/psi-epistemic.

— Simulation. Quantum theory cannot be simulated by a model that is
locally causal/etc. This can lead to quantum advantages in information
processing tasks.
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Part 1: Nonlocality



The CHSH game
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The CHSH game
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The CHSH game

Quantum players...
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The CHSH game

Quantum players...
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P(win) = cos® /8 = % ~ 0.85 > 3/4



In terms of hidden variables...

[oxy)

Source

Particles are produced at a source in the quantum state | ¢,).

Measurements X,Y are performed.

Imagine that | ¢,) is an incomplete description of the particles, reflecting our ignorance
of the values of some underlying variables . The quantum state determines a
probability distribution 1(\). Probabilities for outcomes a,b are determined by .

) P(ablXY) = / dX\ (N P(ab| XY \)



In terms of hidden variables...

a b
P A
X \/ Y
P4)
Source

Bell locality (*) is the condition that: P(ab| XY \) = P(a|X\)P(b|Y )

But winning the CHSH game with probability > 3/4 implies that the correlations cannot
be written in the form:

P(ab|XY) = / d\ 11(\) Pa| X)) P(B|Y )

(*) ). S. Bell, Speakable and Unspeakable in Quantum Mechanics (CUP, Cambridge 2004).



What is going on?

It is “as if” the quantum particles “talk to each other”.

There are models, e.g., the de Broglie-Bohm theory that define an explicit space of
hidden variables )\, and where Bell locality fails: P(a|XY\) # P(a|XY'))

Such models are nonlocal.

Standard quantum theory evades the question: correct predictions are obtained for
the observed correlations, but without describing any kind of explicit mechanism that
would mediate the correlations.

The effect remains even when the measurements are spacelike separated.

But cannot be used directly to signal.



The no-signalling principle

Measure {E} Pun pap € B(Hs ® Hp)
~ M paB >0
Tr(pas) =1

Tr(F; @ IpaB)
Prob(i)

If Alice gets outcome i, then Bob’s collapsed state is: piB =

Averaging over Alice’s outcomes,

ZProb(i)piB = ZTI‘A(E@- RIpag) =Tra(I @ Ipap) = Tra(pas) = pB

Hence if Bob performs a measurement and is ignorant of Alice’s outcome, his outcome
probabilities are independent of which measurement Alice chose to do.




Tsirelson’s Bound

Can Alice and Bob do any better using quantum systems?

No. Tsirelson showed (*) that for any shared state p,5, and whichever
measurements X=0,1 and Y=0,1 correspond to, then P(win) < 2+ V2

4
(*) B. S. Tsirelson, Lett Math Phys 4, 93 (1980).
Proof Let Alice measure {Px,I — Px}, for Px a projector, X =0, 1.
Let Bob measure {Qy,I — Qy}, for Qy a projector, Y =0, 1.
Let
Ay = 2P -1, A, =2P, -1
By = 2Qo—1I1,B1=2Q:—1

Let G = A()BAO + AoBAl -+ AlBAO — AlBAl.

NB P(win) = (G)/8 + 1/2.

Now, G? = 41 — [Ay, A1][By, B].

But || [ o, Ar)| < 2/[ ol [|A1]] = 2, hence (G) < 2.




The PR box

In quantum theory, can only win the CHSH game with probability < (2 + \/5)/4 ~ (.85

Popescu and Rohrlich wondered, why can’t we do better? Could it be that if you win the
game with greater probability, then you inevitably violate the no-signalling principle?

They found that the answer is no: it is possible to imagine a fictional device, which
respects the no-signalling principle, but which would allow Alice and Bob to win the game

with certainty.



The PR box

PR — Popescu and Rohrlich Box —as in “black box”
X Y
PR
a b

Defined by a set of conditional probability distributions P(ab|XY), with:

XY =00,01,10 — P(ab=00/XY) = P(ab=11|XY) =1/2
XY =11 — P(ab=01|XY) = P(ab=10|XY) = 1/2

e OQutputs alwayssatisfy a P b= XY
* Non-signalling



The PR box

These stronger-than-quantum correlations are logically possible,

and would be very useful for solving communication complexity
problems!

Why doesn’t nature allow them?



Deriving the quantum bound from a physical
principle

be{0,1}

(*) See M. Pawlowski et al.,

* Alice is given an n bit string X. Nature 461, 1101 (2009).

e Alice can communicate k classical bits to Bob.
* BobisgivenY, which takes values 1, ..., n.
* Bob outputs a single bit b.

* ForY=i, Bob’s aim is for b to equal X,, the ith bit of Alice’s string X.



Deriving the quantum bound from a physical

principle
Ye{l,..,n}
Ze{0,1}k %
A A
be{0,1}

Classical players have access to pre-shared random data.



Deriving the quantum bound from a physical

principle

Xc{011} Zc{0,1}k

Ye{l,..,n}

be{0,1}

(10)[0) + [1)|1))

1
[P1) = B

Quantum players have pre-shared entanglement.

