
The Complexity and Expressive Power
of Valued Constraints

Stanislav Živný

Keble College, Oxford

Submitted for the degree of Doctor of Philosophy
Oxford University Computing Laboratory

Trinity Term 2009

The Complexity and Expressive Power of Valued Constraints

Stanislav Živný
Keble College, Oxford

Doctor of Philosophy, Trinity Term 2009

Abstract

This thesis is a detailed examination of the expressive power of valued constraints and
related complexity questions. The valued constraint satisfaction problem (VCSP) is
a generalisation of the constraint satisfaction problem which allows a variety of com-
binatorial optimisation problems to be described. Although most results are stated
in this framework, they can be interpreted equivalently in the framework of, for in-
stance, pseudo-Boolean polynomials, Gibbs energy minimisation or Markov Random
Fields.

We take a result of Cohen, Cooper and Jeavons that characterises the expres-
sive power of valued constraints in terms of certain algebraic properties, and extend
this result by showing a new connection between the expressive power of valued con-
straints and linear programming. We prove a decidability result for related algebraic
properties.

We consider various classes of valued constraints and the associated cost functions
with respect to the question of which of these classes can be expressed using only cost
functions of bounded arities. We identify the first known example of an infinite chain
of classes of constraints with strictly increasing expressive power. We also present a
full classification of various classes of constraints with respect to this problem.

We then study submodular constraints and cost functions. Submodular functions
play a key role in combinatorial optimisation and are often considered to be a discrete
analogue of convex functions. It has previously been an open problem whether all
Boolean submodular cost functions can be decomposed into a sum of binary sub-
modular cost functions over a possibly larger set of variables. This problem has been
considered within several different contexts in computer science, including computer
vision, artificial intelligence, and pseudo-Boolean optimisation. Using a connection
between the expressive power of valued constraints and certain algebraic properties
of cost functions, we answer this question negatively.

These results have several corollaries. First, we characterise precisely which sub-
modular polynomials of arity 4 can be expressed by binary submodular polynomials.
Next, we identify a novel class of submodular functions of arbitrary arities that can be
expressed by binary submodular functions, and therefore minimised efficiently using a
so-called expressibility reduction to the (s, t)-Min-Cut problem. More importantly,
our results imply limitations on this kind of reduction and establish for the first time
that it cannot be used in general to minimise arbitrary submodular functions. Finally,
we refute a conjecture of Promislow and Young on the structure of the extreme rays
of the cone of Boolean submodular functions.

Nothing can come of nothing.

William Shakespeare (1564–1616)

Acknowledgements

First of all, I would like to thank my supervisor Pete Jeavons. Pete suggested the
study of the expressive power of valued constraints which has grown into this thesis.
His academic input has shaped the direction of my work. I am tremendously grateful
for his support and advice away from academic matters. Pete has always been around
to help me not only with research problems, getting funding and missing definite
articles, but also with getting around in Oxford, or just chatting about life. Thank
you for all the encouragement!

Although not officially my second supervisor, Dave Cohen from Royal Holoway
in London has always been one. His enthusiasm, support and many great ideas were
crucial for completing my doctorate. Pete and Dave are excellent examples of brilliant
teamwork: the combination of their individual skills has helped produce great results.
Thank you for letting me be part of this.

I thank my colleagues from the Oxford Constraints research group: Martin Green,
Chris Jefferson, Justyna Petke, Karen Petrie and András Salamon. In particular, talks
with András, from whom I learnt that success is not only about good results, but
more about communicating these results, and with Chris, who was always willing to
explain anything I needed to understand, were extremely stimulating and helped me
during my time at Oxford.

Martin Cooper visited our research group every summer and always came up with
great research ideas. Thank you Martin. I also thank my coauthor Bruno Zanuttini.

My thanks go to Georg Gottlob, who served as my departmental advisor, and
Stephan Kreutzer for many useful discussions and encouragement. I also thank other
members of the Computing Laboratory at Oxford, namely Vince Bárány, Michael
Benedikt, Chris Broadbent, Andrea Cal̀ı, Stephen Cameron, Stephen Clark, Matthew
Hague, Elnar Hajiyev, Paul Hunter, Tom Melham, Andrzej Murawski, Luke Ong,
Sebastian Ordyniak, Joël Ouaknine, Andy Twigg and Ben Worrell.

I appreciate support from, and interesting talks with, the participants of the
DIMACS-RUTCOR Workshop on Boolean and Pseudo-Boolean Functions held in
Memory of Peter L. Hammer in January 2009, namely Endre Boros, Jehoshua Bruck,
Yves Crama, Martin Golumbic and Michel Minoux.

iii

iv

I learnt a lot during my studies at Charles University in Prague. I wish to thank my
former supervisor Václav Koubek, mentor Antońın Kučera and many great teachers
including Roman Barták, Ondřej Čepek, Dan Král’, Jan Kratochv́ıl, Jaroslav Nešetřil,
Petr Štěpánek and Jǐŕı Wiedermann.

From my time at VU University in Amsterdam, I would like to thank András
Kerekes for his friendship, and Leen Torenvliet and Femke van Raamsdonk for aca-
demic support.

From my time at Turku University in Finland, I thank Vesa Halava for support.
The UK Engineering and Physical Sciences Research Council supported me finan-

cially with a Research Studentship, and I am grateful to the Computing Laboratory
and Keble College, Oxford, for financial support. I am grateful to Hertford College,
Oxford, for appointing me a Lecturer in Computing in the last year of my DPhil
studies. I am also grateful to University College, Oxford, for appointing me a Junior
Research Fellow after completing my DPhil, thus making me feel safe and with a job
while writing up this thesis.

I owe a lot to many friends I have made during my time at Oxford, including
friends from Keble, rowing and volleyball. I would like to name at least the closest
ones: Biljana, Efthymios, Piotr and Teresa - thank you for distraction from science:-)

Finally, I would like to thank my family back in the Czech republic: my twin sister
Radka, and my mum for their support.

Last but not least, many thanks go to my significant other, Biying, who has been
with me almost all my time at Oxford.

Declarations

I hereby certify that I have written this thesis entirely by myself. Parts of the thesis
have appeared in the following papers which have been subject to peer review.

[CJŽ08] D.A. Cohen, P.G. Jeavons, and S. Živný. The Expressive Power
of Valued Constraints: Hierarchies and Collapses. Theoretical
Computer Science, 409(1):137–153, 2008.
Earlier version in Proceedings of the 13th International Con-
ference on Principles and Practice of Contraint Programming
(CP’07), volume 4741 of Lecture Notes in Computer Science,
pages 798–805. Springer, 2007.

[ZŽ09] B. Zanuttini and S. Živný. A Note on Some Collapse Re-
sults of Valued Constraints. Information Processing Letters,
109(11):534–538, 2009.

[ŽJ09a] S. Živný and P.G. Jeavons, Classes of Submodular Constraints
Expressible by Graph Cuts. To appear in Constraints, 2009.
Earlier version in Proceedings of the 14th International Con-
ference on Principles and Practice of Contraint Programming
(CP’08), volume 5202 of Lecture Notes in Computer Science,
pages 112–127. Springer, 2008.

[ŽCJ09] S. Živný, D.A. Cohen, and P.G. Jeavons. The Expressive Power
of Binary Submodular Functions. Discrete Applied Mathemat-
ics, 157(15):3347–3358, 2009.
Earlier version in Proceedings of the 34th International Sym-
posium on Mathematical Foundations of Computer Science
(MFCS’09), volume 5734 of Lecture Notes in Computer Science,
pages 744–757. Springer, 2009.

v

vi

Although all these papers have been written by me, with the help of Pete Jeavons,
some of the results were obtained in collaboration. I would like to express here my
thanks to my coauthors: Dave Cohen, Pete Jeavons and Bruno Zanuttini. Although
not (yet) a coauthor of any of my papers, some of the work would not have been
possible without the help of Martin Cooper.

Unless stated otherwise, all the Theorems, Lemmas, etc. in this thesis are new
results. The beginning of each chapter lists where the new results have been published.

Contents

Abstract . i
Acknowledgements . iii
Declaration . v

1 Introduction 1

2 Background 9
2.1 Valued constraints . 9
2.2 Complexity of VCSP . 13
2.3 Expressibility . 22
2.4 Algebraic properties . 25
2.5 Submodularity . 29
2.6 Summary . 32

3 Expressive Power of Valued Constraints 33
3.1 Introduction . 33
3.2 Indicator problem . 34
3.3 Weighted indicator problem . 37
3.4 Fractional clone theory . 42

3.4.1 Fractional polymorphisms . 43
3.4.2 Multimorphisms . 46

3.5 Expressibility versus tractability . 47
3.6 Summary . 50

4 Expressive Power of Fixed-Arity Languages 52
4.1 Introduction . 52
4.2 Results . 53
4.3 The expressive power of arbitrary relations and max-closed relations . 54

4.3.1 Relations over a Boolean domain 56
4.3.2 Relations over larger domains 57

vii

CONTENTS viii

4.4 Finite-valued cost functions . 62
4.5 General cost functions . 67
4.6 Characterisation of Mul(Fmax

d) and fPol(Fmax
d) 76

4.7 Summary . 80

5 Expressive Power of Submodular Functions 82
5.1 Introduction . 82
5.2 Results . 83
5.3 Preliminaries . 84
5.4 Reduction to (s, t)-Min-Cut . 87
5.5 Known classes of expressible functions 89
5.6 New classes of expressible functions 91
5.7 Summary . 95

6 Non-Expressibility of Submodular Functions 97
6.1 Introduction . 97
6.2 Results . 98
6.3 Expressibility of upper fans and lower fans 99
6.4 Characterisation of Mul(Γsub,2) and fPol(Γsub,2) 103
6.5 Non-expressibility of Γsub over Γsub,2 108
6.6 The complexity of recognising expressible functions 111
6.7 Summary . 112

7 Summary and Open Problems 117
7.1 Summary . 117
7.2 Open problems . 118

List of Figures

1.1 A Sudoku instance (Example 1.2). 3
1.2 Disequalities express equality (Example 1.8). 5
1.3 Instance P2 (Example 1.9). 6
1.4 Instance P1 (Example 1.10). 7

2.1 Instance P (Example 2.2.3). 15
2.2 The gadget expressing =3 over {6=3} for |D| = 3 (Example 2.3.7). . . 23
2.3 The gadget expressing φ = (#0)2 (Example 2.3.9). 25
2.4 Definition of a fractional polymorphism F = {〈r1, f1〉, . . . , 〈rn, fn〉}. . 27
2.5 Definition of a multimorphism F = 〈f1, . . . , fk〉. 28

3.1 IP(Γ, 3) (Example 3.2.6). 36
3.2 Galois connection between RD and OD. 38
3.3 Galois connection between FD and Of

D. 44
3.4 Galois connection between FD and Om

D 48

4.1 Summary of results from Section 4.3, for all d ≥ 3. 61
4.2 A part of the gadget for expressing φ (Theorem 4.4.2). 63
4.3 P expressing or2 over non-Boolean domains (Theorem 4.4.2). 64
4.4 Microstructure of the instance P (Theorem 4.4.2). 65
4.5 {〈m− 1,Maxm〉, 〈1,Secondm〉} 6∈ fPol({φ}) for φ (Proposition 4.4.6). 66
4.6 Summary of results from Section 4.4, for all d ≥ 2. 67
4.7 Network for pij’s in the proof of Theorem 4.5.7. 70
4.8 Summary of results from Section 4.5, for all d ≥ 3. 73
4.9 P1, an instance of VCSP(Gmax

3,2) expressing φ (Example 4.5.10). . . . 73
4.10 P2, an instance of VCSP(Rmax

3,2 ∪ Fmax
3,1) expressing φ (Example 4.5.10). 75

4.11 Microstructure of the instance P2 (Example 4.5.10). 75

5.1 Graph G corresponding to polynomial p (Example 5.4.3). 89

6.1 Definition of Fsep. 108

ix

LIST OF FIGURES x

6.2 Fsep 6∈ Mul({θ(1,1,0,0)}). 110
6.3 Graph G corresponding to polynomial p (Example 6.7.1). 114

CHAPTER 1

Introduction

Theoretical computer science is like sex.
Sure, it may give some practical results,

but that’s not why we do it.
Richard Feynman (1918–1988)

(adapted)

This chapter is an informal introduction to, and an overview of, theoretical com-
puter science, constraint programming and constraint satisfaction problems. We will
present several examples of important computational problems which can be formu-
lated in the constraint framework, which is the framework this thesis deals with.
All important concepts will be defined more formally in Chapter 2. At the end of
this chapter, we will describe the organisation of this thesis together with the main
contributions of the thesis.

It seems quite hard to describe what theoretical computer science, or TCS for
short, is about. While some research in TCS does have an immediate impact on the
way computers operate, a lot of the ideas are about various different topics that at
first sight may seem to have little to do with computers. Indeed, the uniting theme of
TCS research is hard to describe, but it seems to have something to do with studying
how information can be manipulated and measuring the costs associated with ma-
nipulating information [Rao]. To understand the things we want to understand, we
create mathematical models that describe the part of the world that we want to study.
We then prove properties of these models, discovering facts that are true beyond any
doubt about the mathematical models that we have designed.

This thesis deals with certain combinatorial optimisation problems. Building a
computational model of a combinatorial problem means capturing the requirements
and optimisation criteria of the problem, using the resources available in some given
computational system. Modelling such problems using constraints means expressing

1

CHAPTER 1. INTRODUCTION 2

the requirements and optimisation criteria, using some combination of basic con-
straints provided by the system.

As with all computing paradigms, it is desirable for many purposes to have a small
language which can be used to describe a large collection of problems. Determining
which additional constraints can be expressed by a given valued constraint language
is therefore a central issue in assessing the flexibility and usefulness of a constraint
system, and it is this question that we investigate here.

Constraint programming Constraint programming is a powerful paradigm for
solving combinatorial search problems that draws on a wide range of techniques
from artificial intelligence, operational research, algorithms, graph theory and else-
where [RvBW06]. The basic idea in constraint programming is that the user states
the constraints and a general purpose constraint solver is used to solve them. Con-
straints are specified by relations, and an instance of the Constraint Satisfaction
problem, or CSP for short, states which relations should hold among the given de-
cision variables. More formally, a constraint satisfaction problem consists of a set of
variables, each with some domain of values, and a set of relations on subsets of these
variables.

Example 1.1 (Timetabling [RvBW06]). For example, in timetabling exams at a
university, the decision variables might be the times and locations of the different
exams, and the constraints might be on the capacity of each examination room (for
example, we cannot timetable more students to sit exams in a given room at any one
time than the room’s capacity), and on the exams timetabled at the same time (for
example, we cannot timetable two exams at the same time if they share students in
common).

Constraint solvers take a real-world problem like this, represented in terms of deci-
sion variables and constraints, and find an assignment to all the variables that satisfies
the constraints. Most CSP instances are solved by interleaving a backtracking search
with a series of constraint propagation phases. A CSP instance can be made locally
consistent by repeatedly removing unsupported values from the domains of its vari-
ables. This may allow us to reduce the domain of a variable after an assignment has
been made in the backtracking search phase.

Extensions of the basic CSP framework may involve, for example, finding op-
timal solutions according to one or more optimisation criterion (for example, min-
imising the number of days over which exams need to be timetabled), finding all
solutions, replacing (some or all) constraints with preferences, and considering a dis-
tributed setting where constraints are distributed among several agents. We refer the
reader to the Handbook of Constraint Programming [RvBW06] and other standard
textbooks [Apt03, Dec03] for more references and a more detailed discussion of the
examples from this chapter.

Example 1.2 (Sudoku). Various Japanese puzzles are good examples of problems
which can be easily modelled and solved via constraint programming. Arguably one
of the most well-known puzzles of this type is Sudoku. In an instance of Sudoku,

CHAPTER 1. INTRODUCTION 3

4 6 1

2 9 6

3 6 8

3 5

6 5

7 1

8 4 7

5 1 9

3 2 4

Figure 1.1: A Sudoku instance (Example 1.2).

the aim is to fill in a 9× 9 grid of squares with the digits 1, . . . , 9 in such a way that
each digit occurs exactly once in each row, each column, and each of 9 specified 3× 3
sub-grids. Each specific instance of Sudoku has a selection of grid entries already
filled-in, and the aim is to fill in the remaining entries (see Figure 1.1).

One way to model this problem as a CSP instance is to choose the set of variables
to be the 81 grid squares. Each variable has as its domain {1, . . . , 9}, except for the
pre-selected grid squares whose domain consists of a single number. There are 27
All-Different constraints: 9 on rows, 9 on columns, and 9 on the specified 3× 3
sub-grids. As the name suggests, the All-Different constraint is satisfied if all its
arguments (in this case, 9) are given different values.

Constraint satisfaction As mentioned above, a CSP instance consists of a set of
variables and a set of constraints imposed on these variables. Each constraint consists
of a scope (a list of variables the constraint restricts), and a relation which specifies
which combinations of values are allowed. The goal is to find an assignment of values
to the variables such that all constraints are satisfied. One of the strengths of the CSP
framework is that it provides a unifying framework for various classes of problems
that have been studied independently before. By specifying what the domains and
constraints are (for instance, domains can be finite, infinite, discrete,...), one can
obtain different classes of problems. Here are some other examples (more examples
can be found in Chapter 2).

Example 1.3 (Acyclicity). Given a directed graph G, the question of whether G is
acyclic can be modelled as a CSP instance as follows: variables correspond to the
vertices of G, the domain of every variable is the set of natural numbers N, and every
arc (x, y) of G represents a constraint x < y, where < is the usual “smaller than”
ordering on natural numbers.

CHAPTER 1. INTRODUCTION 4

Example 1.4 (Linear Inequalities). Any system of linear inequalities can be modelled
as a CSP instance with the same variables; the domain of all variables is the set of
real numbers R, and constraints are of the form a1x1 + . . . + anxn ≤ b, for some
a1, . . . , an, b ∈ Q.

Example 1.5 (Diophantine Equations). Hilbert’s 10th problem asks for an algorithm
that decides whether a given system of polynomial equations with integer coefficients
(a diophantine equation system) has an integer solution. This can be modelled as a
CSP instance with variables x1, . . . , xn, each with the domain Z, and constraints of
the form ax+ by+ cz = d, or x ∗ y = z, for a, b, c, d ∈ Z. Matiyasevič has shown that
this problem is undecidable [Mat70].

Example 1.6 (Graph k-Colouring). Given an undirected graph G and a natural
number k, the k-Colouring problem asks whether the vertices of G can be assigned
colours such that adjacent vertices are assigned different colours and at most k differ-
ent colours are used in total. This problem can be easily modelled as a CSP instance
as follows: variables correspond to the vertices of G, the domain of every variable is
the set {1, . . . , k}, and every edge (u, v) of G represents the u 6= v constraint; that is,
the binary disequality relation on a k-element set.

Example 1.7 (Satisfiability). The standard propositional satisfiability problem for
ternary clauses, 3-Sat, consists in determining whether it is possible to satisfy a
Boolean formula given as a conjunction of ternary clauses. This can be viewed as
a CSP instance, where clause C = (l1 ∨ l2 ∨ l3) corresponds to the constraint with
the relation {0, 1}3 \ {〈a1, a2, a3〉}, where ai = 1 if li is negated in C, and ai = 0
otherwise, 1 ≤ i ≤ 3. For instance, a clause (x1 ∨ ¬x2 ∨ x3) would correspond to
the constraint 〈〈x1, x2, x3〉, R〉, where 〈x1, x2, x3〉 is the scope of the constraint, and
R = {0, 1}3 \ {〈0, 1, 0〉} is the relation of the constraint.

To name just a few of the areas where the CSP has been applied, let us men-
tion artificial intelligence (temporal and spatial reasoning) [BK08b], type systems for
programming languages (set constraints), computational linguistics (tree description
languages), computational biology (phylogenetic reconstruction) [RvBW06], database
theory (conjunctive query containment) [SGG08], graph theory (H-colouring, graph
partition problems) [HN04], computer algebra (polynomial equations, polynomial in-
equalities) [BNvO09], operational research (linear programming, integer program-
ming) [ABKW08], Boolean satisfiability [CKS01], complexity theory [BKJ05] and
many others [RvBW06].

From these examples it is clear that many NP-complete problems and many other
problems can be formulated as CSP instances. Considerable effort has therefore been
invested in identifying restricted classes of the CSP which are tractable. For Boolean
problems such as those in Example 1.7, where the decision variables have just two
possible values, Schaefer’s dichotomy theorem gives an elegant characterisation of the
six classes of relations that lead to tractable problem classes [Sch78]. Schaefer’s result
can be considered the first dichotomy result on the complexity of the CSP.

CHAPTER 1. INTRODUCTION 5

It appears to be considerably more difficult to characterise tractable classes for
non-Booleans domains. Research has typically focused on two special forms of tractabil-
ity: tractable languages (where the relations are fixed but they can be combined in
any way) [CJ06], and tractable constraint (hyper)graphs (where the way constraints
interact is restricted but any sort of relation can be used) [SGG08].

Expressibility In any CSP instance, the variables listed in the scope of each con-
straint are explicitly constrained. Moreover, if we choose any subset of all variables
of the instance, then their values are constrained implicitly in the same way, due to
the combined effect of the constraints. This motivates the concept of expressibility,
which is illustrated in the next two examples.

Example 1.8. Consider a CSP instance consisting of four variables x1 through x4,
each with domain {1, 2, 3}. The constraints correspond to solid edges in Figure 1.2.
Here 6=3 denotes the binary disequality relation over a 3-element set; that is, 6=3 is

x1

x2

x3

x4

6=3

6=3

6=3

6=3

6=3

=

Figure 1.2: Disequalities express equality (Example 1.8).

the set {〈i, j〉 | 1 ≤ i 6= j ≤ 3}. It is easy to check that any assignment of values from
{1, 2, 3} to the variables x1 through x4, which satisfies all constraints, has to assign
the same value to the variable x1 and x4. Hence the variables x1 and x4 are implicitly
constrained by the equality relation. This shows that = is expressible by 6=3.

The notion of expressibility has been a key component in the complexity analysis
of the CSP [JCG97, Jea98, BKJ05, LT09]. It was also a major tool in the complexity
analysis of a wide variety of Boolean constraint problems carried out by Creignou et
al. [CKS01], where it was referred to as implementation. Expressibility is a particular
form of problem reduction: if a constraint can be expressed in a given constraint
language, then it can be added to the language without changing the computational
complexity of the associated class of problems.

Feder and Vardi observed that the CSP is equivalent to the homomorphism
problem between relational structures [FV98] (this was independently discovered
in [Jea98]). The notion of expressibility corresponds to expressibility using conjunc-
tion and existential quantification (primitive positive formulas). These connections

CHAPTER 1. INTRODUCTION 6

have lead to connecting the CSP with other fields of mathematics and computer
science including, for instance, graph theory [HN04] and logic [KV07a]

Valued constraints The CSP framework deals with decision problems only, and
therefore the constraints in a CSP instance are called hard constraints as they cannot
be violated. A number of extensions have been added to the basic CSP framework
to deal with questions of optimisation [RvBW06]. This thesis works with one of the
very general extensions of the CSP framework, called the Valued Constraint
Satisfaction problem, or VCSP for short.

Informally, a VCSP instance consists of a set of variables, a set of possible values,
and a set of (soft) constraints. Each constraint has an associated cost function which
assigns a cost (or a degree of violation) to every possible tuple of values for the
variables in the scope of the constraint. The goal is to find an assignment of values to
all of the variables which has the minimum total cost. Note that the CSP model is
a special case of the VCSP where the range of all cost functions is {0,∞}; in other
words, all cost functions are just relations.

The notion of expressibility naturally extends from the CSP framework to the
VCSP framework: conjunction is replaced by addition, and projection is replaced by
minimisation.

Example 1.9. Let Sum be the ternary soft constraint which returns as a cost value
the sum of its arguments. Consider the VCSP instance P2 with variables v1, v2, and
v3, each with the domain N = {1, 2, . . .}, and two constraints: Sum(v1, v2, v3), and
v1 6= v3 (see Figure 1.3). Here 6= is the disequality relation over natural numbers, and
can be also viewed as the cost function 6= (x, y) = 0 if x 6= y, and ∞ otherwise.

Now the variables v1 and v2 are (implicitly) constrained by the binary soft con-
straint with cost function φ such that φ(x1, x2) = x1 + x2 + 1 if x1 6= 1, and
φ(1, x2) = x2 + 3. The intuition is that if v1 6= 1, then the assignment to v1, v2

can be completed with v3 = 1, and otherwise it can be completed with v3 = 2 (since
1 violates v1 6= v3 and thus yields an infinite cost, which is bigger than the finite cost
obtained by assigning v3 = 2). Hence φ is expressible by the constraints Sum and 6=.

v1 v2 v3

6=

Sum

Figure 1.3: Instance P2 (Example 1.9).

Example 1.10. Consider the following relation R≤1 defined as

R≤1 = {〈a, b〉 | a, b ∈ Q, a− b ≤ 1}.

CHAPTER 1. INTRODUCTION 7

Let P1 be the VCSP instance with variables v1 through v4, each with the domain Q,
and constraints illustrated in Figure 1.4. It is not difficult to see that the variables

v1 v2 v3 v4

R≤1 R≤1

R≤1

R≤1

Figure 1.4: Instance P1 (Example 1.10).

v1 and v3 are constrained by the relation

R≤2 = {〈a, b〉 | a, b ∈ Q, a− b ≤ 2}.

Similarly, it is easy to see that the variables v3 and v4 are constrained by the relation

R−1≤1 = {〈a, b〉 | a, b ∈ Q,−1 ≤ (a− b) ≤ 1}.

In general, R≤1 can express any relation of the form

R−m≤n = {〈a, b〉 | a, b ∈ Q,−m ≤ (a− b) ≤ n},

where m and n are positive integers or infinity.

This thesis

In view of Examples 1.8, 1.9 and 1.10, we study the expressive power of various classes
of valued constraints, that is, the question of which other valued constraints can be
expressed over these classes.

Contributions This thesis thoroughly explores the expressive power of valued con-
straints and makes significant contributions. It can been seen as a follow-up to work
started in [CCJ06] and [CCJK06].

We investigate various algebraic properties of valued constraints in order to un-
derstand the expressive power of classes of relations and functions. We show that
this so-called algebraic approach, traditionally used to separate tractable problems
from intractable problems, is also useful for other questions, for instance, for finding
boundaries to the applicability of certain algorithmic techniques.

Using this approach, we have been able to resolve some open problems, such as the
question of expressibility of all Boolean submodular constraints by binary submodular
constraints.

CHAPTER 1. INTRODUCTION 8

Thesis structure In Chapter 2, we formally define the Valued Constraint
Satisfaction framework and other concepts used in this thesis. We give many
examples of well-known problems which have been studied independently in various
contexts of mathematics and computer science, and which can be naturally formulated
in the VCSP framework.

Chapter 3 extends results from [CCJ06] and provides a new link between the
problem of the expressive power of valued constraints and linear programming. We
also prove several results on the algebraic properties of valued constraints and prove
a decidability result dual to results in [CCJ06].

Chapter 4 deals with the expressive power of fixed-arity languages. We present a
full classification of various classes of constraints with respect to this problem. We
identify the first known example of an infinite chain of classes of constraints with
strictly increasing expressive power.

Chapter 5 presents results on the expressive power of submodular constraints. We
show new classes of submodular constraints which are expressible by binary submod-
ular constraints, and also present new and simpler proofs of some known results.

Chapter 6 generalises some previously known results on the expressive power of
Boolean submodular constraints. In particular, we show that not all submodular con-
straints are expressible by binary submodular constraints. Furthermore, we present
some consequences of our results, and link our results to other previously studied
problems.

In Chapter 7, we summarise the results obtained in this thesis, and discuss direc-
tions for future research.

CHAPTER 2

Background

The highest technique is to have no technique.
Bruce Lee (1940–1973)

In this chapter, we introduce the necessary background on valued constraints and
submodular functions. In Section 2.1, we define the valued constraint satisfaction
problem, present basic properties of this framework, and survey a list of well-known
problems which can be easily described in this framework. In Section 2.3, we intro-
duce the concept of expressibility for valued constraints. In Section 2.4, we present
algebraic properties of valued constraints which are related to expressibility of val-
ued constraints. Finally, in Section 2.5, we define submodular functions, and the
submodular function minimisation problem.

2.1 Valued constraints

A major area of investigation in artificial intelligence is the Constraint Satisfac-
tion problem (CSP) [Mon74]. The CSP is a general framework which can be used
to model many different problems [CKS01, Dec03, RvBW06, Jea09]. The key idea
underlying the CSP is to solve a problem by stating constraints representing require-
ments about the problem and, then, finding a solution satisfying all the constraints.
However, the CSP model considers only the feasibility of satisfying a collection of
simultaneous requirements, so-called hard constraints.

A number of extensions have been added to the basic CSP framework to deal
with questions of optimisation, including semi-ring CSPs, valued CSPs, soft CSPs
and weighted CSPs. These extended frameworks can be used to model a wide range
of discrete optimisation problems [SFV95, BFM+99, RvBW06], including standard
problems such as (s, t)-Min-Cut, Max-Sat, Max-Ones Sat, Max-CSP [CKS01,
CCJK06], and Min-Cost Homomorphism [GRYT06].

9

CHAPTER 2. BACKGROUND 10

The differences between the various general frameworks for soft constraints, such
as valued constraints or semi-ring constraints, are not relevant for our purposes. The
semi-ring CSP framework is slightly more general,1 but the valued CSP framework
is sufficiently powerful to model a wide range of optimisation problems. Hence we
will simply focus on this one very general framework, the Valued Constraint
Satisfaction problem (VCSP).

Informally, in the VCSP, an instance consists of a set of variables, a set of possible
values, and a set of (soft) constraints. Each constraint has an associated cost function
which assigns a cost (or a degree of violation) to every possible tuple of values for the
variables in the scope of the constraint. The goal is to find an assignment of values
to all of the variables which has the minimum total cost.

Remark 2.1.1. We remark that infinite costs can be used to indicate infeasible as-
signments (hard constraints), and hence the VCSP framework includes the standard
CSP framework as a special case and is equivalent to the Constraint Optimisa-
tion problem framework, COP, which is widely used in practice [RvBW06].

Remark 2.1.2. The VCSP framework is equivalent to graphical models [DM07].

Notation 2.1.3. We denote by R the set of all real numbers, and by R the set of
all real numbers together with (positive) infinity. Members of R are called costs. We
also denote by R+ the set of all nonnegative real numbers, and by R+ the set of all
nonnegative real numbers with (positive) infinity.

Remark 2.1.4. In order to avoid difficulties with representation issues for transcen-
dental numbers such as π or e, we implicitly restrict the set of reals to the set of
algebraic reals; that is, reals which are roots of non-zero polynomials in one variable
with rational (or equivalently, integer) coefficients. In fact, as is common in computer
science, artificial intelligence, and operational research, in practice the only numbers
we make use of are rationals.

Notation 2.1.5. For any fixed set D, a function φ from Dm to R will be called a
cost function on D of arity m. D is called a domain, and in this thesis we will only
deal with finite domains. If the range of φ lies entirely within R, then φ is called a
finite-valued cost function. If the range of φ is {0,∞}, then φ is called a crisp cost
function. If the range of a cost function φ includes both nonzero finite costs and
infinity, we emphasise this fact by calling φ a general cost function.

Note that with any relation R on D we can associate a crisp cost function φR on
D which maps tuples in R to 0 and tuples not in R to ∞. On the other hand, with
any m-ary cost function φ we can associate a relation Rφ defined as 〈x1, . . . , xm〉 ∈
Rφ ⇔ φ(x1, . . . , xm) <∞, or equivalently an m-ary crisp cost function defined by:

Feas(φ)(x1, . . . , xm)
def
=

{
∞ if φ(x1, . . . , xm) =∞,

0 if φ(x1, . . . , xm) <∞.

1The main difference between semi-ring CSPs and valued CSPs is that costs in valued CSPs
represent violation levels and have to be totally ordered, whereas costs in semi-ring CSPs represent
preferences and might be ordered only partially.

CHAPTER 2. BACKGROUND 11

Notation 2.1.6. We call Feas(·) the feasibility operator.

In view of the close correspondence between crisp cost functions and relations we
shall use these terms interchangeably in the rest of the thesis.

Definition 2.1.7 (VCSP). An instance P of the Valued Constraint Satisfac-
tion problem, VCSP, is a triple 〈V,D, C〉, where V is a finite set of variables, which
are to be assigned values from the set D, and C is a set of valued constraints . Each
c ∈ C is a pair c = 〈x, φ〉, where x is a tuple of variables of length m, called the
scope of c, and φ : Dm → R is a cost function. An assignment for the instance P is
a mapping s from V to D. We extend s to a mapping from V k to Dk on tuples of
variables by applying s componentwise. We denote by A the set of all assignments.
The cost of an assignment s is defined as follows:

CostP(s)
def
=

∑
〈x,φ〉∈C

φ(s(x)).

A solution to P is an assignment with minimum cost.

Definition 2.1.8 (CSP). An instance P of the Constraint Satisfaction prob-
lem [RvBW06] is a VCSP instance where all cost functions are crisp, that is, relations.
The task of finding an assignment with minimum cost amounts to testing whether all
constraints can be satisfied (zero cost) or not (infinite cost).

Remark 2.1.9. In the original, more general, definition of the VCSP [BFM+99],
costs were allowed to lie in any positive tomonoid S called a valuation structure.2

Under the additional assumptions of discreteness and the existence of a partial inverse
operation, it has been shown [Coo05] that such a structure S can be decomposed
into independent positive tomonoids, each of which is isomorphic to a subset of R+

with the operation being either standard addition, +, or bounded addition, +k, where
a+kb = min(k, a+b). Therefore, using R+ instead of an arbitrary valuation structure,
we do not restrict ourselves too much. Moreover, using costs from R+ and combining
them using standard addition is standard in operational research.

In this thesis, we also allow (finite) negative costs, that is, costs from R rather
than just from R+. As will be discussed in Section 2.3, we care about expressibility
up to additive and multiplicative constants, and hence this does not give us anything
new. However, this flexibility allows us to use standard examples and functions from
the literature, and hence relate our work better to other results in the literature.

We show now that many classical problems can be formulated as subproblems of
the VCSP.

Example 2.1.10 (CSP). For any instance of the classical constraint satisfaction
problem P = 〈V,D, C〉, we define a corresponding valued constraint satisfaction prob-
lem instance P ′ = 〈V,D, C ′〉. For each constraint 〈σ,R〉 ∈ C we define a cost function

2A valuation structure, Ω, is a totally-ordered set, with a minimum and a maximum element
(denoted 0 and ∞), together with a commutative, associative binary aggregation operator, ⊕, such
that for all α, β, γ ∈ Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

CHAPTER 2. BACKGROUND 12

φR and set C ′ = {〈σ, φR〉|〈σ,R〉 ∈ C}. The cost function σR maps each tuple allowed
by R to 0, and each tuple disallowed by R to ∞. Any solution s to P ′ has cost 0 if,
and only, if s satisfies all the constraints of P .

Example 2.1.11 (Boolean Conjunctive Query Evaluation). It is well known
that certain fundamental problems in database theory such as Boolean Conjunc-
tive Query Evaluation and Conjunctive Query Containment are equiva-
lent to the CSP [FV98, KV00, FG06, GS08, SGG08], and hence can be formulated
in the VCSP by Example 2.1.10.

Example 2.1.12 (Min-CSP/Max-CSP). An instance P of the Maximum Con-
straint Satisfaction problem [CKS01] is an instance of the CSP with the goal
to maximise the number of satisfied constraints. In the weighted version, each con-
straint has a non-negative weight and the goal is to maximise the weighted number
of satisfied constraints. We shall denote by Max-CSP the more general weighted
version.

Maximising the weighted number of satisfied constraints is the same as minimising
the weighted number of unsatisfied constraints (Min-CSP).3 Hence for any instance
P of the Max-CSP or Min-CSP, we can define a corresponding VCSP instance P ′
in which a constraint c with weight w is associated with a cost function which maps
tuples allowed by c to 0 and tuples disallowed by c to w.

Example 2.1.13 (Max-Ones). Max-Ones is an extension of the Boolean CSP
framework in which the goal is to satisfy all given constraints and simultaneously
maximise the number of variables assigned the value 1 [CKS01]. In the weighted
version each variable has a non-negative weight and the goal is to maximise the
weighted number of variables assigned the value 1. We shall denote by Max-Ones
the more general weighted version.

Similarly to the Max-CSP from Example 2.1.12, maximising the weighted num-
ber of variables assigned the value 1 is the same as minimising the weighted number of
variables assigned the value 0. Hence for any instance P of Max-Ones, we can define
an instance P ′ of the VCSP which has the same variables, domain and constraints
as P with additional unary constraints: on a variable with weight w, we impose a
unary constraint with the cost function µ defined as µ(0) = w and µ(1) = 0.

Example 2.1.14 (Min-Ones). Min-Ones is an extension of the Boolean CSP
framework in which the goal is to satisfy all given constraints and simultaneously
minimise the number of variables assigned the value 1 [CKS01]. In the weighted ver-
sion each variable has a non-negative weight and the goal is to minimise the weighted
number of variables assigned the value 1. We shall denote by Min-Ones the more
general weighted version.

For any instance P of Min-Ones, we can define an instance P ′ of the VCSP
which has the same variables, domain and constraints as P with additional unary
constraints: on a variable with weight w, we impose a unary constraint with the cost
function µ defined as µ(0) = 0 and µ(1) = w.

3This is true for optimal solutions. However, if we are interested in approximability results, this
statement is not true even over Boolean domains, see [CKS01].

CHAPTER 2. BACKGROUND 13

Example 2.1.15 ((s, t)-Min-Cut). Let G = 〈V,E〉 be a directed weighted graph
such that for every (u, v) ∈ E there is a weight w(u, v) ∈ R+ and let s, t ∈ V be the
source and target nodes. An (s, t)-cut C is a subset of vertices V such that s ∈ C but
t 6∈ C. The weight, or the size, of an (s, t)-cut C is defined as

∑
(u,v)∈E,u∈C,v 6∈C w(u, v).

The (s, t)-Min-Cut problem consists in finding a minimum-weight (s, t)-cut in G.
We can formulate the search for a minimum-weight (s, t)-cut in G as a VCSP

instance. For a fixed weight w ∈ R+, we define

λw(x, y)
def
=

{
w if x = 0 and y = 1,

0 otherwise.

For a fixed value d ∈ {0, 1} and a cost c ∈ R+, we define

µdc(x)
def
=

{
c if x = d,

0 if x 6= d.

We denote by Γcut the set of cost functions λw and µdc .
Let P = 〈V, {0, 1}, {〈〈u, v〉, λw(u,v)〉 | (u, v) ∈ E} ∪ {〈s, µ1

∞〉, 〈t, µ0
∞〉}〉.

The unary constraints ensure that the source and target nodes take the values 0
and 1, respectively. Therefore, a minimum-weight (s, t)-cut in G corresponds to the
set of variables assigned the value 0 in some solution to P .

2.2 Complexity of VCSP

For each valued constraint satisfaction problem there is a corresponding decision
problem in which the question is to decide whether there is a solution with cost lower
than some given threshold value. It is clear from Example 2.1.10 that there is a
polynomial-time reduction from the CSP to this decision problem. Since the CSP is
known to be NP-complete [MF93], it follows that the VCSP is NP-hard.

The problem of finding a solution to a valued constraint satisfaction problem is
an NP optimisation problem; that is, it lies in the complexity class NPO. Infor-
mally, NPO consists of function problems of the form “find an assignment of the
variables x1, . . . , xk which minimises a cost function φ(x1, . . . , xk), where φ is com-
putable in polynomial time”, see [ACG+99] for a formal definition of NPO. The
VCSP framework is powerful enough to describe many NPO-complete problems, for
instance Max-Ones from Example 2.1.13, also known as Maximum Weighted
Satisfiability [ACG+99].

One significant line of research on the VCSP is to identify restrictions which
ensure that instances are solvable in polynomial time. There are two main types of
restrictions that have been studied in the literature.

First, we can limit the structure of the instances, in the following sense. With any
instance P of the VCSP, we can associate a hypergraph HP whose vertices are the
variables of P , and whose hyperedges correspond to the scopes of the constraints of P .
The hypergraph HP is called the structure of P , and is also know as the constraint

CHAPTER 2. BACKGROUND 14

network [Dec03]. A number of results concerning restrictions to the structure of
problem instances that are sufficient to ensure tractability have been obtained for the
CSP framework, and can be easily generalised to the VCSP. For example, if HP is
“tree-like”, in various ways, then it can be shown that P is solvable in polynomial
time via dynamic programming [ACP87, DP89, Fre90, Bod96, GLS00, KV00, GLS02,
GGM+05, CD05, GM06, AGG07, GMS07, Mar07, CJG08, Mar09a, Mar09b]. In
fact, in the case of bounded-arity CSPs, the question of identifying all structural
restrictions which guarantee tractability has been resolved completely: Grohe has
shown that, under certain standard parameterised complexity theory assumptions,4

the tractable class of bounded treewidth modulo homomorphic equivalence, identified
in [DKV02], is the only tractable class, see [Gro07] for details. Note that structurally-
restricted CSPs are also known as uniform CSPs [KV07a].

However, the complexity of finding an optimal solution to a valued constraint sat-
isfaction problem will obviously also depend on the forms of valued constraints which
are allowed in the problem [CCJK06]. Restricting the forms of the valued constraints
which are allowed in the problem gives rise to so-called language restrictions.

Notation 2.2.1. A valued constraint language is simply a set of possible cost func-
tions mapping Dk to R, for some fixed set D. A valued constraint language Γ over a
two-element domain is called a Boolean valued constraint language.

Notation 2.2.2. We will denote by VCSP(Γ) the class of all VCSP instances where
the cost functions of the valued constraints are all contained in the valued constraint
language Γ.

Example 2.2.3. Let D = {0, 1}. We define two unary cost functions as follows:

µ2(x)
def
=

{
0 if x = 0,

5 if x = 1,

µ5(x)
def
=

{
4 if x = 0,

2 if x = 1.

We also define six binary cost functions by the following table:

φ12 φ14 φ23 φ34 φ35 φ45

00 3 0 0 9 3 4
01 2 4 1 7 5 3
10 3 2 0 8 4 2
11 1 5 0 1 4 1

The set Γ = {µ2, µ5, φ12, φ14, φ23, φ34, φ35, φ45} is an example of a valued con-
straint language. We will now give an example of a VCSP(Γ) instance. Let V =

4Namely, that FPT6=W[1] [FG06].

CHAPTER 2. BACKGROUND 15

{x1, x2, x3, x4, x5} be a set of variables, and let C be a set of constraints, defined as:

C = {〈〈x1, x2〉, φ12〉, 〈〈x1, x4〉, φ14〉, 〈〈x2, x3〉, φ23〉,
〈〈x3, x4〉, φ34〉, 〈〈x3, x5〉, φ35〉, 〈〈x4, x5〉, φ45〉, 〈x2, µ2〉, 〈x5, µ5〉}.

Then P = 〈V,D, C〉 is a VCSP(Γ) instance, illustrated in Figure 2.1.

x1 x2

µ2

x3

x4 x5 µ5

φ12 φ23

φ35

φ45

φ14 φ34

Figure 2.1: Instance P (Example 2.2.3).