A protocol goes as follows:

Alice receives X from a referee, where X is drawn randomly from the set of all n bit strings.

Alice performs a measurement on her guantum systems.

Alice sends Z to Bob, where Z depends on X and on the outcome of Alice’s measurement.

Bob measures his guantum systems. His choice of measurement can depend on Y,Z. Bob outputs
b, where b depends on Z, Y, and on the outcome of Bob’s measurement.



Quantifying the success of a protocol

Zc{0,1}k
Xe{0,1}n <t} Ve .
NN
NN
NN
5 be{0,1}
NN

64) = 5 (10)[0) +1)]1))

How successful is a given protocol? We wish to quantify the amount of information,
on average, that b contains about X.. Consider the following quantity:

ZI(Xi DY = 1),

where I( X, : b | Y=i) is the mutual information between the variables X, and b,
conditioned on Y taking the value i.



Information causality

Ze{0,1}k
Xxe{o1}"
Information causality is the P Ye{l,..,n}
principle that: Z% %
. ] '.'
D OIX; by =i) <k = be{0,1}
0

64) = 5 (10)/0) + 1))

Roughly: Information causality states that no matter what preshared resources they
might have, if Alice communicates k bits to Bob, then the total information access that
Bob gains to her data is not more than k.

NB For k=0, information causality reduces to the no-signalling principle.

So information causality is a more refined notion of the no-signalling principle, that
takes into account a finite amount of communication.



Information causality

Zc{0,1}k
—
Information causality is the w Yell, . n}
o O~
principle that: o~0 %
*~9 N
g I(X;:b)Y =1) <k o0 be{0,1}
i
64) = 5 (10)]0) + 1)

Theorem: Any classical or quantum protocol satisfies information causality.

NB Even classical players can saturate the information causality bound.

Simply let Z be equal to the first k bits of X. Bob gets luckyifY € {1, ..,k}, and can
output the correct value. Otherwise Bob must simply guess.



PR box players

Zc{0,1}k
——
Information causality is the pYelil, . n}
- O~0
principle that: o . %
D OIX b)Y =i) <k e be{0,1}
i
PR

What if the players have PR boxes?

Consider the following protocol. Alice and Bob share n PR boxes.

* Alice inputs X, ..., X, into the n PR boxes, obtaining outputs a,, ..., a

* Alice evaluatesZ=a; @ --- ® a, and sends Z to Bob.

* ForY =i, Bobinputs Ointo all PR boxes, except for the ith, which has input 1. Bob
obtains outputs ¢, ..., C

n:

n-

* Bobevaluatesb=c;® - S c, D Z. |
* Check: b =X _ ZI(Xizb\Y:z):n
i



Here’s the interesting bit

Zc{0,1}k
Xe{o,1}n

Information causality: Ye{l,..,n}

NN

S by =) <k 8 o

NN

be{0,1}
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What if the players have noisy PR boxes?

A noisy PR box is defined by a set of conditional probability distributions P(ab|XY), with:

* P(a=0|XY) =P(a=1|XY) = P(b=0|XY) = P(b=1]|XY) = 1/2.
* Pla®b=XY)=q,where’s2<qg<1.
* Super-quantumiffq> (2 +v/2)/4



Here’s the interesting bit

Zc{0,1}k
Xe{o,1}n

Information causality: Ye{l,..,n}

NN

ZI(Xi:b|Y:z')§k 4‘;}? .

NN

be{0,1}
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Theorem (*). With noisy PR boxes, information causality can be violated iff the boxes
are super-quantum.

So the principle of information causality picks out the quantum bound exactly.

(*) M. Pawlowski et al., ibid.



Pause

* So we’ve seen that quantum systems can produce
nonlocal correlations.

* Logically, one can imagine correlations that are more
nonlocal than is possible in quantum theory, yet
which still respect the no-signalling principle.

e But with correlations that are even a little bit more

nonlocal than quantum, information causality is
violated.



Pause

* Now we turn to some different problems:

* Can we characterize completely the problem of
distinguishing local and nonlocal correlations?

 Can we generalize the Bell scenario that we have
been considering?



Characterizing nonlocal correlations

X Y
a b
/ P(ab = 00| XY = 00) \
X ¢ {0,... k—1) P(ab = 01| XY = 00)
Yy € {o,..., k—1} :
« € {0,....d—1} V= P(ab = (d—1)(d - 1)|XY = 00)
b € {0,..., d—1} :
\ Plab=(d—1)([d-1D)|XY = (k- 1)(k—1)) )

Given V, how do we tell if these correlations are local or nonlocal?
How do we tell if they can be produced by measuring quantum states?



Characterizing nonlocal correlations

( P(ab = 00|XY = 00) \
X % P(ab=01|XY = 00)
M V= P(ab = (d—1)(d—1)|XY:00)
3 b \ Plab=(d—-1)(d- DIXY =k~ 1)(k—1)) /

V lives in a k?d?-dimensional real vector space.

However, V satisfies a number of equalities:

Normalization:
Zij P(ab=1ij|XY)=1 VXY

No-signalling:
ZjP(ab:iﬂXY):ZjP(ab:ij\XY’) Vi, X,Y,Y’
> Plab=1ij|XY)=> . Plab=1ij|X'Y) Vj, X, XY



Characterizing nonlocal correlations

Hence the allowed V span an affine subspace of the k?d?-dimensional
vector space. Taking into account the number of independent
equalities, the dimension of the affine subspace spanned by allowed V
is:

k2(d — 1)2 + 2k(d — 1)

V also satisfies inequalities: P(ab|XY) >0 Va,b, X,Y.

The set of all non-signalling V is defined by a finite number of
(non-strict) inequalities. Normalization ensures that it is bounded.
Hence the set is a polytope — the convex hull of a finite number of
extremal points. Let’s call it P.



Characterizing nonlocal correlations

A set of correlations is local if P(ab|XY') can be written in the form:
P(ablXY) = /d)\ () P(a|XA)P(blY N).

Otherwise the correlations are nonlocal.

Theorem. A set of correlations P(ab|XY') is local iff P(ab|XY) can
be written as a convexr combination of deterministic correlations, 1.e.,

P(ab|XY) = Z g(\)D(a|XX\)D(b|Y N,

where D(a|X\), D(b|[YA) € {0,1}.



Characterizing nonlocal correlations

So, the set £ of all V that describe local correlations is a polytope.
L is the convex hull of those V that satisty:

P(ab|XY) = D(a|X)D(b|Y),

where D(a|X), D(b]Y) € {0, 1}.

The facets of £ correspond to inequalities of the form:

> caxyP(abXY) < 0.
abXY

These are the Bell inequalities. A set of correlations is nonlocal if and
only if V violates a Bell inequality.



Characterizing nonlocal correlations

Correlations are quantum if P(ab|XY) can be written
P(ab|XY) = Tr(EX @ EY p),

with
p a density operator € B(H4 ® Hp),

E;C,Eg/ZO, ZaEci(:]v ZbElz/:I'

Let Q be the set of V describing quantum correlations. It is known
that Q is convex but not a polytope.



From what we’ve seen already, L C Q C P



Characterizing nonlocal correlations

X Y
a b
/ P(ab = 00| XY = 00) \
X ¢ {0,... k—1) P(ab = 01| XY = 00)
Yy € {o,..., k—1} :
« € {0,....d—1} V= P(ab = (d—1)(d - 1)|XY = 00)
b € {0,..., d—1} :
\ Plab=(d—1)([d-1D)|XY = (k- 1)(k—1)) )

Given V, how do we tell if these correlations are local or nonlocal?
How do we tell if they can be produced by measuring quantum states?



Need to determine whether V is € £ (local) or € Q (quantum).

Determining membership of a vector in a polytope with specified
vertices is a linear programming problem. This is "easy”, except NB
the number of vertices increase exponentially with the number of
settings available to Alice and Bob.

Determining membership in Q (the Tsirelson probem) seems harder
and is not solved in general.



Generalizing the Bell scenario

The first and most obvious way in which the scenario I've described can be
generalized is to allow more parties.

X Y Z
-/\/W\-/WV\- P(abc|XYZ)
3 b C

Won’t say much about this, but the basic formalism is similar: local polytope, non-
signalling polytope, quantum set etc.



Generalizing the Bell scenario

Causal networks...

Directed acyclic graph, with random
variables on nodes.

\ /1 Arrows indicate causal relationships.

Here, for example:

\ /7 -- V is not a cause of W. But they can
be correlated via a common cause U.
-- X can depend on U, but only
indirectly through V.

Here, a joint distribution is compatible with the graph if:

P(UVWXY) = P(X|YVWU) P(Y|VWU) P(V|WU) P(W|U) P(U)
= P(X|V) P(Y|V) P(V|U) P(W|U) P(U)



Generalizing the Bell scenario

Causal networks...

Directed acyclic graph, with random
variables on nodes.

\ /1 Arrows indicate causal relationships.

Here, for example:

\ /7 -- V is not a cause of W. But they can
be correlated via a common cause U.
-- X can depend on U, but only
indirectly through V.

In general, given a graph with nodes X,, ..., X, a joint distribution P(X_, ..., X)) is
compatible if P(X; | pa(X;), nd(X;) ) = P(X; | pa(X) ),

where pa(X; ) are the parents of X, and nd(X,) are the non-descendants of X..



Generalizing the Bell scenario

a b
2

The Bell scenario corresponds to the graph above. Measurement settings are now
treated as random variables.

We didn’t talk about this before, but when establishing nonlocality, it is crucial that
measurement settings are independent of the putative hidden variable A . This is
encoded by the above graph.