Remark 2.2.4. As this is not a severe restriction, we will assume that every valued
constraint language contains the equality relation and a constant function.

Notation 2.2.5. A valued constraint language Γ is called tractable if VCSP(Γ′) can
be solved in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called NP-hard
(or intractable) if VCSP(Γ′) is NP-hard for some finite subset Γ′ ⊆ Γ.

Remark 2.2.6. A tractable Γ is sometimes called locally tractable as opposed to
globally tractable, where the latter means that there is a uniform polynomial-time
algorithm which solves VCSP(Γ).

Remark 2.2.7. Defining tractability in terms of finite subsets ensures that the
tractability of a valued constraint language is independent of whether the cost func-
tions are represented explicitly (via tables of values) or implicitly (via oracles). This
is because for any finite Γ′ ⊆ Γ, the algorithm for solving VCSP(Γ′) can remember all
the values of all cost functions in Γ′.

Our interest is in the effect of restricting the forms of cost functions allowed in
valued constraint languages. In some cases, the restriction on the valued constraints
may result in more tractable versions of the VCSP.

Example 2.2.8 (VCSP(Γcut)). Recall the valued constraint language Γcut from Exam-
ple 2.1.15. Any instance of VCSP(Γcut) on variables x1, . . . , xn can be solved in O(n3)
time by a standard (s, t)-Min-Cut algorithm [GT88], via the following reduction to
(s, t)-Min-Cut: any unary constraint µ0

c (respectively µ1
c) on xi can be modelled by

an edge of weight c from xi to the target node (respectively, from the source node to
the node xi). Any λw(xi, xj) constraint is modelled by an edge of weight w from xi
to xj.

CHAPTER 2. BACKGROUND 16

Example 2.2.9 (Min-Cut). Given a directed weighted graph G = 〈V,E〉 as in Ex-
ample 2.1.15, a subset of vertices C ⊆ V is called a cut if C is non-trivial, that is,
C 6= ∅ and C 6= V . The weight of C is defined as in Example 2.1.15. The Min-
Cut problem, also known as the Global Min-Cut problem, consists in finding a
minimum-weight cut in G. Using the cubic-time algorithm for the (s, t)-Min-Cut
problem [GT88], one can easily construct an algorithm for the Min-Cut problem of
order O(n4), where n = |V | is the number of vertices of G. For undirected graphs,
Nagamochi and Ibaraki have described a more efficient algorithm, still based on net-
work flows, which runs in cubic time [NI92]. Later, a simpler and purely combinatorial
cubic-time algorithm which is not based on network flows has been discovered [SW97].

We have shown in [ŽJ09b] that Min-Cut cannot be naturally described in the
VCSP framework by any tractable valued constraint language over finite domains.

Next we give a list of several well-known problems which can be formulated in the
language-restricted VCSP framework. We refer to the original papers which provide
complexity classification results. In other words, they show under which language
restrictions a given problem is tractable and under which restrictions it is intractable.

We start with an example which demonstrates that a valued constraint satisfaction
problem involving only one single binary Boolean cost function can be NP-hard.

Example 2.2.10 (VCSP(Γxor)). Let Γxor be the Boolean valued constraint language
which contains just the single binary cost function φxor : D2 → R defined by

φxor(x, y)
def
=

{
1 if x = y,

0 if x 6= y.

If D = {0, 1}, then the problem VCSP(Γxor) corresponds to the Max-Sat problem
for the exclusive-or predicate, which is known to be NP-hard [CKS01]. VCSP(Γxor)
is also equivalent to the NP-complete Max-Cut problem [GJ79]. For |D| > 2,
the problem VCSP(Γxor) corresponds to the |D|-Colouring problem, which is NP-
complete. Therefore, Γxor is NP-hard.

Example 2.2.11 (Sat, Max-Sat). Consider a Boolean valued constraint language
Γ. We can restrict Γ by allowing only cost functions with range {0,∞} ⊆ R. This
way we obtain the standard Satisfiability problem. The complexity of the VCSP
for such restricted languages Γ has been completely characterised and six tractable
classes have been identified [Sch78].

Alternatively, if we restrict Γ by allowing only cost functions with range {0, 1} ⊆
R, we obtain the Max-Sat problem, in which the aim is to satisfy the maximum num-
ber of constraints. The complexity of this problem has been completely characterised
and three tractable classes have been identified [CKS01].

Example 2.2.12 (CSP). There has been a lot of research on the complexity of
language-restricted CSPs. The first result in this line of research goes back to Schae-
fer, who obtained a complete classification of Boolean CSPs [Sch78], as mentioned in
Example 2.2.11. Other known complexity classification results include CSPs with a

CHAPTER 2. BACKGROUND 17

single binary symmetric relation (that is, graphs) [HN90] (see Example 2.2.22), CSPs
with all unary relations (so-called conservative CSPs) [Bul03] (see Example 2.2.27),
CSPs over a 3-element domain [Bul06], CSPs with a single binary relation without
sources and sinks [BKN09], and a recent result classifying all CSPs with a single bi-
nary relation that belongs to a class of oriented trees called special triads [BKMN09].

Remark 2.2.13. It is known that the CSP is equivalent to the Homomorphism
problem between relational structures and many other problems [FV98, HN04, CJ06,
HN08]. Moreover, the CSP is equivalent to the CSP with a single binary rela-
tion [HN04].

Feder and Vardi have shown that the language-restricted CSP, also known as
nonuniform CSP, is the biggest subclass of NP which can exhibit a dichotomy [FV98].
In other words, nonuniform CSPs form the biggest subclass of NP which might possi-
bly contain only polynomial-time and NP-complete problems despite Ladner’s Theo-
rem, which shows existence of intermediate languages in NP provided P 6= NP [Lad75].
Feder and Vardi conjectured that the nonuniform CSP does indeed exhibit a di-
chotomy [FV98]. Bulatov et al. have given an algebraic characterisation of this
Dichotomy Conjecture [BKJ05]. Various equivalent formulations of the Dichotomy
Conjecture can be found in a beautiful survey paper by Hell and Nešetřil [HN08], see
also [NSZ09].

Feder and Vardi also showed that the nonuniform CSP is polynomial-time equiv-
alent to a certain logic called MMSNP, that is, monotone monadic strict NP with-
out inequality [FV98]. However, one of the reductions in [FV98] is a randomised
polynomial-time reduction. More recently, Kun has proved a polynomial-time equiv-
alence between the nonuniform CSP and MMSNP [Kun]. This equivalence has been
refined by Kun and Nešetřil [KN08].

A variety of mathematical approaches to the nonuniform CSP have been suggested
in the literature. The most advanced approaches use logic, combinatorics, universal
algebra, and their combination [CJ06, Che06, KV07a, BKL08].

The logic programming language Datalog can be used to define CSPs of bounded
width, which can be solved by local consistency algorithms [Dec92, JCC98, DP99,
KV00, AW09]. Recent results have established the power of the local consistency tech-
nique [LZ07, BK09]. In fact, all nonuniform CSPs that are known to be tractable
can be solved either via local consistency techniques, or via the “few subpowers prop-
erty” [IMM+07, BIM+] (which generalises Gaussian elimination and results in [FV98,
JCC98, BD06, Dal06]), or via a combination of the two.

More on connections between logic and Constraint Satisfaction can be found
in [GKL+07, HN08]. See also [CJ06] for a survey on the complexity of constraint
languages, and [CKV08] for an overview of current research themes.

A recent result of Kun and Szegedy relates the Dichotomy Conjecture to continu-
ous mathematics and techniques from PCPs (Probabilistically Checkable Proofs) [KS09].

Remark 2.2.14. The power of the local consistency technique, mentioned in Exam-
ple 2.2.13, is also fully characterised for uniform CSPs [ABD07].

CHAPTER 2. BACKGROUND 18

Example 2.2.15 (Boolean Min/Max-CSP, Min/Max-Ones). Khanna et al.
have obtained a complexity classification of Boolean Min-CSP and Max-CSP, and
also Boolean Min-Ones and Max-Ones [KSTW01], see also [CKS01].

Example 2.2.16 (Boolean Min/Max-AW-CSP, Min/Max-AW-Ones). Con-
sider a generalisation of the Min-CSP and Max-CSP frameworks which allows arbi-
trary weights, that is, both positive and negative weights. In terms of cost functions,
this means that each cost function can take on values 0 and c for some fixed (pos-
itive or negative) c depending on the cost function. Similarly for Min-Ones and
Max-Ones.

Jonsson has generalised the results of Creignou et al. from Example 2.2.15 and
has given a complexity classification of Boolean Min-AW-CSP and Max-AW-CSP,
and also Min-AW-Ones and Max-AW-Ones [Jon00].

Example 2.2.17 (Boolean VCSP). A complexity classification of Boolean VCSPs
with arbitrary positive cost functions has been obtained by Cohen et al. [CCJK06].

Example 2.2.18 (Non-Boolean Max-CSP). First results on the Max-CSP over
arbitrary domains are due to Cohen et al. [CCJK05]. A complexity classification
with respect to approximability of the three-valued Max-CSP is due to Jonsson et
al. [JKK06].

Let Γfix be the language containing all unary relations of the form x = d for
some variable x and a domain value d (so-called constant or fixed-value constraints).
A complexity classification of Max-CSPs with fixed-value constraints, that is, lan-
guages including Γfix, with respect to approximability, has been obtained by Deineko
et al. [DJKK08].

See [Rag08] for recent results on the approximability and inapproximability of the
Max-CSP.

Example 2.2.19 (Max-AW-CSP). Jonsson and Krokhin have generalised results
from Example 2.2.16 from Boolean domains to arbitrary domains, and obtained a
complexity classification of Max-AW-CSPs, that is, Max-CSPs with arbitrary
weights over arbitrary domains [JK07].

Example 2.2.20 (Max-Ones). Jonsson et al. have generalised the result of Creignou
et al. from Example 2.2.15, and have obtained a complexity classification with respect
to approximability of the Max-Ones problem for maximal languages over domains of
size up to 4 and of the Max-Ones problem with all permutation relations [JKN08].

Notation 2.2.21. Given two graphs (undirected or directed) G and H, we denote
by V (G) and V (H) the set of vertices of G and H respectively. We denote by E(G)
and E(H) the set of edges of G and H respectively. A mapping f : V (G) → V (H)
is a homomorphism of G to H if f preserves edges, that is, (u, v) ∈ E(G) implies
(f(u), f(v)) ∈ E(H).

Example 2.2.22 (Graph Homomorphism). The Graph Homomorphism prob-
lem asks whether an input graph G admits a homomorphism to a fixed graph H.
This problem is also known as H-Colouring [HN04].

CHAPTER 2. BACKGROUND 19

H-Colouring is equivalent to VCSP(Γe), where Γe denotes the language con-
taining a single binary symmetric relation representing the edges of H (“e” for edge).
A complexity classification of the H-Colouring problem has been obtained by Hell
and Nešetřil [HN90]: H-Colouring is tractable if, and only if, H contains a loop or
H is bipartite; otherwise H-Colouring is NP-complete. Bulatov has provided an
algebraic proof of this result [Bul05].

Example 2.2.23 (Graph List Homomorphism). The Graph List Homomor-
phism problem for H asks whether an input graph G with lists Lu ⊆ V (H), u ∈ V (G)
admits a homomorphism f to H such that f(u) ∈ Lu for each u ∈ V (G).

Let Γcons consist of all unary relations (“cons” for conservative). Then VCSP(Γe ∪
Γcons), where Γe is from Example 2.2.22, is equivalent to the Graph List Homo-
morphism problem. A complexity classification of this problem is due to Feder et
al. [FHH03].

Example 2.2.24 (Graph Min-Cost Homomorphism). For two graphs G and H,
consider real nonnegative costs cv(u) for u ∈ V (G) and v ∈ V (H). The cost of an
homomorphism f of G to H is defined to be

∑
u∈V (G) cf(u)(u). For a fixed H, the

Graph Min-Cost Homomorphism problem asks to find a homomorphism of G to
H with minimum cost.

Graph Min-Cost Homomorphism is equivalent to VCSP(Γe ∪ Γscons), where
Γe is from Example 2.2.22, and Γscons consists of all unary cost functions (“scons”
for soft conservative). A complexity classification of this problem is due to Gutin et
al. [GHRY08].

Remark 2.2.25. We remark that structurally-restricted variants of the Graph Ho-
momorphism problems from Examples 2.2.22, 2.2.23 and 2.2.24 have also been stud-
ied, see [Gro07, FJ07].

Example 2.2.26 (Digraph Homomorphism). The Digraph Homomorphism
problem is an analogue of Graph Homomorphism from Example 2.2.22 for directed
graphs.

Let Γa denote the language containing a single binary relation (“a” for arc). For
any fixed Γa, VCSP(Γa) is polynomial-time equivalent to the Digraph Homomor-
phism problem for the graph whose edge relation is given by the binary relation from
Γa [HN04]. A complexity classification of the Digraph Homomorphism problem
for semicomplete digraphs has been obtained in [BJHM88].

Example 2.2.27 (Digraph List Homomorphism). The Digraph List Homo-
morphism problem is an analogue of Graph List Homomorphism from Exam-
ple 2.2.23 for directed graphs.

VCSP(Γa ∪ Γcons), where Γa is from Example 2.2.26, and Γcons is from Exam-
ple 2.2.23, is equivalent to the Digraph List Homomorphism problem. Bulatov
has obtained a complexity classification of this problem [Bul03].

Example 2.2.28 (Digraph Min-Cost Homomorphism). The Digraph Min-
Cost Homomorphism Problem is an analogue of Graph Min-Cost Homomor-
phism problem from Example 2.2.24 for directed graphs.

CHAPTER 2. BACKGROUND 20

VCSP(Γa ∪ Γsconst), where Γa is from Example 2.2.26 and Γsconst is from Ex-
ample 2.2.24, is equivalent to the Digraph Min-Cost Homomorphism prob-
lem. This problem is also equivalent to the Level of Repair Analysis prob-
lem [GRYT06], see also [GK08]. Complexity classification results have been ob-
tained for semicomplete digraphs [GRY06], semicomplete bipartite digraphs [GGY08],
semicomplete multipartite digraphs [GRY08b], semicomplete digraphs with possible
loops [GK09], locally semicomplete and quasi-transitive digraphs [GGK+09], locally
in-semicomplete digraphs [GKKR08], reflexive digraphs [GHKR08] (generalising re-
flexive multipartite tournaments [GK07]), and oriented cycles [GRY08a].

Example 2.2.29 (Max-Sol). The Maximum Solution problem is equivalent to
the VCSP over the language consisting of all relations and unary cost functions with
the following cost functions: µ(d) = wd for any domain value d and some fixed
w ∈ N [JN08]. Jonsson et al. have studied the Max-Sol problem over graphs, that
is, a language consisting of a single symmetric binary relation (this is a restriction
of Graph Min-Cost Homomorphism from Example 2.2.22, but a generalisation
of both Graph List Homomorphism from Example 2.2.23 and Max-Ones from
Example 2.2.20) [JNT07].

Example 2.2.30 (#CSP). The complexity of counting solutions to various combina-
torial problems was first considered in [Val79]. In the Counting Constraint Sat-
isfaction problem, #CSP, the goal is to find the number of solutions. The general
framework is similar to the VCSP: instead of minimising the sum of cost functions
(over all possible assignments of values to variables), the objective is to compute the
sum (again, over all possible assignments of values to variables) of the product of all
{0, 1}-valued cost functions. Formally, for a #CSP instance P = 〈V,D, C〉, the goal
is to compute

Eval(P)
def
=

∑
s∈A

∏
〈x,φ〉∈C

φ(x).

(Recall from Definition 2.1.7 that A denotes the set of all assignments of values to
the variables.)

Below is a list of results on complexity classifications of #CSPs.

• Creignou and Hermann have classified Boolean #CSPs with an arbitrary num-
ber of cost functions of arbitrary fixed arities [CH96], see also [CKS01].

• Dyer and Greenhill have obtained a complexity classification of #CSPs with
only one symmetric cost function of arity 2 over an arbitrary finite domain [DG00].
This problem is also known as #H-Colouring.

• Dyer et al. have obtained a complexity classification of #CSPs with only
one non-symmetric acyclic cost function of arity 2 over an arbitrary finite do-
main [DGP07].

• Dyer et al. have obtained a complexity classification (with respect to approx-
imability) of Boolean #CSPs with an arbitrary number of cost functions of
arbitrary fixed arities [DGJ09a].

CHAPTER 2. BACKGROUND 21

• Dyer et al. have obtained a complexity classification (with respect to approx-
imability) of Boolean #CSPs with bounded degree [DGJR09].

• Building on work of Bulatov and Grohe [BG05] and Bulatov and Dalmau [BD07],
Bulatov has obtained a complexity classification of #CSPs with an arbitrary
number of cost functions of arbitrary fixed arities over an arbitrary finite do-
main [Bul08]. However, the answer is not completely satisfactory as Bulatov’s
results show that there is a dichotomy, but it is not known whether recognising
the tractable cases is even decidable [Bul08].

Example 2.2.31 (Partition Function). The Counting Constraint Satis-
faction problem, #CSP, from Example 2.2.30 can be generalised from {0, 1}-valued
cost functions to arbitrary cost functions. This is known as the Partition Func-
tion problem, the Weighted #CSP problem or just as #CSP. Recall that the
goal is to compute the sum (over all possible assignments of values to variables) of the
product of all cost functions in a given instance. Note that in this case the resulting
number does not correspond to the number of solutions anymore as the concept of
number of solutions does not make any sense. Below is a list of complexity classifica-
tion results on #CSPs for general cost functions, that is, cost functions that are not
necessarily {0, 1}-valued as in Example 2.2.30:

• Bulatov and Grohe have obtained a complexity classification of #CSPs with
only one symmetric cost function of arity 2 taking non-negative real values [BG05].

• Goldberg et al. have obtained a complexity classification of #CSPs with only
one symmetric cost function of arity 2 taking both positive and negative real
values [GGJT09].

• Cai et al. have obtained a complexity classification of #CSPs with only one
symmetric cost function of arity 2 taking complex values [CCL09].

• Dyer et al. have obtained a complexity classification of #CSPs with only one
symmetric cost function of an arbitrary fixed arity taking non-negative rational
values [DGJ08]. This problem is also known as the Hypergraph Partition
Function problem.

• Dyer et al. have obtained a complexity classification of Boolean #CSPs with
arbitrarily many cost functions of arbitrary fixed arities taking non-negative
real values [DGJ09b].

• Bulatov et al. have extended the previous result to a complexity classification of
Boolean #CSPs with arbitrarily many cost functions of arbitrary fixed arities
taking both positive and negative rational values [BDG+09].

• Cai et al. have extended this result to a complexity classification of Boolean
#CSPs with arbitrarily many cost functions of arbitrary fixed arities taking
complex values [CLX08, CLX09].

CHAPTER 2. BACKGROUND 22

Remark 2.2.32. A dichotomy result for structurally-restricted #CSPs with arbi-
trarily many cost functions of arbitrary (but fixed) arities over arbitrary domains is
due to Dalmau and Jonsson [DJ04].

Surprisingly, not much research has been done on the combination of the two
mentioned restrictions (that is, language and structural restrictions), which would
result in finding hybrid reasons for tractability [Coh03, CJS08, SJ08], see also [ŽJ09b].

2.3 Expressibility

In this section, we introduce the concept of expressibility for valued constraints. We
also give some illustrative examples.

In any VCSP instance, the variables listed in the scope of each valued constraint
are explicitly constrained in the sense that each possible combination of values for
those variables is associated with a given cost. Moreover, if we choose any subset of
all variables, then their values are constrained implicitly in the same way, due to the
combined effect of the valued constraints. Recall Example 1.8, where variables x1 and
x4, even though not constrained explicitly, are constrained implicitly by the equality
relation. This motivates the concept of expressibility for cost functions, which is
defined as follows:

Definition 2.3.1 (Expressibility). For any VCSP instance P = 〈V,D, C〉, and any
tuple x of m variables of P , the projection of P onto x, denoted πx(P), is the m-ary
cost function defined as

πx(P)(y)
def
= min

s∈A
{CostP(s) | s(x) = y},

where A denotes the set of all assignments (Definition 2.1.7). We say that a cost
function φ is expressible over a valued constraint language Γ if there exists an instance
P of VCSP(Γ) and a tuple v of variables of P such that πv(P) = φ. The variables of
P not from v are called extra (or hidden) variables. We call the pair 〈P ,v〉 a gadget
for expressing φ over Γ.

Remark 2.3.2. The notion of expressibility is also known as implementation [CKS01].

Remark 2.3.3. The notion of expressibility for crisp cost functions (=relations) cor-
responds to expressibility using conjunction and existential quantification (primitive
positive formulas) [BKJ05]. Hence relations expressible over a crisp constraint lan-
guage Γ are also known as pp-definable over Γ [Che06].

The following result states that adding a cost function expressible over Γ to Γ
does not change the complexity of VCSP(Γ).

Theorem 2.3.4. For any valued constraint language Γ and any φ expressible over Γ,
VCSP(Γ) and VCSP(Γ ∪ {φ}) are log-space equivalent.

CHAPTER 2. BACKGROUND 23

x1

x2

x3

x4

6=3

6=3

6=3

6=3

6=3

=3

Figure 2.2: The gadget expressing =3 over {6=3} for |D| = 3 (Example 2.3.7).

Remark 2.3.5. Note that the original version of this result from [CCJK06] shows
only polynomial-time equivalence. However, this result can be extended due to Rein-
gold’s result that (s, t)-Connectivity in undirected graphs can be solved in loga-
rithmic space [Rei08].

Example 2.3.6. By Theorem 2.3.4 and Example 2.2.10, in order to show that Γ is
an NP-hard valued constraint language it is sufficient to show that φxor is expressible
over Γ.

Example 2.3.7. Let D be a finite set of size d. Consider a valued constraint language
Γ = {6=d} over D which consists of a binary disequality relation, 6=d, given by

6=d
def
= {〈a, b〉 ∈ D2 | a 6= b}.

Note that 6=d is a “hard variant” of φxor from Example 2.2.10. Consider an instance
P = {V,D, C} of VCSP(Γ), where V = {x1, . . . , xn+1}, n = d, and

C = {〈〈xi, xj〉, 6=d〉 | i 6= j ∈ {1, . . . , n}} ∪ {〈〈xi, xn+1〉, 6=d〉 | i ∈ {2, . . . , n}}.

In order to satisfy all constraints from C, variables x1, . . . , xn have to be assigned
different values. Moreover, the value of the variable xn+1 has to be different from
the values of the variables x2, . . . , xn. Hence, the only remaining value that can
be assigned to the variable xn+1 is the value which is assigned to the variable x1.
Therefore, every solution s to P with minimum total cost (in this case zero) satisfies
s(x1) = s(xn+1). Therefore, 〈P , {x1, xn+1}〉 is a gadget for the equality relation, =d,
given by

=d
def
= {〈a, b〉 ∈ D2 | a = b}.

In other words, the equality relation can be expressed using the disequality relation.
An example of this construction for |D| = 3 is shown in Figure 2.2.

Example 2.3.8. Consider the VCSP instance P from Example 2.2.3. The projec-
tion of P onto 〈x2, x4〉, denoted by π(P)〈x2,x4〉, is a binary cost function defined by

CHAPTER 2. BACKGROUND 24

minimising over the remaining variables. The following table, which enumerates all
assignments s in which x2 and x4 are both assigned 0, together with the cost of these
assignments, shows that π(P)〈x2,x4〉(0, 0) = 21.

x2 x4 x1 x3 x5 CostP(s)
0 0 0 0 0 23
0 0 0 0 1 22
0 0 0 1 0 24
0 0 0 1 1 21
0 0 1 0 0 25
0 0 1 0 1 24
0 0 1 1 0 26
0 0 1 1 1 23

Similarly, it is straightforward to check that

π(P)〈x2,x4〉(x, y) =

21 if x = 0 and y = 0,

16 if x = 0 and y = 1,

24 if x = 1 and y = 0,

19 if x = 1 and y = 1.

Hence this cost function can be expressed over the valued constraint language Γ
defined in Example 2.2.3.

Example 2.3.9. Consider a ternary finite-valued cost function φ over D = {0, 1, 2}
defined as φ = (#0)2, that is, the square of the number of zeros in the input. We
will construct a gadget for expressing φ using only binary crisp cost functions and
finite-valued unary cost functions.

Define three binary crisp cost functions as follows:

φ0(x, y)
def
=

∞ if x = 0 and y = 1,

∞ if x = 0 and y = 2,

0 otherwise,

φ1(x, y)
def
=

{
∞ if x = 0 and y = 1,

0 otherwise,

and

φ2(x, y)
def
=

{
∞ if x = 0 and y = 2,

0 otherwise.

For c ∈ {1, 3, 5}, let µc be a unary finite-valued cost function defined as

µc(x)
def
=

{
c if x = 0,

0 otherwise.

CHAPTER 2. BACKGROUND 25

x

y

z

u1

u2

u3

µ1

v1

v2

v3

v4

v5

v6

µ3

v7

µ5

φ0

φ0

φ0

φ0

φ0
φ0

φ1

φ2

φ2

φ1

φ1

φ2

φ0

φ0

φ0

φ1

φ0

φ2

φ0

φ0

Figure 2.3: The gadget expressing φ = (#0)2 (Example 2.3.9).

Let P = 〈V,D, C〉 where V = {x, y, z, u1, u2, u3, v1, v2, v3, v4, v5, v6, v7} and the set
of constraints C is shown in Figure 2.3.

We claim that 〈P , 〈x, y, z〉〉 is a gadget for expressing φ.
If all x, y and z are non-zero, then there is an assignment of the other variables

with values one and two such that the total cost is 0.
If any of x, y, z is zero, then in any minimum-cost assignment either u1 or u2 is

assigned zero, and for the same reason u3 is assigned zero.
If at least two of x, y, z are zero, then in any minimum-cost assignemnt at least

one of the variables v1, v2, v3 is assigned zero, and consequently, at least one of v4, v5

is assigned zero, and hence v6 is assigned 0.
If all x, y and z are zero, then both v2 and v3 are assigned zero, and consequently,

v7 is assigned zero.
Note that a similar gadget can be constructed for bigger domains.

Two more examples can be found in Chapter 1 (Example 1.10 and 1.9).

2.4 Algebraic properties

In this section, we describe some algebraic techniques that have been developed for
valued constraints and show how they can be used to investigate expressibility.

Note that adding a finite constant to any cost function does not alter the relative
costs.

Definition 2.4.1 (Expressive Power). For any valued constraint language Γ with
costs in R, we define the expressive power of Γ, denoted 〈Γ〉, to be the set of all cost
functions φ such that φ+ c is expressible over Γ for some finite constant c ∈ R.

A number of algebraic techniques to determine the expressive power of a given
valued constraint language have been developed in the literature. To make use of
these techniques, we first need to define some key terms.

CHAPTER 2. BACKGROUND 26

The i-th component of a tuple t will be denoted by t[i]. Note that any oper-
ation on a set D can be extended to tuples over the set D in a standard way, as
follows. For any function f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dm,
define f(t1, . . . , tk) ∈ Dm to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.
For instance, f(〈u1, . . . , uk〉, 〈v1, . . . , vk〉) = 〈f(u1, v1), . . . , f(uk, vk)〉.

Definition 2.4.2 (Polymorphism [DW02]). Let R be an m-ary relation over a finite
set D and let f be a k-ary operation on D. Then f is a polymorphism of R if
f(t1, . . . , tk) ∈ R for all choices of t1, . . . , tk ∈ R.

Notation 2.4.3. We denote by πi : Dk → D the projection operation which returns
its i-th argument, that is, πi(x1, . . . , xn) = xi.

Observation 2.4.4. It is easy to observe that any projection πi is a polymorphism
of all relations.

A valued constraint language Γ which contains only crisp cost functions (= rela-
tions) will be called a crisp constraint language. We will say that f is a polymorphism
of a crisp constraint language Γ if f is a polymorphism of every relation in Γ.

Notation 2.4.5. The set of all polymorphisms of Γ will be denoted Pol(Γ).

It follows from the results of Geiger and Bodnarčuk et al. that the expressive
power of a crisp constraint language is fully characterised by its polymorphisms:

Theorem 2.4.6 ([Gei68, BKKR69, Jea98]). For any crisp constraint language Γ over
a finite set

R ∈ 〈Γ〉 ⇔ Pol(Γ) ⊆ Pol({R}).

Hence, a relation R is expressible over a crisp constraint language Γ if, and only if,
it has all the polymorphisms of Γ. See [JCG97] for more on the connection between
crisp constraint languages on the one hand, and universal algebra on the other hand.
We will discuss this in more depth in Chapter 3.

Remark 2.4.7. It is known that crisp constraint languages which have only triv-
ial polymorphisms are NP-hard [BKJ05], where trivial means projections and semi-
projections. (Note that this is a powerful technique to show NP-hardness results as
one does not need to build a reduction from some known NP-hard problem.) The fa-
mous Dichotomy Conjecture, mentioned in Remark 2.2.13, can be equivalently stated
as follows: if a crisp constraint language Γ has a non-trivial polymorphism, then
CSP(Γ) is polynomial-time solvable. In fact, there is only one remaining type of
polymorphism for which we currently do not know whether it leads to polynomial
or NP-hard problems, and those are Taylor polymorphisms [HN08]. Answering this
question would resolve the Dichotomy Conjecture. Maróti and McKenzie have shown
that Taylor polymorphism are equivalent, with respect to the question of tractability,
to so-called weak near-unanimity polymorphisms [MM08].

We can extend the idea of polymorphisms to arbitrary valued constraint languages
by considering the corresponding feasibility relations:

CHAPTER 2. BACKGROUND 27

Definition 2.4.8 (Feasibility Polymorphism [CCJ06]). The feasibility polymorphisms
of a valued constraint language Γ are the polymorphisms of the corresponding crisp
feasibility cost functions, that is,

FPol(Γ)
def
= Pol({Feas(φ) | φ ∈ Γ}).

However, to fully capture the expressive power of valued constraint languages it
is necessary to consider more general algebraic properties, such as the following:

t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′n = fn(t1, . . . , tk)

t1[1] t1[2] . . . t1[m]
t2[1] t2[2] . . . t2[m]

...
tk[1] tk[2] . . . tk[m]

t′1[1] t′1[2] . . . t′1[m]
t′2[1] t′2[2] . . . t′2[m]

...
t′n[1] t′n[2] . . . t′n[m]

φ−→

φ(t1)
φ(t2)

...
φ(tk)

k∑
i=1

φ(ti)

≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′n)

n∑
i=1

riφ(t′i)

Figure 2.4: Definition of a fractional polymorphism F = {〈r1, f1〉, . . . , 〈rn, fn〉}.

Definition 2.4.9 (Weighted Mapping [CCJ06]). A k-ary weighted mapping F on a
set D is a set of the form {〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a positive rational
number such that

∑n
i=1 ri = k and each fi is a distinct function from Dk to D.

Definition 2.4.10 (Fractional Polymorphism [CCJ06]). For any m-ary cost function
φ, we say that a k-ary weighted mapping F is a k-ary fractional polymorphism of φ
if, for all t1, . . . , tk ∈ Dm,

k∑
i=1

φ(ti) ≥
n∑
i=1

riφ(fi(t1, . . . , tk)). (2.1)

See Figure 2.4 for an illustration of Definition 2.4.10. (We call such a table a
tableau.)

Definition 2.4.11 (Multimorphism [CCJK06]). A k-ary weighted fractional poly-
morphism whose weights are all natural numbers is called a multimorphism.

See Figure 2.5 for an illustration of Definition 2.4.11.

Remark 2.4.12. Given a multimorphism F = 〈〈r1, f1〉, . . . , 〈rn, fn〉〉, where each ri
is a natural number, the sum

∑n
i=1 ri is equal to k, and each fi is a function from Dk

to D, F can be seen as a mapping from Dk to Dk.

CHAPTER 2. BACKGROUND 28

t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′k = fn(t1, . . . , tk)

t1[1] t1[2] . . . t1[m]
t2[1] t2[2] . . . t2[m]

...
tk[1] tk[2] . . . tk[m]

t′1[1] t′1[2] . . . t′1[m]
t′2[1] t′2[2] . . . t′2[m]

...
t′k[1] t′k[2] . . . t′k[m]

φ−→

φ(t1)
φ(t2)

...
φ(tk)

k∑
i=1

φ(ti)

≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′k)

k∑
i=1

φ(t′i)

Figure 2.5: Definition of a multimorphism F = 〈f1, . . . , fk〉.

Remark 2.4.13. A cost function φ : Dm → R has a multimorphism F if φ satisfies a
set of linear inequalities. Hence from the geometrical point of view, for each possible
fixed arity m, F corresponds to a hyperplane in a space of dimension |D|m [Sch86].

Remark 2.4.14. An equivalent definition of a fractional polymorphism is given
in [CCJ06]: all weights have to be natural numbers; however, there is no restric-
tion on the sum of all weights. Such a fractional polymorphism is a multimorphism
if the sum of all weights is equal to k.

Notation 2.4.15. For any set of cost functions Γ, we denote by fPol(Γ) the set of all
F such that F is a fractional polymorphism of every cost function in Γ. Similarly,
Mul(Γ) denotes the set of multimorphisms of all cost functions from Γ.

Observation 2.4.16. It is a simple consequence of the definitions that if F =
{〈r1, f1〉, . . . , 〈rn, fn〉} is a fractional polymorphism of φ, then {fi}1≤i≤n are feasibility
polymorphisms of φ. On the other hand, if {fi}1≤i≤k are feasibility polymorphisms
of φ, then 〈f1, . . . , fk〉 is not necessarily a multimorphism, and therefore not neces-
sarily a fractional polymorphism, of φ. However, in the case of crisp cost functions
the relationship is tighter. If {fi}1≤i≤n are feasibility polymorphisms of a relation
R, then any weighted mapping {〈r1, f1〉, . . . , 〈rn, fn〉} is a fractional polymorphism of
the corresponding crisp cost function φR.

Observation 2.4.17 ([CCJK06]). If Γ is a tractable valued constraint language, then
the set of relations {Feas(φ) | φ ∈ Γ} must be a tractable crisp constraint language.

Observation 2.4.18. A multi-projection is a mapping from Dk to Dk that only
permutes the set of its arguments. It follows from Definition 2.4.11 that every multi-
projection is a multimorphism of all cost functions.

It has been shown in [CCJ06] that the feasibility polymorphisms and fractional
polymorphisms of a valued constraint language effectively determine its expressive
power. One consequence of this result is the following theorem:

CHAPTER 2. BACKGROUND 29

Theorem 2.4.19 ([CCJ06]). If Γ is a valued constraint language with costs in R, Γ
contains a constant function and is closed under scaling and the feasibility operator,5

then

φ ∈ 〈Γ〉 ⇔ FPol(Γ) ⊆ FPol({φ}) ∧ fPol(Γ) ⊆ fPol({φ}).

Proof. This theorem is established in [CCJ06] for cost functions taking positive ratio-
nal values, but the proofs are easily extended to cost functions taking arbitrary real
values. A slightly weaker notion of expressibility is also used in [CCJ06], which does
not allow arbitrary scaling, but again the proof is easily extended.

Corollary 2.4.20. For all suitable valued constraint languages Γ, a cost function
φ is expressible over Γ if, and only if, it has all the feasibility polymorphisms and
fractional polymorphisms of Γ.

We will provide more details on Theorem 2.4.19 in Chapter 3. The next result
shows that adding cost functions which are expressible over a given valued constraint
language to the language does not change the complexity of the language.

Theorem 2.4.21 ([CCJ06]). A valued constraint language Γ is tractable if, and only
if, 〈Γ ∪ Feas(Γ)〉 is tractable.

We finish this section with a simple example of the algebraic technique. We have
shown in Example 2.3.7 that the disequality relation can express the equality relation.
We now investigate the converse question.

Example 2.4.22. Consider a constraint language Γ = {=d} over D, |D| = d, which
consists of the binary equality relation =d from Example 2.3.7. Consider k arbitrary
2-tuples t1, . . . , tk over D and an arbitrary function f : Dk → D. If ti ∈ {=d} for every
i = 1, . . . , k, then f(t1[1], . . . , tk[1]) = f(t1[2], . . . , tk[2]) and therefore f(t1, . . . , tk) ∈
{=d}. It follows that every function is a polymorphism of =d. Obviously, not every
function is a polymorphism of 6=d: a simple counterexample is a constant function.
We have shown that Pol({=d}) 6⊆ Pol({6=d}) and therefore 6=d is not expressible over
{=d} by Theorem 2.4.6. This is almost obvious, but this simple example illustrates
the use of the algebraic approach.

2.5 Submodularity

In this section, we define submodular functions, and the submodular function min-
imisation problem.

For any finite set V , a real-valued function f defined on subsets of V is called a
set function.

Definition 2.5.1. A set function f : 2V → R is called submodular if for all S, T ⊆ V ,

f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T).

5That is, for every φ ∈ Γ and every c ∈ R+, cφ ∈ Γ and Feas(φ) ∈ Γ.

CHAPTER 2. BACKGROUND 30

Remark 2.5.2. An equivalent definition of submodularity is the property of decreas-
ing marginal values: for any A ⊆ B ⊆ V and x ∈ V \ B, f(B ∪ {x}) − f(B) ≤
f(A ∪ {x}) − f(A). This can be deduced from the first definition by substituting
S = A ∪ {x} and T = B; the reverse implication also holds [Sch03].

Submodular functions are a key concept in operational research and combinatorial
optimisation [NW88, Nar97, Top98, Sch03, Fuj05, KV07b, Iwa08]. Examples include
cuts in graphs [GW95, Que98], matroid rank functions [Edm70], set covering prob-
lems [Fei98] and entropy functions. Submodular functions are often considered to be
a discrete analogue of convex functions [Lov83].

Both minimising and maximising submodular functions, possibly under some ad-
ditional conditions, have been considered extensively in the literature. Most scenarios
use the so-called oracle value model : for any set S, an algorithm can query an oracle
to find the value of f(S).

Submodular function maximisation is easily shown to be NP-hard [Sch03] since
it generalises many standard NP-hard problems such as the Max-Cut problem, see
also [FMV07]. In contrast, the Submodular Function Minimisation problem,
SFM, which consists in minimising a submodular function, can be solved efficiently
with only polynomially many oracle calls.

Notation 2.5.3. Let B be an algorithm for the minimisation problem of f in the
oracle value model. B is called polynomial if it runs in polynomial time. A polynomial
algorithm B is called strongly polynomial if the running time does not depend on
M = max f . In other words, the number of elementary arithmetic operations and
other operations is bounded by a polynomial in the size of the input. A polynomial
algorithm B which does depend on M is called weakly polynomial . A polynomial
algorithm B is called combinatorial if it does not employ the ellipsoid method. Finally,
a combinatorial algorithm B is called fully combinatorial if it uses only oracle calls,
additions, subtractions and comparisons, but not multiplications and divisions, as
fundamental operations.

The first polynomial algorithm for the SFM problem is due to Grötschel, Lovász
and Schrijver [GLS81]. A strongly polynomial algorithm has been described in [GLS88].
These algorithms employ the ellipsoid method.

Based on the work of Cunningham [Cun84, Cun85], several combinatorial algo-
rithms have been obtained in the last decade [Sch00, IFF01, Iwa02, Iwa03, FI03,
Orl09, IO09]. The first fully combinatorial algorithm for the SFM has been de-
scribed in [Iwa02], improved in [Iwa03], and recently improved again (without using
the scaling method) in [IO09].

The time complexity of the fastest known general strongly polynomial algorithm
for the SFM is O(n6 + n5L), where n is the number of variables and L is the time
required to evaluate the function [Orl09].

Remark 2.5.4. The minimisation of submodular functions on sets is equivalent to
the minimisation of submodular functions on distributive lattices [Sch03]. Krokhin
and Larose have also studied the more general problem of minimising submodular
functions on non-distributive lattices [KL08].

CHAPTER 2. BACKGROUND 31

An important and well-studied sub-problem of SFM is the minimisation of sub-
modular functions of bounded arity (SFMb), also known as locally-defined submodu-
lar functions [Coo08b], or submodular functions with succinct representation [FMV07].
In this scenario the submodular function to be minimised is defined as the sum of
a collection of functions which each depend only on a bounded number of variables.
Locally defined optimisation problems of this kind occur in a wide variety of contexts:

• In the context of Pseudo-Boolean Optimisation, such problems involve the
minimisation of Boolean polynomials of bounded degree [BH02, CH].

• In the context of computer vision, such problems are often formulated as Gibbs
Energy Minimisation problems [GG84] or Markov Random Fields (also
known as Conditional Random Fields) [Lau96, WJ08].

We now define the concept of submodularity for valued constraints.
Recall that L is a lattice if L is a partially ordered set in which every pair of

elements has a unique supremum and a unique infimum. For a finite lattice L and a
pair of elements (a, b), we will denote the unique supremum of a and b by Max(a, b)
(or a ∨ b), and the unique infimum of a and b by Min(a, b) (or a ∧ b).

Definition 2.5.5 (Submodularity). Let D be a finite lattice-ordered set. A cost
function φ : Dm → R is submodular if 〈Min,Max〉 ∈ Mul({φ}), that is, for all
m-tuples u, v,

φ(Min(u, v)) + φ(Max(u, v)) ≤ φ(u) + φ(v). (2.2)

Note that the SFMb is equivalent to the VCSP with Boolean submodular valued
constraints.

Remark 2.5.6. The class of valued constraints with submodular cost functions is
the only non-trivial tractable class of optimisation problems in the dichotomy classi-
fication of Boolean VCSPs [CCJK06], and the only tractable class in the dichotomy
classification of Max-CSPs for both 3-element domains [JKK06] and arbitrary finite
domains allowing constant constraints [DJKK08] (and hence also for conservative
Max-CSPs).

Remark 2.5.7. In all known dichotomy results for the Digraph Min-Cost Ho-
momorphism problem, as listed in Example 2.2.28, the tractable cases admit either
a min-max or a k-min-max ordering. A relation R admits a min-max ordering if,
and only if, R is submodular. The concept of k-min-max ordering is a simple cyclic
extension of submodularity which is well known to be tractable [GC08].

Cohen et al. have shown that VCSP instances with submodular constraints over
an arbitrary finite domain can be reduced to the SFM [CCJK06], and hence can
be solved in polynomial time. This tractability result has since been generalised to a
wider class6 of valued constraints over arbitrary finite domains known as tournament-
pair valued constraints [CCJ08]

6The class of cost functions closed under a tournament-pair multimorphism is more general
than the class of submodular cost functions if the range of the cost functions includes infinite
costs [Coo08a].

CHAPTER 2. BACKGROUND 32

An alternative approach to solving VCSP instances with submodular constraints,
based on linear programming, can be found in [Coo08b].

2.6 Summary

We have introduced the VCSP framework and have given a long list of studied
problems which can be easily described in this framework. We have also introduced
the concept of expressibility and the related notion of algebraic properties of valued
constraints. Chapter 3 deals with the expressive power of valued constraints in more
depth. Finally, we have defined submodular functions and their basic properties.