The locality condition is also encoded — e.g., given X and A, a is independent of b
and Y.



Generalizing the Bell scenario
a b
X/ '\)\/ \Y

Which joint distributions P(abXY) can arise as the marginal of a distribution P(abXY\),
which is compatible with the above graph?

We have answered this already. It is those such that
P(abXY) = P(X) P(Y) P(ab]|XY),

where P(ab|XY) is a set of local correlations (V lies in the local polytope).



The triangle

* Adifferent graph

Compatible joint distribution:
/ r\ P(abcuvA) = P(A) P(u) P(v) P(a| uA) P(b[Av) P(c| v )

)

/N

d)e——(\)——(b

* Three unobserved nodes (hidden variables).

* Three observed nodes (measurement outcomes). No measurement choices!

* Ajoint distribution P(abc) is classical if it can arise as the marginal of a joint
distribution P(abcApuv) that is compatible with the graph.



The triangle

C
Consider P(abc=000) = P(abc=111) = 1/2. / \
Is this classical? No!
M v
Rough argument: We have P(a=b)=1. Hence a is
independent of 1 . But then there is no way for a

to be correlated with c.
d)le——(\)—(Db

More precisely...
Therorem(*): Any classical distribution P(abc) satisfies

I(a:b) + I(a:c) < H(a)

(*) T. Fritz, New. J. Phys. 141003001 (2012).



The triangle /\

Therorem: Any classical distribution P(abc) satisfies / \

I(a:b) + I(a:c) < H(a). a)e——- 1~ ——(b

Proof:

I(a:b) +I(a:c) < I(a:A) + I(a:p) = 2 H(a) + H(A) + H(u) —H(a ) —H(a A)
But by submodularity of the Shannon entropy:

H(a ) + H(a A) > H(a) + H(a A p).

Hence I(a:b) + I(a:c) < H(a) + H(A ) + H(u) = H(a,A,u) < H(@)+1(A:p)

Since A and p must be independent, we get I(a:b) + I(a:c) < H(a)



The triangle /\ T

In the quantum case, unobserved hidden
variables are replaced with quantum sources.

d)e————( ——(b
Here, the sources are independent, hence the

joint state of the quantum particles must be
PROCRT.

Observer Alice can perform a joint measurement
on the two quantum particles she receives,
before outputting a classical variable a. Similarly
Bob, Charles.

A distribution P(abc) is quantum if it can be
written in the form

P(abc) — Ty ((E;2 ® 13456)(Fb34 ® 11256)(G26 ® 11234)1016 ® 0_23 ® 7_45) .



The triangle /\ T

Theorem(*): Any quantum distribution P(abc) satisfies / \4

d)le——( ——(b
I(a:b) + I(a:c) < H(a). o

(*) J. Henson, R. Lal, M. Pusey, arXiv:1405.2572.

Does there exist a quantum distribution on the triangle which is not a classical
distribution? Or a distribution obtained from PR boxes which is not quantum?

* Ifa,b,care 4-valued then yes (to both)! (For details see Fritz, ibid.)
* |fa,b,care binary ... no one knows!



Summary

In Bell scenarios, the problem of classifying local vs nonlocal
correlations is solved. Reduces to membership of a vector in a

polytope.

In Bell scenarios, the problem of classifying quantum vs non-
qguantum correlations is more difficult (but for interesting
progress, see M. Navascues, S. Pironio, A. Acin, arXiv:
0803.4290).

In more general scenarios, classifying the sets of classical and
guantum correlations is a difficult problem.



Applications
There are many applications of quantum nonlocality, e.g.,

e Communication complexity
* Device-independent QKD

* Device-independent randomness generation

* All of these are active research areas, but sadly no time in
these lectures.

* The study of generalized Bell scenarios should lead to new
applications.



Part 2: Contextuality



The Kochen-Specker theorem

Quantum observables correspond to Hermitian operators.
The expectation value of an observable corresponding to G is given by Tr ( p G ).

Suppose that a quantum state is an incomplete description of a quantum system, and
that there are some underlying hidden variables.

Previously, we made a similar assumption, and showed that if the hidden variables
obey Bell locality, then we cannot recover the predictions of quantum theory.

Now we forget about locality. Suppose that the hidden variables are deterministic, i.e.,
the hidden variables specify a definite value for each quantum observable, such that
measuring the observable simply reveals that value.

Suppose that the outcome does not depend on the context of the measurement, i.e.,
only depends on the Hermitian operator, and not on how the measurement was
carried out, nor on what other observables are measured at the same time.



The Kochen-Specker theorem

Hidden variables satisfying the above assumptions are non-contextual. Restricting to
projection operators, non-contextual hidden variables can be thought of as defining

a map:

AP —{0,1},

such that
* if P,Q project onto orthogonal subspaces then A(P + Q) = A(P) + A\(Q),
e AD=1.