Related work The area of constraint satisfaction has been very active in the last
decade and there have been numerous extensions to the CSP framework. We refer
the reader to standard textbooks [CKS01, Dec03, Apt03, RvBW06].

Let us mention at least two extensions which have been considered extensively in
the literature.

The first extension deals with CSPs over infinite domains. Complexity classi-
fications have been obtained for subsets of Allen’s interval algebra [NB95, KJJ03],
equality constraint languages [BK08a] and temporal CSPs [BK08b]. See also [BG08]
and a nice recent survey by Bodirsky [Bod08].

The second extension deals with quantified CSPs. Creignou et al. have studied
quantified CSPs over Boolean domains [CKS01]. More work on quantified CSPs
was initiated by [BBJK03] and Chen’s thesis [Che04], see also [Che08a] for an im-
proved exposition of the collapsibility technique. A complexity classification has
been obtained for quantified equality constraint languages [BC07] and relatively quan-
tified CSPs [FK06, BC09] (that is, quantified CSPs with all unary constraints;
in the case of non-quantified CSPs, these are known as conservative CSPs). See
also [Che08b, Che09] for recent results in this area.

CHAPTER 3

Expressive Power of Valued Constraints

Never had any mathematical conversations with anybody,
because there was nobody else in my field.

Alonzo Church (1903–1995)

This chapter briefly discusses a recent result of Cohen, Cooper and Jeavons [CCJ06],
and describes extensions of this result obtained by the author in collaboration with
Dave Cohen, Martin Cooper and Pete Jeavons.

[CCJŽ09] D.A. Cohen, M.C. Cooper, P.G. Jeavons, and S. Živný. An Alge-
braic Characterisation of Complexity for Valued Constraint.
(Ongoing work.)
Earlier version of the first three authors in Proceedings of the 12th
International Conference on Principles and Practice of Contraint
Programming (CP’06), volume 4204 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2006.

3.1 Introduction

It has been known for some time that the expressive power of crisp constraints is
determined by certain algebraic operations called polymorphisms. Moreover, there
is a Galois connection between the set of crisp constraints and the set of operations.
This connection has been successfully used in the complexity analysis of crisp con-
straints [BKJ05].

In this chapter, we discuss the expressive power of valued constraints. We present
a known characterisation of the expressive power of valued constraints by certain alge-
braic operations called fractional polymorphisms. We conjecture that more restrictive
algebraic operations called multimorphisms determine the tractability of valued con-
straints, and also show that multimorphisms are not strong enough to characterise the

33

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 34

expressive power of valued constraints. We present results on the so-called fractional
clone theory, and show connections to linear programming. We show a dual result to
the results in [CCJ06]: determining whether a given fractional polymorphism belongs
to a fractional clone is decidable.

This chapter is organised as follows. In Section 3.2, we present what is known
about the expressive power of crisp constraints, and describe the concept of the in-
dicator problem. In Section 3.3, we show that the question of whether a given cost
function is expressible over a finite valued constraint language is decidable. In Sec-
tion 3.4, we present some results from fractional clone theory and show some connec-
tions to linear programming. In Section 3.5, we discuss the expressibility of valued
constraints versus the tractability of valued constraints. Finally, in Section 3.6, we
conclude with related work and open questions.

3.2 Indicator problem

In this section, we discuss the well-known result that the expressive power of crisp
constraints is characterised by certain algebraic operations called polymorphisms. We
present the construction of an indicator problem, which is a universal construction for
determining whether a given relation is expressible over a crisp constraint language,
and also for determining all polymorphisms of a crisp constraint language. Finally,
we show that there is a Galois connection between the set of relations and the set of
operations.

Recall Theorem 2.4.6 which states that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms [Gei68, BKKR69, Jea98]. In
other words, for a relation R and a crisp constraint language Γ, the following holds:

R ∈ 〈Γ〉 ⇔ Pol(Γ) ⊆ Pol({R}).

Remark 3.2.1. The “⇒” implication follows easily from the fact that expressibility
preserves polymorphisms.

This result was obtained by showing that, for any crisp language (that is, set of
relations), there is a universal construction which can be used to determine whether
a relation is expressible in that language, as we now demonstrate.

Definition 3.2.2 (Indicator Problem). Let Γ be a crisp constraint language over D.
For any natural number n, we define the indicator problem for Γ of order n as the
CSP instance IP(Γ, n) with set of variables Dn, each with domain D, and constraints
{Ci}1≤i≤q, where q =

∑
R∈Γ |R|n. For each R ∈ Γ, and for each sequence t1, t2, . . . , tn

of tuples from R, there is a constraint Ci = 〈si, R〉 with si = 〈v1, v2, . . . , vm〉, where
m is the arity of R, and vj = 〈t1[j], t2[j], . . . , tn[j]〉, 1 ≤ j ≤ m.

Note that, for any crisp constraint language Γ over D, IP(Γ, n) has |D|n variables,
and each corresponds to an n-tuple over D. A concrete example of an indicator
problem is given below, and more examples can be found in [JCG96, JCG99].

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 35

Observation 3.2.3. It is not hard to see from Definition 3.2.2 and Definition 2.4.2
that the solutions to IP(Γ, n) are the polymorphisms of Γ of arity n [JCG97].

Combining Observation 3.2.3 with Theorem 2.4.6 gives:

Corollary 3.2.4. Let Γ be a crisp constraint language over D. Furthermore, let
R = {t1, t2, . . . , tn} be a relation over D of arity m. Then R is expressible over Γ,
R ∈ 〈Γ〉, if, and only if, R is equal to the solutions to IP(Γ, n) restricted to the
variables v1, v2, . . . , vm, where vj = 〈t1[j], t2[j], . . . , tn[j]〉, 1 ≤ j ≤ m.

Note that the choice of variables v1, v2, . . . , vm might not be unique as different
orderings of the tuples of R can result in different lists. We sketch the proof of
Corollary 3.2.4 since it contains the idea behind the proof of Theorem 2.4.6.

Proof sketch. From Definition 3.2.2, if R is equal to the solutions to IP(Γ, n) re-
stricted to some subset of variables, then R is expressible over Γ. On the other hand,
assume that R ∈ 〈Γ〉, and denote by R̄ the set of solutions to IP(Γ, n) restricted to
the variables v1, v2, . . . , vm. It is enough to show that R = R̄. By Observation 2.4.4,
all projections are polymorphisms of all relations. Hence, by Observation 3.2.3, all
projections of arity n are solutions of IP(Γ, n). Therefore, R ⊆ R̄ from the choice
of variables v1, v2, . . . , vm. If R 6= R̄, then there must be a solution s to IP(Γ, n)
whose restriction to v1, v2, . . . , vm is not contained in R. By Observation 3.2.3, all
solutions to IP(Γ, n) are polymorphisms of Γ, and so is s. But by Remark 3.2.1, the
polymorphism s should be a polymorphism of R which is a contradiction provided
R 6= R̄.

Remark 3.2.5. Richard Gault implemented a solver called Polyanna1 for the in-
dicator problem [GJ04]. An interesting research problem is to investigate various
symmetries in the indicator problem and try to make use of them in order to solve
instances of the indicator problem more efficiently.

Example 3.2.6. Let Γ = {P,Q} be a constraint language over D = {0, 1}, where
P = {〈0, 1〉, 〈1, 0〉} and Q = {〈0〉}. Given the relation R = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}, the
task is to determine whether R is expressible over Γ.

Since R consists of three tuples, we construct the indicator problem IP(Γ, 3) of
order 3. The variables of IP(Γ, 3) are all 3-tuples over D. There are 8 3-tuples over
D, and we denote them by v0 to v7 (see Figure 3.1). Since the relation P is binary,
any two variables vi and vj, which represent the tuples 〈vi1, vi2, vi3〉 and 〈vj1, vj2, vj3〉,
respectively, are constrained by P if, and only if, all three tuples 〈vi1, vj1〉, 〈vi2, vj2〉,
and 〈vi3, vj3〉 belong to P . In our case the following pairs of variables are constrained
by P : 〈v0, v7〉, 〈v1, v6〉, 〈v2, v5〉, and 〈v3, v4〉. The relation Q is unary and consists of
just one tuple 〈0〉. Therefore, only the variable v0, which represents the tuple 〈0, 0, 0〉,
is constrained by Q. The construction is illustrated in Figure 3.1.

Now consider the tuples represented by the variables v2 and v3. These are 〈0, 1, 0〉
and 〈0, 1, 1〉, respectively. If you take these two tuples as columns of a matrix, then

1Available at: http://www.comlab.ox.ac.uk/activities/constraints/software/index.html

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 36

the rows of this matrix contain precisely the tuples from R, that is, 〈0, 0〉, 〈0, 1〉, and
〈1, 1〉. However, projecting the solutions to IP(Γ, 3) onto variables v2 and v3 does not
give R, as the tuple 〈1, 0〉 does not belong to R. (Some of the solutions to IP(Γ, 3)
are shown in Figure 3.1.) Hence R is not expressible over Γ. (Note that we could also
obtain the same result by choosing, for instance, variables v4 and v6.)

v0 v1 v2 v3 v4 v5 v6 v7v2 v3

0
0
0

1
0
0

0
1
0

1
1
0

0
0
1

1
0
1

0
1
1

1
1
1

P

Q

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
.
.

Figure 3.1: IP(Γ, 3) (Example 3.2.6).

Recall from Notation 2.4.5 that, for a crisp constraint language Γ, we denote by
Pol(Γ) the set of all polymorphisms of Γ, that is,

Pol(Γ) = {f | ∀R ∈ Γ, f is a polymorphism of R}.

In this section, we shall use the word operation for any mapping from Dk to D.

Notation 3.2.7. For a set of operations O, we use Inv(O) to denote the set of relations
having all operations in O as a polymorphism, that is,

Inv(Γ) = {R | ∀f ∈ O, f is a polymorphism of R}.

Observation 3.2.8. The result of Theorem 2.4.6 can be equivalently stated as fol-
lows: for any crisp constraint language Γ, it holds that 〈Γ〉 = Inv(Pol(Γ)).

Definition 3.2.9 (Galois connection [DW02]). A Galois connection between two
sets A and B is a pair 〈F,G〉 of mappings between the power sets P(A) and P(B),
F : P(A) → P(B) and G : P(B) → P(B), such that for all X,X ′ ⊆ A and all
Y, Y ′ ⊆ B the following conditions are satisfied: X ⊆ X ′ ⇒ F (X) ⊇ F (X ′), and
Y ⊆ Y ′ ⇒ G(Y) ⊇ G(Y ′); X ⊆ G(F (X)), and Y ⊆ F (G(Y)).

Notation 3.2.10. For any finite domain D, we denote by RD the set of all relations
over D, and we denote by OD the set of all operations over D.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 37

The following easy result shows that the Pol(·) and Inv(·) operators give rise to an
instance of a Galois connection between RD and OD for any finite domain D.

Proposition 3.2.11 ([PK79]). If Γ is a set of relations over D and O is a set of
operations over D, then

1. O1 ⊆ O2 ⊆ OD ⇒ Inv(O1) ⊇ Inv(O2).

2. Γ1 ⊆ Γ2 ⊆ RD ⇒ Pol(Γ1) ⊇ Pol(Γ2).

3. Γ ⊆ Inv(Pol(Γ)).

4. O ⊆ Pol(Inv(O)).

Recall that for a crisp constraint language Γ ⊆ RD, we denote by 〈Γ〉 the set
of relations which are expressible over Γ. The set 〈Γ〉 is also known as a relational
clone [PK79]. For a set of operations O ⊆ OD, we denote by 〈O〉 the set of operations
from O closed under composition and containing all projections. The set 〈O〉 is known
as a clone of operations, or just a clone [PK79].

Corollary 3.2.12 (of Theorem 2.4.6). For any two crisp constraint languages Γ1 and
Γ2, and any two sets of operations O1 and O2,

1. 〈Γ1〉 = 〈Γ2〉 ⇔ Pol(Γ1) = Pol(Γ2).

2. 〈O1〉 = 〈O2〉 ⇔ Inv(O1) = Inv(O2).

The situation is summarised in Figure 3.2.

Remark 3.2.13. Post completely described the lattice of relational clones and clones
over a two-element domain [Pos41]. This description has been heavily used recently to
obtain dichotomy complexity classifications for various problems in computer science
and artificial intelligence that can be modelled over Boolean domains. For more
details, see [BCRV03, BCRV04].

More on clone theory can be found in [PK79, DW02].

3.3 Weighted indicator problem

In this section, we show that for valued constraints there is also a universal con-
struction to determine whether a given cost function is expressible over a valued con-
straint language. We briefly describe the result that the expressive power of valued
constraints is determined by certain algebraic operations called fractional polymor-
phisms.

Consider the following problem: given a cost function φ of arity m over a domain
D, is φ expressible over a valued constraint language Γ? We show that this problem
is decidable for every finite Γ. First we prove an upper bound on the number of extra
variables needed to express φ over Γ.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 38

RD

∅

OD

∅

Sets of
relations

Sets of
operations

Γ

Pol(Γ)

Inv(Pol(Γ))
= 〈Γ〉

Pol

Inv

RD

∅

OD

∅

Sets of
relations

Sets of
operations

O

Inv(O)

Pol(Inv(O))
= 〈O〉Pol

Inv

Figure 3.2: Galois connection between RD and OD.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 39

Proposition 3.3.1 ([CCJ06]). If a cost function φ : Dm → R is expressible over Γ,
then φ is expressible over Γ using at most |D||D|m hidden variables.

Proof. If φ ∈ 〈Γ〉, then by Definition 2.3.1, there is a gadget 〈P ,v〉, where v =
〈v1, . . . , vm〉, for expressing φ over Γ. For the gadget 〈P ,v〉 to express φ, it has to
define φ on each of the |D|m different assignments to v. Let each of these |D|m
assignments be extended to a complete assignment to all variables of P (including
hidden variables) in a way that minimises the total cost. For each hidden variable v of
〈P ,v〉, we can use the list of |D|m values assigned to v by these complete assignments
to label the variable v. If there are more than |D||D|m hidden variables, then two
of them will receive the same label. However, this implies that one of the two is
redundant, as all constraints involving that variable can replace it with the other
variable without changing the overall cost. Hence we require at most |D||D|m distinct
hidden variables to express φ.

From this bound on the number of extra variables in a gadget for φ over Γ we
obtain a decidability result. The idea is to try all possible constraints on all possible
subsets of variables, and use linear programming to determine whether there is a
combination of these constraints which works.

Theorem 3.3.2 ([CCJ06]). For a given finite valued constraint language Γ, and a
cost function φ defined over D, the question of whether φ is expressible over Γ is
decidable.

Proof sketch. In order to simplify the presentation, we assume that φ is a finite-valued
cost function. We show how to determine whether there is a gadget for φ over Γ;
that is, whether there is a VCSP(Γ) instance P = 〈V,D, C〉 and a tuple of variables
v such that φ = πv(P). By Proposition 3.3.1, P has at most K = |D||D|m extra
variables, where m is the arity of φ. Let V be the set of K variables, each associated
with a different |D|m-tuple of values from D. Let E be the |D|m ×K matrix whose
columns are all possible |D|m tuples of values from D (or equivalently, variables from
V). Observe that there is a |D|m ×m submatrix E ′ of E consisting of m columns of
E such that the rows of E ′ correspond to all possible m-tuples of values from D. We
let v be the list of variables corresponding to the columns of E ′.

Let A be the set of all assignments of values from D to the variables from V .
Clearly, |A| = |D|K . We choose |D|m assignments from A that correspond to the
rows of the matrix E and denote them A′.

Let ρ ∈ Γ be a cost function of arity k. For an assignment s ∈ A and a list of
variables u of length k, recall from Definition 2.1.7 that we denote by ρ(s(u)) the
value of ρ on the list of variables u assigned by s.

The idea is that if φ is expressible over Γ, then there is a set of constraints C such
that φ = πv(P), where P = 〈V,D, C〉. It remains to show what the set of constraints
C is. And this is where linear programming plays its crucial role.

Let C be the list of all possible constraints from Γ applied on variables from V .
In other words, C = 〈C1, . . . , Cq〉 is an arbitrary but fixed order of the following finite
set:

{〈u, ρ〉 | ρ ∈ Γ of arity k, and u is a list of k variables from V }.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 40

We denote by ui = u and ρi = ρ, where Ci = 〈u, ρ〉. Clearly,

q =
∑

ρ∈Γ of arity k

Kk

We define a system of linear equations and inequalities as follows.
For each s ∈ A \ A′,

q∑
i=1

xiρi(s(ui)) ≥ φ(s(v)) + x0.

For each s ∈ A′,
q∑
i=1

xiρi(s(ui)) = φ(s(v)) + x0.

Note that the variable xi represents whether the constraint Ci is used in the gadget
P : if xi = 0, then the constraint Ci is not used; if xi > 0, then xi gives the multiplicity
of the constraint Ci. The variable x0 represents an additive constant up to which the
gadget expresses φ.

From the construction of the system, φ is expressible over Γ if, and only if, there
is a non-negative solution to this system. But this question is decidable [Sch86], see
also [AK04].

Remark 3.3.3. Theorem 3.3.2 can be extended from finite-valued cost functions to
general cost functions [CCJ06]. The construction sketched above is known as the
weighted indicator problem.

Example 3.3.4. Let Γ = {µ, ψ} be the valued constraint language consisting of two
cost functions defined over the Boolean domain D = {0, 1} as follows:

µ(x)
def
=

{
0 if x = 0,

1 if x = 1,

and

ψ(x, y)
def
=

{
−1 if x = y = 1,

0 otherwise.

Let φ be the ternary cost function defined as follows:

φ(x, y, z)
def
=

{
−1 if x = y = z = 1,

0 otherwise.

The question is whether φ is expressible over Γ, that is, whether φ ∈ 〈Γ〉. In order
to answer this question, we build an instance of the weighted indicator problem as
described in the sketched proof of Theorem 3.3.2. The arity m of φ is 3, and hence if φ
is expressible over Γ, then φ is expressible with at most K = |D||D|m = 223

= 28 = 256

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 41

variables, by Proposition 3.3.1. Each variable is uniquely identified by an 8-tuple of
values from {0, 1}. We denote by V the set of all such variables with the domain
{0, 1}.

We denote by v = 〈v1, v2, v3〉 the list of 3 variables, whose corresponding 8-tuples
are t1 = 〈0, 0, 0, 0, 1, 1, 1, 1〉, t2 = 〈0, 0, 1, 1, 0, 0, 1, 1〉, and t3 = 〈0, 1, 0, 1, 0, 1, 0, 1〉
respectively. Consider the matrix whose columns are tuples t1, t2, and t3. The rows
of this matrix are all possible 3-tuples over {0, 1}. The intuition is that we try to
find a gadget P for φ over Γ which expresses φ on the variables v1, v2, and v3, that
is, φ = π〈v1,v2,v3〉(P).

Let E be an 8×256 matrix whose columns are the tuples corresponding to variables
from V in some fixed order.

We denote by A′ the set of 8 assignments of variables from V which are defined
by the rows of the matrix E. The intuition is that for every possible assignment s of
the variables v1, v2, and v3, we are looking for an assignment s′ in A′ which agrees
with s (on v1, v2 and v3), and the cost of s′ is equal to φ(v1, v2, v3) (up to an additive
constant). We denote by A all assignments of variables from V . Clearly, |A| = 2256.

Now we want to add all possible constraints involving cost functions from Γ. The
unary cost function µ can be applied to any of the 256 variables. The binary cost
function ψ can be applied to any pair of (not necessarily distinct) variables. Since ψ
is symmetric, this gives

(
256
2

)
+256 constraints. In total, we get 2∗256+

(
256
2

)
= 33152

constraints. Hence we have 33152 variables xi which represent whether or not the
i-th constraint is used (xi > 0) or not (xi = 0); in the former case, the value of xi
represents the multiplicity of the i-th constraint. We then can build a system of linear
equations and inequalities as described in the sketch of the proof of Theorem 3.3.2.

In this particular case, it is not difficult to find a solution to the system of linear
equations and inequalities described above. Let y be the variable corresponding to
the 8-tuple 〈0, 0, 0, 0, 0, 0, 0, 1〉. We claim that assigning the value 2 to the constraint
〈〈y〉, µ〉 (represented by a variable in our system), assigning the value 1 to the con-
straints 〈〈y, x1〉, ψ〉, 〈〈y, x2〉, ψ〉, and 〈〈y, x3〉, ψ〉, and finally assigning the value 0 to
the additive constant x0 = 0 and all other variables is a solution to our system. For
any assignment of the variables v1, v2 and v3, setting y to 0 results in total cost 0.
If all v1, v2 and v3 are assigned 1, setting y to 1 results in total cost -1. For any
other assignment of v1, v2 and v3, setting y to 1 results in total cost ≥ 0. This corre-
sponds exactly to the definition of the cost function φ. This solution gives a gadget
for expressing φ over Γ using only one extra variable.

Recall Theorem 2.4.19, which states that the expressive power of a valued con-
straint language satisfying certain conditions is fully characterised by its feasibility
polymorphisms and fractional polymorphisms [CCJ06]. In other words, for a cost
function φ and a valued constraint language Γ, such that Γ contains a constant func-
tion and is closed under scaling and the feasibility operator, the following holds:

φ ∈ 〈Γ〉 ⇔ FPol(Γ) ⊆ FPol({φ}) ∧ fPol(Γ) ⊆ fPol({φ}).

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 42

Remark 3.3.5. The “⇒” implication follows easily from the fact that expressibil-
ity preserves feasibility polymorphisms and fractional polymorphisms [CCJ06], see
also [CCJK06].

Remark 3.3.6. We remark on the assumptions of Theorem 2.4.19. Notice that it
is not a restrictive assumption that every valued constraint language Γ contains a
constant function and is closed under scaling. In practice, this corresponds to adding
a finite constant which does not alter the relative costs, and to taking more copies
of the same constraint. Therefore, this does not change the complexity of solving
VCSP instances over Γ.

We now discuss why it is necessary to assume that Γ is closed under the feasibility
operator in order to prove equivalence in Theorem 2.4.19. Recall from Notation 2.1.6
that, for a valued constraint language Γ, Feas(Γ) is the set of cost functions where
finite costs are replaced by zero. If F is a fractional polymorphism of Γ, then F is
also a fractional polymorphism of Feas(Γ). And clearly, any feasibility polymorphism
of Feas(Γ) is a feasibility polymorphism of Γ. Hence for any valued constraint lan-
guage Γ, FPol(Γ) ⊆ FPol(Feas(Γ)) and fPol(Γ) ⊆ fPol(Feas(Γ)). But this is true for
any Γ independently of whether or not Feas(Γ) ∈ 〈Γ〉, so every valued constraint lan-
guage Γ satisfies the right hand side of the equivalence in Theorem 2.4.19 for Feas(Γ)
(that is, FPol(Γ) ⊆ FPol(Feas(Γ)) and fPol(Γ) ⊆ fPol(Feas(Γ))), but not every valued
constraint language Γ satisfies Feas(Γ) ∈ 〈Γ〉.

Fractional polymorphisms on their own characterise the expressive power of finite-
valued cost functions and, as shown in Theorem 2.4.6, feasibility polymorphisms on
their own characterise the expressive power of crisp cost functions which take only
zero and infinite costs.

The proof of Theorem 2.4.19 given in [CCJ06] is based on an application of Farkas’
Lemma [Sch86] and uses the concept of the weighted indicator problem. For a given
φ and Γ, as sketched above, a system of linear equations and inequalities is built such
that this system has a solution if, and only if, φ is expressible over Γ. If this system
does not have a solution, then Farkas’ Lemma guarantees a certificate of unsolvability.
Cohen et al. have shown that the certificate of unsolvability can be turned into a
fractional polymorphism F such that F ∈ fPol(Γ), but F 6∈ fPol({φ}) [CCJ06].

3.4 Fractional clone theory

In this section, we discuss the so-called fractional clone theory. The goal is to provide
a theory of algebraic operations which satisfy certain closure properties and which are
related to the set of cost functions via a Galois connection. Similar theory has played
a crucial role in the complexity analysis of crisp constraints, and we believe that such
a theory will play a similar role in the complexity analysis of valued constraints.

In this section, we will deal primarily with finite-valued cost functions so that we
can restrict our attention to fractional polymorphisms as operations. We will mention
an extension to general cost functions at the end of this section.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 43

3.4.1 Fractional polymorphisms

Recall from Notation 2.4.15 that, for a valued constraint language Γ, we denote by
fPol(Γ) the set of all fractional polymorphisms of Γ, that is,

fPol(Γ) = {f | ∀φ ∈ Γ, f is a fractional polymorphism of φ}.

Notation 3.4.1. For a set of weighted mappings O, we use Imp(O) to denote the
set of cost functions that have weighted mappings in O as fractional polymorphisms,
that is,

Imp(O) = {φ | ∀F ∈ O,F is a fractional polymorphism of φ}.

The notation Imp(O) is an abbreviation for “improved by O”: the cost func-
tions for which weighted mappings from O are fractional polymorphisms are precisely
those cost functions whose aggregated value is “improved” (that is, lowered, or left
unchanged) by weighted mappings from O, as described in Figure 2.4.

Notation 3.4.2. For any finite domain D, we denote by FD the set of all finite-valued
cost functions over D, and we denote by Of

D the set of all weighted mappings over
D.

In this section, we shall use the word operation for any weighted mapping (as
defined in Definition 2.4.9).

The following easy result follows immediately from the definitions, and shows that
the fPol(·) and Imp(·) operators give rise to an instance of a Galois connection between
FD and Of

D for any finite domain D.

Proposition 3.4.3. If Γ is a set of cost functions over D and O is a set of operations
over D, then

1. O1 ⊆ O2 ⊆ Of
D ⇒ Imp(O1) ⊇ Imp(O2).

2. Γ1 ⊆ Γ2 ⊆ FD ⇒ fPol(Γ1) ⊇ fPol(Γ2).

3. Γ ⊆ Imp(fPol(Γ)).

4. O ⊆ fPol(Imp(O)).

Recall from Observation 2.4.18 that a multi-projection is a mapping from Dk to
Dk that only permutes the set of its arguments.

Observation 3.4.4. Let D be an arbitrary finite domain, and let Γ ⊆ FD be an
arbitrary set of finite-valued cost functions over D. Then fPol(Γ) contains all multi-
projections. In other words, the set of operations which are fractional polymorphisms
of all finite-valued cost functions is precisely the set of all multi-projections.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 44

FD

∅

Of
D

∅

Sets of
cost functions

Sets of
operations

Γ

fPol(Γ)

Imp(fPol(Γ))
= 〈Γ〉

fPol

Imp

FD

∅

Of
D

∅

Sets of
cost functions

Sets of
operations

O

Imp(O)

fPol(Imp(O))
= [O]fPol

Imp

?

Figure 3.3: Galois connection between FD and Of
D.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 45

In the set of cost functions, we have a closure operator which corresponds to
expressibility. This closure operator with the Galois connection between FD and Of

D

shows, for instance, that for a given valued constraint language Γ the fewer fractional
polymorphisms Γ has, the harder Γ is. In fact, Theorem 2.4.19 can be restated
equivalently as follows:

〈Γ〉 = Imp(fPol(Γ)).

However, we do not know what the natural closure operator is in the set of oper-
ations. (This is described by the question mark on the right side in Figure 3.3.)

Notation 3.4.5. For a set O of operations over a fixed finite domain D, we denote
by [O] the fractional clone generated by O and define [O] = fPol(Imp(O)).

The situation is summarised in Figure 3.3. We do not know how to get from O to
[O]. However, using the Galois connection we show now that the question of whether
a given operation belongs to a particular fractional clone is decidable.

Theorem 3.4.6. For a given operation O and a fractional clone [Ω] generated by a
finite set of operations Ω = {O1, . . . , Oq}, the question of whether O belongs to [Ω] is
decidable.

Proof. Let k be the arity of O; that is, O is a weighted mapping {〈r1, f1〉, . . . , 〈rn, fn〉}
such that each fi is a distinct function from Dk to D, each ri is a positive rational
number and

∑n
i=1 ri = k (see Definition 2.4.10).

Now O 6∈ [Ω] if, and only if, there is a finite-valued cost function φ such that
Oi ∈ fPol({φ}) for every 1 ≤ i ≤ q, but O 6∈ fPol({φ}).

First we show that if there is such a φ (we call it a separating cost function), then
there is one of arity at most m = |D|k. Assume that φ is of arity strictly bigger than
m. As there are exactly m different k-tuples over D, any tableau (recall Figure 2.4)
showing that Oi ∈ fPol({φ}), 1 ≤ i ≤ q, and that O 6∈ fPol({φ}) has at least one
column which occurs twice. However, this column can be removed and the arity of φ
decreased by 1 by identifying the two arguments corresponding to the two columns.
Clearly, if there is a separating cost function φ of arity strictly smaller than m, then
there is a separating cost function of arity exactly m: we just add dummy variables.
Hence we can assume that φ is of arity exactly m.

Now we can turn the question of the existence of a separating cost function into a
system of linear inequalities. We are looking for |D|m values (costs of φ on all possible
assignments) such that for all 1 ≤ i ≤ q, Oi ∈ fPol({φ}), and O 6∈ fPol({φ)}. But this
is easy as showing that Oi ∈ fPol({φ}) is just a question of satisfying a system of linear
inequalities for all possible tableaux, by Definition 2.4.10. Similarly, O 6∈ fPol({φ})
can be expressed as one linear inequality corresponding to the tableau with m different
k-tuples over D and the inequality sign the opposite way to Definition 2.4.10. This
finishes the proof as the question of whether there is a solution to a system of linear
inequalities is decidable [Sch86].

The following example illustrates the technique described in the proof of Theo-
rem 3.4.6.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 46

Example 3.4.7. Let O1 = {〈1,Min〉, 〈1,Max〉}, O = {〈2,Max〉}, and D = {0, 1}.
In order to determine, whether O ∈ [O1], we build a system of linear inequalities
as in the proof of Theorem 3.4.6. We look for a separating cost function φ of arity
m = |D|2 = 4. Hence we have |D|4 = 16 variables x0000, x0001, . . . , x1111 corresponding
to the values of φ on 16 different assignments. There are 16 ∗ 16 = 256 inequalities
that make sure that {〈1,Min〉, 〈1,Max〉} ∈ fPol({φ}):

xijkl + xmnop ≥ xabcd + xuvyz,

where a = min(i,m), b = min(j, n), c = min(k, o), d = min(l, p), and u = max(i,m),
v = max(j, n), y = max(k, o), z = max(l, p).

Another inequality makes sure that {〈2,Max〉} 6∈ fPol({φ}). According to the
proof of Theorem 3.4.6, the tableau consists of 4 2-tuples over {0, 1}. Hence, the
required inequality is

x0011 + x0101 < x0111 + x0111,

where T =
(

0011
0101

)
on the left hand side corresponds to 4 different 2-tuples (column-

wise), and
(

0111
0111

)
on the right hand side is the application of O on T .

One solution to this system is x00.. = 0, and x01.. = x10.. = x11.. = 1. Notice that
φ is affectively binary as it only depends on its first two arguments: φ(x, y, ., .) = 0 if
x = y = 0, and 1 otherwise. It is straightforward to check that this is indeed a solution
to the system; that is, {〈1,Min〉, 〈1,Max〉} ∈ fPol({φ}), but {〈2,Max〉} 6∈ fPol({φ}).

Given a finite set of operations Ω and an operation O, if O 6∈ [Ω], Theorem 3.4.6
tells us more than that: the system of inequalities does not have a solution, and hence
by Farkas’ Lemma [Sch86], there is a certificate on unsolvability. At the moment, it is
not clear how to turn this certificate into a closure operator in the set of operations.

3.4.2 Multimorphisms

We now turn to multimorphisms, which form a subclass of fractional polymorphisms.
In this section, we shall use the word operation for any mapping from Dk to Dk.

Notation 3.4.8. For any finite domain D, we denote by Om
D the set of all mappings

from Dk to Dk for some k.

Remark 3.4.9. Similarly to Proposition 3.4.3, it can be easily shown that there
is a Galois connection between FD and Om

D over any finite D given by the Mul(·)
operator (from Notation 2.4.15) and the Imp(·) operator. Although we still have the
expressibility closure operator for cost functions, because multimorphisms on their
own are not known2 to characterise the expressive power of valued constraints, we do
not know what the relationship is between Γ ⊆ FD and Imp(Mul(Γ)). Similarly, we
do not know what the relationship is between O ⊆ Om

D and Mul(Imp(O)). (This is
illustrated by two question marks in Figure 3.4.)

2In fact, we will see in Section 3.5 that multimorphism do not characterise the expressive power
of valued constraints.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 47

Notation 3.4.10. For a set O of mappings from Dk to Dk over a fixed finite domain
D, we define the multi-clone generated by O as [O]m = Mul(Imp(O)) .

Similarly to Observation 3.4.4, we obtain

Observation 3.4.11. For any finite domain D, the set of all multimorphisms of
all finite-valued cost functions over D, Mul(FD), is precisely the set of all multi-
projections.

We now observe some basic properties of multi-clones.

Definition 3.4.12. We say that a class O of mappings is closed under extension if
for every F = 〈f1, . . . , fk〉 : Dk → Dk in O, the function F ′ : Dk+1 → Dk+1 is also in
O, where F ′ = 〈f1, . . . , fk, πk+1〉.

Definition 3.4.13. We say that a class O of mappings is closed under permutation
if whenever G = 〈g1, . . . , gk〉 : Dk → Dk is in O and π, σ : {1, . . . , k} → {1, . . . , k} are
permutations, then F = 〈f1, . . . , fk〉 : Dk → Dk is also in O, where fi(x1, . . . , xk) =
gπ(i)(xσ(1), . . . , xσ(k)), 1 ≤ i ≤ k.

Definition 3.4.14. We say that a class O of mappings is closed under (function)
composition if for every G,F : Dk → Dk in O, the composition of G and F is also in
O.

Observation 3.4.15. If follows from Definition 2.4.11, that for any valued constraint
language Γ, the set Mul(Γ) is closed under extension, permutation and composition.

Remark 3.4.16. This section has dealt with finite-valued cost functions only. We
have seen in Theorem 2.4.19 that the expressive power of valued constraints is charac-
terised by fractional polymorphisms and feasibility polymorphisms; feasibility poly-
morphisms characterise the expressive power of crisp constraints. For the crisp case,
we have a Galois connection with closure operators for both relations and feasibility
polymorphisms (Section 3.2). Hence, if we could find a closure operator for frac-
tional polymorphisms, which characterises the expressive power of finite-valued cost
functions, it would be easy to join it with feasibility polymorphisms to get a theory
for general cost functions: operations would be pairs where the first component is
a set of fractional polymorphisms, and the second component is a set of feasibility
polymorphisms.

3.5 Expressibility versus tractability

We have seen in Theorem 2.4.19 that fractional polymorphisms and feasibility poly-
morphisms together characterise the expressive power of valued constraints. There-
fore, in order to study the tractability of valued constraint languages we only need
to understand the fractional polymorphisms and feasibility polymorphisms of valued
constraints.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 48

FD

∅

Om
D

∅

Sets of
cost functions

Sets of
operations

Γ

Mul(Γ)

Imp(Mul(Γ))

?

Mul

Imp

FD

∅

Om
D

∅

Sets of
cost functions

Sets of
operations

O

Imp(O)

Mul(Imp(O))
Mul

Imp

?

Figure 3.4: Galois connection between FD and Om
D .

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 49

As we show in this section, Theorem 2.4.19 implies that non-trivial fractional
polymorphisms are necessary for tractability of valued constraints. We conjecture
that in fact a stronger result holds: non-trivial multimorphisms are necessary for
tractability of valued constraints. On the other hand, we show that multimorphisms
on their own are not strong enough to characterise the expressive power of valued
constraints. We also show that non-trivial fractional polymorphisms are not sufficient
for tractability.

Theorem 3.5.1 ([CCJ06]). If all fractional polymorphisms of a valued constraint
language Γ are multi-projections,3 then Γ is intractable.

Proof. Suppose that every fractional polymorphism of Γ is a multi-projection. By
Observation 2.4.18, we have that fPol(Γ) ⊆ fPol({φxor}), where φxor is from Exam-
ple 2.2.10. Since Feas(φxor) is the cost function whose costs are all zero, it follows
that φxor has all possible feasibility polymorphisms. Hence FPol(Γ) ⊆ FPol({φxor}).
By Theorem 2.4.19, φxor ∈ 〈Γ〉. Therefore, by Example 2.2.10 and Theorem 2.4.21, Γ
is intractable.

All known tractable valued constraint languages can be characterised by the spe-
cial kinds of fractional polymorphisms known as multimorphisms. This raises the
question of whether multimorphisms alone are sufficient to characterise the expres-
sive power of valued constraints. Unfortunately, the answer is negative.

Theorem 3.5.2 (Dave Cohen). For every finite domain D, there is a cost func-
tion φD such that φD has a non-trivial unary fractional polymorphism, but the only
multimorphisms of φD are multi-projections.

Theorem 3.5.2 shows that multimorphisms are not strong enough to characterise
the expressive power of valued constraints. More concretely, φD cannot express all
cost functions because, by Remark 3.3.5, expressibility preserves fractional polymor-
phisms, and by Observation 3.4.4, the only fractional polymorphisms of all cost func-
tions are multi-projections. Hence there is a cost function ψ such that ψ 6∈ 〈{φD}〉, but
there is no separating multimorphism F such that F ∈ Mul({φD}) and F 6∈ Mul({ψ}),
because φD does not have any multimorphisms except for multi-projections.

Example 3.5.3. An example of the cost function from Theorem 3.5.2 is the following
function defined on D = {1, 2, 3} as follows:

φ(x, y)
def
=

0 if x = 1 and y = 2,

1 if x = 2 and y = 1,

17 if (x = 1 and y = 3) or (x = 3 and y = 1),

19 if (x = 2 and y = 3) or (x = 3 and y = 2),

20 if x=y.

3Using the alternative definition of fractional polymorphisms from Remark 2.4.14, these would
be fractional projections, see [CCJ06] for more details.

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 50

Martin Cooper has proved that the family of cost functions used in the proof
of Theorem 3.5.2 is NP-hard. More formally, for every φD used in the proof of
Theorem 3.5.2, the valued constraint language Γ = {φD} is intractable.

Given a valued constraint language Γ, Theorem 3.5.1 shows that if Γ does not
have non-trivial fractional polymorphisms, then Γ is intractable. Above-mentioned
results of Martin Cooper show that having a fractional polymorphism does not imply
tractability of a valued constraint language. We conjecture, on the other hand, that
having a multimorphism implies tractability of a valued constraint language.

Conjecture 3.5.4. A valued constraint language is tractable if, and only if, it has a
non-trivial multimorphism.

Remark 3.5.5. One direction of Conjecture 3.5.4 is very strong and difficult to prove:
showing that having a multimorphism implies tractability would imply the Dichotomy
Conjecture of Feder and Vardi [FV98], mentioned in Remark 2.2.13.

However, we believe that the other direction is not as difficult. One needs to show
that if a valued constraint language Γ does not have any non-trivial multimorphisms,
then Γ is intractable. This would mean that multimorphisms are a necessary condi-
tion for tractability of valued constraints similarly to the role of polymorphisms for
tractability of crisp constraints [JCG97].

3.6 Summary

We have investigated the expressive power of crisp and valued constraints. We have
presented a construction to determine whether a given cost function is expressible
over a given valued constraint language. We have also presented a construction to
determine whether a given fractional polymorphism belongs to a fractional clone. We
have linked questions regarding the expressive power of valued constraint to linear
programming.

Related work Schnoor and Schnoor have considered Galois connections for various
variants of the CSP [SS06].

Open problems There are several interesting open questions in this area. First, are
there any other algebraic operations, apart from fractional polymorphisms and fea-
sibility polymorphisms, that characterise the expressive power of valued constraints?
Second, what is the structure of fractional clones and what is the closure operator?
Next, do multimorphisms alone characterise the tractability of valued constraints? (In
other words, is Conjecture 3.5.4 true?) Or at least, are multimorphisms a necessary
condition for tractability?

Unary polymorphisms play an important role in the complexity of CSPs: they
can reduce the domain (so-called squashing) of the variables. It would be interesting
to find out whether unary fractional polymorphisms can be useful in a similar way.

Recall from Example 2.2.18 the language Γfix of constant constraints, which are
unary relations forcing their argument to take a fixed value. In the CSP, it has been

CHAPTER 3. EXPRESSIVE POWER OF VALUED CONSTRAINTS 51

shown that adding constant constraints to a tractable language which is a core does
not change the complexity; that is, CSP(Γ) is linear-time equivalent to CSP(Γ∪Γfix),
provided Γ is a core [BKJ05]. It is an open question whether this is true for valued
constraints. However, our recent results show that it is unlikely that VCSP(Γ) and
VCSP(Γ ∪ Γfix) are linear-time equivalent [ŽJ09b].

CHAPTER 4

Expressive Power of Fixed-Arity Languages

I just wondered how things were put together.
Claude Shannon (1916–2001)

This chapter is based on the following papers:

[CJŽ08] D.A. Cohen, P.G. Jeavons, and S. Živný. The Expressive Power of
Valued Constraints: Hierarchies and Collapses. Theoretical Com-
puter Science, 409(1):137–153, 2008.
Earlier version in Proceedings of the 13th International Conference on
Principles and Practice of Contraint Programming (CP’07), volume
4741 of Lecture Notes in Computer Science, pages 798–805. Springer,
2007.

[ZŽ09] B. Zanuttini and S. Živný. A Note on Some Collapse Results of
Valued Constraints. Information Processing Letters, 109(11):534–
538, 2009.

4.1 Introduction

In this chapter, we present our results on the expressive power of various classes of
valued constraints. Most of the results are of the following form: let C be a class of
valued constraints with cost functions of unbounded arities, then C can be expressed
by a subset of C consisting of valued constraints with cost functions of a fixed bounded
arity. The only known class for which this is not true is the class of finite-valued max-
closed cost functions of different arities.

This chapter is organised as follows. In Section 4.2, we define various classes of
cost functions, and present our results. In Sections 4.3, 4.4, and 4.5, we present our
results for crisp, finite-valued, and general cost functions, respectively. We present
both algebraic proofs of most results, which have been published in [CJŽ08], and

52

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 53

also several alternative, non-algebraic proofs of some of the results, which have been
published in [ZŽ09]. Finally, in Section 4.6, we present some more results on the
algebraic properties of finite-valued max-closed cost functions.

4.2 Results

First, we present our results on the expressive power of valued constraint languages
containing all cost functions up to some fixed arity over some fixed domain.

Recall that general cost functions can take both finite and infinite costs.

Definition 4.2.1. For every d ≥ 2 we define the following:

• Rd,m denotes the set of all relations of arity at most m over a domain of size d,

and Rd
def
= ∪m≥0Rd,m.

• Fd,m denotes the set of all finite-valued cost functions of arity at most m over

a domain of size d, and Fd
def
= ∪m≥0Fd,m.

• Gd,m denotes the set of all general cost functions of arity at most m over a

domain of size d, and Gd
def
= ∪m≥0Gd,m.

We will prove the following Theorem showing that crisp cost functions of a fixed
arity can express crisp cost functions of arbitrary arities, and same holds for both
finite-valued and general cost functions.