As a colouring problem

Equivalently, non-contextual hidden variables would define a KS-colouring of the set of
unit vectors in a complex Hilbert space.

Assume finite dimensions. A KS-colouring is a map

Av—{0,1},

such that
e If{v,,.., v }forman orthonormal basis, then Y A(v.)=1.

Theorem (*) If the dimension of the Hilbert space is > 3, then a KS-colouring of the
unit vectors does not exist.

(*) S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967)



As a colouring problem

The set of 117 vectors originally constructed
by Kochen and Specker, and shown to be KS-
uncolourable

Image from http://plato.stanford.edu/entries/kochen-
specker/

A smaller set of 33 vectors,
constructed by Peres, and shown to be
KS-uncolourable.

Image from http://quantumgazette.blogspot.co.uk/
2014/03/orthogonal-states-and-quantum.html



Finite precision

* So: there is no non-contextual hidden variable interpretation of quantum theory.
 However, a curious loophole in the argument was discovered by David Meyer.

Theorem(*) Let S be the set of unit vectors in R3 with rational entries. Then S admits a
KS-colouring.

NB S is dense in the set of unit vectors in R3, and furthermore the set of orthogonal triads
in S is dense in the set of orthogonal triads in R3.

Proof Each unit vector v, with rational entries, can be associated uniquely with a
triple of integers (x,y,z) such that v =c (x,y,z), and (x,y,z) have no common divisor.
Note that x? + y2 + z2 is a square, hence exactly one of (x,y,z) must be odd. If vand v’
are orthogonal, then the corresponding triples must differ in which entry is odd,
since xx'+yy’+zz’=0. Therefore, a KS-colouring is obtained by letting A(v) = 1 iff the
corresponding integer z is odd.

(*) D. Meyer, arXiv:quant-ph/9905080



Finite precision

This was extended by R. Clifton and A. Kent, who give colourings of dense subsets of
complex Hilbert spaces in arbitrary finite dimensions (*).

(*) Clifton and Kent, Proc. Roy. Soc. Lond. A, 456 2101 (2000)



Operational notions of contextuality

The standard Kochen-Specker notion of contextuality is closely tied to the
guantum formalism — it concerns colourings of the vectors in complex
Hilbert space. It also assumes deterministic hidden variables.

Bell’s theorem, by contrast, involves only empirically observable
probabilities.

Is there a more operational notion of contextuality?



Operational notions of contextuality
km
pp(A)

— () —

Emk (A)

Consider a quantum system of dimension d. An ontic model defines:

* A space of ontic states A

* For each preparation P, a probability distribution ()

* For each measurement M and outcome k, a response function &, (A) , understood
as the probability of getting outcome k when measurement M is performed and the
ontic state is A.

Recover quantum predictions: /d)\ pp(N) Eare(AN) = Tr(ppEr i)



Measurement contextuality

We do not assume that ontic states are deterministic.

An ontic state A is measurement non-contextual (*) if &, . (A) only depends on
the positive operator Ey, , corresponding to the outcome.

A measurement non-contextual ontic state defines a map that takes positive
operators 0 < E < 1 to probabilities:

A E— [0,1]

An ontic model is measurement non-contextual if all ontic states are
measurement non-contextual.

(*) R. W. Spekkens, Phys. Rev. A 71, 052108 (2005)



Preparation contextuality

An ontic model is preparation non-contextual if the distribution () only
depends on the quantum state p that is produced by the preparation P.

For example: the qubit state I/2 can be prepared by either of the following
methods:

1) Flip a coin, and prepare |0) on heads, |1) on tails.
2) Flip a coin, and prepare |+) on heads, |-) on tails.

Preparation non-contextuality would demand that the resulting distribution
(A) is the same for both methodes.



Contextuality

An ontic model is fully non-contextual iff it is both measurement and
preparation non-contextual.

Aside: Why is this a natural constraint?

An argument goes like this. Consider Bell’s theorem again. One can always
write down a nonlocal hidden variable model which recovers the quantum
predictions. However, one is faced with a new problem. Generically, a
nonlocal model will lead to signalling at the operational level. To prevent
this, the model will need to be finely tuned.

A similar argument applies to (either) measurement or preparation
contextual ontic models. There is a difference in the model, e.g., p () #
tp (A), butif Pand P’ prepare the same quantum state, then there is no
corresponding difference at the operational level.



Contextuality

A theory is contextual if (some system) does not admit a fully non-contextual
ontic model.



Contextuality

Theorem. There exists a measurement non-contextual ontic model for a
guantum system of any dimension.

Proof sketch: Simply let the ontic state be identical with a quantum pure
state. The response function is defined by the Born rule.



Contextuality

What about preparation contextuality? First, we impose a natural constraint:

Consider a set of preparation procedures P1,...,Pr. Suppose that an
experimenter selects one of these at random, perhaps by rolling dice. Let the
probability of selecting procedure Pi be q; .