Theorem 4.2.2. For all d ≥ 3 and f ≥ 2:

1. 〈R2,1〉 (〈R2,2〉 (〈R2,3〉 = R2.

2. 〈Rd,1〉 (〈Rd,2〉 = Rd.

3. 〈Ff,1〉 (〈Ff,2〉 = Ff .

4. 〈Gf,1〉 (〈Gf,2〉 = Gf .

We will then consider important subsets of these languages defined for totally-
ordered domains, containing the so-called max-closed cost functions, which are defined
below.

Recall that the function Max denotes the standard binary function which returns
the larger of its two arguments.

Definition 4.2.3. A cost function φ is called max-closed if {〈2,Max〉} ∈ fPol({φ}).

Observation 4.2.4. Equivalently, φ is max-closed if 〈Max,Max〉 ∈ Mul({φ}).

Definition 4.2.5. For every d ≥ 2 we define the following:

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 54

• Rmax
d,m denotes the set of all max-closed relations of arity at most m over an

ordered domain of size d, and Rmax
d

def
= ∪m≥0R

max
d,m .

• Fmax
d,m denotes the set of all finite-valued max-closed cost functions of arity at

most m over an ordered domain of size d, and Fmax
d

def
= ∪m≥0F

max
d,m .

• Gmax
d,m denotes the set of all general max-closed cost functions of arity at most

m over an ordered domain of size d, and Gmax
d

def
= ∪m≥0G

max
d,m .

We will show below that the following Theorem holds for these sets of max-closed
cost functions. Note that the result establishes an infinite hierarchy for finite-valued
max-closed cost functions.

Theorem 4.2.6. For all d ≥ 3 and f ≥ 2:

1. 〈Rmax
2,1 〉 (〈Rmax

2,2 〉 (〈Rmax
2,3 〉 = Rmax

2 .

2. 〈Rmax
d,1 〉 (〈Rmax

d,2 〉 = Rmax
d .

3. 〈Fmax
f,1 〉 (〈Fmax

f,2 〉 (〈Fmax
f,3 〉 (〈Fmax

f,4 〉 · · ·

4. 〈Gmax
2,1 〉 (〈Gmax

2,2 〉 (〈Gmax
2,3 〉 = Gmax

2 .

5. 〈Gmax
d,1 〉 (〈Gmax

d,2 〉 = Gmax
d .

In the rest of this chapter, we will prove Theorem 4.2.2 and Theorem 4.2.6. For
some results, we present both an algebraic and a non-algebraic proof. Quite often
the algebraic proofs are more involved. However, these proofs provide us with more
than a statement of the result; they show us the structure of the algebraic properties
of the corresponding class of cost functions. Moreover, for the separating result in
Theorem 4.2.6 (3), the algebraic properties play a crucial role. In Section 4.5, we
characterise the fractional clone of general max-closed cost functions. In Section 4.6,
we characterise the multi-clone and fractional clone of finite-valued max-closed cost
functions.

4.3 The expressive power of arbitrary relations and

max-closed relations

In this section, we consider the expressive power of valued constraint languages con-
taining only crisp cost functions, that is, relations.

We consider the languages containing all relations up to some fixed arity over
some fixed domain, and the languages containing all max-closed relations up to some
fixed arity over some fixed totally-ordered domain. In both cases, we show that the
relations of a fixed arity can express all relations of arbitrary arities.

The class of crisp max-closed cost functions has been first introduced (as a class
of relations) in [JC95] and shown to be tractable. In other words, VCSP(Γ) is known

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 55

to be polynomial-time solvable for any set Γ consisting of max-closed relations over
any finite set D. A number of examples of max-closed relations are given in [JC95].

Remark 4.3.1. The max-closed property generalises the X-underbar property stud-
ied in the context of graph homomorphisms [HN04], which applies only to binary
relations.

It is well known that any relation can be expressed as a propositional formula in
Conjunctive Normal Form (CNF), simply as a conjunction of clauses which disallow
tuples not in the relation. Hence we have the following characterisation of Rd,m.

Proposition 4.3.2. A relation R ∈ Rd,m if, and only if, there is some formula ψ
such that 〈v1, . . . , vm〉 ∈ R ⇔ ψ(v1, . . . , vm) and ψ is a conjunction of clauses of the
form (v1 6= a1) ∨ . . . ∨ (vm 6= am) for some constants a1, . . . , am.

We also have a similar characterisation for Rmax
d,m , adapted from Theorem 5.2

of [JC95]. (The same result has also been obtained in [GHSZ08].)

Theorem 4.3.3 ([JC95]). A relation R ∈ Rmax
d,m if, and only if, there is some formula

ψ such that 〈v1, . . . , vm〉 ∈ R ⇔ ψ(v1, . . . , vm) and ψ is a conjunction of clauses of
the form (v1 > a1) ∨ . . . ∨ (vm > am) ∨ (vi < bi) for some constants a1, . . . , am, bi.

Note that in the special case of a Boolean domain (that is, when d = 2) this
restricted form of clauses is equivalent to a disjunction of literals with at most one
negated literal; clauses of this form are sometimes called anti-Horn clauses.

It is well known that for every d ≥ 2, Pol(Rd) is equal to the set of all possible
projection operations [DW02]. We now characterise the polymorphisms of Rmax

d .

Definition 4.3.4. Let D be a fixed totally-ordered set.

• The k-ary function on D which returns the largest of its k arguments in the
given ordering of D is denoted Maxk.

• The k-ary function on D which returns the smallest of its k arguments in the
given ordering of D is denoted Mink.

• The k-ary function on D which returns the second largest of its k ≥ 2 arguments
in the given ordering of D is denoted Secondk.

The function Max2 will be denoted Max and the function Min2 will be denoted
Min.

Definition 4.3.5. Let I = {i1, . . . , in} ⊆ {1, . . . , k} be a set of indices. Define the
k-ary function

MaxI(x1, . . . , xk)
def
= Maxn(xi1 , . . . , xin).

For every k, there are exactly 2k − 1 functions of the form MaxI for ∅ 6= I ⊆
{1, . . . , k}.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 56

Proposition 4.3.6. For all d ≥ 2,

Pol(Rmax
d) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

Proof. When |I| = 1, the corresponding function MaxI is just a projection operation,
and every projection is a polymorphism of every relation (see Observation 2.4.4).

If Max ∈ Pol({R}), then MaxI ∈ Pol({R}) for every ∅ 6= I ⊆ {1, . . . , k}. This is
because Pol({R}) is closed under function composition and contains all projection op-
erations, and every MaxI can be obtained by function composition from the function
Max and the projection operations.

We now prove that the operations of the form MaxI are the only polymorphisms
of Rmax

d . Suppose, for contradiction, that f is a k-ary polymorphism of Rmax
d which

is different from MaxI for every ∅ 6= I ⊆ {1, . . . , k}. It follows that, for each I such
that ∅ 6= I ⊆ {1, . . . , k}, there is a k-tuple tI , such that f(tI) 6= MaxI(tI). Let n
be the total number of different tuples tI , that is, n = |{tI | ∅ 6= I ⊆ {1, . . . , k}}| ≤
2k − 1 and denote these tuples by t1, . . . , tn. Now consider the n-ary relation R =
{〈t1[j], . . . , tn[j]〉}1≤j≤k. Define R0 = R and Ri+1 = Ri ∪ {Max(u, v) | u, v ∈ Ri} for
every i ≥ 0. Clearly, Ri ⊆ Ri+1 and since there is only a finite number of different
n-tuples, there is an l such that Rl = Rl+i for every i ≥ 0. Define R′ to be the closure
of R under Max, that is, R′ = Rl. Clearly, R′ is max-closed and every tuple t of R′

is of the form t = Maxj(ui1 , . . . , uij) for some j ≥ 1 and ui1 , . . . , uij ∈ R. We have
constructed R so that the application of f to the tuples of R results in a tuple t which
is different from every tuple of this form, and hence t 6∈ R′. Therefore, f 6∈ Pol({R′}),
which means that f 6∈ Pol(Rmax

d).

We now consider the expressive power of Rd,m and Rmax
d,m .

It is clear that binary relations have greater expressive power than unary relations,
so our first result is not unexpected, but it provides a simple illustration of the use
of the algebraic approach.

Proposition 4.3.7. For all d ≥ 2, 〈Rd,1〉 (〈Rd,2〉 and 〈Rmax
d,1 〉 (〈Rmax

d,2 〉.

Proof. Notice for example that Min ∈ Pol(Rd,1) and consequently Min ∈ Pol(Rmax
d,1)

but Min 6∈ Pol(Rd,2) and Min 6∈ Pol(Rmax
d,2). The result then follows from Theo-

rem 2.4.6.

4.3.1 Relations over a Boolean domain

As a first step, we now focus on the special case of relations over a Boolean domain,
that is, the case when d = 2. This special case has been studied in detail in [BRSV05].
Here, we give a brief independent derivation of the relevant results using the tech-
niques introduced above. We first show that the set of all ternary relations over a
Boolean domain has fewer polymorphisms than the set of all binary relations, and
hence has a greater expressive power. We also establish similar results for max-closed
relations over a Boolean domain.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 57

Proposition 4.3.8. Majority ∈ Pol(R2,2) and Majority ∈ Pol(Rmax
2,2), where

Majority is the unique ternary function on a 2-element set which returns the argu-
ment value that occurs most often.

Proof. Let R be an arbitrary binary Boolean relation. Let a = 〈a1, a2〉, b = 〈b1, b2〉
and c = 〈c1, c2〉 be three pairs belonging to R. Note that since the domain size is 2,
the pair 〈Majority(a1, b1, c1),Majority(a2, b2, c2)〉 is equal to at least one of a, b,
c, and hence belongs to R.

Proposition 4.3.9. Majority 6∈ Pol(R2,3) and Majority 6∈ Pol(Rmax
2,3).

Proof. Consider the ternary Boolean max-closed relation R consisting of all triples
except 〈0, 0, 0〉. To see that Majority is not a polymorphism of R, consider the
triples 〈0, 0, 1〉, 〈0, 1, 0〉 and 〈1, 0, 0〉. The application of Majority to these tuples
results in the triple 〈0, 0, 0〉 which is not in R.

However, we now show that ternary Boolean relations have the same expressive
power as all Boolean relations. In other words, any Boolean relation of arbitrary
arity is expressible by relations of arity at most three. The same result also holds for
max-closed Boolean relations.

Proposition 4.3.10. R2 ⊆ 〈R2,3〉 and Rmax
2 ⊆ 〈Rmax

2,3 〉.
Proof. By Proposition 4.3.2, any Boolean relation R ∈ R2 can be expressed as a CNF
formula ψ. By the standard Satisfiability to 3-Satisfiability reduction [GJ79],
there is a 3-CNF formula ψ′ expressing R such that ψ is satisfiable if, and only if, ψ′

is satisfiable.
Since the standard Satisfiability to 3-Satisfiability reduction preserves the

anti-Horn form of clauses, the same result holds for max-closed Boolean relations.

Combining these results with Theorem 2.4.6, we obtain the following result.

Theorem 4.3.11.

1. 〈R2,1〉 (〈R2,2〉 (〈R2,3〉 = R2.

2. 〈Rmax
2,1 〉 (〈Rmax

2,2 〉 (〈Rmax
2,3 〉 = Rmax

2 .

4.3.2 Relations over larger domains

For relations over a domain with 3 or more elements, similar results can be obtained.
In fact, in this case we show that any relation can be expressed using binary relations.

Proposition 4.3.12. For all d ≥ 3, Rd ⊆ 〈Rd,2〉.
Proof. Without loss of generality, assume that D = {0, . . . ,M}, where M = d − 1.
Define the binary relation Rd by

Rd
def
= {〈0, i〉, 〈i, 0〉 | 0 ≤ i ≤M} ∪ {〈i, i+ 1〉 | 1 ≤ i < M}.

It is known that the only polymorphisms of the relation Rd are projection opera-
tions [Fea95]. Hence, by Theorem 2.4.6, 〈{Rd}〉 = Rd.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 58

We now present a non-algebraic proof.

Proof. (alternative proof of Proposition 4.3.12)
By Proposition 4.3.2, every relation is logically equivalent to some conjunction

of clauses. Therefore, Proposition 4.3.10 gives a weaker result that Rd ⊆ 〈Rd,3〉.
We need to show how to express a clause C of length 3 (over the domain D, where
d = |D| ≥ 3) as a conjunction of clauses of length 2. Let D = {1, . . . , d} and C =
(U1(x1)∨U2(x2)∨U3(x3)) for some literals (unary relations) Ui, 1 ≤ i ≤ 3. We claim
that C is equivalent to ∃yC ′ = (U1(x1)∨N1(y))∧ (U2(x2)∨N2(y))∧ (U3(x3)∨N3(y))
where y is a new variable and N1(y) = D \ {1} (“not 1”), N2(y) = D \ {2} and
N3(y) = {1, 2}. It is not difficult to see that a satisfying assignment of C can be
extended to a satisfying assignment of C ′ and conversely, a satisfying assignment of
C ′ gives a satisfying assignment of C.

By investigating the polymorphisms of binary max-closed relations, we now show
that max-closed relations over non-Boolean domains can also be expressed using bi-
nary relations.

Theorem 4.3.13. For all d ≥ 3, Rmax
d ⊆ 〈Rmax

d,2 〉.

Proof. We will show that Pol(Rmax
d,2) ⊆ Pol(Rmax

d). The result then follows from
Theorem 2.4.6.

Without loss of generality, assume that D = {0, . . . ,M} where M = d − 1. Let
f ∈ Pol(Rmax

d,2) be an arbitrary k-ary polymorphism. By Proposition 4.3.6, it is enough
to show that f = MaxI for some ∅ 6= I ⊆ {1, . . . , k}.

First note that for any subset S ⊆ D, the binary relation R = {〈a, a〉 | a ∈ S} is
max-closed, so f(x1, . . . , xk) ∈ {x1, . . . , xk}. In other words, f is conservative.

If f = Max{1,...,k} we are done. Otherwise, there exist a1, . . . , ak ∈ D such that
ai = Maxk(a1, . . . , ak) and ai > f(a1, a2, . . . , ak) = aj. Without loss of generality,
in order to simplify our notation, assume that i = 1 and j = 2, that is, a1 =
Maxk(a1, . . . , ak) and a1 > f(a1, a2, . . . , ak) = a2. We will show that f does not
depend on its first parameter.

For any fixed x2, . . . , xk ∈ D, we denote the tuple 〈x2, . . . , xk〉 by x̄, and we define
the binary max-closed relation

Rx̄
def
= ({a2, . . . , ak} × {x2, . . . , xk}) ∪ ({a1} ×D).

Now consider the function gx̄(r) = f(r, x2, . . . , xk). Note that gx̄(r) is a restriction of
f with all arguments except the first one fixed.

Claim 1. ∀r ∈ D, gx̄(r) ∈ {x2, . . . , xk}.

To establish this claim, note that for all r ∈ D we have 〈a1, r〉 ∈ Rx̄, and {〈aj, xj〉 |
j = 2, . . . , k} ⊆ Rx̄. Since f is a polymorphism of Rx̄ and f(a1, a2, . . . , ak) = a2, it
follows from the definition of Rx̄ that gx̄(r) ∈ {x2, . . . , xk}.

Now we show that if the largest element of the domain, M , is not among x2, . . . , xk,
then gx̄(r) is constant.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 59

Claim 2. M 6∈ {x2, . . . , xk} ⇒ ∀r ∈ D, gx̄(r) = gx̄(M).

To establish this claim, define the binary max-closed relation

R′x̄
def
= ({M} ×D) ∪ {〈xj, xj〉 | j = 2, . . . , k}.

For all r ∈ D we have 〈M, r〉 ∈ R′x̄ and {〈xj, xj〉 | j = 2, . . . , k} ⊆ R′x̄. By Claim 1,
gx̄(M) = xi for some 2 ≤ i ≤ k. Since f is a polymorphism of R′x̄, it follows from the
definition of Rx̄ that gx̄(r) = xi = gx̄(M) for every r ∈ D.

Next we generalise Claim 2 to show that gx̄(r) is constant whenever x2, . . . , xk
does not contain all elements of the domain D.

Claim 3. {x2, . . . , xk} 6= D ⇒ ∀r ∈ D, gx̄(r) = gx̄(M).

To establish this claim, we will show that for every p ∈ D, if p 6∈ {x2, . . . , xk},
then gx̄(r) = gx̄(M) for every r ∈ D. Note that the case p = M is already proved
by Claim 2. For any p ∈ D \ {M}, define the binary max-closed relation Rp =
{〈d,∆p(d)〉 | d ∈ D}, where

∆p(x)
def
=

{
x if x ≤ p,

x− 1 if x > p.

For all r ∈ D we have 〈r,∆p(r)〉 ∈ Rp and {〈xj,∆p(xj)〉 | j = 2, . . . , k} ⊆ Rp.
Since f is a polymorphism of Rp, it follows from the definition of Rp that for every
r ∈ D, gx̄(r) ∈ ∆−1

p (g∆p(x̄)(∆p(r))).
Since M 6∈ {∆p(d) | d ∈ D}, we know, by Claim 2, that g∆p(x̄)(∆p(r)) is constant.

Say g∆p(x̄)(∆p(r)) = kp. If kp 6= p, then |∆−1
p (kp)| = 1 and so gx̄ is constant. Alterna-

tively, if kp = p, then ∆−1
p (kp) = {p, p + 1}. In this case if p 6∈ {x2, . . . , xk}, then we

know, by Claim 1, that gx̄(r) 6= p, so gx̄ is again constant. This completes the proof
of Claim 3.

Claim 4. gx̄(r) is constant.

To establish this claim, define the binary max-closed relations R+ = {〈d,∆+(d)〉 |
d ∈ D} and R− = {〈d,∆−(d)〉 | d ∈ D}, where

∆+(x)
def
=

{
x if x 6= M,

x− 1 if x = M

and

∆−(x)
def
=

{
x if x 6= 0,

x+ 1 if x = 0.

Define ȳ = 〈∆+(x2), . . . ,∆+(xk)〉 and z̄ = 〈∆−(x2), . . . ,∆−(xk)〉. Since M 6∈
{∆+(d) | d ∈ D} and 0 6∈ {∆−(d) | d ∈ D}, we know, by Claim 3, that gȳ and gz̄ are
both constant.

For every r ∈ D, 〈r,∆+(r)〉 ∈ R+ and for every i = 2, . . . , k, 〈xi,∆+(xi)〉 ∈ R+.
Since f is a polymorphism of R+, and gȳ is constant, gx̄ is either constant or for every

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 60

r ∈ D, gx̄(r) ∈ {M,M − 1}. Similarly, for every r ∈ D, 〈r,∆−(r)〉 ∈ R− and for
every i = 2, . . . , k, 〈xi,∆−(xi)〉 ∈ R−. Since f is a polymorphism of R−, and gz̄ is
constant, gx̄ is either constant or for every r ∈ D, gx̄(r) ∈ {0, 1}. Since |D| > 2 we
know1 that |{M,M − 1} ∩ {0, 1}| ≤ 1. Hence, in all cases gx̄ is constant.

We have shown that if a1 = max(a1, . . . , ak) and f(a1, . . . , ak) < a1, then f does
not depend on its first parameter. Similarly, by repeating the same argument, we can
show that if f 6= Max{2,...,k}, then f does not depend on its i-th parameter for some
i such that 2 ≤ i ≤ k. Moreover, further repeating the same argument shows that if
f does not depend on any parameter outside of I ⊆ {1, . . . , k} and f 6= MaxI , then
f does not depend on any of the parameters whose index is in I.

Therefore, either there is some set I ⊆ {1, . . . , k} for which f = MaxI or else f
is constant. However, since f is conservative, it cannot be constant.

Next we present a non-algebraic proof.

Proof. (alternative proof of Theorem 4.3.13)
It is enough to show that any clause of the form (x1 ≥ a1 ∨ · · · ∨ xk ≥ ak) or

(x1 ≥ a1 ∨ · · · ∨ xk ≥ ak ∨ y ≤ b), where a1, . . . , ak, b are domain values, can be
expressed by a conjunction of anti-Horn clauses over at most two variables.

Let C be a clause in Rmax
d :

C = (x1 ≥ a1 ∨ x2 ≥ a2 ∨ · · · ∨ xk ≥ ak ∨ y ≤ b)

(the case without the y literal is even easier and can be handled similarly).
For all i = 1, . . . , k− 1, let yi be a fresh variable. As d ≥ 3, the domain of each yi

contains at least 3 different values, say 1, 2 and 3 with the natural order. We define
the following conjunction of clauses ψ, where yi ∈ {1, 3} is used as a shorthand for
yi ≥ 3∨yi ≤ 1 (possible values less than 1 or greater than 3 do not matter) as follows:

ψ
def
= (x1 ≥ a1 ∨ y1 ∈ {1, 3}) ∧ (y1 ≤ 2 ∨ x2 ≥ a2) ∧∧k−1

i=2

(
(yi−1 ≥ 2 ∨ yi ∈ {1, 3})
∧ (yi ≤ 2 ∨ xi+1 ≥ ai+1)

)
∧

∧ (yk−1 ≥ 2 ∨ y ≤ b).

The intuition is given by reading the second clause as (y1 ≥ 3 → x2 ≥ a2) and
the third one as (y1 ≤ 1 → y2 ∈ {1, 3}). Since the first clause reads “either x1 ≥ a1

or y1 ≥ 3 or y1 ≤ 1”, together with the above implications this gives “either x1 ≥ a1

or x2 ≥ a2 or y2 ∈ {1, 3}”. Iterating this reasoning, one can see intuitively why the
construction works.

More formally, we show that C is logically equivalent to ∃y1 . . . yk−1ψ. First, let t
be a tuple satisfying ψ. Then if t satisfies x1 ≥ a1, we are done. Otherwise, because
of the first clause in ψ, t must satisfy (1) y1 ≥ 3 or (2) y1 ≤ 1. In case (1), because of
the second clause in ψ, t must satisfy x2 ≥ a2 and we are done. In case (2), because
of the third clause in ψ, t must satisfy y2 ≥ 3∨ y2 ≤ 1, and we proceed by induction.

1This is the only place where we use the condition that |D| ≥ 3.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 61

Conversely, let t be a tuple satisfying C. We show that t can be completed into a
model of ψ by assignments to the yi’s.

Assume first that t satisfies x1 ≥ a1. Then completing t with t(yi) = 2 for all
i = 1, . . . , k− 1 yields a model of ψ whatever the values assigned by t to x2, . . . , xk, y.
This can be seen by examining each clause in ψ. Now assume that t satisfies xi0 ≥ ai0
for some i0 ∈ {2, . . . , k}. Then completing t with t(yi) = 1 for all i = 1, . . . , i0 − 2,
t(yi0−1) = 3 and t(yi) = 2 for all i = i0, . . . , k − 1 again yields a model of ψ. Finally,
assume that t satisfies y ≤ b. Then completing t with t(yi) = 1 for all i = 1, . . . , k− 1
yields a model of ψ, which finishes the proof.

Note that this proof makes clear why the same argument does not work for d = 2.
Indeed, the “hole” in literal yi ∈ {1, 3} is necessary, since otherwise this literal would
be tautologous and thus, so would every second clause be in ψ. And Theorem 4.3.11
indeed shows that in the Boolean case, ternary relations are both sufficient and nec-
essary.

Combining these results we obtain the following result:

Theorem 4.3.14. For all d ≥ 3,

1. 〈Rd,1〉 (〈Rd,2〉 = Rd.

2. 〈Rmax
d,1 〉 (〈Rmax

d,2 〉 = Rmax
d .

Figure 4.1 summarises the results from this section.

〈R2,1〉 〈R2,2〉 〈R2,3〉

R2

〈Rmax
2,1 〉 〈Rmax

2,2 〉 〈Rmax
2,3 〉

Rmax
2

〈Rd,1〉 〈Rd,2〉

Rd

〈Rmax
d,1 〉 〈Rmax

d,2 〉

Rmax
d

Figure 4.1: Summary of results from Section 4.3, for all d ≥ 3.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 62

4.4 Finite-valued cost functions

In this section, we consider the expressive power of valued constraint languages con-
taining only finite-valued cost functions.

Cost functions from F2, that is, finite-valued cost functions over a Boolean domain,
are also known as pseudo-Boolean functions [BH02, CH]. The class of max-closed
cost functions is discussed in more detail in [CCJK06] and shown to be tractable. A
number of examples of max-closed cost functions are given in [CCJK06].

First we show that the set of all finite-valued cost functions of a certain fixed arity
can express all finite-valued cost functions of arbitrary arities. On the other hand, we
show that the max-closed finite-valued cost functions of any fixed arity cannot express
all finite-valued max-closed cost functions of any larger arity. Hence we identify an
infinite hierarchy of finite-valued cost functions with ever-increasing expressive power.

Proposition 4.4.1. For all d ≥ 2, 〈Fd,1〉 (〈Fd,2〉 and 〈Fmax
d,1 〉 (〈Fmax

d,2 〉.

Proof. Consider the binary weighted mapping F = {〈1,Min〉, 〈1,Max〉}. It is straight-
forward to verify that F ∈ fPol(Fd,1) and F ∈ fPol(Fmax

d,1).
Now consider the binary finite-valued max-closed cost function φ over any domain

containing {0, 1}, defined by φ(〈0, 0〉) = 1 and φ(〈., .〉) = 0 otherwise. Note that φ
is max-closed but F is not a fractional polymorphism of φ. To see this, consider the
tuples 〈0, 1〉 and 〈1, 0〉 (see the tableau below).

Min
Max

0 1
1 0
0 0
1 1

φ−→ 0
0

}∑
= 0

φ−→ 1
0

}∑
= 1

The result then follows from Theorem 2.4.19.

Now we prove a collapse result for the set of all finite-valued cost functions over
an arbitrary finite domain. This result was previously known for the special case
when d = 2: as we remarked earlier, any Boolean finite-valued cost function can be
represented as a pseudo-Boolean function; using a well-known result from pseudo-
Boolean optimisation [BH02, CH], any such function can be expressed using binary
pseudo-Boolean functions.

Theorem 4.4.2. For all d ≥ 2, 〈Fd,2〉 = Fd.

Proof. As mentioned above, the case d = 2 follows from well-known results about
pseudo-Boolean functions (see Theorem 1 of [BH02]). Let φ ∈ Fd,m for some d ≥ 3
and m > 2. We will show how to express φ using only unary and binary finite-valued
cost functions. Without loss of generality, assume that all cost functions are defined
over the set D = {0, 1, . . . ,M}, where M = d − 1, and denote by Dm = {t1, . . . , tn}
the set of all m-tuples over D. Clearly, n = dm. Let K ∈ R+ be a fixed constant
such that K > maxt∈Dm φ(t). For any e ∈ D, let χe be the binary finite-valued cost

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 63

function defined by

χe(x, y)
def
=

0 if x = e and y = 0,

0 if x 6= e and y = 1,

K otherwise.

For any r ∈ R+, let µr be the unary finite-valued cost function defined by

µr(z)
def
=

{
r if z = 0,

0 otherwise.

We now start building the gadget for φ. Let x1, . . . , xm be the variables upon
which we wish to construct φ, and let ti ∈ Dm be an arbitrary fixed tuple. Figure 4.2
shows the part of the gadget for φ which ensures that the appropriate cost value is
assigned to the tuple of values ti. The complete gadget for φ consists of this part in
n copies: one copy on a new set of variables for every ti ∈ Dm.

Define new variables yi1, . . . , y
i
m and zi. We apply cost functions on these variables

as shown in Figure 4.2. Note that each variable yij, 1 ≤ j ≤ m, indicates whether

x1

yi1

x2

yi2

xm

yim

...χti[1] χti[2] χti[m]

zi µφ(ti)

Figure 4.2: A part of the gadget for expressing φ (Theorem 4.4.2).

or not xj is equal to ti[j]: in any minimum-cost assignment, (yij = 0)⇔ (xj = ti[j]).
It remains to define the constraints between the variables yi1, . . . , y

i
m and zi. These

will be chosen in such a way that any assignment of the values 0 or 1 to the variables
yij can be extended to an assignment to zi with a total cost equal to the same fixed
minimum value. Furthermore, in these extended assignments zi is assigned 0 if, and
only if, all the yij are assigned 0. (We will achieve this by combining appropriate
binary finite-valued cost functions over these variables and other fresh variables as
described below.) Then, for every possible assignment of values ti to the variables
x1, . . . , xm, there is exactly one zi, 1 ≤ i ≤ n, which is assigned the value 0 in any
minimum-cost extension of this assignment. The unary constraint with cost function
µφ(ti) on each zi then ensures that the complete gadget expresses φ.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 64

To define the remaining constraints to complete the constraint in Figure 4.2, we
define two binary finite-valued cost functions as follows:

φ1(y, z)
def
=

0 if y = 0 and (z = 0 or z = 1),

0 if y 6= 0 and z 6= 0,

K otherwise,

and

φ2(y, z)
def
=

0 if y = 0 and (z = 0 or z = 2),

0 if y 6= 0 and z 6= 0),

K otherwise.

Let P = 〈V,D, C〉 where V = {y1, y2, z} and C = {〈〈y1, z〉, φ1〉, 〈〈y2, z〉, φ2〉}. (See
Figure 4.3.)

y1 y2

z

φ1 φ2

Figure 4.3: P expressing or2 over non-Boolean domains (Theorem 4.4.2).

We define or2 to be the cost function expressed by the gadget 〈P , 〈y1, y2, z〉〉. The
cost function or2(y1, y2, z) has the following properties:

• if both y1, y2 are assigned the zero value, then the total cost is 0 if, and only
if, z is assigned the zero value, otherwise the total cost is either K (if z = 1 or
z = 2) or 2K (if z > 2);

• if y1 is assigned the zero value and y2 a non-zero value, then the total cost is 0
if, and only if, z is assigned 1, otherwise the total cost is K;

• if y1 is assigned a non-zero value and y2 the zero value, then the total cost is 0
if, and only if, z is assigned 2, otherwise the total cost is K;

• if both y1 and y2 are assigned non-zero values, then the total cost is 0 if, and
only if, z is assigned a non-zero value, otherwise the total cost is 2K.

All these properties of or2 can be easily verified by examining the so-called microstruc-
ture [Jég93] of P , as shown in Figure 4.4: this is a graph where the vertices are
pairs 〈v, e〉 ∈ V ×D, and two vertices 〈v1, e1〉 and 〈v2, e2〉 are connected by an edge
with weight w if, and only if, there is a valued constraint 〈〈v1, v2〉, c〉 ∈ C such that
c(e1, e2) = w. Circles represent particular assignments to particular variables, as in-
dicated in Figure 4.4, and edges are weighted by the cost of the corresponding pair
of assignments. Thin edges indicate zero weight, and bold edges indicate weight K.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 65

y1

0

1

2

...

z

0

1

2

...

y2

0

1

2

...

Figure 4.4: Microstructure of the instance P (Theorem 4.4.2).

We have shown that, in any minimum-cost assignment for P , the variable z takes
the value 0 if, and only if, both of the variables y1 and y2 take the value 0. Hence
the cost function or2 can be viewed as a kind of 2-input “or-gate”, with inputs y1

and y2 and output z. By cascading m− 1 copies of this gadget we can express a cost
function orm(y1, . . . , ym, z), with the following properties:

• if the arguments y1, y2, . . . , ym are all assigned the zero value, then assigning
zero to z gives cost 0, but any non-zero assignment to z gives cost at least K;

• if not all the arguments y1, y2, . . . , ym are assigned the zero value, then there is
a non-zero value e ∈ D such that assigning e to z gives cost 0, but assigning
zero to z gives cost at least K.

Using this combined gadget on the variables yi1, y
i
2, . . . , y

i
m and zi in Figure 4.2 com-

pletes the gadget for φ, and hence establishes that φ ∈ 〈Fd,2〉.

In contrast to this result, the remaining results in this section establish an infinite
hierarchy of increasing expressive power for finite-valued max-closed cost functions.

Notation 4.4.3. We will say that an m-tuple u dominates an m-tuple v, denoted
u ≥ v, if u[i] ≥ v[i] for all 1 ≤ i ≤ m.

Proposition 4.4.4 ([CCJK06]). An m-ary cost function φ : Dm → R is max-closed
if, and only if, Max ∈ FPol({φ}) and φ is finitely antitone, that is, for all m-tuples
u, v with φ(u), φ(v) <∞, u ≤ v ⇒ φ(u) ≥ φ(v).

It follows that the finite-valued max-closed cost functions are simply the finite-
valued antitone functions, that is, those functions whose values can only decrease
as their arguments get larger. Note that for such functions the expressive power is
likely to be rather limited because in any construction the “hidden variables” that are
“projected out” can always be assigned the highest values in their domain in order
to minimise the cost. Hence, using such hidden variables only adds a constant value
to the total cost, and so does not allow more cost functions to be expressed.

We now extend the separation result shown in Proposition 4.4.1 and separate each
possible arity.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 66

Maxm
...

Maxm
Secondm

0 0 . . . 0 0 1
0 0 . . . 0 1 0

...
1 0 . . . 0 0 0
1 1 . . . 1 1 1

...
1 1 . . . 1 1 1
0 0 . . . 0 0 0

φ−→

0
0
...
0

∑

= 0

φ−→

0
...
0
1

∑

= 1

Figure 4.5: {〈m− 1,Maxm〉, 〈1,Secondm〉} 6∈ fPol({φ}) for φ (Proposition 4.4.6).

Proposition 4.4.5. For all d ≥ 2 and m ≥ 2, {〈m − 1,Maxm〉, 〈1,Secondm〉} ∈
fPol(Fmax

d,m−1).

Proof. Let φ be an arbitrary (m− 1)-ary finite-valued max-closed cost function. Let
t1, . . . , tm be (m − 1)-tuples. We show that there is an i such that the tuple s =
Secondm(t1, . . . , tm) dominates ti, that is, s[j] ≥ ti[j] for 1 ≤ j ≤ m − 1. To
show this we count the number of tuples which can fail to be dominated by s. If
a tuple tp is not dominated by s, for some 1 ≤ p ≤ m, it means that there is a
position 1 ≤ j ≤ m − 1 such that tp[j] > s[j]. But since Secondm returns the
second biggest value, for every 1 ≤ j ≤ m − 1, there is at most one tuple which is
not dominated by s. Since there are m ≥ 3 tuples, there must be an i such that
ti is dominated by s. Moreover, Maxm(t1, . . . , tm) clearly dominates all t1, . . . , tm.
By Proposition 4.4.4, φ is antitone and therefore {〈m− 1,Maxm〉, 〈1,Secondm〉} is
a fractional polymorphism of φ, by Definition 2.4.10.

Proposition 4.4.6. For all d ≥ 2 and m ≥ 2, {〈m − 1,Maxm〉, 〈1,Secondm〉} 6∈
fPol(Fmax

d,m).

Proof. Let φ be the m-ary finite-valued max-closed cost function, over any domain
containing {0, 1}, defined by φ(〈0, . . . , 0〉) = 1 and φ(〈., . . . , .〉) = 0 otherwise. To
show that {〈m − 1,Maxm〉, 〈1,Secondm〉} is not a fractional polymorphism of φ,
consider the m-tuples 〈0, . . . , 0, 1〉, 〈0, . . . , 0, 1, 0〉, . . . , 〈1, 0, . . . , 0〉. Each of them is
assigned cost 0 by φ. But applying the functions Maxm ((m−1) times) and Secondm
coordinate-wise results in m−1 tuples 〈1, . . . , 1〉, which are assigned cost 0 by φ, and
one tuple 〈0, . . . , 0〉, which is assigned cost 1 by φ (see Figure 4.5).

Theorem 4.4.7. For all d ≥ 2, 〈Fmax
d,1 〉 (〈Fmax

d,2 〉 (〈Fmax
d,3 〉 (〈Fmax

d,4 〉 · · ·

Proof. By Propositions 4.4.5 and 4.4.6 and Theorem 2.4.19.

Figure 4.6 summarises the results from this section.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 67

〈Fd,1〉 〈Fd,2〉

Fd

〈Fmax
d,1 〉 〈Fmax

d,2 〉 〈Fmax
d,3 〉 . . .

Fmax
d

Figure 4.6: Summary of results from Section 4.4, for all d ≥ 2.

4.5 General cost functions

In this section, we show that general cost functions of a fixed arity can express cost
functions of arbitrary arities. Comparing this result with the results of the previous
section provides a striking example of the way in which allowing infinite cost values in
a valued constraint language can drastically affect the expressibility of cost functions
over that language, including finite-valued cost functions.

The class of general max-closed cost functions is known to be tractable [CCJK06].
Once again it is straightforward to establish a separation between unary and

binary general cost functions.

Proposition 4.5.1. 〈Gd,1〉 (〈Gd,2〉 and 〈Gmax
d,1 〉 (〈Gmax

d,2 〉.

Proof. Identical to the proof of Proposition 4.4.1.

As with crisp cost functions, in the special case of a Boolean domain, we can show
a separation between binary and ternary general cost functions.

Proposition 4.5.2. 〈G2,2〉 (〈G2,3〉 and 〈Gmax
2,2 〉 (〈Gmax

2,3 〉.

Proof. By Proposition 4.3.8, Majority ∈ FPol(G2,2) and Majority ∈ FPol(Gmax
2,2).

By Proposition 4.3.9, Majority 6∈ FPol(G2,3) and Majority 6∈ FPol(Gmax
2,3). The

result then follows by Theorem 2.4.19.

Next we show a collapse result for general cost functions.

Theorem 4.5.3. For all d ≥ 3, 〈Gd,1〉 (〈Gd,2〉 = Gd. Moreover, 〈G2,1〉 (〈G2,2〉 (
〈G2,3〉 = G2.

Proof. Let φ ∈ Gd,m for some d ≥ 3 and m > 2. It is easy to check that the same
construction as in the proof of Theorem 4.4.2 can be used to express φ, with K =∞.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 68

Now let φ ∈ G2,m for some m > 2. It is easy to check that a similar construction to
that used in the proof of Theorem 4.4.2 can be used to express φ, where the instance
P is replaced by the ternary Boolean relation which expresses the truth table of a
2-input or-gate.

Note that the proof shows a slightly stronger result: G2 = 〈R2,3∪F2,1〉, and for all
d ≥ 3, Gd = 〈Rd,2∪Fd,1〉. In other words, all general cost functions can be expressed
using unary finite-valued cost functions together with ternary relations (in the case
d = 2), or binary relations (in the case d ≥ 3).

By investigating feasibility polymorphisms and fractional polymorphisms, we will
now show a collapse result for general max-closed cost functions.

First we show that general max-closed cost functions of a fixed arity have the
same feasibility polymorphisms as max-closed cost functions of arbitrary arities.

Proposition 4.5.4. For all d ≥ 3, FPol(Gmax
d,2) = FPol(Gmax

d). Moreover, FPol(Gmax
2,3) =

FPol(Gmax
2).

Proof. Assume for contradiction, that there is an f ∈ FPol(Gmax
d,2), such that f 6∈

FPol(Gmax
d). By Definition 4.2.5, {Feas(φ) | φ ∈ Gmax

d } = Rmax
d . Therefore, such an

f would contradict Theorem 4.3.14 since Pol(Rmax
d,2) = Pol(Rmax

d).
Similarly, assume that there is an f ∈ FPol(Gmax

2,3) such that f 6∈ FPol(Gmax
2).

This would contradict Theorem 4.3.11 since Pol(Rmax
2,3) = Pol(Rmax

2).

We now prove that general max-closed cost functions of a fixed arity have the
same fractional polymorphisms as general max-closed cost functions of arbitrary ar-
ities. First we characterise the feasibility polymorphisms of general max-closed cost
functions.

Proposition 4.5.5. For all d ≥ 2,

FPol(Gmax
d) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

Proof. It follows from Definition 4.2.5 that {Feas(φ) | φ ∈ Gmax
d } = Rmax

d . Therefore,
FPol(Gmax

d) = FPol(Rmax
d) and the result follows from Proposition 4.3.6.

Next we characterise the fractional polymorphisms of general max-closed cost
functions.

Definition 4.5.6. Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted map-
ping and S ⊆ {1, . . . , k}.

We define
suppF S

def
= {i | Si ∩ S 6= ∅},

and
wtF(S)

def
=

∑
i∈suppF (S)

ri.

Theorem 4.5.7. Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted map-
ping. The following are equivalent:

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 69

1. F ∈ fPol(Gmax
d).

2. F ∈ fPol(Gmax
d,1).

3. For every subset S ⊆ {1, . . . , k}, wtF(S) ≥ |S|.

Proof. We first show that ¬(3)⇒ ¬(2)⇒ ¬(1).
First suppose that there exists an S ⊆ {1, . . . , k} such that wtF(S) < |S|. Let

{a, b} ⊆ D be the two biggest elements of D and a < b. Consider the unary cost
function φ where

φ(x)
def
=

0 if x = b,

1 if x = a,

∞ otherwise.

Certainly φ ∈ Gmax
d,1 .

Now let

xi
def
=

{
b if i ∈ S,
a if i 6∈ S.

We have that

k∑
i=1

φ(xi) = k − |S|, and

n∑
j=1

rjφ(MaxSj
(x1, . . . , xk)) =

∑
j 6∈suppF S

rjφ(a) +
∑

j∈suppF S

rjφ(b)

= k − wtF(S)

> k − |S|, by assumption.

So F is not a fractional polymorphism of Gmax
d,1 , and hence not a fractional poly-

morphism of Gmax
d .

To complete the proof we will show that (3)⇒ (1).
Suppose that, for every subset S ⊆ {1, . . . , k}, wtF(S) ≥ |S|.
We will first show the existence of a set of non-negative values pji for j = 1, . . . , n

and i = 1, . . . , k, where

k∑
i=1

pji = rj,

n∑
j=1

pji = 1 and

pji = 0 if i 6∈ Sj.

Consider the network in Figure 4.7. The capacity from the source to any node xi
is one. The capacity from node yj to the sink is rj. There is an arc from node xi to

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 70

node yj precisely when i ∈ Sj, and the capacity of these arcs is infinite. We show
that the flow from xi to yj in a maximum flow is the value of pji

We will use the (s, t)-Min-CutMax-Flow Theorem to generate the pji.

source

x1

xk

1

1

sink

y1

yn

r1

rn

rj
yj

∞

∞

∞

∞

∞

∞

Figure 4.7: Network for pij’s in the proof of Theorem 4.5.7.

Suppose that we have a minimum cut of this network. Let A be those arcs in this
cut from the source to any node xi. Let S = {1, . . . , k}− {i | xi ∈ A}. Since we have
a cut we must (at least) cut every arc from the nodes {yj | j ∈ suppF(S)} to the
sink. By assumption wtF(S) ≥ |S| and so this cut has total cost at least k. Certainly
there is a cut of cost exactly k (cut all arcs from the source), and so the max-flow
through this network is precisely k. Such a flow can only be achieved if each arc from
the source and each arc to the sink is filled to its capacity. The flow along the arc
from xi to yj then gives the required value for pji.

Now we will use these values pji to show that F is indeed a fractional polymor-
phism of Gmax

d .
Let t1, . . . , tk be m-ary tuples and φ ∈ Gmax

d,m be an m-ary cost function. We have
to show the following:

k∑
i=1

φ(ti) ≥
n∑
j=1

rjφ(MaxSj
(t1, . . . , tk)). (4.1)

If any φ(ti) is infinite, then this inequality clearly holds.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 71

By Proposition 4.5.5, all MaxSj
, 1 ≤ j ≤ n, are feasibility polymorphisms of

Gmax
d . Therefore, if all φ(ti) are finite, then all φ(MaxSj

(t1, . . . , tk)) are finite as well.
By definition of pji and using that pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

rjφ(MaxSj
(t1, . . . , tk)) =

n∑
j=1

∑
i∈Sj

pjiφ(MaxSj
(t1, . . . , tk)).

Now, since φ is antitone, we have

n∑
j=1

∑
i∈Sj

pjiφ(MaxSj
(t1, . . . , tk)) ≤

n∑
j=1

∑
i∈Sj

pjiφ(ti)

Since pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

∑
i∈Sj

pjiφ(ti) =
n∑
j=1

k∑
i=1

pjiφ(ti)

Finally, since
∑n

j=1 pji = 1 we have established Inequality (4.1).

Theorem 4.5.8. For all d ≥ 3, fPol(Gmax
d,2) = fPol(Gmax

d). Moreover, fPol(Gmax
2,3) =

fPol(Gmax
2).

Proof. By Proposition 4.5.4, Gmax
d,2 and Gmax

d have the same feasibility polymorphisms.
Also, Gmax

2,3 and Gmax
2 have the same feasibility polymorphisms. By Proposition 4.5.5,

these feasibility polymorphisms are of the form “max-on-a-subset”. Clearly, each com-
ponent function of a fractional polymorphism has to be a feasibility polymorphism,
by Observation 2.4.16. Therefore, the result follows from Theorem 4.5.7.

Theorem 4.5.9. For all d ≥ 3, 〈Gmax
d,1 〉 (〈Gmax

d,2 〉 = Gmax
d . Moreover, 〈Gmax

2,1 〉 (
〈Gmax

2,2 〉 (〈Gmax
2,3 〉 = Gmax

2 .

Proof. The separation results were obtained in Propositions 4.5.1 and 4.5.2, by show-
ing that the valued constraint languages involved have different feasibility polymor-
phisms.

For all d′ ≥ 2, m ≥ 1 and c ∈ R+, Gmax
d′,m is closed under scaling by c. Therefore,

using Theorem 2.4.19, the collapses follow from Proposition 4.5.4 and Theorem 4.5.8.

We now present a non-algebraic proof of the collapse results from Theorem 4.5.9.
In fact, we prove a slightly stronger result: for all d ≥ 3, Gmax

d = 〈Rmax
d,2 ∪ Fmax

d,1 〉,
and Gmax

2 = 〈Rmax
2,3 ∪Fmax

2,1 〉. However, the following proof requires that cost functions
take integer values.

Proof. (alternative proof of Theorem 4.5.9)
Let φ be an m-ary general max-closed cost function, and write x1, . . . , xm for

the variables. Let y1, . . . , yK be variables (with d values, say 1, . . . , d), where K =

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 72

max{φ(x)|φ(x) < ∞} is the biggest finite cost in the range of φ. Intuitively, a cost
of k for a tuple will be encoded by y1, . . . , yk assigned the value 1 (and the other
variables assigned the value 0).

We first encode infinite costs. Let φR = Feas(φ) be the relation containing tuples
u such that φ(u) < ∞. It turns out that this relation is max-closed. Indeed, for all
u, v ∈ φR we have φ(u), φ(v) <∞ by definition of φR. Since φ is max-closed we have
2φ(Max(u, v)) ≤ φ(u)+φ(v) <∞, so φ(Max(u, v)) <∞ and thus, Max(u, v) ∈ φR.
So φR is max-closed, that is, φR ∈ Rmax

d .
We now encode finite costs. For an m-tuple t with φ(t) < ∞, write kt for φ(t).

We let ψt be the anti-Horn formula
∧kt

j=1((
∨m
i=1 xi > t[i])∨ yj ≤ 1). Observe that this

formula reads x ≤ t→ y1 ≤ 1 ∧ · · · ∧ ykt ≤ 1.
Finally, we define the anti-Horn formula ψ to be ψR ∧

∧
t∈Dm ψt, where ψR is

an anti-Horn formula equivalent to φR. By Proposition 4.3.10, this formula can be
expressed over Rmax

d,2 .
The formula ψ encodes the cost of every tuple as a number of yj’s assigned the

value 1. We thus add, to every variable yj, j = 1, . . . , K, the cost function µ defined
by µ(1) = 1 and µ(2) = · · · = µ(d) = 0. Clearly, this function is max-closed and
therefore in Fmax

d,1 .
We now show that the gadget 〈ψ, 〈x1, . . . , xm〉〉 expresses φ. Let t be an m-ary

tuple. Assume first that kt = φ(t) is finite. Then ψ contains the subformula

kt∧
j=1

((
m∨
i=1

xi > t[i]) ∨ yj ≤ 1).

Since obviously t[i] > t[i] holds for no i, every assignment which satisfies ψ sets
variables y1, . . . , ykt to 1 and thus, has a cost of at least kt. Now let st be the
assignment which is equal to t over x1, . . . , xm and which assigns 1 to y1, . . . , ykt and
2 to yk+1, . . . , yK . We show that st satisfies ψ, which gives an assignment of cost at
most kt.

First let ψt′ ∈ ψ, and recall that ψt′ reads x ≤ t′ → y1 ≤ 1∧· · ·∧yφ(t′) ≤ 1. If t ≤ t′,
then since φ is max-closed and both costs are finite (by definition of ψt′), we have
φ(t) ≥ φ(t′) by Proposition 4.4.4. It follows that {y1, . . . , yφ(t′)} ⊆ {y1, . . . , ykt}, so st
assigns 1 to y1, . . . , yφ(t′) and thus satisfies ψt′ . Otherwise, if t 6≤ t′, then t[i] > t′[i] for
some i and thus st satisfies ψt′ (it does not satisfy its premises). Finally, st satisfies
ψt′ for all t′.

Now st satisfies ψR by definition of φR, since st equals t over x1, . . . , xm and
φ(t) <∞ by our assumption. We finally have that for all t with finite cost under φ,
st satisfies ψ and thus, the projection of ψ assigns a cost of at most kt to t. Since the
cost is at least kt as shown above, we are done.

Now if t has infinite cost under φ, then by definition of φR we have that t does not
satisfy ψ and thus, has infinite cost. Therefore, for all d ≥ 3, Gmax

d = 〈Rmax
d,2 ∪Fmax

d,1 〉,
In the case of a Boolean domain, ψ is a relation over the Boolean domain, and

therefore ψ can be expressed, by Proposition 4.3.10, over Rmax
2,3 . Therefore, Gmax

2 =
〈Rmax

2,3 ∪ Fmax
2,1 〉.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 73

Figure 4.8 summarises the results from this section.

〈G2,1〉 〈G2,2〉 〈G2,3〉

G2

〈Gmax
2,1 〉 〈Gmax

2,2 〉 〈Gmax
2,3 〉

Gmax
2

〈Gd,1〉 〈Gd,2〉

Gd

〈Gmax
d,1 〉 〈Gmax

d,2 〉

Gmax
d

Figure 4.8: Summary of results from Section 4.5, for all d ≥ 3.

x y z

u v

φ1 φ2 φ1 φ2

φ0

Figure 4.9: P1, an instance of VCSP(Gmax
3,2) expressing φ (Example 4.5.10).

Example 4.5.10. Consider the ternary finite-valued max-closed cost function φ over
D = {0, 1, 2} which is defined by

φ(t)
def
=

{
1 if t = 〈0, 0, 0〉,
0 otherwise.

By Proposition 4.4.6, φ 6∈ 〈Fmax
3,2 〉. In other words, φ is not expressible using only

finite-valued max-closed cost functions of arity at most 2. However, by Theorem 4.5.9,
φ ∈ 〈Gmax

3,2 〉. We now show how φ can be expressed using general max-closed cost
functions of arity at most 2.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 74

Let φ0 be the binary finite-valued max-closed cost function defined as follows:

φ0(t)
def
=

{
1 if t = 〈0, 0〉,
0 otherwise.

Next, define two binary crisp2 max-closed cost functions

φ1(t)
def
=

{
∞ if t = 〈0, 1〉,
0 otherwise,

and

φ2(t)
def
=

{
∞ if t = 〈0, 2〉,
0 otherwise.

Let P1 = 〈V,D, C〉 where V = {x, y, z, u, v} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u, v〉, φ0〉}.

We claim that 〈P1, 〈x, y, z〉〉 is a gadget for expressing φ over Gmax
3,2 . (See Fig-

ure 4.9.) If any of x, y, z is non-zero, then at least one of the variables u, v can be
assigned a non-zero value and the cost of such an assignment is 0. Conversely, if x, y
and z are all assigned zero, then the minimum-cost assignment must also assign zero
to both u and v, and hence has cost 1.

We now show another gadget for expressing φ, using only crisp max-closed cost
functions of arity at most 2 and finite-valued max-closed cost functions of arity at
most 1.

Let µ be the unary finite-valued max-closed cost function defined by

µ(x)
def
=

{
1 if x = 0,

0 otherwise.

Let P2 = 〈V ′, D, C ′〉 where V ′ = {x, y, z, u, v, w} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u,w〉, φ1〉, 〈〈v, w〉, φ2〉, 〈w, µ〉}.

See Figure 4.10. Similarly to the argument above, 〈P2, 〈x, y, z〉〉 is a gadget for
expressing φ. This can be verified by examining the microstructure of P2 (see Fig-
ure 4.11): circles represent particular assignments to particular variables, as indicated,
and edges are weighted by the cost of the corresponding pair of assignments. Thin
edges indicate zero weight, bold edges indicate infinite weight, and assigning 0 to
variable w gives cost 1.

2Note that a “finite variant” of φ1, defined as φ1(〈0, 1〉) = K for some finite K < ∞ and
φ1(〈., .〉) = 0 otherwise, is not max-closed. The infinite cost is necessary.

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 75

x y z

u v

w µ

φ1 φ2 φ1 φ2

φ1 φ2

Figure 4.10: P2, an instance of VCSP(Rmax
3,2 ∪ Fmax

3,1) expressing φ (Example 4.5.10).

x

0 1 2

y

0 1 2

z

0 1 2

u 0 1 2 v0 1 2

w

0 1 2

Figure 4.11: Microstructure of the instance P2 (Example 4.5.10).

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 76

Example 4.5.11. Recall Example 2.3.9 which showed how to express φ = (#0)2

using cost functions φ0, φ1, φ2 and µ. All three binary crisp cost functions φ0, φ1,
and φ2 are max-closed. Moreover, the unary finite-valued cost function µ is max-
closed as well.

4.6 Characterisation of Mul(Fmax
d) and fPol(Fmax

d)

In section 4.4, we have seen that showing fPol(Fmax
d,m+1) 6⊆ fPol(Fmax

d,m) implies an infinite
hierarchy of cost functions with ever-increasing expressive power. In section 4.5, we
have characterised the fractional clone of general max-closed cost functions. In this
section, we characterise the multi-clone and fractional clone of finite-valued max-
closed cost functions.

Notation 4.6.1. Recall from Notation 4.4.3 that we say that an m-tuple u dominates
an m-tuple v, denoted u ≥ v, if u[i] ≥ v[i] for all 1 ≤ i ≤ m. We say that u strictly
dominates v if u[i] > v[i] for all 1 ≤ i ≤ m. If s ≥ t (s > t respectively), we also
write t ≤ s (t < s respectively).

Notation 4.6.2. For a graph G = (V,E) and a set of vertices V ′ ⊆ V , we define
the set of neighbours of V ′ as N(V ′) = {v ∈ V |(∃v′ ∈ V) [(v, v′) ∈ E)]}. We say a
graph G = (V,E) is bipartite if V = V0∪̇V1 and E ⊆ V0 × V1. For a bipartite graph
G = (V0, V1, E), a matching is a set of edges E ′ ⊆ E such that no two edges from
E ′ share a vertex, and the size of such a matching is |E ′|. A perfect matching is a
matching of size |V0|.

Theorem 4.6.3 (Hall (1935)). A bipartite graph G = (V0, V1, E) has a perfect match-
ing if, and only if, (∀V ′ ⊆ V0) [|N(V ′)| ≥ |V ′|].

We denote by D a fixed finite totally-ordered domain set with |D| = d.
We now characterise the multimorphisms of Fmax

d , the valued constraint language
containing all finite-valued max-closed cost functions.

Theorem 4.6.4. Let F = 〈f1, . . . , fk〉, where each fi : Dk → D, and let Si = {j |
fi(u1, . . . , uk) ≥ uj}, 1 ≤ i ≤ k. Then the following are equivalent:

1. F ∈ Mul(Fmax
d).

2. For every fixed collection of k tuples u1, . . . , uk ∈ Dm,

(∀I ⊆ {1, . . . , k}) [|
⋃
i∈I

Si| ≥ |I|].

3. For every fixed collection of k tuples u1, . . . , uk ∈ Dm, there exists a bijective
mapping ϕ : {1, . . . , k} → {1, . . . , k} such that

(∀1 ≤ i ≤ k) [fi(u1, . . . , uk) ≥ uϕ(i)].

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 77

Proof. First we show (1)⇒ (2).
Let I ⊆ {1, . . . , k} and assume for contradiction that |∪i∈I Si| < |I|. Define a cost

function φ on Dm as

φ(x)
def
=

{
1 if x ≤ fi(u1, . . . , uk) for some i ∈ I,
0 otherwise.

We show that φ is max-closed. Let u and v be two m-tuples. If φ(u) = φ(v) = 1,
then the multimorphism inequality, as given in Definition 2.4.11, is satisfied easily
as φ takes only costs 0 and 1. If either φ(u) = 0 or φ(v) = 0 (or both), then
φ(Max(u, v)) = 0 from the definition of φ, and the multimorphism inequality is
satisfied again. Hence φ is max-closed.

The following holds from the definition of φ:

k∑
i=1

φ(ui) = |
⋃
i∈I

Si| < |I| ≤
k∑
i

φ(fi(u1, . . . , uk)).

Therefore, F is not a multimorphism of φ which is a contradiction as φ is a
finite-valued max-closed cost function.

Now we show (2)⇒ (3).
Consider a bipartite graph G = (V0, V1, E), where

V0 ={0} × {f1(u1, . . . , uk), . . . , fk(u1, . . . , uk)},
V1 ={1} × {u1, . . . , uk},

and
(〈0, fi(u1, . . . , uk)〉, 〈1, uj〉) ∈ E ⇔ (j ∈ Si).

(Since {u1, . . . , uk} and {f1(u1, . . . , uk), . . . , fk(u1, . . . , uk)} are not necessarily dis-
joint, we have to distinguish between the same tuples in these two sets.) We have
that for any V ′ ⊆ V0, N(V ′) = ∪{i|〈0,fi(u1,...,uk)〉∈V ′}Si. Therefore, (2) is equivalent
to Hall’s Condition and by Hall’s Theorem 4.6.3, G has a perfect matching. This
matching clearly defines the wanted bijective mapping ϕ.

Finally, we show (3)⇒ (1).
This is clear as finite-valued max-closed cost functions are finitely antitone by

Proposition 4.4.4, and therefore the multimorphism inequality, as given in Defini-
tion 2.4.11, is satisfied.

In other words, a function F : Dk → Dk is a multimorphism of Fmax
d if, and only

if, for every collection of source k tuples, there is a bijective mapping which maps the
k source tuples to the k target tuples in a dominance-preserving way. Note that the
same proof characterises the multimorphisms of Fmax

d,m for every m ≥ 1.

Corollary 4.6.5. F ∈ Mul(Fmax
d,m) if, and only if, for every collection of k tuples

u1, . . . , uk ∈ Dm there is a bijective mapping ϕ : {1, . . . , k} → {1, . . . , k} such that
(∀1 ≤ i ≤ k) [fi(u1, . . . , uk) ≥ uϕ(i)].

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 78

Proof. Notice that φ from the proof of Theorem 4.6.4 is of arity m. Therefore,
φ ∈ Fmax

d,m and the same proof works.

The next theorem shows that for a given F ∈ Mul(Fmax
d), there is a uniform

bijective mapping from Theorem 4.6.4 (3); that is, a bijective mapping that works for
every possible collection of tuples.

Theorem 4.6.6. For a given F = 〈f1, . . . , fk〉 ∈ Mul(Fmax
d), where each fi : Dk → D,

1 ≤ i ≤ k, there is a bijective mapping ϕ : {1, . . . , k} → {1, . . . , k} such that for every
collection of k tuples u1, . . . , uk ∈ Dm, (∀1 ≤ i ≤ k) [fi(u1, . . . , uk) ≥ uϕ(i)].

Proof. By Theorem 4.6.4, for every collection of k tuples u1, . . . , uk ∈ Dm, there is a
bijective mapping with the required properties. Assume for contradiction that there
is no single mapping which preserves dominance for every collection of k m-tuples.

Define a finite-valued max-closed cost function of arity mdmk as

φ(x)
def
= ψ(x1, . . . , xm) + ψ(xm+1, . . . , x2m) + . . .+ ψ(x(dmk−1)m+1, . . . , xdmkm)

for some ψ ∈ Fmax
d,m . Let u and v be two tuples of aritymdmk. Since ψ is max-closed,

if u ≤ v, then φ(u) ≥ φ(v). Hence φ is a max-closed cost function. Therefore, F is
a multimorphism of φ. By Theorem 4.6.4, there is a bijective dominance-preserving
mapping for a collection of k (mdmk)-tuples which correspond to every possible col-
lection of k m-tuples.

In a similar way, we can characterise the fractional polymorphisms of Fmax
d .

Theorem 4.6.7. Let F = {〈r1, f1〉, . . . , 〈rn, fn〉}, where each ri is a positive rational
number such that

∑n
i=1 ri = k and each fi : Dk → D. Let Si = {j | fi(u1, . . . , uk) ≥

uj}, 1 ≤ i ≤ k. Then the following are equivalent:

1. F ∈ fPol(Fmax
d).

2. For every fixed collection of k tuples u1, . . . , uk ∈ Dm,

(∀I ⊆ {1, . . . , n}) [|
⋃
i∈I

Si| ≥
∑
i∈I

ri].

Proof. First we show (1)⇒ (2).
Let I ⊆ {1, . . . , n} and assume for contradiction that | ∪i∈I Si| <

∑
i∈I ri. Define

a cost function φ on Dm as

φ(x)
def
=

{
1 if x ≤ fi(u1, . . . , uk) for some i ∈ I,
0 otherwise.

We show that φ is max-closed. Let u and v be two m-tuples. If φ(u) = φ(v) = 1,
then the multimorphism inequality, as given in Definition 2.4.11, is satisfied. If either

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 79

φ(u) = 0 or φ(v) = 0 (or both), then φ(Max(u, v)) = 0 from the definition of φ, and
the multimorphism inequality is satisfied again. Hence φ is max-closed.

The following holds from the definition of φ:

k∑
i=1

φ(ui) =
⋃
i∈I

Si <
∑
i∈I

ri ≤
k∑
i=1

riφ(fi(u1, . . . , uk)).

Therefore, F is not a fractional polymorphism of φ which is a contradiction as φ
is a finite-valued max-closed cost function.

Now we show (2) ⇒ (1). Let u1, . . . , uk ∈ Dm be a fixed collection of k tuples.
We want to show that if (2) holds, then

k∑
i=1

φ(ui) ≥
n∑
i=1

riφ(fi(u1, . . . , uk)). (4.2)

Since all ri, 1 ≤ i ≤ n, are rational numbers, we have ri = pi/qi. Let q =
lcm(q1, . . . , qn).3 Then for every 1 ≤ i ≤ n, ri = ((piq)/qi)(1/q) = ki(1/q), where ki is
a natural number.

For every 1 ≤ i ≤ n, we replace the tuple fi(u1, . . . , uk), which has weight ri, with
ki copies of the same tuple where each new tuple has weight 1/q. Since

∑n
i=1 ri = k,

we have kq new tuples and we denote them v′1, . . . , v
′
kq. Clearly,

n∑
i=1

riφ(fi(u1, . . . , uk)) =

kq∑
i=1

(1/q)φ(v′i).

For every 1 ≤ i ≤ k, we replace the tuple ui, which has (implicit) weight 1, with q
copies of the same tuple where each new tuple has weight 1/q. We denote these new
tuples u′1, . . . , u

′
kq. Clearly,

k∑
i=1

φ(ui) =

kq∑
i=1

(1/q)φ(u′i).

Similarly to the proof of Theorem 4.6.4, consider a bipartite graph G = (V0, V1, E),
where V0 = {v′1, . . . , v′kq}, V1 = {u′1, . . . , u′kq}, and (v′i′ , u

′
j′) ∈ E ⇔ v′i′ replaced some

fi(u1, . . . , uk), and u′j′ replaced some uj and j ∈ Si.
Clearly, (2) implies Hall’s Condition on G. By Theorem 4.6.3, G has a perfect

matching. As edges in G preserve dominance on tuples, and every finite-valued max-
closed cost function is antitone by Proposition 4.4.4, Inequality (4.2) is satisfied.
Therefore, F ∈ fPol(Fmax

d).

3least common multiple

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 80

4.7 Summary

We have investigated the expressive power of valued constraints in general and max-
closed valued constraints in particular.

In the case of relations, we built on previously known results about the express-
ibility of an arbitrary relation in terms of binary or ternary relations. We were able to
prove, in a similar way, that an arbitrary max-closed relation can be expressed using
binary or ternary max-closed relations. The results about the collapse of the set of all
relations and all max-closed relations contrast sharply with the case of finite-valued
cost functions, where we showed an infinite hierarchy for max-closed cost functions.
This shows that the VCSP is not just a minor generalisation of the CSP – finite-
valued max-closed cost functions behave very differently from crisp max-closed cost
functions with respect to expressive power. We also showed the collapse of general
cost functions, by characterising the feasibility polymorphisms and fractional poly-
morphisms of general max-closed cost functions. This shows that allowing infinite
costs in max-closed cost functions increases their expressive power substantially, and
sometimes allows more finite-valued functions to be expressed.

We remark that all of our results about max-closed cost functions obviously have
equivalent versions for min-closed cost functions, that is, those which have the frac-
tional polymorphism {〈2,Min〉}. In the Boolean crisp case these are precisely the
relations that can be expressed by a conjunction of Horn clauses.

One of the reasons why understanding the expressive power of valued constraints
is important, is for the investigation of submodular functions. A cost function φ is
called submodular if it has the fractional polymorphism {〈1,Min〉, 〈1,Max〉}. Hence
submodular valued constraints can be characterised as min-max-closed valued con-
straints. Understanding the expressive power of max-closed valued constraints is a
natural first step towards understanding of the expressive power of submodular valued
constraints. And indeed, we will study the expressive power of submodular valued
constraints in the next two chapters.

Related work We remark on the relationship between our results and some pre-
vious work on the VCSP. Larrosa and Dechter have shown [LD00] that both the
so-called dual representation [DP89] and the hidden variable representation [Dec90],
which transform any CSP instance into a binary CSP instance, can be generalised to
the VCSP framework. However, these representations involve an exponential blow-
up (in the arity of the constraints) of the domain size (that is, the set of possible
values for each variable). The notion of expressibility that we are using in this thesis
always preserves the domain size. Our results clarify which cost functions can be
expressed using a given valued constraint language over the same domain, by intro-
ducing additional (hidden) variables and constraints; the number of these that are
required is fixed for any given cost function.

The class of relations which can be made max-closed by permuting domains of all
variables is called renamable, permutable, or switchable anti-Horn. Testing whether a
given VCSP instance consists of renamable max-closed cost functions can be done in

CHAPTER 4. EXPRESSIVE POWER OF FIXED-ARITY LANGUAGES 81

polynomial time for Boolean domains [Lew78], but is NP-complete for non-Boolean
domains [GC08].

Open problems It would be interesting to know expressive power of various other
classes of cost functions of different arities.

CHAPTER 5

Expressive Power of Submodular Functions

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan Turing (1912–1954)

This chapter is based on the following paper:

[ŽJ09a] S. Živný and P.G. Jeavons, Classes of Submodular Constraints Ex-
pressible by Graph Cuts. To appear in Constraints, 2009.
Earlier version in Proceedings of the 14th International Conference on
Principles and Practice of Contraint Programming (CP’08), volume
5202 of Lecture Notes in Computer Science, pages 112–127. Springer,
2008.

5.1 Introduction

In this chapter, we study the expressive power of binary submodular functions. Our
results present known and new classes of submodular functions which are expressible
by binary submodular functions.

Recall that SFMb is the minimisation problem for locally-defined submodular
functions. There is a close relationship between the expressive power of binary sub-
modular functions and solving the SFMb problem via (s, t)-Min-Cut: showing that
a class C of submodular functions is expressible by binary submodular functions is
equivalent to showing that the SFMb problem for functions from C can be solved via
(s, t)-Min-Cut.

As SFMb is equivalent to VCSP instances with bounded-arity submodular con-
straints, our results have important consequences for submodular VCSP instances.
We will present our results primarily in the language of pseudo-Boolean optimisation.
However, in Chapter 6, we will mention the consequences of our results for constraint
satisfaction problems and certain optimisation problems arising in computer vision.

82

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 83

5.2 Results

Recall from Section 2.5 that an instance of the SFM problem can be minimised
in polynomial time. The time complexity of the fastest known general algorithm for
SFM, and therefore for VCSP instances with submodular constraints, is O(n6+n5L),
where n is the number of variables and L is the look-up time (needed to evaluate the
cost of an assignment to all variables) [Orl09].

As discussed in more detail in Section 5.3, we will only deal with Boolean instances
of SFMb. Therefore, an instance of SFMb with n variables will be represented as
a polynomial in n Boolean variables, of some fixed bounded degree. The problem
of expressing Boolean submodular functions by binary submodular functions is then
equivalent to expressing Boolean submodular polynomials by binary submodular poly-
nomials.

A general algorithm for SFM can always be used for the more restricted SFMb,
but the special features of this more restricted problem sometimes allow more efficient
special-purpose algorithms to be used. (Note that we are focusing on exact algorithms
which find an optimal solution. See [CCJK05] for approximation algorithms for the
Max-CSP, which is a special case of the VCSP, and [FMV07] for approximation
algorithms for the SFM.) In particular, it has been shown that certain cases can
be solved much more efficiently by reducing to the (s, t)-Min-Cut problem; that is,
the problem of finding a minimum cut in a directed graph which includes a given
source vertex and excludes a given target vertex. For example, it has been known
since 1965 that the minimisation of quadratic submodular polynomials is equivalent
to finding a minimum cut in a corresponding directed graph [Ham65, BH02, CH].
Hence quadratic submodular polynomials can be minimised in O(n3) time, where n
is the number of variables.

A Boolean polynomial in at most 2 variables has degree at most 2, so any sum of
binary Boolean polynomials has degree at most 2; in other words, it is quadratic. It
follows that an efficient algorithm, based on reduction to (s, t)-Min-Cut, can be used
to minimise any class of functions that can be written as a sum of binary submodular
polynomials. We will say that a polynomial that can be written in this way, perhaps
with additional variables to be minimised over, is expressible by binary submodular
polynomials (see Section 5.3). The following classes of functions have all been shown
to be expressible by binary submodular polynomials in this way:1

• polynomials where all terms of degree 2 or more have negative coefficients (also
known as negative-positive polynomials) [Rhy70];

• cubic submodular polynomials [BM85];

• {0, 1}-valued submodular functions (also known as 2-monotone functions) [CKS01,
CCJK05];

1In fact, it is known that all Boolean polynomials (of arbitrary degree) are expressible by binary
polynomials [Ros75, BH02], but the general construction does not preserve submodularity; that is,
the resulting binary polynomials are not necessarily submodular.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 84

All these classes of functions have been shown to be expressible by binary sub-
modular polynomials and hence minimisable in cubic time (in the total number of
variables). Moreover, several classes of submodular functions over non-Boolean do-
mains have also been shown to be expressible by binary submodular functions and
hence minimisable in cubic time [BKR96, CCJK04, CCJK05].

Our results are twofold. First, we provide alternative, and often much simpler,
proofs of the expressibility results for the above classes of functions. Second, we
present a new class of submodular functions of arbitrary arities expressible by binary
submodular polynomials, and hence minimisable in cubic time (in the total number
of variables).

This chapter is organised as follows. Section 5.3 provides necessary information
on submodular functions. In Section 5.4, we show equivalence between the (s, t)-
Min-Cut problem and the minimisation problem for quadratic submodular polyno-
mials. In Section 5.5, we present alternative proofs of known expressibility results
for so-called negative-positive, {0, 1}-valued and ternary submodular functions. In
Section 5.6, we present a new class of submodular functions of arbitrary arities ex-
pressible by binary submodular functions.

5.3 Preliminaries

Recall that a cost function of arity n is just a mapping from Dn to R for some
fixed finite set D. Cost functions can be added and multiplied by arbitrary positive
real values, hence for any given set of cost functions, Γ, we define the convex cone
generated by Γ, as follows.

Definition 5.3.1 (Cone). For any set of cost functions Γ, the cone generated by Γ,
denoted Cone(Γ), is defined by:

Cone(Γ)
def
= {α1φ1 + · · ·+ αrφr | r ≥ 1; φ1, . . . , φr ∈ Γ; α1, . . . , αr ≥ 0}.

Note that Definition 2.3.1 of expressibility can be stated equivalently as follows:

Definition 5.3.2 (Expressibility). A cost function φ of arity n is said to be expressible
by a set of cost functions Γ if φ = miny1,...,yj

φ′(x1, . . . , xn, y1, . . . , yj), for some φ′ ∈
Cone(Γ). The variables y1, . . . , yj are called extra (or hidden) variables, and φ′ is
called a gadget for φ over Γ.

Remark 5.3.3. Recall from Definition 2.4.1 and Theorem 2.4.19 that we care about
expressibility up to additive and multiplicative constants.

Lemma 5.3.4 ([CCJK06]). Let D be a finite lattice-ordered set. A cost function
φ : Dm → R is submodular if, and only if, the following two conditions are satisfied:

1. φ satisfies that for all m-tuples u, v with φ(u), φ(v) <∞,

φ(Min(u, v)) + φ(Max(u, v)) ≤ φ(u) + φ(v).

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 85

2. Min,Max ∈ FPol({φ}).

The second condition in Lemma 5.3.4 implies that the set of m-tuples on which
φ is finite is a sublattice of the set of all m-tuples, where the lattice operations are
the operations Min and Max. Theorem 49.2 of [Sch03] proves that any real-valued
submodular function defined on such a sublattice can be extended to a submodular
function defined on the full lattice.2 Hence, by Lemma 5.3.4, any submodular function
φ can be expressed as the sum of a finite-valued submodular function φfin, and a
submodular relation φrel = Feas(φ), that is, φ = φfin + φrel.

It is known that all submodular relations are binary decomposable (that is, equal
to the sum of their binary projections) [JCC98], and hence expressible using only
binary submodular relations. Therefore, when considering which cost functions are
expressible by binary submodular cost functions, we can restrict our attention to
finite-valued cost functions without any loss of generality.

Remark 5.3.5. We discuss more the restriction to finite-valued submodular cost
functions. Given a finite lattice-ordered set D, let φ be a submodular cost function
defined on a sublattice D′ of D. The goal is to change the definition of f to the whole
of D so that the resulting cost function is submodular, and the minimisation problem
is not affected by these changes. In other words, we would like to find a finite-valued
submodular f̄ such that f = f̄ on D′, min f = min f̄ , and the minimum is achieved
on D′.

Schrijver has shown [Sch03] that for a given φ as above, there is an α ∈ R+ such
that f̄(u) = f(ū)+α|ū4u| is a finite-valued submodular cost function, where ū is the
smallest element above u such that f(ū) <∞, and ū4 u is the symmetric difference
between the sets corresponding to ū and u in the 0-1 representation of D. Clearly,
the same holds for every α′ ≥ α. For example, in a VCSP instance with submodular
valued constraints over n variables, it is sufficient to choose α′ ≥ nM , where M is
the maximum finite cost of all cost functions.

We have shown that when dealing with the expressibility problem for submodular
cost functions, we can restrict ourselves to only finite-valued cost functions without
any loss of generality. Now we show that we can restrict ourselves to only Boolean
finite-valued cost functions.

Remark 5.3.6. Note that any variable over a non-Boolean domain D = {0, 1, . . . , d−
1} of size d can be encoded by d − 1 Boolean variables. This process is known as
Booleanisation. One such encoding is the following: en(i) = 0d−i−11i. Using this
encoding function we can replace each variable with d− 1 new Boolean variables and
impose a (submodular) relation on these new variables which ensures that they only
take values in the range of the encoding function en. Note that en(max(a, b)) =

2Note that this result is not obvious because simply changing the infinite cost to some big, but
finite constant M does not work: for c1 < c2, ∞+ c1 ≥ ∞+ c2, but M + c1 < M + c2. For instance,
consider the submodular cost function φ defined as follows: φ(0, 0) = φ(1, 0) = ∞, φ(0, 1) = 1
and φ(1, 1) = 2. Changing φ(0, 0) = φ(1, 0) = M for any finite number M would violate the
submodularity condition.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 86

max(en(a), en(b)) and en(min(a, b)) = min(en(a), en(b)), so this encoding preserves
submodularity. Therefore, in this chapter, we will focus on problems over Boolean
domains, that is, where D = {0, 1}.

Remark 5.3.7. Because every chain in a lattice-ordered set has to be mapped to a
chain, and different chains have to be mapped to different chains, any submodularity-
preserving encoding of a non-Boolean variable over a d-element domain by Boolean
variables needs at least d variables. However, for practical purposes, certain subclasses
of non-Boolean submodular functions which can be encoded by Boolean submodular
functions with fewer variables have been studied, as well as approximation algorithms
for these problems [RKAT08, KLT09].

Any cost function of arity m can be represented as a table of values of size Dm.
Moreover, a finite-valued cost function φ : Dm → R on a Boolean domain D = {0, 1}
can also be represented as a polynomial in m (Boolean) variables with coefficients
from R, and the degree of this polynomial is at most m (such functions are sometimes
called pseudo-Boolean functions [BH02, CH]). Over a Boolean domain we have x2 =
x, so the degree of any variable in any term can be restricted to 0 or 1, and this
polynomial representation is then unique. Hence, in what follows, we will often refer
to a finite-valued cost function on a Boolean domain and its corresponding polynomial
interchangeably.

For polynomials over Boolean variables there is a standard way to define deriva-
tives of each order (see [BH02, CH]). For example, the second-order derivative of
a polynomial p, with respect to the first two indices, denoted δ12(x), is defined as
p(1, 1,x)− p(1, 0,x)− p(0, 1,x) + p(0, 0,x). Derivatives for other pairs of indices are
defined analogously. It has been shown in [NWF78] that a polynomial p(x1, . . . , xn)
over Boolean variables x1, . . . , xn represents a submodular cost function if, and only
if, its second-order derivatives δij(x) are non-positive for all 1 ≤ i < j ≤ n and
all x ∈ Dn−2. An immediate corollary is that a quadratic polynomial represents a
submodular cost function if, and only if, the coefficients of all quadratic terms are
non-positive.

Remark 5.3.8. Note that a cost function is called supermodular if all its second-
order derivatives are non-negative. Clearly, f is submodular if, and only if, −f is
supermodular, so it is straightforward to translate results about supermodular func-
tions, such as those given in [CCJK05] and [PY05], into similar results for submodular
functions, and we will use this observation several times below. Cost functions which
are both submodular and supermodular (in other words, all second-order derivatives
are equal to zero) are called modular , and polynomials corresponding to modular cost
functions are linear [BH02, CH].

Example 5.3.9. For any set of indices I = {i1, . . . , im} ⊆ {1, . . . , n} we can define a
cost function φI in n variables as follows:

φI(x1, . . . , xn)
def
=

{
−1 if (∀i ∈ I)(xi = 1),

0 otherwise.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 87

The polynomial representation of φI is p(x1, . . . , xn) = −xi1 . . . xim , which is a poly-
nomial of degree m. By checking the second-order derivatives of p, it follows that φI
is submodular.

However, the function φI is also expressible by binary polynomials, using a single
extra variable, y, as follows:

φI(x1, . . . , xn) = min
y∈{0,1}

y(m− 1−
∑
i∈I

xi).

We remark that this is a special case of the expressibility result for negative-positive
polynomials first obtained in [Rhy70].

Definition 5.3.10. We denote by Γsub,k the set of all finite-valued submodular cost

functions of arity at most k on a Boolean domain D, and we set Γsub
def
=

⋃
k Γsub,k.

5.4 Reduction to (s, t)-Min-Cut

In this section, we show equivalence between the minimisation problem for quadratic
submodular polynomials and the (s, t)-Min-Cut problem.

Theorem 5.4.1 ([Ham65]). (s, t)-Min-Cut and the minimisation problem of poly-
nomials over Γsub,2 are polynomial-time equivalent.

Proof. First we show that any instance 〈G = 〈V,E〉, w, s, t〉, where w : E → R+ and
s, t ∈ V , of (s, t)-Min-Cut is reducible to the minimisation problem for quadratic
submodular polynomials:

• every vertex from V is represented by a single Boolean variable;

• by adding a linear term Ms, for large M , we impose a unary constraint on s to
take the value 0;

• similarly, by adding a linear term M(1− t), we impose a unary constraint on t
to take the value 1;

• for every edge 〈u, v〉 ∈ E, we add a submodular quadratic term av−auv, where
a = w(〈u, v〉) is the weight of the edge 〈u, v〉 in G (note that av − auv returns
a if, and only if, u = 0 and v = 1, and 0 otherwise).

There is equivalence between (s, t)-cuts in G, that is, subsets of vertices including
s but excluding t, and assignments of zeros and ones to variables in the corresponding
polynomial which set s to 0 and t to 1. (Value 0 corresponds to vertices in the cut.)

On the other hand, we show now that any submodular quadratic polynomial can
be minimised by reducing to (s, t)-Min-Cut.

Let p be an arbitrary submodular quadratic polynomial, that is,

p(x1, . . . , xn) = a0 +
n∑
i=1

aixi +
∑

1≤i<j≤n

aijxixj,

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 88

where aij ≤ 0 for all 1 ≤ i < j ≤ n. Then,

p = a′0 +
∑
i∈P

a′ixi +
∑
j∈N

a′j(1− xj) +
∑

1≤i<j≤n

a′ij(1− xi)xj,

where P ∩N = ∅, P ∪N = {1, 2, . . . , n}, a′ij = −aji, and a′i, a
′
j, a
′
ij ≥ 0. (This is

known as a posiform [BH02, CH].)
Now p can be easily minimised by reducing to (s, t)-Min-Cut:

1. vertices of the graph are x1, . . . , xn and two extra vertices s and t;

2. there is an edge going from xi to xj with weight a′ij;

3. for every i ∈ P , there is an edge going from s to xi with weight a′i;

4. for every j ∈ N , there is an edge going from xj to t with weight a′j.

Again, there is equivalence between (s, t)-cuts in the constructed graph and assign-
ments (which set s to 0 and t to 1) of zeros and ones to the posiform representation
of p.

Corollary 5.4.2. A quadratic submodular polynomial in n Boolean variables can be
minimised in O(n3) time.

Proof. By Theorem 5.4.1, and using some standard cubic-time algorithm for (s, t)-
Min-Cut [GT88].

Example 5.4.3. Consider the following quadratic submodular polynomial:

p = 8 + 12x1 + 7x2 + 11x3 − 5x4 − 7x5

− x1x2 − 7x1x4 − 3x2x3 − 4x3x4 − 5x3x5 − x4x5.

We can rewrite p as in the proof of Theorem 5.4.1 as follows:

p = 8 + 12x1 + 7x2 + 11x3 − 5x4 − 7x5

+ (1− x1)x2 − x2 + 7(1− x1)x4 − 7x4 + 3(1− x2)x3 − 3x3

+ 4(1− x3)x4 − 4x4 + 5(1− x3)x5 − 5x5 + (1− x4)x5 − x5

= −21 + 12x1 + 6x2 + 8x3 + 16(1− x4) + 13(1− x5)

+ (1− x1)x2 + 7(1− x1)x4 + 3(1− x2)x3 + 4(1− x3)x4 + 5(1− x3)x5 + (1− x4)x5.

We can now build a graph G with 5 vertices corresponding to variables x1 through
x5 and two extra vertices s and t and add edges accordingly (see Figure 5.1).

For every assignment v of values 0 and 1 to variables x1, . . . , x5, p(v(x1), . . . , v(x5))
is equal to the size of the (s, t)-cut in G given by v minus 21 (for the constant term
in the posiform representation of p). The minimum cut in G, with value 16, is the
set {s, x1, x2, x3}. Therefore, the assignment x1 = x2 = x3 = 0 and x4 = x5 = 1
minimises the polynomial p with total value 16− 21 = −5.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 89

s x2

x1

x3

x4

x5

t
6

12

8

1

3

7

4

5

1

13

16

Figure 5.1: Graph G corresponding to polynomial p (Example 5.4.3).

5.5 Known classes of expressible functions

In this section, we present new and simpler proofs for some known expressibility
results. We will focus on three classes of cost function on a Boolean domain: sub-
modular cost functions whose corresponding polynomials have negative coefficients
for all terms of degree ≥ 2; {0, 1}-valued submodular cost functions; and ternary
submodular cost functions. We show that cost functions from these three classes are
expressible over Γsub,2.

Definition 5.5.1. Define Γneg,k to be the set of all cost functions over a Boolean do-
main, of arity at most k, whose corresponding polynomials have negative coefficients

for all terms of degree greater than or equal to 2. Set Γneg
def
=

⋃
k Γneg,k.

It is well known that these cost functions, sometimes called negative-positive, are
submodular [BH02]. The minimisation of cost functions chosen from Γneg using min-
cuts was first studied in [Rhy70], but we give a simplified proof.

Theorem 5.5.2 ([Rhy70]). Γneg ⊆ 〈Γsub,2〉.

Proof. We use the gadget we have already seen in Example 5.3.9: Given any polyno-
mial p representing a cost function from Γneg, we can replace each term −axi1 . . . xik
of p of degree k ≥ 3, where a > 0, by

−axi1 . . . xik = min
y∈{0,1}

{a(−y + y
∑

j∈{1,...,k}

(1− xij)}.

In this way, we introduce a new variable for every term of degree ≥ 3.

Corollary 5.5.3. A polynomial p in n Boolean variables over Γneg can be minimised
in O((n+ r)3) time, where r is the number of terms of degree 3 or greater in p.

Next we consider the class of cost functions over a Boolean domain which take
only the cost values 0 and 1. (Such constraints can be used to model optimisation
problems such as Max-CSP, see [CCJK05].)

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 90

Definition 5.5.4. Define Γ{0,1},k to be the set of all {0, 1}-valued submodular cost

functions over a Boolean domain, of arity at most k, and set Γ{0,1}
def
= ∪kΓ{0,1},k.

The minimisation of submodular cost functions from Γ{0,1} has been studied
in [CKS01], where they have been called 2-monotone functions. The equivalence
of 2-monotone and submodular cost functions and a generalisation of 2-monotone
functions to non-Boolean domains3 has been shown in [CCJK05].