Viewed as a whole, this defines a new preparation procedure P.

Impose:  pup(A) =3, q;ppl)

Theorem (*). Given the above constraint, there does not exist a preparation
non-contextual ontic model for any quantum system of d > 2.

(*) R. W. Spekkens, ibid.



Proof(*):

(*) R. W. Spekkens, ibid.

Contextuality

o, 0 4are orthogonal.
Similarly 0y, 05, 0,, 00

Hence 11 () 1, (\) =0
iy () 1, (A) =0
i ) 1, (N) = 0

V=1/z(,ua+,uA)
=% (p, +p )
=% +p)
=1/3(p +p, +p)
=1/3(p, +p +p)

For each )\, either ,ua()\) or ,uA()\) =0.
8 cases to consider...
Conclude that v () is zero everywhere.



Generalized probabilistic theories

Consider a system in a generalized probabilistic theory...

Suppose that the set of allowed measurements is the complete set with
respect to the set of states.

Then

Theorem(*): The system is contextual iff it is non-classical.

(*) JB, unpublished



Part 3: Psi-ontology



But our present QM formalism is not purely
epistemological; it is a peculiar mixture
describing in part realities of Nature, in part
incomplete human information about
Nature --- all scrambled up by Heisenberg
and Bohr into an omelette that nobody has
seen how to unscramble. Yet we think that
the unscrambling is a prerequisite for any
further advance in basic physical theory.
For, if we cannot separate the subjective
and objective aspects of the formalism, we
cannot know what we are talking about; it
is just that simple.

E. T. Jaynes



Classical Mechanics

* Consider a single particle in 1 dimension.

* Particle has position and momentum. State of particle is completely determined by
the values of x,p.

* Other physical properties of the particle are functions of x,p, e.g., energy H(x,p).

P

State of system at
time tis a pointin

x(t), p(t) phase space.
O
X
. OH
Motion determined by 9 = 0—19
Hamilton’s equations OH




Liouville Mechanics

* Sometimes we don’t know the exact microstate of a classical system.

* The information we have defines a probability distribution p over phase space.

* pis not a physical property of the particle. The particle occupies a definite point in
phase space and does not care what probabilities | have assigned to different states.

Probability

distribution on

phase space

Yo

—

-

Evolution of the probability
distribution is given by the Liouville
equation:

dp  9p dp dp .
ap _ 9p it 25 =o.
i ot ; (()q T op P



Liouville Mechanics

* Sometimes we don’t know the exact microstate of a classical system.

* The information we have defines a probability distribution p over phase space.

* pis not a physical property of the particle. The particle occupies a definite point in
phase space and does not care what probabilities | have assigned to different states.

Probability

distribution on Terminology:
phase space

(x,p) ontic state
\\’ @Q P epistemic state

g




What is the quantum state?

Ontic ?

* A guantum wave function is a real physical wave.
 Quantum interference most easily understood this way.
e But it is defined on configuration space...




What is the quantum state?

Epistemic ?

* A quantum state encodes an experimenter’s knowledge or @

information about some aspect of reality. ..

s




Arguments for 1 being epistemic

Collapse! just Bayesian updating

The wave function is not a thing which lives in the world. It is a
tool used by the theory to make those inferences from the
known to the unknown. Once one knows more, the wave
function changes, since it is only there to reflect within the
theory the knowledge one assumes one has about the world.

----- Bill Unruh




Arguments for 1 being epistemic

* Non-orthogonal gquantum states cannot reliably be distinguished
— just like probability distributions.

* Quantum states are exponential in the number of systems — just
like probability distributions.

* Quantum states cannot be cloned, can be teleported etc — just
like probability distributions.



We will show that...

* If 1) merely represents information about the
objective physical state of a system, then
predictions are obtained that contradict

guantum theory.



DISCRETE ONTIC STATE SPACE

S =/




EPISTEMIC STATE ONTIC STATE

P = (p17p29p37p47p57p6) ’/\




A biased die rolling device

1 1
‘. pP—( _goagao)

Always get \ = prime

1 1 1
- . PE = (075707_707—)

37 3

Always get A = even



Is this measurement possible?

No — because A = 2 can happen with
either the P or the E preparation.
Cannot reliably distinguish
overlapping probability distributions.



Is this measurement possible? No again.



Quantum systems

[
4




Is this measurement possible?
No — cannot reliably distinguish non-

orthogonal quantum states.
A very natural explanation of this

would be that Z,X sometimes prepare
the same ontic state.



But this measurement exists !!