Definition 5.5.5. A cost function φ is called 2-monotone if there exist two sets
A,B ⊆ {1, . . . , n} such that φ(x) = 0 if A ⊆ x or x ⊆ B and φ(x) = 1 otherwise
(where A ⊆ x means ∀i ∈ A, xi = 1 and x ⊆ B means ∀i 6∈ B, xi = 0).

Using the notion of expressive power we are able to give a very simple proof of
the following result:

Theorem 5.5.6 ([CKS01]). Γ{0,1} ⊆ 〈Γsub,2〉.

Proof. Any 2-monotone cost function φ can be expressed over Γsub,2 using 2 extra
variables, y1, y2:

φ(x) = min
y1,y2∈{0,1}

{(1− y1)y2 + y1

∑
i∈A

(1− xi) + (1− y2)
∑
i 6∈B

xi}.

Corollary 5.5.7. A polynomial p in n Boolean variables over Γ{0,1} can be minimised
in O((n+ r)3) time, where r is the number of 2-monotone cost functions represented
in p.

Finally, we consider the class Γsub,3 of ternary submodular cost functions over a
Boolean domain. This class has been studied in [BM85], from where we obtain the
following useful characterisation of cubic submodular polynomials.

Lemma 5.5.8 ([BM85]). A cubic polynomial p(x1, . . . , xn) over Boolean variables
represents a submodular cost function if, and only if, it can be written as

p(x1, . . . , xn) = a0 +
∑
{i}∈C+

1

aixi −
∑
{i}∈C−1

aixi −
∑
{i,j}∈C2

aijxixj

+
∑

{i,j,k}∈C+
3

aijkxixjxk −
∑

{i,j,k}∈C−3

aijkxixjxk,

where C2 denotes the set of quadratic terms, and C+
i (C−i) denotes the set of terms

of degree i with positive (negative) coefficients, for i = 1, 3, and

1. ai, aij, aijk ≥ 0 ({i} ∈ C+
1 ∪ C−1 , {i, j} ∈ C2, {i, j, k} ∈ C+

3 ∪ C−3), and

3In [CCJK05], 2-monotone cost functions are defined over lattice-ordered sets and called gener-
alised 2-monotone cost functions. In [KL08], these are called just 2-monotone cost functions.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 91

2. ∀{i, j} ∈ C2, aij +
∑

k|{i,j,k}∈C+
3
aijk ≤ 0.

This characterisation, together with the notion of expressive power, allows us to
obtain a very simple proof of the following result:

Theorem 5.5.9 ([BM85]). Γsub,3 ⊆ 〈Γsub,2〉.

Proof. Let p be a polynomial representing an arbitrary cost function in Γsub,3. By
submodularity, all quadratic terms in p are non-positive. We already know how to
express a negative cubic term using a gadget over Γsub,2 (Theorem 5.5.2). To express
a positive cubic term, consider the following identity:

xixjxk − xixj − xixk − xjxk = min
y∈{0,1}

{(1− xi − xj − xk)y}.

Hence, we can replace a positive cubic term aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

It remains to check that all quadratic coefficients of the resulting polynomial are non-
positive. However, this is ensured by the second condition from Lemma 5.5.8.

Corollary 5.5.10. A cubic submodular polynomial p in n Boolean variables can be
minimised in O((n+ r)3), where r is the number of cubic terms in p.

Remark 5.5.11. We remark that the proof of Theorem 5.5.9 given in [BM85] was
obtained using a different approach based on the so-called conflict graphs of a super-
modular polynomial (see [BH02, CH]). Such graphs have been shown to be bipartite,
and therefore the problem of finding a maximum weight stable set can be reduced to
a flow problem. However, the resulting time complexity is the same.

5.6 New classes of expressible functions

In this section, we present new classes of submodular cost functions which can be
expressed by binary submodular cost functions. First, we derive a necessary condition
for a 4-ary cost function over a Boolean domain to be submodular. We also present
some sufficient conditions, which give rise to new classes of submodular cost functions
which can be expressed over Γsub,2, and hence minimised efficiently. We prove the
sufficient conditions first for 4-ary submodular cost functions and then generalise
them to k-ary submodular cost functions for every k ≥ 4.

We start with submodular cost functions of arity 4. One might hope to obtain
a simple characterisation of 4-ary submodular cost functions over a Boolean domain
similar to Lemma 5.5.8. However, it has been shown that testing whether a given
quartic Boolean polynomial is submodular is co-NP-complete [Cra89, GS88]. Hence,
one is unlikely to find a polynomial-time checkable characterisation, as this would
prove that P=NP. However, we obtain the following necessary condition.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 92

Lemma 5.6.1. If a quartic polynomial p(x1, . . . , xn) over Boolean variables represents
a submodular cost function, then it can be written such that, for all {i, j} ∈ C2:

1. aij ≤ 0, and

2. aij +
∑

k|{i,j,k}∈C+
3
aijk +

∑
k,l|{i,j,k,l}∈C+

4
aijkl + Fij ≤ 0, where

Fij =
∑

k|{i,j,k}∈C−3 ∧{i,j,k,.}∈C
+
4

aijk +
∑

k,l|{i,j,k,l}∈C−4 ∧{i,j,k,.},{i,j,l,.}∈C
+
4

aijkl,

C2 denotes the set of quadratic terms, and C+
i (C−i) denotes the set of terms of degree

i with positive (negative) coefficients, for i = 3, 4.

Proof. Let p be a quartic submodular polynomial and let i and j be given, then
δij(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn), the second-order derivative of p with re-
spect to the ith and jth variable, is equal to

δij = aij +
∑

k|{i,j,k}∈C+
3

aijkxk +
∑

k,l|{i,j,k,l}∈C+
4

aijklxkxl

−
∑

k|{i,j,k}∈C−3

aijkxk −
∑

k,l|{i,j,k,l}∈C−4

aijklxkxl.

Consider an assignment which sets xk = 1 if k = i or k = j, and xk = 0 otherwise.
From submodularity, aij ≤ 0, which proves the first condition. By setting xk = 1 for
all k such that {i, j, k} ∈ C+

3 and xk = xl = 1 for all k, l such that {i, j, k, l} ∈ C+
4 , we

get the second condition. We set to 1 all variables which occur in some positive cubic
or quartic term. The second condition then says that the sum of all these positive
coefficients minus those which are forced, by our setting of variables, to be 1 (Fij), is
at most 0. (Note that this also proves Lemma 5.5.8.)

Next we show a useful example of a 4-ary submodular cost function which can be
expressed over the binary submodular cost functions using one extra variable.

Example 5.6.2. Let φ be the 4-ary cost function defined as follows: φ(x) = min{2k, 5},
where k is the number of 0s in x ∈ {0, 1}4. The corresponding quartic polynomial
representing φ is

p(x1, x2, x3, x4) = 5 + x1x2x3x4 − x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

By considering second-order derivatives of p, it can be checked that p is submodular.
For instance, δ12(x3, x4), the second-order derivative of p with respect to the first
two variables, is equal to x1x2x3x4 − 1. Clearly, δ12(x3, x4) ≤ 0. It can be shown
by a simple case analysis that p cannot be expressed as a quadratic polynomial with
non-positive quadratic coefficients (from the definition of p, the polynomial would
have to be 5 − x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x3x4 which is not equal to p on
x1 = x2 = x3 = x4 = 1).

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 93

However, p can be expressed over Γsub,2 using just one extra variable, via the
following gadget:

p(x1, x2, x3, x4) = min
y∈{0,1}

{5 + (3− 2x1 − 2x2 − 2x3 − 2x4)y}.

Definition 5.6.3. Using the same notation as in Lemma 5.6.1, define Γsuff,4 to be the
set of all 4-ary submodular cost functions over a Boolean domain whose corresponding
quartic polynomials satisfy, for every i < j,

aij +
∑

k|{i,j,k}∈C+
3

aijk +
∑

k,l|{i,j,k,l}∈C+
4

aijkl ≤ 0. (5.1)

Theorem 5.6.4. Γsuff,4 ⊆ 〈Γsub,2〉.

Proof. Let φ ∈ Γsuff,4 and let p be the corresponding polynomial which represents
φ. First, replace all negative cubic and quartic terms using the construction in The-
orem 5.5.2. As in the proof of Theorem 5.5.9, replace every positive cubic term
aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

Using the same construction as in Example 5.6.2, replace every positive quartic term
aijklxixjxkxl with

min
y∈{0,1}

{aijkl(3− 2xi − 2xj − 2xk − 2xl)y

+ aijkl(xixj + xixk + xixl + xjxk + xjxl + xkxl)}.

It only remains to check that all quadratic coefficients in the resulting polynomial are
non-positive. However, this is ensured by the definition of Γsuff,4 and by the choice of
the gadgets.

Our next example shows that Γsuff,4 (Γsub,4.

Example 5.6.5. Define a 4-ary submodular cost function φ as follows: φ(x) =
min(3k, 7) + 2y + z, where k is the number of 0s in x ∈ {0, 1}4; y = 1 if, and only
if, x = 〈1, 1, 1, 0〉 (and 0 otherwise), and z = 1 if, and only if, x = 〈1, 1, 0, 0〉 (and 0
otherwise). The corresponding polynomial representing φ is

p(x1, x2, x3, x4) = 7 + 2x1x2x3x4 − 2x1x2x4 − x1x3x4 − x2x3x4

− x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

By considering the second-order derivatives of p, it can easily be checked that φ is
submodular. However, φ 6∈ Γsuff,4: for i = 1 and j = 2, the expression in Equation 5.1
on page 93 gives 2. Hence Theorem 5.6.4 does not apply to φ.

As in Example 5.6.2, by a simple case analysis (system of equations), it can be
shown that φ cannot be expressed over Γsub,2 without extra variables or with just one

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 94

extra variable. However, the following gadget shows that φ is in fact expressible over
Γsub,2 using just two extra variables:

p(x1, x2, x3, x4) = 7− x1x4 − x2x4 − x3x4

+ min
y1,y2∈{0,1}

{2y1 + 3y2 − y1y2 − y1(x1 + x2 + 2x3)− y2(x1 + x2 + 2x4)}.

We now generalise the expressibility result of submodular cost functions from
Γsuff,k to subclasses of submodular cost functions of arbitrary arities.

Definition 5.6.6. We define Γsuff,k to be the set of all k-ary submodular cost functions
over a Boolean domain whose corresponding polynomials satisfy, for every 1 ≤ i <
j ≤ k,

aij +
k−2∑
s=1

∑
{i,j,i1,...,is}∈C+

s+2

ai,j,i1,...,is ≤ 0,

where C+
i denotes the set of terms of degree i with positive coefficients.

In other words, for any 1 ≤ i < j ≤ k, the sum of aij and all positive coefficients
of cubic and higher-degree terms which include xi and xj is non-positive.

Theorem 5.6.7. For every k ≥ 4, Γsuff,k ⊆ 〈Γsub,2〉.

Proof. First we show how to uniformly generate gadgets over Γsub,2 for polynomials
of the following type:

pk(x1, . . . , xk) =
k∏
i=1

xi −
∑

1≤i<j≤k

xixj.

Note that pk(x) = −
(
m
2

)
, where m is the number of 1s in x, and

(
0
2

)
=
(

1
2

)
= 0, unless

m = k (x consists of 1s only), in which case pk(x) = −
(
m
2

)
+ 1.

We claim, that for any k ≥ 4, the following, denoted by Pk, is a gadget for pk:

pk(x1, . . . , xk) = min
y0,...,yk−4∈{0,1}

{y0(3− 2
k∑
i=1

xi) +
k−4∑
j=1

yj(2 + j −
k∑
i=1

xi)}.

Notice that in the case of k = 4, the gadget corresponds to the gadget used in the proof
of Theorem 5.6.4, and therefore the base case is proved. We proceed by induction on
k. Assume that Pi is a gadget for pi for every i ≤ k. We prove that Pk+1 is a gadget
for pk+1.

Firstly, take the gadget Pk for pk, and replace every sum
∑k

i=1 xi with
∑k+1

i=1 xi.
We denote the new gadget P ′. By the inductive hypothesis, it is not difficult to see
that P ′ is a valid gadget for pk+1 on all assignments with at most k − 1 1s. Also,
on any assignment with exactly k 1s, P ′ returns −

(
k
2

)
+ 1. On the assignment with

k + 1 1s, P ′ returns: −
(
k
2

)
+ 1 − 2 − 1(k − 4). This can be simplified as follows:

−
(
k
2

)
+ 1 − 2 − k + 4 = −

(
k
2

)
+ 1 − k + 2 = −(

(
k
2

)
+
(
k
1

)
) + 1 + 2 = −

(
k+1

2

)
+ 1 + 2.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 95

Hence P ′ is almost a gadget for pk+1: we only need to subtract 1 on an assignment
which has exactly k 1s, and subtract 2 on the assignment consisting of 1s only. But
this is exactly what minyk−3∈{0,1}{yk−3(2 + (k − 3) −

∑k+1
i=1 xi)} does. Therefore, we

have established that Pk+1 is a gadget for pk+1 over Γsub,2 with k − 3 extra variables.
Given a cost function φ ∈ Γsuff,k, let p be the corresponding polynomial which

represents φ. By the construction in Theorem 5.5.2, we can replace all negative terms
of degree ≥ 3. By the constructions in Theorem 5.5.9 and Theorem 5.6.4, we can
replace all positive cubic and quartic terms. Now for any positive term of degree d,
5 ≤ d ≤ k, we replace the term with the gadget Pd and add

∑
1≤i<j≤k xixj back in.

This construction works if all quadratic coefficients of the resulting polynomial are
non-positive. However, this is ensured by the definition of Γsuff,k and by the choice of
the gadgets.

Corollary 5.6.8. A polynomial p in n Boolean variables over Γsuff can be minimised
in O((n + r)3) time, where r is the number of cost functions of arity 3 or greater
represented in p.

5.7 Summary

We have studied the expressive power of binary Boolean submodular functions. In the
pseudo-Boolean optimisation language, we studied classes of submodular functions
whose polynomial representation can be decomposed into a sum of binary submodular
polynomials, over a possibly larger set of variables.

We have shown new and simpler proofs of known results for a range of special
classes. Moreover, we have shown a new class of submodular functions of arbitrary
arities which can be expressed by binary submodular functions. Consequently, we
have shown in a uniform way that all these classes of submodular functions can be
minimised efficiently by reducing to the (s, t)-Min-Cut problem. The same new
class of functions has recently been obtained independently by Zalesky [Zal08] using
different gadgets.

Chapter 6 studies the question of which submodular functions are expressible by
binary submodular functions in more depth, obtains a more general class of expressible
functions and also discusses applications of these results to VCSP instances with
submodular constraints.

Related work There has been a lot of research on subclasses of pseudo-Boolean
functions which can be minimised4 using (s, t)-Min-Cut or reduced to this problem
by switching a subset of variables (see [BH02] for a recent survey). Note that switching
a subset of variables does not preserve submodularity.

In Section 5.5, we discussed the class of negative-positive (also known as almost-
positive) functions. This class has been studied in [Bal70, Rhy70, PR75, PQ82].

4Most papers on pseudo-Boolean optimisation deal with the maximisation problem, and therefore
talk about supermodular functions, rather than submodular functions. However, the maximisation
problem of supermodular functions is equivalent to the minimisation problem of submodular func-
tions.

CHAPTER 5. EXPRESSIVE POWER OF SUBMODULAR FUNCTIONS 96

Functions which can be made negative-positive by switching a subset of variables are
called unate functions. The class of unate functions has been studied and shown to
be recognisable in polynomial time in [SdWC90]. Note that unate functions are not
in general submodular.

The class of cost function which can be made submodular by permuting the do-
mains of all variables is called renamable, permutable, or switchable submodular.
Testing whether a given binary VCSP instance consists of renamable submodular
cost functions can be done in polynomial time for any finite domain [Sch07].

CHAPTER 6

Non-Expressibility of Submodular Functions

A man should look for what is, and not for what he thinks should be.
Albert Einstein (1879–1955)

This chapter is based on the following paper:

[ŽCJ09] S. Živný, D.A. Cohen, and P.G. Jeavons. The Expressive Power
of Binary Submodular Functions. Discrete Applied Mathematics,
157(15):3347–3358, 2009.
Earlier version in Proceedings of the 34th International Symposium
on Mathematical Foundations of Computer Science (MFCS’09), vol-
ume 5734 of Lecture Notes in Computer Science, pages 744–757.
Springer, 2009.

6.1 Introduction

In Chapter 5, we studied the expressive power of binary submodular functions. We
have seen that showing that a class C of submodular functions is expressible by binary
submodular functions is equivalent to showing that functions from C can be minimised
via (s, t)-Min-Cut. Furthermore, showing that a class C of submodular functions
is not expressible by binary submodular functions is equivalent to showing that the
SFMb problem for functions from C cannot be reduced to the (s, t)-Min-Cut problem
via the expressibility reduction.

It has previously been an open problem whether all Boolean submodular functions
can be decomposed into a sum of binary submodular functions over a possibly larger
set of variables. This problem has been considered within several different contexts
in computer science, including computer vision, artificial intelligence, and pseudo-
Boolean optimisation. Using the connection between the expressive power of valued

97

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 98

constraints and certain algebraic properties of functions described in earlier chapters,
we answer this question negatively.

6.2 Results

The series of positive expressibility results in Chapter 5 naturally raises the following
question:

Problem 6.2.1. Are all submodular polynomials expressible by binary submodular
polynomials, over a possibly larger set of variables?

Each of the above expressibility results was obtained by an ad-hoc construction,
and no general technique1 has previously been proposed which is sufficiently powerful
to address Problem 6.2.1.

Using the algebraic approach to characterising the expressive power of valued con-
straint developed by Cohen et al. in [CCJ06] and discussed in Chapter 3, we are able
to give a negative answer to Problem 6.2.1: we show that there exist submodular
polynomials of arity 4 that cannot be expressed by binary submodular polynomi-
als. More precisely, we characterise exactly which submodular polynomials of arity
4 are expressible by binary submodular polynomials and which are not. In addition,
we show that any submodular polynomial of arity 4 is either expressible by binary
submodular polynomials with only a small number of extra variables, or it is not
expressible at all.

On the way to establishing these results we show that two broad families of sub-
modular functions, known as upper fans and lower fans, are all expressible by binary
submodular functions. This provides a large new class of submodular polynomi-
als of all arities that are expressible by binary submodular polynomials and hence
are solvable efficiently by reduction to (s, t)-Min-Cut. We use the expressibility
of this family, and the existence of non-expressible functions, to refute a conjecture
from [PY05] on the structure of the extreme rays of the cone of Boolean submodular
functions, and suggest a more refined conjecture of our own.

The rest of this chapter is organised as follows. In Section 6.3, we show some new
classes of submodular functions to be expressible by binary submodular functions.
In particular, we show that all upper fans and lower fans of arbitrary arities are ex-
pressible by binary submodular functions. In Section 6.4, we characterise precisely
the multimorphisms of all binary submodular functions. Moreover, we characterise
the fractional clone of all binary submodular functions, and we present a sufficient
condition for a mapping to belong to the multi-clone of all submodular functions.
The characterisation of the multi-clone of binary submodular functions helps us to
prove, in Section 6.5, the main result of this chapter: there are submodular functions
which are not expressible by binary submodular functions. Moreover, we charac-
terise precisely which submodular functions of arity 4 can be expressed by binary

1For example, standard combinatorial counting techniques cannot resolve this question because
we allow arbitrary real-valued coefficients in submodular polynomials. We also allow an arbitrary
number of additional variables.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 99

submodular functions. Our results imply limitations on the expressibility reduction
and establish for the first time that it cannot be used in general to minimise arbitrary
submodular functions. Finally, we refute a conjecture of Promislow and Young [PY05]
on the structure of the extreme rays of the cone of Boolean submodular functions.
In Section 6.6, we present some results on the recognition problem for submodular
functions. Section 6.7 summarises this chapter and comments on related work.

6.3 Expressibility of upper fans and lower fans

We begin by defining some particular families of submodular cost functions, first
described in [PY05], which will turn out to play a central role in our analysis.

Definition 6.3.1. Let L be a lattice. We define the following cost functions on L:

• For any set A of pairwise incomparable elements {a1, . . . , am} ⊆ L, such that
each pair of distinct elements (ai, aj) has the same least upper bound,

∨
A, the

following cost function is called an upper fan:

φA(x)
def
=

−2 if x ≥

∨
A,

−1 if x 6≥
∨
A, but x ≥ ai for some i,

0 otherwise.

• For any set B of pairwise incomparable elements {a1, . . . , am} ⊆ L, such that
each pair of distinct elements (ai, aj) has the same greatest lower bound,

∧
B,

the following cost function is called a lower fan:

φB(x)
def
=

−2 if x ≤

∧
B,

−1 if x 6≤
∧
B, but x ≤ ai for some i,

0 otherwise.

We call a cost function a fan if it is either an upper fan or a lower fan. Note
that our definition of fans is slightly more general than the definition in [PY05]. In
particular, we allow the set A to be empty, in which case the corresponding upper fan
φA is a constant function. It is not hard to show that all fans are submodular [PY05].

Note that when D = {0, 1}, the set Dn with the product ordering is isomorphic
to the lattice of all subsets of an n-element set ordered by inclusion. Hence, a cost
function on a Boolean domain can be viewed as a cost function defined on a lattice
of subsets, and we can apply Definition 6.3.1 to identify certain Boolean functions as
upper fans or lower fans, as the following example indicates.

Example 6.3.2. Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that
for all i 6= j we have Ii 6⊆ Ij and Ii ∪ Ij =

⋃
A.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 100

By Definition 6.3.1, the corresponding upper fan function φA has the following
polynomial representation:

p(x1, . . . , xn) = (r − 2)
∏
i∈

S
A

xi −
∏
i∈I1

xi − · · · −
∏
i∈Ir

xi.

Remark 6.3.3. We remark that any permutation of a set D gives rise to an au-
tomorphism of cost functions over D. In particular, for any cost function f on a
Boolean domain D, the dual of f is the corresponding cost function which results
from exchanging the values 0 and 1 for all variables. In other words, if p is the poly-
nomial representation of f , then the dual of f is the cost function whose polynomial
representation is obtained from p by replacing all variables x with 1 − x. Observe
that, due to symmetry, taking the dual preserves submodularity and expressibility by
binary submodular cost functions.

It follows from Definition 6.3.1 that upper fans are duals of lower fans and vice
versa.

Definition 6.3.4. We denote by Γfans,k the set of all fans of arity at most k on a

Boolean domain D, and we set Γfans
def
=

⋃
k Γfans,k.

Our next result shows that Γfans ⊆ 〈Γsub,2〉; that is, fans of all arities are expressible
by binary submodular functions.

Theorem 6.3.5. Any fan on a Boolean domain D is expressible by binary submodular
functions on D using at most 1 + bm/2c extra variables, where m is the degree of its
polynomial representation.

Proof. Since upper fans are dual to lower fans, it is sufficient to establish the result
for upper fans only.

Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that for all i 6= j
we have Ii 6⊆ Ij and Ii ∪ Ij =

⋃
A, and let φA be the corresponding upper fan, as

specified by Definition 6.3.1. The polynomial representation of φA, p(x1, . . . , xn), is
given in Example 6.3.2.

The degree of p is equal to the total number of variables occurring in it, which
will be denoted m. Note that m = |

⋃
A|.

If r = 0, then φA is constant, so the result holds trivially. If r = 1, we have A =
{I}, where I = {i1, . . . , im} and the polynomial representation of φA is−2xi1xi2 · · ·xim .
In this case, it was shown in Example 5.3.9 that φA can be expressed by quadratic
functions using one extra variable, as follows:

−2xi1xi2 · · ·xim = min
y∈{0,1}

{2y((m− 1)−
∑
i∈I

xi)}.

For the case when r > 1, we first note that any i ∈
⋃
A must belong to all the

elements of A except for at most one (otherwise there would be two elements of A,
say Ii and Ij, such that Ii ∪ Ij 6=

⋃
A, which contradicts the choice of A).

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 101

We will say that two elements of
⋃
A are equivalent if they occur in exactly the

same elements of A; that is, i1, i2 ∈
⋃
A are equivalent if i1 ∈ Ij ⇔ i2 ∈ Ij for all

j ∈ {i, . . . , r}. Equivalent elements i1 and i2 of
⋃
A can be merged by replacing them

with a single new element. In the polynomial representation of φA this corresponds
to replacing the variables xi1 and xi2 with a single new variable, z, corresponding to
their product. Note that the number of equivalence classes of size two or greater is
at most bm/2c.

After completing all such merging, we obtain a new set A′ = {I ′1, . . . , I ′r′} with the
property that |I ′i| = m′ − 1 for every i, where m′ = |

⋃
A′| is the size of the common

join of any I ′i, I
′
j ∈ A′. This set has a corresponding new upper fan, φA′ , over the new

merged variables.
To complete the proof we will construct a simple gadget for expressing φA′ , and

show how to use this to obtain a gadget for expressing the original upper fan φA.
Note that the sets I ′i are subsets of

⋃
A′, each of size m′ − 1. Any such subset

is uniquely determined by its single missing element. We denote by K the set of
elements occurring in all sets I ′i and by L the set of elements which are missing from
one of these subsets. Clearly, |K|+ |L| = m′. We claim that the following polynomial
is a gadget for expressing φ′A:

p′(z1, . . . , zm′) = min
y∈{0,1}

{y(2(m′ − 1)− |L| −
∑
i∈L

zi − 2
∑
i∈K

zi)}.

To establish this claim, we will compute the value of p′, for each possible assignment
to the variables z1, . . . , zm′ . Denote by k0 the number of 0s assigned to variables in
K, and by l0 the number of 0s assigned to variables in L. Then we have:

p′(z1, . . . , zm′) = min
y∈{0,1}

y(2m′ − 2− |L| −
∑
i∈L

zi − 2
∑
i∈K

zi)

= min
y∈{0,1}

y(2m′ − 2− |L| − (|L| − l0)− 2(m′ − |L| − k0))

= min
y∈{0,1}

y(2m′ − 2− 2|L|+ l0 − 2m′ + 2|L|+ 2k0)

= min
y∈{0,1}

y(−2 + 2k0 + l0).

Hence if k0 = l0 = 0, then p′ takes the value -2. If k0 = 0 and l0 = 1, then p′ takes
the value -1. In all other cases (that is, k0 > 0 or l0 > 1), p′ takes the value 0. By
Definition 6.3.1, this means that p′ is the (unique) polynomial representation for φA′ .
Note that p′ uses just one extra variable, y.

Finally, we show how to obtain a gadget for the original upper fan φA, from
the polynomial p′. Each variable in p′ represents an equivalence class of elements
of
⋃
A, so it can be replaced by a term consisting of the product of the variables

in this equivalence class. In this way we obtain a new polynomial over the origi-
nal variables containing linear and negative quadratic terms together with negative
higher-order terms (cubic or above) corresponding to every equivalence class with 2 or
more elements. However, each of these higher-order terms can itself be expressed by

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 102

a quadratic submodular polynomial, by introducing a single extra variable, as shown
in the case when r = 1, above. Therefore, combining each of these polynomials, the
total number of new variables introduced is at most 1 + bm/2c.

All of the expressibility results from Chapter 5 can be obtained as simple corol-
laries of Theorem 6.3.5, as the following examples indicate. In other words, Theo-
rem 6.3.5 generalises all previously known classes of submodular functions which can
be expressed by binary submodular functions.

Example 6.3.6. Any negative monomial −x1x2 · · ·xm is a positive multiple of an
upper fan, and the positive linear monomial x1 is equal to −(1 − x1) + 1, so it
is a positive multiple of a lower fan, plus a constant. Hence all negative-positive
submodular polynomials are contained in Cone(Γfans), and by Theorem 6.3.5, they
are expressible by binary submodular polynomials, as originally shown in [Rhy70],
and also in Theorem 5.5.2.

Example 6.3.7. Any cubic submodular polynomial can be expressed as a positive
sum of upper fans [PY05]. Hence, by Theorem 6.3.5, all cubic submodular polynomi-
als are expressible by binary submodular polynomials, as originally shown in [BM85],
and also in Theorem 5.5.9.

Example 6.3.8. Recall from Definition 5.5.5 that a Boolean cost function φ is called
2-monotone [CKS01] if there exist two sets R, S ⊆ {1, . . . , n} such that φ(x) = 0 if
R ⊆ x or x ⊆ S and φ(x) = 1 otherwise (where R ⊆ x means ∀i ∈ R, x[i] = 1 and
x ⊆ S means ∀i 6∈ S, x[i] = 0). It was shown in [CCJK05, Proposition 2.9] that a
2-valued Boolean cost function is 2-monotone if, and only if, it is submodular.

For any 2-monotone cost function defined by the sets of indices R and S, it is
straightforward to check that φ = miny∈{0,1} y(1 + φA/2) + (1 − y)(1 + φB/2) where
φA is the upper fan defined by A = {R} and φB is the lower fan defined by B = {S}.
Note that the function yφA is an upper fan, and the function (1 − y)φB is a lower
fan. Hence, by Theorem 6.3.5, all 2-monotone polynomials are expressible by binary
submodular polynomials, and solvable by reduction to (s, t)-Min-Cut, as originally
shown in [CKS01], and also in Theorem 5.5.6.

Example 6.3.9. A much studied subclass of submodular functions which can be min-
imised via (s, t)-Min-Cut is the class of polar (also known as homogeneous [BM85])
functions [Cra89]. Polar functions are functions which have a posiform representation
(this means that all coefficients except the constant one are non-negative) such that
all monomials consists of only variables or negated variables [BM85].

More formally, a polynomial is called polar if it can be expressed as a sum of terms
of the form ax1x2 . . . xk or a(1 − x1)(1 − x2) . . . (1 − xk) with positive coefficients a,
together with a constant term. It was observed in [BM85] that all polar polynomials
are supermodular. Hence in our context it makes sense to talk about negated polar
polynomials, which are required to have all coefficients except the constant one non-
positive. It follows from results in [BM85] that all negated polar polynomials are
submodular.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 103

It is known that for binary and ternary functions, negated polar functions are
precisely submodular functions [Cra89]. Moreover, it is known that for functions
of arity 4, negated polar functions are strictly included in the class of submodular
functions of arity 4 [BM85].

As every negated term −ax1x2 . . . xk, is a positive multiple of an upper fan, and
every negated term −a(1−x1)(1−x2) . . . (1−xk), is a positive multiple of a lower fan,
by Theorem 6.3.5, all cost functions which are the negations of polar polynomials are
expressible by binary submodular polynomials, and solvable by reduction to (s, t)-
Min-Cut, as originally shown in [BM85].

However, Theorem 6.3.5 also provides many new functions of all arities which have
not previously been shown to be expressible by binary submodular functions, as the
following example indicates.

Example 6.3.10. The function 2x1x2x3x4−x1x2x3−x1x2x4−x1x3x4−x2x3x4 belongs
to Γfans,4, but does not belong to any class of submodular functions which has previ-
ously been shown to be expressible by binary submodular functions. In particular, it
does not belong to the class Γnew identified in Chapter 5 (see Definition 5.6.3).

6.4 Characterisation of Mul(Γsub,2) and fPol(Γsub,2)

Since we have seen that a cost function can only be expressed by a given set of cost
functions if it has the same multimorphisms, we now investigate the multimorphisms
and fractional polymorphisms of Γsub,2.

Notation 6.4.1. A function F : Dk → Dk is called conservative if, for each possible
choice of x1, . . . , xk, the tuple F(x1, . . . , xk) is a permutation of x1, . . . , xk (though
different inputs may be permuted in different ways).

Lemma 6.4.2. Let Γ be a valued constraint language including all unary cost func-
tions. Then any multimorphism F of Γ, F ∈ Mul(Γ), is conservative.

Proof. Recall from Example 2.1.15 that for any d ∈ D and c ∈ R+, we define the
unary cost function µdc as follows:

µdc(x)
def
=

{
c if x = d,

0 if x 6= d.

Let F : Dk → Dk be a non-conservative function. In that case, there are
u1, . . . , uk, v1, . . . , vk ∈ D such that F(u1, . . . , uk) = 〈v1, . . . , vk〉 and there is i such
that vi occurs more often in 〈v1, . . . , vk〉 than in 〈u1, . . . , uk〉. But then F is not
a multimorphism of the unary cost function µvi

1 . Hence any F ∈ Mul(Γ) must be
conservative.

Notation 6.4.3. For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D,
we denote by H(x,y) the Hamming distance between x and y, which is the number
of positions at which the corresponding values are different.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 104

Definition 6.4.4. We denote by Γ∞sub,2 the set of binary submodular cost functions
taking finite or infinite costs.

Theorem 6.4.5. For any Boolean domain D, and any F : Dk → Dk, the following
are equivalent:

1. F ∈ Mul(Γsub,2).

2. F ∈ Mul(Γ∞sub,2).

3. F is conservative and Hamming distance non-increasing.

Proof. First we consider unary cost functions. All unary cost functions on a Boolean
domain are easily shown to be submodular. Hence, by Lemma 6.4.2, all multimor-
phisms of Γsub,2 and Γ∞sub,2 are conservative. On the other hand, any conservative

function F : Dk → Dk is clearly a multimorphism of any unary cost function, since
it merely permutes its arguments.

For any c ∈ R+, define the binary cost functions λc and χc as follows:

λc(x, y)
def
=

{
c if x = 0 and y = 1,

0 otherwise.
χc(x, y)

def
=

{
c if x 6= y,

0 otherwise.

(We have seen λc in Example 2.1.15.) Note that χc(x, y) = (λc(x, y) + λc(y, x))/2.
By a simple case analysis, it is straightforward to check that any binary submod-

ular cost function on a Boolean domain can be expressed by binary functions of the
form λc, with c > 0 together with unary cost functions of the form µdc .

We observe that when c < ∞, λc(x, y) = (χc(x, y) + µ0
c(x) + µ1

c(y) − c)/2, so
λc can be expressed by functions of the form χc together with unary cost functions
of the form µdc . Hence, since expressibility preserves multimorphisms, Mul(Γsub,2) =
Mul({χc | c ∈ R+, c > 0}) ∩Mul({µdc | c ∈ R+, d ∈ D}).

Now let u,v ∈ Dk, and consider the multimorphism inequality, as given in Defini-
tion 2.4.11, for the case where ti = 〈u[i],v[i]〉, for i = 1, . . . , k. By Definition 2.4.11,
for any c > 0, F is a multimorphism of χc if, and only if, the following holds for all
choices of u and v:

H(u,v) ≥ H(F(u),F(v)).

This proves that the multimorphisms of Γsub,2 are precisely the conservative functions
which are also Hamming distance non-increasing.

Since Γsub,2 ⊆ Γ∞sub,2, we know that Mul(Γ∞sub,2) ⊆ Mul(Γsub,2). Therefore, in order
to complete the proof it is enough to show that every conservative and Hamming
distance non-increasing function F is a multimorphism of λ∞ and χ∞. However, as
χ∞ is expressible by λ∞ because χ∞(x, y) = λ∞(x, y) + λ∞(y, x), and expressibility
preserves multimorphisms, it is enough to show that every conservative and Hamming
distance non-increasing function F is a multimorphism of λ∞.

For any u,v ∈ {0, 1}k, the Hamming distance H(u,v) is equal to the symmetric
difference of the sets of positions where u and v take the value 1. Hence, for tuples

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 105

u and v containing some fixed number of 1s, the minimum Hamming distance occurs
precisely when one of these sets of positions is contained in the other.

Now consider again the multimorphism inequality, as given in Definition 2.4.11,
for the case where ti = 〈u[i],v[i]〉, for i = 1, . . . , k. If there is any position i where
u[i] = 0 and v[i] = 1, then λ∞(ti) =∞, so the multimorphism inequality is trivially
satisfied. If there is no such position, then the set of positions where v takes the value
1 is contained in the set of positions where u takes the value 1, so H(u,v) takes its
minimum possible value over all reorderings of u and v. Hence if F is conservative,
then H(u,v) ≤ H(F(u),F(v)), and if F is Hamming distance non-increasing, we
have H(u,v) = H(F(u),F(v)). But this implies that the set of positions where
F(v) takes the value 1 is contained in the set of positions where F(u) takes the value
1. By definition of λ∞, this implies that both sides of the multimorphism inequality
are zero, so F is a multimorphism of λ∞.

Remark 6.4.6. In recent work with Dave Cohen [CŽ09], we have obtained an al-
ternative characterisation of Mul(Γsub,2) as those functions which are strictly subset
preserving.

We now show that fractional polymorphisms of binary submodular cost functions
have to be fractionally conservative.

Notation 6.4.7. Let F = {〈r1, f1〉, . . . , 〈rn, fn〉} be a k-ary weighted mapping, where
each ri is a positive rational number such that

∑n
i=1 ri = k and each fi is a distinct

function from Dk to D. Then F is called fractionally conservative if for each possible
choice of x1, . . . , xk and every 1 ≤ i ≤ k,∑

{j|fj(x1,...,xk)=xi}

rj = 1. (6.1)

Lemma 6.4.8. Let Γ be a valued constraint language including all unary cost func-
tions. Then any fractional polymorphism F of Γ, F ∈ fPol(Γ), is fractionally conser-
vative.

Proof. Recall from Example 2.1.15 and from the proof of Lemma 6.4.2 that for any
d ∈ D and c ∈ R+, we define the unary cost function µdc as follows:

µdc(x)
def
=

{
c if x = d,

0 if x 6= d.

First notice that for every x1, . . . , xk and 1 ≤ i ≤ n, fi(x1, . . . , xk) ∈ {x1, . . . , xk}.
(This is a weaker condition than F being conservative.) Otherwise, F cannot be a

fractional polymorphisms of the unary cost function µ
fi(x1,...,xk)
1 .

Now assume that there is an 1 ≤ i ≤ k such that
∑
{j|fj(x1,...,xk)=xi} rj > 1.

Then clearly F cannot be a fractional polymorphism of the unary cost function µxi
1 .

Therefore, for all i,
∑
{j|fj(x1,...,xk)=xi} rj ≤ 1.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 106

Equality 6.1 now follows from the fact that for every x1, . . . , xk,

n∑
i=1

ri =
k∑
i=1

∑
{j|fj(x1,...,xk)=xi}

rj = k.

We now prove an extension of Theorem 6.4.5 to fractional polymorphisms, and
hence characterise the fractional clone of binary submodular cost functions.

Notation 6.4.9. For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D,
and a weight vector w = 〈w1, . . . , wk〉, we denote by H(x,y, w) the weighted Hamming
distance between x and y, which is the sum of all wi such that xi 6= yi.

Theorem 6.4.10. For any Boolean domain D, and any k-ary weighted mapping
F = {〈r1, f1〉, . . . , 〈rn, fn〉}, where each ri is a positive rational number such that∑n

i=1 rk = k and each fi is a distinct function from Dk to D, the following are
equivalent:

1. F ∈ fPol(Γsub,2).

2. F ∈ fPol(Γ∞sub,2).

3. F is fractionally conservative and weighted Hamming distance non-increasing;
that is, for any x and y, H(x,y) ≥ H(F(x),F(y), w), where w = 〈r1, . . . , rn〉.

Proof. Similar to the proof of Theorem 6.4.5. First we consider unary cost functions.
All unary cost functions on a Boolean domain are easily shown to be submodular.
By Lemma 6.4.8, all fractional polymorphisms of Γsub,2 and Γ∞sub,2 are fractionally
conservative. On the other hand, any fractionally conservative weighted mapping F
is clearly a fractional polymorphism of any unary cost function.

Recall from the proof of Theorem 6.4.5 the definition of the cost functions λc
and χc for any c ∈ R+. We have seen in the proof of Theorem 6.4.5 that χc(x, y) =
(λc(x, y)+λc(y, x))/2, and also that any binary submodular cost function on a Boolean
domain can be expressed by binary functions of the form λc, with c ∈ R+ together
with unary cost functions of the form µdc .

For c <∞, λc(x, y) = (χc(x, y) + µ0
c(x) + µ1

c(y)− c)/2, so λc can be expressed by
functions of the form χc together with unary cost functions of the form µdc . Hence,
since expressibility preserves fractional polymorphisms, fPol(Γsub,2) = fPol({χc | c ∈
R+, c > 0}) ∩ fPol({µdc | c ∈ R+, d ∈ D}).

Now let u,v ∈ Dk, and consider the fractional polymorphism Inequality 2.1, as
given in Definition 2.4.10, for the case where ti = 〈u[i],v[i]〉, for i = 1, . . . , k. Let
p = H(u,v), and let q = H(u,v, w), where w = 〈r1, . . . , rn〉. By Definition 2.4.10, F
is a fractional polymorphism of χc if, and only if, p ≥ q.

This proves that the fractional polymorphisms of Γsub,2 are precisely the frac-
tionally conservative weighted mappings which are weighted Hamming distance non-
increasing.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 107

Since Γsub,2 ⊆ Γ∞sub,2, we know that fPol(Γ∞sub,2) ⊆ fPol(Γsub,2). Similarly to the
argument in the proof of Theorem 6.4.5, in order to complete the proof it is enough
to show that every weighted mapping which is fractionally conservative and weighted
Hamming distance non-increasing is a fractional polymorphism of λ∞.

Let u,v ∈ Dk. We denote ti = 〈u[i],v[i]〉, for i = 1, . . . , k, and we denote
t′i = 〈F(u)[i],F(v)[i]〉, for i = 1, . . . , n. If there is any position i where u[i] = 0 and
v[i] = 1, then λ∞(ti) =∞, and the fractional polymorphism Inequality 2.1, as given
in Definition 2.4.10, is trivially satisfied. Hence we can assume that there is no such
position. We denote by x00 the number of 〈0, 0〉 tuples among ti, 1 ≤ i ≤ k, and
similarly for x01, x10, and x11. (Note that by our assumption, x01 = 0.) We denote
by w00 the sum of weights wi where t′i = 〈0, 0〉, and similarly for w01, w10, and w11.

Since F is fractionally conservative, we get the following:

x00 = w00 + w01 (6.2)

x00 + x10 = w00 + w10 (6.3)

Moreover, since F is weighted Hamming distance non-increasing, we get the following:

x10 ≥ w01 + w10 (6.4)

Equation 6.3 and Inequality 6.4 give

w00 − x00 ≥ w01 (6.5)

Equation 6.2 with Inequality 6.5 give

0 ≥ w01 (6.6)

But this means that there are no 〈0, 1〉 tuples among t′i, 1 ≤ i ≤ k. By definition
of λ∞, this implies that both sides of the fractional polymorphism Inequality 2.1, as
given in Definition 2.4.10, are zero, so F is a fractional polymorphism of λ∞.

We have just characterised the multi-clone of binary Boolean submodular cost
functions Mul(Γsub,2), and also the fractional clone of binary Boolean submodular
cost functions fPol(Γsub,2).

We present some results on the multi-clone of all Boolean submodular cost func-
tions Mul(Γsub). By Lemma 6.4.2, we know that all multimorphisms of Γsub are
conservative. Similarly, by Lemma 6.4.8, we know that all fractional polymorphisms
of Γsub are fractional conservative. We now show a simple sufficient condition for a
mapping to be a multimorphism of Γsub.

Proposition 6.4.11. If F can be expressed as a sequence of 〈Min,Max〉, then F ∈
Mul(Γsub).

Proof. From the definition of Γsub, 〈Min,Max〉 ∈ Mul(Γsub). If F can be expressed
as a sequence of 〈Min,Max〉 (in other words, as a composition of functions which are
permuted extensions of 〈Min,Max〉 as specified in Definition 3.4.12, 3.4.13 and 3.4.14),
then F ∈ Mul(Γsub) by Observation 3.4.15.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 108

Remark 6.4.12. One could expect that any F ∈ Mul(Γsub) can be expressed as
a sequence of 〈Min,Max〉. However, this is not true. Recent work with Dave Co-
hen [CŽ09] has identified multimorphisms of Γsub which provably cannot be expressed
as a sequence of 〈Min,Max〉. In more detail, we have shown a class of mappings
Fk, k ≥ 4, such that Fk cannot be expressed as a sequence of 〈Min,Max〉, but
〈Min,Max〉 ∈ [Fk]m for every k ≥ 4. Moreover, using Theorem 3.4.6, we have shown
that F4,F5 ∈ [〈Min,Max〉]m, that is, F4,F5 ∈ Mul(Γsub).

6.5 Non-expressibility of Γsub over Γsub,2

Theorem 6.4.5 characterises the multimorphisms of Γsub,2, and hence enables us to sys-
tematically search (for example, using Mathematica) for multimorphisms of Γsub,2

which are not multimorphisms of Γsub. In this way, we have identified the function
Fsep : {0, 1}5 → {0, 1}5 defined in Figure 6.1. We will show in this section that this
function has the remarkable property that it can be used to characterise all the sub-
modular functions of arity 4 which are expressible by binary submodular functions
on a Boolean domain. Using this result, we show that some submodular functions
are not expressible in this way, because they do not have Fsep as a multimorphism.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fsep(x) 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 6.1: Definition of Fsep.

Proposition 6.5.1. Fsep is conservative and Hamming distance non-increasing.

Proof. Straightforward exhaustive verification.

Theorem 6.5.2. For any function f ∈ Γsub,4 the following are equivalent:

1. f ∈ 〈Γsub,2〉.

2. Fsep ∈ Mul({f}).

3. f ∈ Cone(Γfans,4).

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 109

Proof. First, we show (1)⇒ (2). Proposition 6.5.1 and Theorem 6.4.5 imply that Fsep
is a multimorphism of any binary submodular function on a Boolean domain. Hence
having Fsep as a multimorphism is a necessary condition for any submodular cost
function on a Boolean domain to be expressible by binary submodular cost functions.

Next, we show (2)⇒ (3). Consider the complete set of inequalities on the values
of a 4-ary cost function resulting from having the multimorphism Fsep, as specified
in Definition 2.4.11. A routine calculation in Mathematica shows that, out of
165 such inequalities, there are 4635 which are distinct. After removing from these
all those which are equal to the sum of two others, we obtain a system of just 30
inequalities which must be satisfied by any 4-ary submodular cost function which has
the multimorphism Fsep. Using the double description method [MRTT53],2 we obtain
from these 30 inequalities an equivalent set of 31 extreme rays which generate the
same polyhedral cone of cost functions. These extreme rays all correspond to fans or
sums of fans.

Finally, we show (3)⇒ (1). By Theorem 6.3.5, all fans are expressible over Γsub,2.
It follows that any cost function in this cone of functions is also expressible over
Γsub,2.

Next we show that there are indeed 4-ary submodular cost functions which do not
have Fsep as a multimorphism and therefore are not expressible by binary submodular
cost functions.

Definition 6.5.3. For any Boolean tuple t of arity 4 containing exactly 2 ones and
2 zeros, we define the 4-ary cost function θt as follows:

θt(x1, x2, x3, x4)
def
=

−1 if (x1, x2, x3, x4) = (1, 1, 1, 1) or (0, 0, 0, 0),

1 if (x1, x2, x3, x4) = t,

0 otherwise.

Cost functions of the form θt have been introduced in [PY05], where they are
called quasi-indecomposable functions.

Definition 6.5.4. We denote by Γqin the set of all (six) quasi-indecomposable cost
functions of arity 4.

It is straightforward to check that all cost functions from Γqin are submodular, but
the next result shows that they are not expressible by binary submodular functions.

Proposition 6.5.5. For all θ ∈ Γqin, Fsep 6∈ Mul({θ}).

Proof. The tableau in Figure 6.2 shows that Fsep 6∈ Mul({θ(1,1,0,0)}). Permuting the
columns appropriately establishes the result for all other θ ∈ Γqin.

Corollary 6.5.6. For all θ ∈ Γqin, θ 6∈ 〈Γsub,2〉.
2As implemented by the program Skeleton available from

http://www.uic.nnov.ru/~zny/skeleton/

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 110

Fsep

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 1
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1

θ(1,1,0,0)−→

0
0
0
0
0

∑

= 0

θ(1,1,0,0)−→

0
0
1
0
0

∑

= 1

Figure 6.2: Fsep 6∈ Mul({θ(1,1,0,0)}).

Proof. By Theorem 6.5.2 and Proposition 6.5.5.

Are there any other 4-ary submodular cost functions which are not expressible
over Γsub,2? Promislow and Young characterised the extreme rays of the cone of all
4-ary submodular cost functions and established that Γsub,4 = Cone(Γfans,4∪Γqin) – see
Theorem 5.2 of [PY05]. Hence the results in this section characterise the expressibility
of all 4-ary submodular functions.

Promislow and Young conjectured that for k 6= 4, all extreme rays of Γsub,k are
fans [PY05]; that is, they conjectured that for all k 6= 4, Γsub,k = Cone(Γfans,k). How-
ever, if this conjecture were true it would imply that all submodular functions of arity
5 and above were expressible by binary submodular functions, by Theorem 6.3.5. This
is clearly not the case, because inexpressible cost functions such as those identified
in Corollary 6.5.6 can be extended to larger arities (for instance, by adding dummy
arguments) and remain inexpressible. Hence our results refute this conjecture for all
k ≥ 5. However, we suggest that this conjecture can be refined to a similar state-
ment concerning just those submodular functions which are expressible by binary
submodular functions, as follows:

Conjecture 6.5.7. For all k, Γsub,k ∩ 〈Γsub,2〉 = Cone(Γfans,k).

This conjecture was previously known to be true for k ≤ 3 [PY05]; Theorem 6.3.5
shows that Cone(Γfans,k) ⊆ Γsub,k ∩ 〈Γsub,2〉 for all k, and Theorem 6.5.2 confirms that
equality holds for k = 4.

Remark 6.5.8. We have seen in Chapter 4 that in the case of max-closed cost func-
tions there is a difference between finite-valued and general cost functions. Adding
infinity makes the hierarchy collapse. By contrast, in the case of submodular cost
functions, there is no difference between finite-valued and general cost functions.
There are finite-valued submodular cost functions which are not expressible, namely
cost functions from Γqin, but even adding infinite costs to the hidden variables would
not help to make these cost functions expressible: by Theorem 2.4.19, expressive
power is characterised by fractional polymorphisms; by Theorem 6.4.10, finite-valued
and general submodular cost functions have the same fractional polymorphisms.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 111

6.6 The complexity of recognising expressible func-

tions

Finally, we show that we can test efficiently whether a submodular polynomial of
arity 4 is expressible by binary submodular polynomials.

Definition 6.6.1. Let p(x1, x2, x3, x4) be the polynomial representation of a 4-ary
submodular cost function f . We denote by aI the coefficient of the term

∏
i∈I xi. We

say that f satisfies condition Sep if for each {i, j}, {k, `} ⊂ {1, 2, 3, 4}, with i, j, k, `
distinct, we have a{i,j} + a{k,`} + a{i,j,k} + a{i,j,`} ≤ 0.

Theorem 6.6.2. For any f ∈ Γsub,4, the following are equivalent:

1. f ∈ 〈Γsub,2〉.

2. f satisfies condition Sep.

Proof. As in the proof of Theorem 6.5.2, we construct a set of 30 inequalities corre-
sponding to the multimorphism Fsep. Each of these inequalities on the values of a cost
function can be translated into inequalities on the coefficients of the corresponding
polynomial representation by a straightforward linear transformation. This calcula-
tion shows that 24 of the resulting inequalities impose the condition of submodularity,
and the remaining 6 impose condition Sep. Hence a submodular cost function of arity
4 has the multimorphism Fsep if, and only if, its polynomial representation satisfies
condition Sep. The result then follows from Theorem 6.5.2.

Using Theorem 6.6.2, we can test whether optimisation problems given as a sum
of submodular functions of arity 4 can be reduced to the (s, t)-Min-Cut problem
via the expressibility reduction. (These problems arise in Computer Vision and in
Valued Constraint Satisfaction Problems and will be mentioned in Section 6.7.)

Furthermore, by Theorem 6.3.5, the number of extra variables needed in this
reduction is rather small compared to the theoretical upper bound given in Proposi-
tion 3.3.1.

It is known that the problem of recognising whether an arbitrary degree-4 polyno-
mial is submodular is co-NP-complete [Cra89, GS88]. One might hope that the more
restricted class of submodular polynomials expressible by binary submodular polyno-
mials would be recognisable in polynomial time. At the moment, the complexity of
the recognition problem for submodular polynomials of degree 4 that are expressible
by binary submodular polynomials is open.

Remark 6.6.3. Multimorphism Fsep could be used to test whether a given polyno-
mial p of degree 4 is expressible by binary submodular polynomials (and therefore
submodular). However, the only known way of testing whether Fsep is a multimor-
phisms of a given polynomial p (in n variables) is via testing all possible tableaux;
this would take exponential time in n.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 112

Remark 6.6.4. Martin Cooper noticed that an easier problem of testing whether a
polynomial (in n variables) of degree 4 can be written as the sum of 4-ary submodular
polynomials (that is, without any extra variables) can be done in polynomial time
just by solving a system of linear equations.

Consequently, assuming P 6= co-NP, there are submodular polynomials of degree
4 which cannot be written as the sum of 4-ary submodular polynomials, and hence
need extra variables to be expressible. However, this is not surprising: we have seen
an example of such a polynomial in Example 5.6.2.

6.7 Summary

In this section, we have extended our study of the expressive power of binary submod-
ular cost functions. We showed a new class of submodular cost functions, the so-called
fans, which are expressible by binary submodular cost functions. We also showed that
there are submodular cost functions which are not expressible by binary submodular
cost functions, and hence are not minimisable by reducing to (s, t)-Min-Cut via the
expressibility reduction. Moreover, we characterised precisely which submodular cost
functions of arity 4 can be expressed by binary submodular cost functions. We also
presented results on the recognition problem, and some more results on the algebraic
properties of submodular cost functions. We finish this chapter with applications of
our results, and remarks on related work.

Applications to artificial intelligence As mentioned in Chapter 5, any Boolean
cost function of arity k can be represented uniquely as a Boolean polynomial. More-
over, if Γ is a set of cost functions on a Boolean domain, with arity at most k, then
any instance of VCSP(Γ) with n variables can be uniquely represented as a polyno-
mial p in n Boolean variables, of degree at most k. Conversely, any such polynomial
represents an n-ary cost function which can be expressed over a set of cost functions
on a Boolean domain, with arity at most k. Note also that over a Boolean domain we
have that x2 = x, so p has at most 2n terms: these correspond to subsets of variables.

Example 6.7.1. Any unary cost function φ on a Boolean domain can be expressed
as the polynomial p(x1) = φ(0) + (φ(1)−φ(0))x1. Similarly, any binary cost function
φ can be expressed as

p(x1, x2) = φ(0, 0)

+ (φ(1, 0)− φ(0, 0))x1

+ (φ(0, 1)− φ(0, 0))x2

+ (φ(1, 1)− φ(0, 1)− φ(1, 0) + φ(0, 0))x1x2.

Consider the valued constraint language Γ from Example 2.2.3. It is easy to
check that all of the cost functions in Γ are submodular: unary cost functions are
submodular by definition; each binary φ ∈ Γ satisfies φ(0, 0) + φ(1, 1) ≤ φ(0, 1) +
φ(1, 0). Hence the instance P from Example 2.2.3 is an instance of VCSP(Γsub,2). The

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 113

corresponding polynomial is

p(x1, . . . , x5) = 3 + 0x1 − x2 − x1x2

+ 0 + 2x1 + 4x4 − x1x4

+ 0 + 0x2 + x3 − x2x3

+ 9− x3 − 2x4 − 5x3x4

+ 3 + x3 + 2x5 − 2x3x5

+ 4− 2x4 − x5 + 0x4x5

+ 0 + 5x2

+ 4− 2x5,

which can be simplified to give

p(x1, . . . , x5) = 23 + 2x1 + 4x2 + x3 − x5

− x1x2 − x1x4 − x2x3 − 5x3x4 − 2x3x5.

The fact that P is an instance of VCSP(Γsub,2) can be easily seen from the polyno-
mial representation: the polynomial p has all quadratic coefficients non-positive, and
hence is submodular.

We can rewrite p as in the proof of Theorem 5.4.1 as follows:

p(x1, . . . , x5) = 23 + 2x1 + 4x2 + x3 − x5

+ (1− x1)x2 − x2 + (1− x1)x4 − x4 + (1− x2)x3 − x3

+ 5(1− x3)x4 − 5x4 + 2(1− x3)x5 − 2x5

= 23 + 2x1 + 3x2 − 6x4 − 3x5

+ (1− x1)x2 + (1− x1)x4 + (1− x2)x3 + 5(1− x3)x4 + 2(1− x3)x5

= 14 + 2x1 + 3x2 + 6(1− x4) + 3(1− x5)

+ (1− x1)x2 + (1− x1)x4 + (1− x2)x3 + 5(1− x3)x4 + 2(1− x3)x5.

We can now build a graph G with 5 vertices corresponding to variables x1 through
x5 and two extra vertices s and t and add edges accordingly (see Figure 6.3).

For every assignment v of values 0 and 1 to variables x1, . . . , x5, p(v(x1), . . . , v(x5))
is equal to the size of the (s, t)-cut in G given by v plus 14 (for the constant term in
the posiform representation of p). The minimum cut in G, with value 2, is the set
{s, x1, x2}. Therefore, the assignment x1 = x2 = 0 and x3 = x4 = x5 = 1 minimises
the polynomial p with total value 16.

Using the same method as in Example 6.7.1, we obtain:

Corollary 6.7.2 (of Theorem 6.3.5). For any fixed k ≥ 4, any VCSP(Γfans,k) instance
with n variables and pi constraints of arity i, 3 ≤ i ≤ k, is solvable in O((n + p)3)
time, where p =

∑k
i=3 pi(1 + bi/2c).

Moreover, as shown above,VCSP(Γfans,4) is the maximal class in VCSP(Γsub,4) which
can be solved by reduction to (s, t)-Min-Cut in this way.

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 114

s

x1

x2 x3

x4

x5

t

2

3

1

1

1

5

2
3

6

Figure 6.3: Graph G corresponding to polynomial p (Example 6.7.1).

Cohen et al. have shown [CCJ06] that if a cost function φ of arity k is expressible
by some set of cost functions over Γ, then φ is expressible by Γ using at most 22k

extra
variables (Proposition 3.3.1). Theorem 6.3.5 shows that only O(k) extra variables are
needed to express any cost function from Γfans,k by Γsub,2. Therefore, instances of
VCSP(Γfans) needs fewer extra variables than the theoretical upper bound given by
Proposition 3.3.1. In particular, an instance of VCSP(Γsub,4) is either reducible to
(s, t)-Min-Cut with only linearly many extra variables,3 or is not reducible at all.

Applications to computer vision In computer vision, many problems can be
naturally formulated in terms of energy minimisation where the energy function,
over a set of variables {xv}v∈V , has the following form:

E(x) = c0 +
∑
v∈V

cv(xv) +
∑

〈u,v〉∈V×V

cuv(xu, xv) + . . .

Set V usually corresponds to pixels, xv denotes the label of pixel v ∈ V which
must belong to some finite domain D. The constant term of the energy is c0, the
unary terms cv(·) encode data penalty functions, the pairwise and higher-order terms
cuv(·, ·) and so on are interaction potentials. Functions of arity 3 and above are
known as higher-order energy functions, or higher-order cliques. This energy is often
derived in the context of Markov Random Fields (also Conditional Random
Field) [GG84, Bes86]: a minimum of E corresponds to a maximum a-posteriori
(MAP) labelling x [Lau96, WJ08].

As discussed above, there is a direct translation between VCSP instances and
pseudo-Boolean polynomials. Hence it is clear that the above mentioned framework
of energy optimisation is equivalent to the VCSP. (See [Wer07] for a survey on the
connection between computer vision and constraint satisfaction problems, although
with a strong emphasis on a linear programming approach.) Therefore, for energy
minimisation over Boolean variables we get the following:

3Optimal (in the number of extra variables) gadgets for all cost functions from Γfans,4 have been
identified in [ŽJ08].

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 115

Corollary 6.7.3 (of Theorem 6.3.5). Energy minimisation, where each energy func-
tion belongs to Γfans, is solvable in O((n+p)3) time, where n is the number of variables
(pixels), pi is the number of energy functions of arity i and p =

∑k
i=3 pi(1 + bi/2c).

Higher-order energy functions have the ability to encode high-level structural de-
pendencies between pixels, which have been shown to be extremely powerful for im-
age labelling problems. They have long been used to model image textures [PL98,
RB05, LRHB06], image denoising and restoration [RB05], and also texture segmenta-
tion [KKT07]. Their use, however, is severely hampered in practice by the intractable
complexity of representing and minimising such functions [RKFJ09]. Our results en-
large the class of higher-order energy functions which can be (exactly) minimised
efficiently using graphs cuts. Moreover, despite the theoretical double-exponential
upper bound on the number of extra variables (Proposition 3.3.1), the proof of Theo-
rem 6.3.5 shows that any function from Γfans needs only linearly many (in the arity of
the function) extra variables. Hence functions from Γfans could be used, for instance,
in image processing for efficient recognition of images or Bayesian estimation.

Related work We describe an alternative approach to the question of expressibility
of submodular cost functions. Cohen et al. have shown that a VCSP instance with
binary submodular constraints over a totally-ordered domain can be minimised via
(s, t)-Min-Cut in cubic time [CCJK04]. Furthermore, Cohen et al. have shown that a
VCSP instance with so-called 2-monotone constraints over a lattice-ordered domain,
which form a subclass of submodular constraints, can be solved via (s, t)-Min-Cut
in cubic time. Given a submodular Boolean VCSP instance P with constraints of
arity at most r, one could try to use the dual representation [DP89, LD00], which
transforms P into a binary VCSP instance with an exponential blow-up (in r) of the
domain size. One could hope to combine these two results and obtain an algorithm
for submodular Boolean VCSPs using the (s, t)-Min-Cut problem. An obvious way
to complete the above-mentioned construction would be to prove that every binary
submodular cost function over a lattice-ordered set can be expressed by 2-monotone
cost functions. However, this is not possible as Corollary 6.5.6 gives an example of
a binary submodular cost function defined over a lattice-ordered set (in fact, in this
case the lattice is distributive) which is not expressible by binary submodular cost
functions (and hence not by 2-monotone cost functions).

Open problems Functions which can be made polar by switching a subset of vari-
ables are called unimodular . The class of unimodular functions was studied in [HS86],
and shown to be polynomial-time recognisable in [Cra89]. Note that unimodular func-
tions are not in general submodular. It would be nice to know the precise relationship
between submodular cost functions which are expressible by binary submodular cost
functions and unimodular cost functions which are submodular. Moreover, what is
the biggest subclass of submodular cost functions which is polynomial-time recognis-
able?

Another interesting open question is the following: is there an infinite hierarchy
of submodular cost functions of increasing expressive power (like finite-valued max-

CHAPTER 6. NON-EXPRESSIBILITY OF SUBMODULAR FUNCTIONS 116

closed cost functions, see Chapter 4) or are all submodular cost functions expressible
by a subset of submodular cost functions of a fixed arity?

Is there any characterisation of all separating multimorphisms of expressible sub-
modular cost functions of arity 4 (we have shown just one such multimorphism,
namely Fsep), or more generally of submodular cost functions of arbitrary arities?

Is Conjecture 6.5.7 true? What is the precise boundary between expressible and
non-expressible submodular cost functions?

What is the complexity of the recognition problem for submodular polynomials
which are expressible by binary submodular polynomials?

Is there any connection between fans and the general polynomial-time algorithm
for the SFM problem by Iwata and Orlin [IO09]?

We have just recently discovered a technical report [SBK00] which uses a computer
program to generate all extreme rays of the cone of submodular cost functions of
arity 5. Out of 1319 extreme rays, 1172 are not expressible as they do not have
Fsep as a multimorphism. This leaves 147 extreme rays. We have not studied yet the
expressibility of these cost functions, but these numbers suggest that most submodular
cost functions are not expressible by binary submodular cost functions. An immediate
question is then: what are the separating multimorphisms for 5-ary submodular cost
functions?

Our work deals with Boolean submodular cost functions only. Is there any kind
of norm which characterises the algebraic properties of non-Boolean submodular cost
functions as Hamming distance does in the case of Boolean submodular cost func-
tions? We have shown that there are non-expressible submodular cost functions of
arity 4 over Boolean domains. These results clearly extend to non-Boolean domains.
We also know that all ternary submodular cost functions over Boolean domains are
expressible by binary submodular cost functions. The only remaining question is
whether all ternary submodular cost functions are expressible over 3-element domains.
Dave Cohen and Martin Cooper have observed that so-called 3-2-2 submodular cost
functions4 are expressible by binary submodular cost functions.

4A 3-2-2 cost function is a ternary cost function whose first argument ranges over a 3-element
domain and whose other two arguments range over a 2-element domain.

CHAPTER 7

Summary and Open Problems

In mathematics the art of proposing a question
must be held of higher value than solving it.

Georg Cantor (1845–1918)

7.1 Summary

This thesis has given a detailed examination of the expressive power of valued con-
straints and related complexity questions. First, we introduced the Valued Con-
straint Satisfaction problem (VCSP), and provided a long list of many studied
optimisation problems that can be naturally described in this framework.

Chapter 3 presented in more detail known results on the expressive power of crisp
and valued constraints. We extended these results by showing a new connection be-
tween algebraic operations that characterise the expressive power of valued constraints
and linear programming. We also started to study systematically the so-called frac-
tional clone theory, and proved a decidability result for the question of whether a
given operation belongs to a particular fractional clone.

Chapter 4 considered various classes of valued constraints and the associated cost
functions with respect to the question of which of these classes can be expressed using
only cost functions of bounded arities. We presented a full classification of various
classes of constraints with respect to this problem. We identified the first known
example of an infinite chain of classes of constraints with strictly increasing expressive
power. Moreover, we characterised the fractional clones of general max-closed cost
functions and finite-valued cost functions.

Submodular functions play a key role in combinatorial optimisation and are often
considered to be a discrete analogue of convex functions. Both Chapter 5 and Chap-
ter 6 were devoted to investigating the expressive power of binary submodular cost
functions.

117

CHAPTER 7. SUMMARY AND OPEN PROBLEMS 118

Chapter 5 presented a new way of looking at the expressibility question of sub-
modular cost functions by binary submodular cost functions. Using our framework,
we proved many previously known results in a simple way, and also identified a new
class of submodular cost functions of arbitrary arities which can be expressed by bi-
nary submodular cost functions. We also explained how the question of expressibility
by binary submodular cost functions relates to the (s, t)-Min-Cut problem.

Chapter 6 considered a previously open problem whether all Boolean submodular
cost functions can be decomposed into a sum of binary submodular cost functions over
a possibly larger set of variables. This problem has been considered within several
different contexts in computer science, including computer vision, artificial intelli-
gence, and pseudo-Boolean optimisation. Using a connection between the expressive
power of valued constraints and certain algebraic properties of cost functions, we
answered this question negatively. Furthermore, we characterised the multi-clone of
Boolean binary submodular cost functions and the fractional clone of Boolean binary
submodular cost functions.

Our results in Chapter 6 had several corollaries. First, we characterised precisely
which submodular polynomials of arity 4 can be expressed by binary submodular
polynomials. Next, we identified a novel class of submodular cost functions of arbi-
trary arities that can be expressed by binary submodular cost functions, and therefore
minimised efficiently using a so-called expressibility reduction to the (s, t)-Min-Cut
problem. This class generalised all previously known examples. More importantly,
our results implied limitations on this kind of reduction and established for the first
time that it cannot be used in general to minimise arbitrary submodular cost func-
tions. Moreover, we refuted a conjecture of Promislow and Young on the structure of
the extreme rays of the cone of Boolean submodular cost functions. Finally, we also
translated our results to other frameworks, namely pseudo-Boolean polynomials and
energy minimisation problems from computer vision.

7.2 Open problems

At the end of each chapter, we mentioned related work and open problems. Here,
we give a brief list of the most interesting open problems. Some of the problems are
related to each other and an answer to one of them could lead to an answer to another
one. Problems 1–4 are from Chapter 3, and Problems 5–12 are from Chapter 6.

1. What algebraic operations characterise the expressive power of valued con-
straints and give rise to a Galois connection between the set of cost functions
and the set of operations?

2. What is the structure of fractional clones? What is the closure operator in the
set of fractional polymorphisms?

3. Do multimorphisms alone characterise tractability of valued constraints (Con-
jecture 3.5.4)? Are multimorphisms at least a necessary condition for tractabil-
ity of valued constraints?

CHAPTER 7. SUMMARY AND OPEN PROBLEMS 119

4. Can constant constraints increase the complexity of a valued constraint lan-
guage? Can adding a constant constraint to a tractable valued constraint lan-
guage make it intractable?

5. Characterisation of separating multimorphisms of submodular cost functions of
arity 4 expressible by binary submodular cost functions.

6. Is there an infinite hierarchy of submodular cost functions of increasing ex-
pressive power or are all submodular cost functions expressible by a subset of
submodular cost functions of a fixed arity?

7. What is the precise boundary between expressible and non-expressible submod-
ular cost functions? Are expressible exactly those cost functions which lie in
the cone of fans (Conjecture 6.5.7)?

8. What is the complexity of the recognition problem for submodular polynomials
which are expressible by binary submodular polynomials?

9. Characterisation of the multi-clone of all Boolean submodular cost functions
and the fractional clone of all Boolean submodular cost functions.

10. Characterisation of the multi-clone of submodular cost functions and the frac-
tional clone of submodular cost functions over non-Boolean domains.

11. Are all ternary submodular cost functions over 3-element domains expressible
by binary submodular cost functions? (And in fact, are all 3-3-2 submodular
cost functions expressible by binary submodular cost functions?)

12. Is there any connection between fans and general algorithms for the minimisa-
tion problem of submodular functions?

Bibliography

If I have seen further it is by standing on the shoulders of giants.
Sir Isaac Newton (1642–1727)

The numbers after the “→” symbol indicate on which pages each citation occurred.

[ABD07] A. Atserias, A. A. Bulatov, and V. Dalmau. On the Power of k-Consistency. In
Proceedings of the 34th International Colloquium on Automata, Languages and
Programming (ICALP’07), volume 4596 of Lecture Notes in Computer Science,
pages 279–290. Springer, 2007.
doi:10.1007/978-3-540-73420-8 26 → p. 17

[ABKW08] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint Integer Pro-
gramming: A New Approach to Integrate CP and MIP. In Proceedings of the 5th
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CP-AI-OR’08), vol-
ume 5015 of Lecture Notes in Computer Science, pages 6–20. Springer, 2008.
doi:10.1007/978-3-540-68155-7 4 → p. 4

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer, 1999. → p. 13

[ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of Finding an Embed-
ding in k-trees. SIAM Journal of Algebraic and Discrete Methods, 8(2):277–284,
1987.
doi:10.1137/0608024 → p. 14

[AGG07] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and related hypergraph
invariants. European Journal of Combinatorics, 28(8):2167–2181, 2007.
doi:10.1016/j.ejc.2007.04.013 → p. 14

[AK04] D. Avis and B. Kaluzny. Solving Ineqaualities and Proving Farkas’s Lemma
Made Easy. American Mathematical Monthly, 111(2):152–157, 2004.
http://www.jstor.org/stable/4145216 → p. 40

[Apt03] K. Apt. Principles of Constraint Programming. Cambridge University Press,
2003. → pp. 2, 32

120

http://dx.doi.org/10.1007/978-3-540-73420-8_26
http://dx.doi.org/10.1007/978-3-540-68155-7_4
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/j.ejc.2007.04.013
http://www.jstor.org/stable/4145216

BIBLIOGRAPHY 121

[AW09] A. Atserias and M. Weyer. Decidable Relationships between Consistency No-
tions for Constraint Satisfaction Problems. In Proceedings of the 18th Annual
Conference of the European Association for Computer Science Logic (CSL’09),
volume 5771 of Lecture Notes in Computer Science, pages 102–116. Springer,
2009.
doi:10.1007/978-3-642-04027-6 10 → p. 17

[Bal70] M. Balinksi. On a selection problem. Management Science, 17(3):230–231,
1970.
http://www.jstor.org/stable/2629092 → p. 95

[BBJK03] F. Börner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified Constraints:
Algorithms and Complexity. In Proceedings of Computer Science Logic, the 17th
Inernational Workshop (CSL’03), the 12th Annual Conference of the EACSL,
and the 8th Kurt Gödel Colloquium, volume 2803 of Lecture Notes in Computer
Science, pages 58–70. Springer, 2003.
doi:10.1007/b13224 → p. 32

[BC07] M. Bodirsky and H. Chen. Quantified Equality Constraints. In Proceedings
of the 22nd IEEE Symposium on Logic in Computer Science (LICS’07), pages
203–212. 2007.
doi:10.1109/LICS.2007.38 → p. 32

[BC09] M. Bodirsky and H. Chen. Relatively quantified constraint satisfaction. Con-
straints, 14(1):3–15, 2009.
doi:10.1007/s10601-008-9054-z → p. 32

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. ACM SIGACT-
Newsletter, 34(4):38–52, 2003.
doi:10.1145/954092.954101 → p. 37

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part II: Constraint Satisfaction Problems. ACM SIGACT-Newsletter, 35(1):22–
35, 2004.
doi:10.1145/970831.970840 → p. 37

[BD06] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM
Journal on Computing, 36(1):16–27, 2006.
doi:10.1137/050628957 → p. 17

[BD07] A. A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Information and Computation, 205(5):651–678,
2007.
doi:10.1016/j.ic.2006.09.005 → p. 21

[BDG+09] A. Bulatov, M. E. Dyer, L. A. Goldberg, M. Jalsenius, and D. Richerby. The
Complexity of Weighted Boolean #CSP with Mixed Signs. Theoretical Com-
puter Science, 410(38-40):3949–3961, 2009.
doi:10.1016/j.tcs.2009.06.003 → p. 21

http://dx.doi.org/10.1007/978-3-642-04027-6_10
http://www.jstor.org/stable/2629092
http://dx.doi.org/10.1007/b13224
http://dx.doi.org/10.1109/LICS.2007.38
http://dx.doi.org/10.1007/s10601-008-9054-z
http://dx.doi.org/10.1145/954092.954101
http://dx.doi.org/10.1145/970831.970840
http://dx.doi.org/10.1137/050628957
http://dx.doi.org/10.1016/j.ic.2006.09.005
http://dx.doi.org/10.1016/j.tcs.2009.06.003

BIBLIOGRAPHY 122

[Bes86] J. Besag. On the Statistical Analysis of Dirty Pictures. Journal of the Royal
Statistical Society, Series B, 48(3):259–302, 1986.
http://www.jstor.org/stable/2345426 → p. 114

[BFM+99] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and Valued CSPs: Frameworks, Properties, and Compar-
ison. Constraints, 4(3):199–240, 1999.
doi:10.1023/A:1026441215081 → pp. 9, 11

[BG05] A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical
Computer Science, 348(2-3):148–186, 2005.
doi:10.1016/j.tcs.2005.09.011 → p. 21

[BG08] M. Bodirsky and M. Grohe. Non-dichotomies in Constraint Satisfaction Com-
plexity. In Proceedings of the 35th International Colloquium on Automata, Lan-
guages and Programming (ICALP’08), volume 5126 of Lecture Notes in Com-
puter Science, pages 184–196. Springer, 2008.
doi:10.1007/978-3-540-70583-3 16 → p. 32

[BH02] E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1-3):155–225, 2002.
doi:10.1016/S0166-218X(01)00341-9 → pp. 31, 62, 83, 86, 88, 89, 91, 95

[BIM+] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard.
Varieties with few subalgebras of powers. To appear in Transactions of the
American Mathematical Society, 2009. → p. 17

[BJHM88] J. Bang-Jensen, P. Hell, and G. MacGillivray. The Complexity of Colouring by
Semicomplete Digraphs. SIAM Journal on Discrete Mathematics, 1(3):281–298,
1988.
doi:10.1137/0401029 → p. 19

[BK08a] M. Bodirsky and J. Kára. The complexity of equality constraint languages.
Theory of Computing Systems, 43(2):136–158, 2008.
doi:10.1007/s00224-007-9083-9 → p. 32

[BK08b] M. Bodirsky and J. Kára. The Complexity of Temporal Constraint Satisfaction
Problems. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC’08), pages 29–38. 2008.
doi:10.1145/1374376.1374382 → pp. 4, 32

[BK09] L. Barto and M. Kozik. Constraint Satisfaction Problems of Bounded Width. In
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’09). IEEE Computer Society, 2009. → p. 17

[BKJ05] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the Complexity of Con-
straints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742,
2005.
doi:10.1137/S0097539700376676 → pp. 4, 5, 17, 22, 26, 33, 51

http://www.jstor.org/stable/2345426
http://dx.doi.org/10.1023/A:1026441215081
http://dx.doi.org/10.1016/j.tcs.2005.09.011
http://dx.doi.org/10.1007/978-3-540-70583-3_16
http://dx.doi.org/10.1016/S0166-218X(01)00341-9
http://dx.doi.org/10.1137/0401029
http://dx.doi.org/10.1007/s00224-007-9083-9
http://dx.doi.org/10.1145/1374376.1374382
http://dx.doi.org/10.1137/S0097539700376676

BIBLIOGRAPHY 123

[BKKR69] V. Bodnarčuk, L. Kalužnin, V. Kotov, and B. Romov. Galois theory for Post
algebras. I. Cybernetics and Systems Analysis, 5(3):243–252, 1969.
doi:10.1007/BF01070906 → pp. 26, 34

[BKL08] A. A. Bulatov, A. Krokhin, and B. Larose. Dualities for Constraint Satisfac-
tion Problems. In Complexity of Constraints, volume 5250 of Lecture Notes in
Computer Science, pages 93–124. Springer, 2008.
doi:10.1007/978-3-540-92800-3 5 → p. 17

[BKMN09] L. Barto, M. Kozik, M. Maróti, and T. Niven. CSP dichotomy for special triads.
Proceedings of the American Mathematical Society, 137(9):2921–2934, 2009.
doi:10.1090/S0002-9939-09-09883-9 → p. 17

[BKN09] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and
Hell). SIAM Journal on Computing, 38(5):1782–1802, 2009.
doi:10.1137/070708093 → p. 17

[BKR96] R. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge Properties in
Optimization. Discrete Applied Mathematics, 70(2):95–161, 1996.
doi:10.1016/0166-218X(95)00103-X → p. 84

[BM85] A. Billionet and M. Minoux. Maximizing a supermodular pseudo-Boolean func-
tion: a polynomial algorithm for cubic functions. Discrete Applied Mathematics,
12(1):1–11, 1985.
doi:10.1016/0166-218X(85)90035-6 → pp. 83, 90, 91, 102, 103

[BNvO09] M. Bodirsky, G. Nordh, and T. von Oertzen. Integer programming with 2-
variable equations and 1-variable inequalities. Information Processing Letters,
109(11):572–575, 2009.
doi:10.1016/j.ipl.2009.01.025 → p. 4

[Bod96] H. L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
doi:10.1137/S0097539793251219 → p. 14

[Bod08] M. Bodirsky. Constraint Satisfaction Problems with Iinfinite Domains. In
Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science,
pages 196–228. Springer, 2008.
doi:10.1007/978-3-540-92800-3 8 → p. 32

[BRSV05] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer. Bases for Boolean co-clones.
Information Processing Letters, 96(2):59–66, 2005.
doi:10.1016/j.ipl.2005.06.003 → p. 56

[Bul03] A. A. Bulatov. Tractable Conservative Constraint Satisfaction Problems.
In Proceedings of the 18th IEEE Symposium on Logic in Computer Sci-
ence(LICS’03), pages 321–330. IEEE Press, 2003.
doi:10.1109/LICS.2003.1210072 → pp. 17, 19

http://dx.doi.org/10.1007/BF01070906
http://dx.doi.org/10.1007/978-3-540-92800-3_5
http://dx.doi.org/10.1090/S0002-9939-09-09883-9
http://dx.doi.org/10.1137/070708093
http://dx.doi.org/10.1016/0166-218X(95)00103-X
http://dx.doi.org/10.1016/0166-218X(85)90035-6
http://dx.doi.org/10.1016/j.ipl.2009.01.025
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1007/978-3-540-92800-3_8
http://dx.doi.org/10.1016/j.ipl.2005.06.003
http://dx.doi.org/10.1109/LICS.2003.1210072

BIBLIOGRAPHY 124

[Bul05] A. A. Bulatov. H-Coloring dichotomy revisited. Theoretical Computer Science,
349(1):31–39, 2005.
doi:10.1016/j.tcs.2005.09.028 → p. 19

[Bul06] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a
3-element set. Journal of the ACM, 53(1):66–120, 2006.
doi:10.1145/1120582.1120584 → p. 17

[Bul08] A. A. Bulatov. The complexity of the counting constraint satisfaction problem.
In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming (ICALP’08), volume 5126 of Lecture Notes in Computer Sci-
ence, pages 646–661. Springer, 2008.
doi:10.1007/978-3-540-70575-8 53 → p. 21

[CCJ06] D. A. Cohen, M. C. Cooper, and P. G. Jeavons. An Algebraic Characterisation
of Complexity for Valued Constraints. In Proceedings of the 12th International
Conference on Principles and Practice of Contraint Programming (CP’06), vol-
ume 4204 of Lecture Notes in Computer Science, pages 107–121. Springer, 2006.
doi:10.1007/11889205 10

→ pp. 7, 8, 27, 28, 29, 33, 34, 39, 40, 41, 42, 49, 98, 114

[CCJ08] D. A. Cohen, M. C. Cooper, and P. G. Jeavons. Generalising submodularity
and Horn clauses: Tractable optimization problems defined by tournament pair
multimorphisms. Theoretical Computer Science, 401(1-3):36–51, 2008.
doi:10.1016/j.tcs.2008.03.015 → p. 31

[CCJK04] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A Maximal Tractable Class
of Soft Constraints. Journal of Artificial Intelligence Research, 22:1–22, 2004.
doi:10.1613/jair.1400 → pp. 84, 115

[CCJK05] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular Functions
and the Complexity of MAX-CSP. Discrete Applied Mathematics, 149(1-3):53–
72, 2005.
doi:10.1016/j.dam.2005.03.003 → pp. 18, 83, 84, 86, 89, 90, 102

[CCJK06] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The Complexity
of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
doi:10.1016/j.artint.2006.04.002

→ pp. 7, 9, 14, 18, 23, 27, 28, 31, 42, 62, 65, 67, 84

[CCL09] J.-Y. Cai, X. Chen, and P. Lu. Graph Homomorphisms with Complex Values:
A Dichotomy Theorem. Technical report, March 2009. ArXiv:0903.4728.
http://arxiv.org/abs/0903.4728 → p. 21

[CD05] H. Chen and V. Dalmau. Beyond Hypertree Width: Decomposition Methods
Without Decompositions. In Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming (CP’05), volume 3709
of Lecture Notes in Computer Science, pages 167–181. Springer, 2005.
doi:/10.1007/11564751 15 → p. 14

[CH] Y. Crama and P. L. Hammer. Boolean Functions - Theory, Algorithms, and
Applications. In preparation. → pp. 31, 62, 83, 86, 88, 91

http://dx.doi.org/10.1016/j.tcs.2005.09.028
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1007/978-3-540-70575-8_53
http://dx.doi.org/10.1007/11889205_10
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://dx.doi.org/10.1613/jair.1400
http://dx.doi.org/10.1016/j.dam.2005.03.003
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://arxiv.org/abs/0903.4728
http://dx.doi.org//10.1007/11564751_15

BIBLIOGRAPHY 125

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125(1):1–12, 1996.
doi:10.1006/inco.1996.0016 → p. 20

[Che04] H. Chen. The Computational Complexity of Quantified Constraint Satisfaction.
Ph.D. thesis, Cornell University, 2004. → p. 32

[Che06] H. Chen. A rendezvous of logic, complexity, and algebra. SIGACT News,
37(4):85–114, 2006.
doi:10.1145/1189056.1189076 → pp. 17, 22

[Che08a] H. Chen. The Complexity of Quantified Constraint Satisfaction: Collapsibility,
Sink Algebras, and the Three-Element Case. SIAM Journal on Computing,
37(5):1674–1701, 2008.
doi:10.1137/060668572 → p. 32

[Che08b] H. Chen. Quantified Constraint Satisfaction and the Polynomially Gener-
ated Powers Property. In Proceedings of the 35th International Colloquium
on Automata, Languages and Programming (ICALP’08), volume 5126 of Lec-
ture Notes in Computer Science, pages 197–208. Springer, 2008.
doi:10.1007/978-3-540-70583-3 17 → p. 32

[Che09] H. Chen. Existentially Restricted Quantified Constraint Satisfaction. Informa-
tion and Computation, 207(3):369–388, 2009.
doi:10.1016/j.ic.2008.11.001 → p. 32

[CJ06] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, The Handbook of Constraint Programming.
Elsevier, 2006. → pp. 5, 17

[CJG08] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractabil-
ity for constraint satisfaction problems. Journal of Computer and System Sci-
ences, 74(5):721–743, 2008.
doi:10.1016/j.jcss.2007.08.001 → p. 14

[CJS08] M. C. Cooper, P. G. Jeavons, and A. Z. Salamon. Hybrid tractable CSPs which
generalize tree structure. In Proceedings of the 18th European Conference on
Artificial Intelligence (ECAI’08), volume 178 of Frontiers in Artificial Intelli-
gence and Applications, pages 530–534. IOS Press, 2008.
doi:10.3233/978-1-58603-891-5-530 → p. 22

[CJŽ08] D. A. Cohen, P. G. Jeavons, and S. Živný. The expressive power of valued con-
straints: Hierarchies and collapses. Theoretical Computer Science, 409(1):137–
153, 2008.
doi:10.1016/j.tcs.2008.08.036 → p. 52

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifica-
tion of Boolean Constraint Satisfaction Problems, volume 7 of SIAM
Monographs on Discrete Mathematics and Applications. SIAM, 2001.