Project onto the basis:

) =1/V2( D+ D))

2) =1/V2(| 1) <)+ | 1) =)
3) =1/V2(l <)1)+ | —=) 1)
4) =1/V2(] =) <) +| <) =)




Project onto the basis:

) =1/V2( D+ D))

2) =1/V2(| 1) <)+ | 1) =)
3) =1/V2(l <)1)+ | —=) 1)
4) =1/V2(] =) <) +| <) =)




Project onto the basis:

) =1/V2( D+ D))

2) =1/V2(| 1) <)+ | 1) =)
3) =1/V2(l <)1)+ | —=) 1)
4) =1/V2(] =) <) +| <) =)




Project onto the basis:

) =1/V2( D+ D))

2) =1/V2(| 1) <)+ | 1) =)
3) =1/V2(l <)1)+ | —=) 1)
4) =1/V2(] =) <) +| <) =)




Project onto the basis:

) =1/V2( D+ D))

2) =1/V2(| 1) <)+ | 1) =)
3) =1/V2(l <)1)+ | —=) 1)
4) =1/V2(] =) <) +| <) =)




What have we learned?

It cannot be the case that preparation of spin-
up-Z and spin-up-X can sometimes result in the
same underlying ontic state.

Now show that a similar argument
goes through for any pair of distinct
guantum states...



Recall: Ontic models

kT
pp(A)

— () —

Emk (A)

Consider a quantum system of dimension d. An ontic model defines:

* A space of ontic states A

* For each preparation P, a probability distribution ()

* For each measurement M and outcome k, a response function &, (A) , understood
as the probability of getting outcome k when measurement M is performed and the
ontic state is A.

Recover quantum predictions: /d)\ pp(N) Eare(AN) = Tr(ppEr i)



The 1-ontic case

Suppose that for every pair of
distinct quantum states ¢, and ¢,

the distributions p, and p, do not Mo
overlap:

N
Hy

* The quantum state can be inferred from the ontic state.
* The quantum state is a physical property of the system, and is not mere
information.

See N. Harrigan and R. W. Spekkens, Found. Phys. 40, 125 (2010).



The 1-epistemic case
A

Mo ~ ]

Hy

* 1, and p, can overlap.
* Given the ontic state A\ above, cannot infer whether the quantum state ¢, or ¢,
was prepared.

See N. Harrigan and R. W. Spekkens, Found. Phys. 40, 125 (2010).



A no-go theorem

Suppose there are distinct quantum
states ¢, and ¢, and a subset S of the
ontic states such that

t,(A) >0and p (A)>0forall A €S
1(S) =>q>0
p,(S)>q>0.

o

Hy




Preparation Independence

Consider independent preparations, of quantum states ¢, and ¢,, producing

a joint state ¢, ® ¢,.

iy (A)

/’La()\) /’

Assume preparation independence: the joint distribution over A\, and A,
corresponding to preparation of the product state ¢, ® ¢, satisfies:

/’L()\a’)\b) = /’La()\a) X /’Lb()\b)



Prepare n systems independently...
* Each is prepared in either the state | ¢,) or the state |¢,).

* 2" possible joint states: |q§$1) X |(,75£2> Q- & |¢:n,,,>

Move lever left or right to

/ prepare either | ¢,) or | ¢,).




Forany |¢z,) @ |¢z,) ® -+ ® |¢z,) there is some chance that for
every one of the n systems, the ontic state is in the region S.

Pr(A. € Sforalli) > qg"



, A "PP-measurement’
* Now here’s the prOblem-" Cf Caves, Fuchs, Schack, Phys. Rev. A 66,

062111 (2002).

' 4

* For large enough n there is an entangled measurement across the n systems,
with 2" outcomes corresponding to projectors P, ..., P,n and

(Po| @ -+ @ (Po| ® (Po| P1 |¢o) @ - R |¢o) @ |¢o)
(Po| @ - @ (0| ®(P1| P2 |¢o) ®@---® |¢o) @ |p1)

0
0

(1] @ - @ (D1 @ (P1| Porn |1) @+ @ |d1) @ [h1) =0

* For any of these 2" joint preparations there is a non-zero probability that the
ontic state (A, ..., A)) €S x --- X S.
* In this case, must have &, (A, X --- X A)) =0 for any i. But probs must sum to 1!



The measurement

Choose n such that 2" -1 < tan(6/2).

Wlog, write | ¢,) = cos(6/2) |0) - sin(6/2) |1)
|¢,) = cos(6/2) |0) +sin(6/2) |1)

I 0
Zﬁ:(o eiﬂ)

Ro|00---0) = €“|00---0)
Ralb) = |b),

on all other basis states |b) .




Approximate case

Suppose that in a real experiment, the measured probabilities
are within € of the quantum predictions. Then

O(po, p1) > 1 —23/€ (*)

P,

Classical trace
distance

(*) M. Pusey, JB, T. Rudolph, Nature Physics 8, 475 (2012).



Approximate case

Suppose that in a real experiment, the measured probabilities
are within € of the quantum predictions. Then

O(po, p1) > 1 —23/€ (*)

So with a well-performed experiment, we

distance can put an upper bound on how much the
classical distributions overlap.

Classical trace

(*) M. Pusey, JB, T. Rudolph, Nature Physics 8, 475 (2012).



Psi-epistemic models for single
systems exist

An explicit construction is given in P. Lewis, D. Jennings, JB, T. Rudolph,
PRL 109, 150404 (2012).

But 1, and o only overlap for some pairs of quantum states.
Aaronson et al. arXiv:1303.2834 go further. Provide an explicit

construction such that o overlaps with o for any pair of non-orthogonal
state vectors |¢) and [).



How much can i, and p,, overlap?



Distinguishing probability distributions

Consider two preparations of a classical system, corresponding to distributions x (\) and
fo(A).

A priori probability for each preparation is %.

With a single-shot measurement on the system, must guess which preparation method
was used.

Prob(guess correctly) = % (1 + D(u,, ) ),

where D(u,,1,) is the classical trace distance between p, and .,
D{e,rht) = 1/2 [dX 11, (A) - 11, (V)]



Distinguishing quantum states

Consider two preparations of a quantum system, corresponding to state vectors:

), 1)

A priori probability for each preparation is %.

With a single-shot measurement on the system, must guess which preparation
method was used. With an optimal measurement:

Prob(guess correctly) =% (1 + Do(| ) ,|9)) ),

where Dq(|9) , %)) is the quantum trace distance between |¢) and [v),

Dq(|9), 14)) = V1 = [(¢]v)[?




Maximally psi-epistemic models

Theorem(*)

In any ontic model that reproduces the predictions for a d dimensional
guantum system:

D(ng ) = Do(I9),10))  VIe).

)

Proof sketch

Consider the optimal guantum measurement for guessing the preparation.
Guess correctly with P =% (1 + Dq(|¢) ,|%)) ). But measurement device
only has access to A, and must distinguish u, from p,,. Cannot achieve this
success rate if i, p,, overlap too much!




Maximally epistemic models

An ontic model is maximally psi-epistemic if

D(pg, yp) = Dq(|9), [¥)) V),

)

Why is this natural?

* Recall that overlap of p,, u,, would explain why |$), |%) cannot be
distinguished with certainty.

* In a maximally psi-epistemic model, failure to distinguish |®) , |¥) is
entirely due to the ordinary classical difficulty in distinguishing the
probability distributions e » Hy - NO other limitations or uniquely quantum
effects need be invoked.



Overlap bounds

Theorem(*)

Define the classical overlap w (u, 1) =1 —Dlpy, ).
Similarly the quantum overlap wg, (| ) , |¥)) = 1-Dq(l¢), [¥)).

Consider an ontic model that reproduces quantum predictions in dimension d
and satisfies:

) Vi),

Wk, pp) = @ wq (), V)

Then o < 4/(d-1). If d is power prime then « < 2/d.

Hence no maximally psi-epistemic model can recover the quantum predictions ind > 3.

(*) JB, E. Cavalcanti, R. Lal, O.Maroney, PRL to appear



Additionally

There is also a noise-tolerant version. Maximally psi-epistemic models
cannot approximately recover quantum predictions ind > 3.

An explicit maximally psi-epistemic model exists in d=2 (constructed by
Kochen and Specker).

An improved bound, exponentially small in d, is obtained in M.S.Leifer,
Phys. Rev. Lett. 112, 160404 (2014).



Summary

* Given preparation independence, psi-epistemic models cannot reproduce
the predictions of quantum theory.

* Without preparation independence, can still derive interesting results by
considering single systems. For at least some pairs of qguantum states, the
overlap of the classical distributions must be small, as d gets large.

* Are there information-theoretic applications of these new theorems?



Conclusions

All the no-go theorems we have considered begin with the idea of a classical, or hidden
variable, or ontic model for a quantum system.

Bell > Model cannot be locally causal.

Extensions of Bell = In various other scenarios, model cannot respect underlying causal
structure.

Kochen-Specker = A deterministic ontic model cannot be KS-non-contextual (d > 3).
Spekkens = Model cannot be preparation non-contextual.
PBR = Model cannot be psi-epistemic.

Recent results = Even for single systems, model cannot be maximally psi-epistemic.



Conclusions

One approach is simply to accept the conclusion of each of these theorems.
E.g., de Broglie-Bohm theory is nonlocal, preparation contextual, psi-ontic etc.

But many quantum scientists would take the view that the theorems are evidence that
the assumptions need to be given up.

The primary assumption that all these theorems share is that there is an underlying
theory, whose schematic form is well captured by the notion of an ontic model.

There remains the possibility that there is an underlying theory to be discovered, which
is structured quite differently from the way in which ontic models describe the world.



Conclusions

Another way of thinking about the no-go theorems is as constraints on classical
simulation of quantum system:s.

Bell nonlocality already has many applications, in communication complexity, key
distribution, measurement-based computation.

It remains to be seen what applications might emerge from the generalized Bell
scenarios, or from preparation contextuality, or the PBR argument.



Conclusions

All these things are active research areas. | have missed out a great deal of topics.