→ pp. 4, 5, 9, 12, 16, 18, 20, 22, 32, 83, 90, 102

http://dx.doi.org/10.1006/inco.1996.0016
http://dx.doi.org/10.1145/1189056.1189076
http://dx.doi.org/10.1137/060668572
http://dx.doi.org/10.1007/978-3-540-70583-3_17
http://dx.doi.org/10.1016/j.ic.2008.11.001
http://dx.doi.org/10.1016/j.jcss.2007.08.001
http://dx.doi.org/10.3233/978-1-58603-891-5-530
http://dx.doi.org/10.1016/j.tcs.2008.08.036

BIBLIOGRAPHY 126

[CKV08] N. Creignou, P. G. Kolaitis, and H. Vollmer, editors. Complexity of Constraints:
An Overview of Current Research Themes, volume 5250 of Lecture Notes in
Computer Science. Springer, 2008.
doi:10.1007/978-3-540-92800-3 → p. 17

[CLX08] J.-Y. Cai, P. Lu, and M. Xia. Holographic Reduction, Interpolation and Hard-
ness. Unpublished manuscript, 2008. → p. 21

[CLX09] J.-Y. Cai, P. Lu, and M. Xia. Holant Problems and Counting CSP. In Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09),
pages 715–724. 2009.
doi:10.1145/1536414.1536511 → p. 21

[Coh03] D. A. Cohen. A New Classs of Binary CSPs for which Arc-Constistency Is
a Decision Procedure. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming (CP’03), volume 2833 of
Lecture Notes in Computer Science, pages 807–811. Springer, 2003.
doi:10.1007/b13743 → p. 22

[Coo05] M. Cooper. High-order Consistency in Valued Constraint Satisfaction. Con-
straints, 10(3):283–305, 2005.
doi:10.1007/s10601-005-2240-3 → p. 11

[Coo08a] M. C. Cooper. Private communication, 2008. → p. 31

[Coo08b] M. C. Cooper. Minimization of Locally Defined Submodular Functions by
Optimal Soft Arc Consistency. Constraints, 13(4):437–458, 2008.
doi:10.1007/s10601-007-9037-5 → pp. 31, 32

[Cra89] Y. Crama. Recognition problems for special classes of polynomials in 0-1 vari-
ables. Mathematical Programming, 44(1-3):139–155, 1989.
doi:10.1007/BF01587085 → pp. 91, 102, 103, 111, 115

[Cun84] W. H. Cunningham. Testing membership in matroid polyhedra. Journal of
Combinatorial Theory, Series B, 36(2):161–188, 1984.
doi:10.1016/0095-8956(84)90023-6 → p. 30

[Cun85] W. H. Cunningham. On submodular function minimization. Combinatorica,
5(3):185–192, 1985.
doi:10.1007/BF02579361 → p. 30

[CŽ09] D. Cohen and S. Živný. Multimorphisms of Submodular Functions. Unpub-
lished manuscript, 2009. → pp. 105, 108

[Dal06] V. Dalmau. Generalized Majority-Minority Operations are Tractable. Logical
Methods in Computer Science, 2(4), 2006.
doi:10.2168/LMCS-2(4:1)2006 → p. 17

[Dec90] R. Dechter. On the Expressiveness of Networks with Hidden Variables. In
Proceedings of the 8th National Conference on Artificial Intelligence (AAAI’90),
pages 556–562. 1990.
http://www.aaai.org/Library/AAAI/1990/aaai90-084.php → p. 80

http://dx.doi.org/10.1007/978-3-540-92800-3
http://dx.doi.org/10.1145/1536414.1536511
http://dx.doi.org/10.1007/b13743
http://dx.doi.org/10.1007/s10601-005-2240-3
http://dx.doi.org/10.1007/s10601-007-9037-5
http://dx.doi.org/10.1007/BF01587085
http://dx.doi.org/10.1016/0095-8956(84)90023-6
http://dx.doi.org/10.1007/BF02579361
http://dx.doi.org/10.2168/LMCS-2(4:1)2006
http://www.aaai.org/Library/AAAI/1990/aaai90-084.php

BIBLIOGRAPHY 127

[Dec92] R. Dechter. From Local to Global Consistency. Artificial Intelligence, 55(1):87–
107, 1992.
doi:10.1016/0004-3702(92)90043-W → p. 17

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
→ pp. 2, 9, 14, 32

[DG00] M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomor-
phisms. Random Structures and Algorithms, 17(3-4):260–289, 2000.
doi:10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W

→ p. 20

[DGJ08] M. E. Dyer, L. A. Goldberg, and M. Jerrum. A complexity dichotomy
for hypergraph partition functions. Technical report, November 2008.
ArXiv:abs/0811.0037.
http://arxiv.org/abs/0811.0037 → p. 21

[DGJ09a] M. E. Dyer, L. A. Goldberg, and M. Jerrum. An approximation trichotomy for
Boolean #CSP. To appear in Journal of Computer and System Sciences, 2009.
ArXive:abs/0710.4272.
http://arxiv.org/abs/0710.4272 → p. 20

[DGJ09b] M. E. Dyer, L. A. Goldberg, and M. Jerrum. The Complexity of Weighted
Boolean #CSP. SIAM Journal on Computing, 38(5):1970–1986, 2009.
doi:10.1137/070690201 → p. 21

[DGJR09] M. E. Dyer, L. A. Goldberg, M. Jalsenius, and D. Richerby. The Complexity of
Approximating Bounded-Degree Boolean #CSP. Technical report, July 2009.
ArXive:abs/0907.2663.
http://arxiv.org/abs/0907.2663 → p. 21

[DGP07] M. E. Dyer, L. A. Goldberg, and M. Paterson. On counting homomorphisms
to directed acyclic graphs. Journal of the ACM, 54(6), 2007.
doi:10.1145/1314690.1314691 → p. 20

[DJ04] V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen
from the other side. Theoretical Computer Science, 329(1-3):315–323, 2004.
doi:10.1016/j.tcs.2004.08.008 → p. 22

[DJKK08] V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. The approximability of
Max CSP with fixed-value constraints. Journal of the ACM, 55(4), 2008.
doi:10.1145/1391289.1391290 → pp. 18, 31

[DKV02] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In Proceedings of the 8th International
Conference on Principles and Practice of Contraint Programming (CP’02), vol-
ume 2470 of Lecture Notes in Computer Science, pages 310–326. Springer, 2002.
doi:10.1007/3-540-46135-3 21 → p. 14

[DM07] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.
Artificial Intelligence, 171(2-3):73–106, 2007.
doi:10.1016/j.artint.2006.11.003 → p. 10

http://dx.doi.org/10.1016/0004-3702(92)90043-W
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
http://arxiv.org/abs/0811.0037
http://arxiv.org/abs/0710.4272
http://dx.doi.org/10.1137/070690201
http://arxiv.org/abs/0907.2663
http://dx.doi.org/10.1145/1314690.1314691
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1145/1391289.1391290
http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.1016/j.artint.2006.11.003

BIBLIOGRAPHY 128

[DP89] R. Dechter and J. Pearl. Tree Clustering for Constraint Networks. Artificial
Intelligence, 38(3):353–366, 1989.
doi:10.1016/0004-3702(89)90037-4 → pp. 14, 80, 115

[DP99] V. Dalmau and J. Pearson. Set Functions and Width 1 Problems. In Proceed-
ings of the 5th International Conference on Constraint Programming (CP’99),
volume 1713 of Lecture Notes in Computer Science, pages 159–173. Springer,
1999.
doi:10.1007/b72297 → p. 17

[DW02] K. Denecke and S. Wismath. Universal Algebra and Applications in Theoretical
Computer Science. Chapman and Hall/CRC Press, 2002. → pp. 26, 36, 37, 55

[Edm70] J. Edmonds. Submodular Functions, Matroids, and Certain Polyhedra. Com-
binatorial Structures and Their Applications, pages 69–87, 1970.
doi:10.1007/3-540-36478-1 2 → p. 30

[Fea95] A. Fearnley. A strongly rigid binary relation. Acta Scientarium Mathemati-
carum (Szeged), 61(1-4):35–41, 1995. → p. 57

[Fei98] U. Feige. A threshold of ln n for approximating Set Cover. Journal of the ACM,
45(4):634–652, 1998.
doi:10.1145/285055.285059 → p. 30

[FG06] J. Flum and M. Grohe. Parametrized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. → pp. 12, 14

[FHH03] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list
homomorphisms. Journal of Graph Theory, 42(1):61–80, 2003.
doi:10.1002/jgt.10073 → p. 19

[FI03] L. Fleischer and S. Iwata. A push-relabel framework for submodular function
minimization and applications to parametric optimization. Discrete Applied
Mathematics, 131(2):311–322, 2003.
doi:10.1016/S0166-218X(02)00458-4 → p. 30

[FJ07] T. Färnqvist and P. Jonsson. Bounded Tree-Width and CSP-Related Prob-
lems. In Proceedings of the 18th International Symposium on Algorithms and
Computation (ISAAC’07), volume 4835 of Lecture Notes in Computer Science,
pages 632–643. Springer, 2007.
doi:10.1007/978-3-540-77120-3 55 → p. 19

[FK06] T. Feder and P. Kolaitis. Closures and dichotomies for quantified constraints.
Technical Report TR06-160, Electronic Colloquium on Computational Com-
plexity (ECCC), 2006.
http://eccc.hpi-web.de/eccc-reports/2006/TR06-160/ → p. 32

[FMV07] U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone sub-
modular functions. In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pages 461–471. IEEE Computer
Society, 2007.
doi:10.1109/FOCS.2007.29 → pp. 30, 31, 83

http://dx.doi.org/10.1016/0004-3702(89)90037-4
http://dx.doi.org/10.1007/b72297
http://dx.doi.org/10.1007/3-540-36478-1_2
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1002/jgt.10073
http://dx.doi.org/10.1016/S0166-218X(02)00458-4
http://dx.doi.org/10.1007/978-3-540-77120-3_55
http://eccc.hpi-web.de/eccc-reports/2006/TR06-160/
http://dx.doi.org/10.1109/FOCS.2007.29

BIBLIOGRAPHY 129

[Fre90] E. C. Freuder. Complexity of K-Tree Structured Constraint Satisfaction Prob-
lems. In Proceedings of the 8th National Conference on Artificial Intelligence
(AAAI’90), pages 4–9. 1990.
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php → p. 14

[Fuj05] S. Fujishige. Submodular Functions and Optimization, volume 58 of An-
nals of Discrete Mathematics. North-Holland, Amsterdam, 2nd edition, 2005.

→ p. 30

[FV98] T. Feder and M. Vardi. The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory.
SIAM Journal on Computing, 28(1):57–104, 1998.
doi:10.1137/S0097539794266766 → pp. 5, 12, 17, 50

[GC08] M. J. Green and D. A. Cohen. Domain permutation reduction for constraint
satisfaction problems. Artificial Intelligence, 172(8-9):1094–1118, 2008.
doi:10.1016/j.artint.2007.12.001 → pp. 31, 81

[Gei68] D. Geiger. Closed systems of functions and predicates. Pacific Journal of
Mathematics, 27(1):95–100, 1968.
http://projecteuclid.org/euclid.pjm/1102985564 → pp. 26, 34

[GG84] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721–741, 1984.
doi:10.1109/TPAMI.1984.4767596 → pp. 31, 114

[GGJT09] L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy
for partition functions with mixed signs. In Proceedings of the 26th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’09), pages
493–504. 2009.
http://drops.dagstuhl.de/opus/volltexte/2009/1821 → p. 21

[GGK+09] A. Gupta, G. Gutin, M. Karimi, E. Kim, and A. Rafiey. Minimum Cost Homo-
morphisms to Locally Semicomplete and Quasi-Transitive Digraphs. To appear
in Australasian Journal of Combinatorics, 2009. → p. 20

[GGM+05] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scarcello. Hypertree
Decompositions: Structure, Algorithms, and Applications. In Proceedings on
the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’05), volume 3787 of Lecture Notes in Computer Science, pages
1–15. Springer, 2005.
doi:10.1007/11604686 1 → p. 14

[GGY08] A. R. G. Gutin and A. Yeo. Minimum Cost Homomorphisms to Semicomplete
Bipartite Digraphs. SIAM Journal on Discrete Mathematics, 22(4):1624–1639,
2008.
doi:10.1137/060668316 → p. 20

[GHKR08] A. Gupta, P. Hell, M. Karimi, and A. Rafiey. Minimum Cost Homomorphisms
to Reflexive Digraphs. In Proceedings of the 8th Latin American Symposium on

http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/j.artint.2007.12.001
http://projecteuclid.org/euclid.pjm/1102985564
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://drops.dagstuhl.de/opus/volltexte/2009/1821
http://dx.doi.org/10.1007/11604686_1
http://dx.doi.org/10.1137/060668316

BIBLIOGRAPHY 130

Theoretical Informatics (LATIN’08), volume 4957 of Lecture Notes in Computer
Science, pages 182–193. Springer, 2008.
doi:10.1007/978-3-540-78773-0 16 → p. 20

[GHRY08] G. Gutin, P. Hell, A. Rafiey, and A. Yeo. A dichotomy for minimum cost graph
homomorphisms. European Journal of Combinatorics, 29(4):900–911, 2008.
doi:10.1016/j.ejc.2007.11.012 → p. 19

[GHSZ08] A. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient Algorithms for
Description Problems over Finite Totally Ordered Domains. SIAM Journal on
Computing, 38(3):922–945, 2008.
doi:10.1137/050635900 → p. 55

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979. → pp. 16, 57

[GJ04] R. Gault and P. Jeavons. Implementing a test for tractability. Constraints,
9(2):139–160, 2004.
doi:10.1023/B:CONS.0000024049.41091.71 → p. 35

[GK07] G. Gutin and E. J. Kim. On the Complexity of the Minimum Cost Homomor-
phism Problem for Reflexive Multipartite Tournaments. Technical report, 2007.
ArXive:abs/0708.2544.
http://arxiv.org/abs/0708.2544 → p. 20

[GK08] G. Gutin and E. Kim. Introduction to the Minimum Cost Homomorphism
Problem for Directed and Undirected Graphs. Lectures Notes of the Ramanujan
Mathematical Society, 7:25–37, 2008. → p. 20

[GK09] G. Gutin and E. Kim. Complexity of the Minimum Cost Homomorphism Prob-
lem for Semicomplete Digraphs with Possible Loops. Discrete Applied Mathe-
matics, 2009.
doi:10.1016/j.dam.2009.07.013 → p. 20

[GKKR08] A. Gupta, M. Karimi, E. J. Kim, and A. Rafiey. Minimum Cost Homomor-
phism Dichotomy for Locally In-Semicomplete Digraphs. In Proceedings of the
2nd International Conference on Combinatorial Optimization and Applications
(COCOA’08), volume 5165 of Lecture Notes in Computer Science, pages 374–
383. Springer, 2008.
doi:10.1007/978-3-540-85097-7 35 → p. 20

[GKL+07] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Ven-
ema, and S. Weinstein. Finite Model Theory and Its Applications. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2007. → p. 17

[GLS81] M. Grötschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–198, 1981.
doi:10.1007/BF02579273 → p. 30

[GLS88] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988. → p. 30

http://dx.doi.org/10.1007/978-3-540-78773-0_16
http://dx.doi.org/10.1016/j.ejc.2007.11.012
http://dx.doi.org/10.1137/050635900
http://dx.doi.org/10.1023/B:CONS.0000024049.41091.71
http://arxiv.org/abs/0708.2544
http://dx.doi.org/10.1016/j.dam.2009.07.013
http://dx.doi.org/10.1007/978-3-540-85097-7_35
http://dx.doi.org/10.1007/BF02579273

BIBLIOGRAPHY 131

[GLS00] G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural CSP de-
composition methods. Artificial Intelligence, 124(2):243–282, 2000.
doi:10.1016/S0004-3702(00)00078-3 → p. 14

[GLS02] G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.
doi:10.1006/jcss.2001.1809 → p. 14

[GM06] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’06), pages 289–298. 2006.
doi:10.1145/1109557.1109590 → p. 14

[GMS07] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized Hypertree Decom-
positions: NP-hardness and Tractable Variants. In Proceedings of the 26th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’07), pages 13–22. 2007.
doi:10.1145/1265530.1265533 → p. 14

[Gro07] M. Grohe. The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. Journal of the ACM, 54(1), 2007.
doi:10.1145/1206035.1206036 → pp. 14, 19

[GRY06] G. Gutin, A. Rafiey, and A. Yeo. Minimum Cost and List Homomorphisms to
Semicomplete Digraphs. Discrete Applied Mathematics, 154(6):890–897, 2006.
doi:10.1016/j.dam.2005.11.006 → p. 20

[GRY08a] G. Gutin, A. Rafiey, and A. Yeo. Minimum Cost Homomorphism Dichotomy
for Oriented Cycles. In Proceedings of the 4th International Conference on
Algorithmic Aspects in Information and Management (AAIM’08), volume 5034
of Lecture Notes in Computer Science, pages 224–234. Springer, 2008.
doi:10.1007/978-3-540-68880-8 22 → p. 20

[GRY08b] G. Gutin, A. Rafiey, and A. Yeo. Minimum Cost Homomorphisms to Semicom-
plete Multipartite Digraphs. Discrete Applied Mathematics, 156(12):2429–2435,
2008.
doi:10.1016/j.dam.2007.09.023 → p. 20

[GRYT06] G. Gutin, A. Rafiey, A. Yeo, and M. Tso. Level of Repair Analysis and Minimum
Cost Homomorphisms of Graphs. Discrete Applied Mathematics, 154(6):881–
889, 2006.
doi:10.1016/j.dam.2005.06.012 → pp. 9, 20

[GS88] G. Gallo and B. Simeone. On the supermodular knapsack problem. Mathemat-
ical Programming, 45(1-3):295–309, 1988.
doi:10.1007/BF01589108 → pp. 91, 111

[GS08] G. Gottlob and S. Szeider. Fixed-parameter algorithms for artificial intelli-
gence, constraint satisfaction and database problems. The Computer Journal,
51(3):303–325, 2008.
doi:10.1093/comjnl/bxm056 → p. 12

http://dx.doi.org/10.1016/S0004-3702(00)00078-3
http://dx.doi.org/10.1006/jcss.2001.1809
http://dx.doi.org/10.1145/1109557.1109590
http://dx.doi.org/10.1145/1265530.1265533
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1016/j.dam.2005.11.006
http://dx.doi.org/10.1007/978-3-540-68880-8_22
http://dx.doi.org/10.1016/j.dam.2007.09.023
http://dx.doi.org/10.1016/j.dam.2005.06.012
http://dx.doi.org/10.1007/BF01589108
http://dx.doi.org/10.1093/comjnl/bxm056

BIBLIOGRAPHY 132

[GT88] A. Goldberg and R. Tarjan. A New Approach to the Maximum Flow Problem.
Journal of the ACM, 35(4):921–940, 1988.
doi:10.1145/48014.61051 → pp. 15, 16, 88

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115–1145, 1995.
doi:10.1145/227683.227684 → p. 30

[Ham65] P. L. Hammer. Some network flow problems solved with pseudo-Boolean pro-
gramming. Operations Research, 13(3):388–399, 1965.
doi:10.1287/opre.13.3.388 → pp. 83, 87

[HN90] P. Hell and J. Nešetřil. On the Complexity of H-coloring. Journal of Combi-
natorial Theory, Series B, 48(1):92–110, 1990.
doi:10.1016/0095-8956(90)90132-J → pp. 17, 19

[HN04] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press,
2004. → pp. 4, 5, 17, 18, 19, 55

[HN08] P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity.
Computer Science Review, 2(3):143–163, 2008.
doi:10.1016/j.cosrev.2008.10.003 → pp. 17, 26

[HS86] P. Hansen and B. Simeone. Unimodular functions. Discrete Applied Mathemat-
ics, 14(3):269–281, 1986.
doi:10.1016/0166-218X(86)90031-4 → p. 115

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial al-
gorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–
777, 2001.
doi:10.1145/502090.502096 → p. 30

[IMM+07] P. M. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard.
Tractability and learnability arising from algebras with few subpowers. In Pro-
ceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS’07),
pages 213–224. 2007.
doi:10.1109/LICS.2007.50 → p. 17

[IO09] S. Iwata and J. B. Orlin. A Simple Combinatorial Algorithm for Submodular
Function Minimization. In Proceedings of the 20th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’09), pages 1230–1237. 2009.
doi:10.1145/1496770.1496903 → pp. 30, 116

[Iwa02] S. Iwata. A fully combinatorial algorithm for submodular function minimiza-
tion. Journal of Combinatorial Theory, Series B, 84(2):203–212, 2002.
doi:10.1006/jctb.2001.2072 → p. 30

[Iwa03] S. Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM
Journal on Computing, 32(4):833–840, 2003.
doi:10.1137/S0097539701397813 → p. 30

http://dx.doi.org/10.1145/48014.61051
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1287/opre.13.3.388
http://dx.doi.org/10.1016/0095-8956(90)90132-J
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.1016/0166-218X(86)90031-4
http://dx.doi.org/10.1145/502090.502096
http://dx.doi.org/10.1109/LICS.2007.50
http://dx.doi.org/10.1145/1496770.1496903
http://dx.doi.org/10.1006/jctb.2001.2072
http://dx.doi.org/10.1137/S0097539701397813

BIBLIOGRAPHY 133

[Iwa08] S. Iwata. Submodular Function Minimization. Mathematical Programming,
112(1):45–64, 2008.
doi:10.1007/s10107-006-0084-2 → p. 30

[JC95] P. G. Jeavons and M. C. Cooper. Tractable Constraints on Ordered Domains.
Artificial Intelligence, 79(2):327–339, 1995.
doi:10.1016/0004-3702(95)00107-7 → pp. 54, 55

[JCC98] P. Jeavons, D. Cohen, and M. C. Cooper. Constraints, Consistency and Closure.
Artificial Intelligence, 101(1–2):251–265, 1998.
doi:10.1016/S0004-3702(98)00022-8 → pp. 17, 85

[JCG96] P. Jeavons, D. Cohen, and M. Gyssens. A Test for Tractability. In Proceedings
of the 2nd International Conference on Constraint Programming (CP’96), 1996,
volume 1118 of Lecture Notes in Computer Science, pages 267–281. Springer,
1996.
doi:10.1007/3-540-61551-2 → p. 34

[JCG97] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527–548, 1997.
doi:10.1145/263867.263489 → pp. 5, 26, 35, 50

[JCG99] P. Jeavons, D. Cohen, and M. Gyssens. How to Determine the Expressive Power
of Constraints. Constraints, 4(2):113–131, 1999.
doi:10.1023/A:1009890709297 → p. 34

[Jea98] P. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theoretical
Computer Science, 200(1-2):185–204, 1998.
doi:10.1016/S0304-3975(97)00230-2 → pp. 5, 26, 34

[Jea09] P. G. Jeavons. Presenting Constraints. In Proceedings of the 18th International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods (TABLEAUX’09), volume 5607 of Lecture Notes in Artificial Intelligence,
pages 1–15. Springer, 2009.
doi:10.1007/978-3-642-02716-1 1 → p. 9

[Jég93] P. Jégou. Decomposition of Domains Based on the Micro-Structure of Finite
Constraint-Satisfaction Problems. In Proceedings of the 11th National Confer-
ence on Artificial Intelligence (AAAI’93), pages 731–736. 1993.
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php → p. 64

[JK07] P. Jonsson and A. Krokhin. Maximum H-colourable subdigraphs and constraint
optimization with arbitrary weights. Journal of Computer and System Sciences,
73(5):691–702, 2007.
doi:10.1016/j.jcss.2007.02.001 → p. 18

[JKK06] P. Jonsson, M. Klasson, and A. Krokhin. The Approximability of Three-valued
MAX CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006.
doi:10.1137/S009753970444644X → pp. 18, 31

http://dx.doi.org/10.1007/s10107-006-0084-2
http://dx.doi.org/10.1016/0004-3702(95)00107-7
http://dx.doi.org/10.1016/S0004-3702(98)00022-8
http://dx.doi.org/10.1007/3-540-61551-2
http://dx.doi.org/10.1145/263867.263489
http://dx.doi.org/10.1023/A:1009890709297
http://dx.doi.org/10.1016/S0304-3975(97)00230-2
http://dx.doi.org/10.1007/978-3-642-02716-1_1
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1016/j.jcss.2007.02.001
http://dx.doi.org/10.1137/S009753970444644X

BIBLIOGRAPHY 134

[JKN08] P. Jonsson, F. Kuivinen, and G. Nordh. MAX ONES Generalized to Larger
Domains. SIAM Journal on Computing, 38(1):329–365, 2008.
doi:10.1137/060669231 → p. 18

[JN08] P. Jonsson and G. Nordh. Introduction to the maximum solution Problem. In
Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science,
pages 255–282. Springer, 2008.
doi:10.1007/978-3-540-92800-3 10 → p. 20

[JNT07] P. Jonsson, G. Nordh, and J. Thapper. The maximum solution problem on
graphs. In Proceedings of the 32nd International Symposium on Mathematical
Foundations of Computer Science (MFCS’07), volume 4708 of Lecture Notes in
Computer Science, pages 228–239. Springer, 2007.
doi:10.1007/978-3-540-74456-6 22 → p. 20

[Jon00] P. Jonsson. Boolean constraint satisfaction: complexity results for optimization
problems with arbitrary weights. Theoretical Computer Science, 244(1-2):189–
203, 2000.
doi:10.1016/S0304-3975(98)00343-0 → p. 18

[KJJ03] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about Temporal Relations:
The Tractable Subalgebras of Allen’s Interval Algebra. Journal of the ACM,
50(5):591–640, 2003.
doi:10.1145/876638.876639 → p. 32

[KKT07] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 & Beyond: Solving Energies with
Higher Order Cliques. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’07). IEEE Computer Society, 2007.
doi:10.1109/CVPR.2007.383204 → p. 115

[KL08] A. Krokhin and B. Larose. Maximizing Supermodular Functions on Product
Lattices, with Application to Maximum Constraint Satisfaction. SIAM Journal
on Discrete Mathematics, 22(1):312–328, 2008.
doi:10.1137/060669565 → pp. 30, 90

[KLT09] P. Kohli, L. Ladický, and P. Torr. Robust Higher Order Potentials for Enforcing
Label Consistency. International Journal of Computer Vision, 82(3):302–324,
2009.
doi:10.1007/s11263-008-0202-0 → p. 86

[KN08] G. Kun and J. Nešetřil. Forbidden lifts (NP and CSP for combinatorialists).
European Journal of Combinatorics, 29(4):930–945, 2008.
doi:10.1016/j.ejc.2007.11.027 → p. 17

[KS09] G. Kun and M. Szegedy. A New Line of Attack on the Dichotomy Conjectur.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC’09), pages 725–734. 2009.
doi:10.1145/1536414.1536512 → p. 17

[KSTW01] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability
of constraint satisfaction problems. SIAM J. on Computing, 30(6):1863–1920,

http://dx.doi.org/10.1137/060669231
http://dx.doi.org/10.1007/978-3-540-92800-3_10
http://dx.doi.org/10.1007/978-3-540-74456-6_22
http://dx.doi.org/10.1016/S0304-3975(98)00343-0
http://dx.doi.org/10.1145/876638.876639
http://dx.doi.org/10.1109/CVPR.2007.383204
http://dx.doi.org/10.1137/060669565
http://dx.doi.org/10.1007/s11263-008-0202-0
http://dx.doi.org/10.1016/j.ejc.2007.11.027
http://dx.doi.org/10.1145/1536414.1536512

BIBLIOGRAPHY 135

2001.
doi:10.1137/S0097539799349948 → p. 18

[Kun] G. Kun. Constraints, MMSNP and expander structures. Combinatorica. Sub-
mitted for publication. → p. 17

[KV00] P. Kolaitis and M. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.
doi:10.1006/jcss.2000.1713 → pp. 12, 14, 17

[KV07a] P. G. Kolaitis and M. Y. Vardi. A Logical Approach to Constraint Satisfaction.
In Finite Model Theory and Its Applications, Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2007. → pp. 5, 14, 17

[KV07b] B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms
and Combinatorics. Springer, 4th edition, 2007. → p. 30

[Lad75] R. E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of
the ACM, 22(1):155–171, 1975.
doi:10.1145/321864.321877 → p. 17

[Lau96] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.
→ pp. 31, 114

[LD00] J. Larrosa and R. Dechter. On the Dual Representation of non-Binary
Semiring-based CSPs. In Workshop on Soft Constraints – CP’00. 2000.
http://www.math.unipd.it/~frossi/cp2000-soft/program.html

→ pp. 80, 115

[Lew78] H. R. Lewis. Renaming a Set of Clauses as a Horn Set. Journal of the ACM,
25(1):134–135, 1978.
doi:10.1145/322047.322059 → p. 81

[Lov83] L. Lovász. Submodular Functions and Convexity. In A. Bachem, M. Grötschel,
and B. Korte, editors, Mathematical Programming – The State of the Art, pages
235–257. Springer, Berlin, 1983. → p. 30

[LRHB06] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient Belief Propa-
gation with Learned Higher-Order Markov Random Fields. In Proceedings of
the 9th European Conference on Computer Vision (ECCV’06), Part II, volume
3952 of Lecture Notes in Computer Science, pages 269–282. Springer, 2006.
doi:10.1007/11744047 21 → p. 115

[LT09] B. Larose and P. Tesson. Universal Algebra and Hardness Results for Constraint
Satisfaction Problems. Theoretical Computer Science, 410(18):1629–1647, 2009.
doi:10.1016/j.tcs.2008.12.048 → p. 5

[LZ07] B. Larose and L. Zádori. Bounded width problems and algebras. Algebra
Universalis, 56(3-4):439–466, 2007.
doi:10.1007/s00012-007-2012-6 → p. 17

http://dx.doi.org/10.1137/S0097539799349948
http://dx.doi.org/10.1006/jcss.2000.1713
http://dx.doi.org/10.1145/321864.321877
http://www.math.unipd.it/~frossi/cp2000-soft/program.html
http://dx.doi.org/10.1145/322047.322059
http://dx.doi.org/10.1007/11744047_21
http://dx.doi.org/10.1016/j.tcs.2008.12.048
http://dx.doi.org/10.1007/s00012-007-2012-6

BIBLIOGRAPHY 136

[Mar04] D. Marx. Graph Coloring with Local and Global Constraints. Ph.D. thesis,
Department of Computer Science and Information Theory, Budapest University
of Technology and Economics, 2004.

[Mar07] D. Marx. Can you beat treewidth? In Proocedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pages 169–179.
IEEE Computer Society, 2007.
doi:10.1109/FOCS.2007.27 → p. 14

[Mar09a] D. Marx. Approximating fractional hypertree width. In Proceedings of the 20th
ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pages 902–911.
2009.
doi:10.1145/1496770.1496868 → p. 14

[Mar09b] D. Marx. Tractable structures for constraint satisfaction with truth tables.
In Proceedings of the 26th International Symposium on Theoretical Aspects of
Computer Science (STACS’09), pages 649–660. 2009.
http://drops.dagstuhl.de/opus/volltexte/2009/1807/ → p. 14

[Mat70] Y. V. Matiyasevič. Enumerable sets are Diophantine. 191(2):279–282, 1970.
In Russian. English Translation in: Soviet Mathematical Doklady 11, 354–357,
1970. → p. 4

[MF93] A. Mackworth and E. Freuder. The Complexity of Constraint Satisfaction Re-
visited. Artificial Intelligence, 59(1-2):57–62, 1993.
doi:10.1016/0004-3702(93)90170-G → p. 13

[MM08] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric opera-
tions. Algebra Universalis, 59(3-4):463–489, 2008.
doi:10.1007/s00012-008-2122-9 → p. 26

[Mon74] U. Montanari. Networks of Constraints: Fundamental properties and applica-
tions to picture processing. Information Sciences, 7:95–132, 1974.
doi:10.1016/0020-0255(74)90008-5 → p. 9

[MRTT53] T. Motzkin, H. Raiffa, G. Thompson, and R. Thrall. The double description
method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory
of Games, volume 2, pages 51–73. Princeton University Press, 1953. → p. 109

[Nar97] H. Narayanan. Submodular Functions and Electrical Networks. North-Holland,
Amsterdam, 1997. → p. 30

[NB95] B. Nebel and H.-J. Bürckert. Reasoning About Temporal Relations: A Maximal
Tractable Subclass of Allen’s Interval Algebra. Journal of the ACM, 42(1):43–
66, 1995.
doi:10.1145/200836.200848 → p. 32

[NI92] H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs
and Capacitated Graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66,
1992.
doi:10.1137/0405004 → p. 16

http://dx.doi.org/10.1109/FOCS.2007.27
http://dx.doi.org/10.1145/1496770.1496868
http://drops.dagstuhl.de/opus/volltexte/2009/1807/
http://dx.doi.org/10.1016/0004-3702(93)90170-G
http://dx.doi.org/10.1007/s00012-008-2122-9
http://dx.doi.org/10.1016/0020-0255(74)90008-5
http://dx.doi.org/10.1145/200836.200848
http://dx.doi.org/10.1137/0405004

BIBLIOGRAPHY 137

[NSZ09] J. Nešetřil, M. H. Siggers, and L. Zádori. A combinatorial constraint satisfac-
tion problem dichotomy classification conjecture. European Journal of Combi-
natorics, 2009.
doi:10.1016/j.ejc.2009.02.007 → p. 17

[NW88] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988. → p. 30

[NWF78] G. Nemhauser, L. Wolsey, and M. Fisher. An Analysis of Approximations
for Maximizing Submodular Set Functions-I. Mathematical Programming,
14(1):265–294, 1978.
doi:10.1007/BF01588971 → p. 86

[Orl09] J. B. Orlin. A faster strongly polynomial time algorithm for submodular func-
tion minimization. Mathematical Programming, 118(2):237–251, 2009.
doi:10.1007/s10107-007-0189-2 → pp. 30, 83

[PK79] R. Pöschel and L. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979. → p. 37

[PL98] R. Paget and I. D. Longstaff. Texture synthesis via a noncausal nonparamet-
ric multiscale Markov random field. IEEE Transactions on Image Processing,
7(6):925–931, 1998.
doi:10.1109/83.679446 → p. 115

[Pos41] E. Post. The two-valued iterative systems of mathematical logic, volume 5 of
Annals of Mathematical Studies. Princeton University Press, 1941. → p. 37

[PQ82] J.-C. Picard and M. Queyranne. A network flow solution to some nonlin-
ear 0-1 programming programs, with applications to graph theory. Networks,
12(2):141–159, 1982.
doi:10.1002/net.3230120206 → p. 95

[PR75] J.-C. Picard and H. Ratliff. Minimum cuts and related problems. Networks,
5(4):357–370, 1975.
doi:10.1002/net.3230050405 → p. 95

[PY05] S. Promislow and V. Young. Supermodular Functions on Finite Lattices. Order,
22(4):389–413, 2005.
doi:10.1007/s11083-005-9026-5 → pp. 86, 98, 99, 102, 109, 110

[Que98] M. Queyranne. Minimising symmetric submodular functions. Mathematical
Programming, 82(1-2):3–12, 1998.
doi:10.1007/BF01585863 → p. 30

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In Proceedings of the 40th Annual ACM Symposium on Theory of Com-
puting (STOC’08), pages 245–254. 2008.
doi:10.1145/1374376.1374414 → p. 18

[Rao] A. Rao. On the Theory of Computing. Unpublished essay. → p. 1

http://dx.doi.org/10.1016/j.ejc.2009.02.007
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/s10107-007-0189-2
http://dx.doi.org/10.1109/83.679446
http://dx.doi.org/10.1002/net.3230120206
http://dx.doi.org/10.1002/net.3230050405
http://dx.doi.org/10.1007/s11083-005-9026-5
http://dx.doi.org/10.1007/BF01585863
http://dx.doi.org/10.1145/1374376.1374414

BIBLIOGRAPHY 138

[RB05] S. Roth and M. J. Black. Fields of experts: A framework for learning image
priors. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), pages 860–867. IEEE Computer Society, 2005.
doi:10.1109/CVPR.2005.160 → p. 115

[Rei08] O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4),
2008.
doi:10.1145/1391289.1391291 → p. 23

[Rhy70] J. Rhys. A selection problem of shared fixed costs and network flows. Manage-
ment Science, 17(3):200–207, 1970.
http://www.jstor.org/stable/2629089 → pp. 83, 87, 89, 95, 102

[RKAT08] S. Ramalingam, P. Kohli, K. Alahari, and P. Torr. Exact Inference in Multi-
label CRFs with Higher Order Cliques. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’08). IEEE Computer So-
ciety, 2008.
doi:10.1109/CVPR.2008.4587401 → p. 86

[RKFJ09] C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing Sparse Higher Order
Energy Functions of Discrete Variables. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’09). IEEE Computer So-
ciety, 2009. → p. 115

[Ros75] I. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahier
du Centre dEtudes de Recherche Oprationnelle, 17:71–74, 1975. → p. 83

[RvBW06] F. Rossi, P. van Beek, and T. Walsh, editors. The Handbook of Constraint
Programming. Elsevier, 2006. → pp. 2, 4, 6, 9, 10, 11, 32

[SBK00] M. Studený, R. R. Bouckaert, and T. Kočka. Extreme supermodular set func-
tions over five variables. Technical Report number 1997, Institute of Information
Theory and Automation, Prague, January 2000.
http://www.utia.cas.cz/user data/studeny/f14.html → p. 116

[Sch78] T. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–
226. 1978.
doi:10.1145/800133.804350 → pp. 4, 16

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., 1986. → pp. 28, 40, 42, 45, 46

[Sch00] A. Schrijver. A Combinatorial Algorithm Minimizing Submodular Functions
in Strongly Polynomial Time. Journal of Combinatorial Theory, Series B,
80(2):346–355, 2000.
doi:10.1006/jctb.2000.1989 → p. 30

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24
of Algorithms and Combinatorics. Springer, 2003. → pp. 30, 85

http://dx.doi.org/10.1109/CVPR.2005.160
http://dx.doi.org/10.1145/1391289.1391291
http://www.jstor.org/stable/2629089
http://dx.doi.org/10.1109/CVPR.2008.4587401
http://www.utia.cas.cz/user_data/studeny/f14.html
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1006/jctb.2000.1989

BIBLIOGRAPHY 139

[Sch07] D. Schlesinger. Exact Solution of Permuted Submodular MinSum Problems.
In Proceedings of the 6th International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR’07), vol-
ume 4679 of Lecture Notes in Computer Science, pages 28–38. Springer, 2007.
doi:10.1007/978-3-540-74198-5 3 → p. 96

[SdWC90] B. Simeone, D. de Werra, and M. Cochand. Recognition of a class of unimodular
functions. Discrete Applied Mathematics, 29(2-3):243–250, 1990.
doi:10.1016/0166-218X(90)90147-5 → p. 96

[SFV95] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95). 1995.
http://dli.iiit.ac.in/ijcai/IJCAI-95-VOL 1/ → p. 9

[SGG08] F. Scarcello, G. Gottlob, and G. Greco. Uniform Constraint Satisfaction Prob-
lems and Database Theory. In Complexity of Constraints, volume 5250 of Lec-
ture Notes in Computer Science, pages 156–195. Springer, 2008.
doi:10.1007/978-3-540-92800-3 7 → pp. 4, 5, 12

[SJ08] A. Z. Salamon and P. G. Jeavons. Perfect Constraints Are Tractable. In Pro-
ceedings of the 14th International Conference on Principles and Practice of
Constraint Programming (CP’08), volume 5202 of Lecture Notes in Computer
Science, pages 524–528. Springer, 2008.
doi:10.1007/978-3-540-85958-1 35 → p. 22

[SS06] H. Schnoor and I. Schnoor. New Algebraic Tools for Constraint Satisfaction.
In Complexity of Constraints, volume 06401 of Dagstuhl Seminar Proceedings.
2006.
http://drops.dagstuhl.de/opus/volltexte/2006/805 → p. 50

[SW97] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.
doi:10.1145/263867.263872 → p. 16

[Top98] D. Topkis. Supermodularity and Complementarity. Princeton University Press,
1998. → p. 30

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, 1979.
doi:10.1016/0304-3975(79)90044-6 → p. 20

[Wer07] T. Werner. A Linear Programming Approach to Max-Sum Problem: A Review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–
1179, 2007.
doi:10.1109/TPAMI.2007.1036 → p. 114

[WJ08] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-
2):1–305, 2008.
doi:10.1561/2200000001 → pp. 31, 114

http://dx.doi.org/10.1007/978-3-540-74198-5_3
http://dx.doi.org/10.1016/0166-218X(90)90147-5
http://dli.iiit.ac.in/ijcai/IJCAI-95-VOL 1/
http://dx.doi.org/10.1007/978-3-540-92800-3_7
http://dx.doi.org/10.1007/978-3-540-85958-1_35
http://drops.dagstuhl.de/opus/volltexte/2006/805
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1109/TPAMI.2007.1036
http://dx.doi.org/10.1561/2200000001

BIBLIOGRAPHY 140

[Zal08] B. Zalesky. Efficient Determination of Gibbs Estimators with Submodular En-
ergy Functions, February 2008. ArXiv:math/0304041v1.
http://arxiv.org/abs/math/0304041 → p. 95

[ZŽ09] B. Zanuttini and S. Živný. A note on some collapse results of valued constraints.
Information Processing Letters, 109(11):534–538, 2009.
doi:10.1016/j.ipl.2009.01.018 → p. 53

[ŽCJ08] S. Živný, D. A. Cohen, and P. G. Jeavons. The Expressive Power of Binary
Submodular Functions. Technical report, November 2008. ArXiv:0811.1885.
http://arxiv.org/abs/0811.1885

[ŽCJ09] S. Živný, D. A. Cohen, and P. G. Jeavons. The Expressive Power of Binary Sub-
modular Functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.
doi:10.1016/j.dam.2009.07.001

[ŽJ08] S. Živný and P. G. Jeavons. Which submodular functions are expressible using
binary submodular functions? Research Report CS-RR-08-08, Computing
Laboratory, University of Oxford, Oxford, UK, June 2008.
http://web.comlab.ox.ac.uk/publications/publication85-abstract.html

→ p. 114

[ŽJ09a] S. Živný and P. G. Jeavons. Classes of Submodular Constraints Expressible by
Graph Cuts. To appear in Constraints, 2009.
doi:10.1007/s10601-009-9078-z

[ŽJ09b] S. Živný and P. G. Jeavons. The complexity of valued constraint models. In
Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming (CP’09), volume 5732 of Lecture Notes in Computer
Science, pages 833–841. Springer, 2009.
doi:10.1007/978-3-642-04244-7 64 → pp. 16, 22, 51

http://arxiv.org/abs/math/0304041
http://dx.doi.org/10.1016/j.ipl.2009.01.018
http://arxiv.org/abs/0811.1885
http://dx.doi.org/10.1016/j.dam.2009.07.001
http://web.comlab.ox.ac.uk/publications/publication85-abstract.html
http://dx.doi.org/10.1007/s10601-009-9078-z
http://dx.doi.org/10.1007/978-3-642-04244-7_64

Index

Γ{0,1}, 90
Γ{0,1},k, 90
Γcons, 19
Γcut, 13
Γfans, 100
Γfans,k, 100
Γfix, 18
Γneg, 89
Γneg,k, 89
Γqin, 109
Γscons, 19
Γsub, 87
Γ∞sub,2, 104
Γsub,k, 87
Γsuff , 94
Γsuff,k, 94
Γxor, 16

FD, 43
Fd,m, 53
Fmax
d,m , 54

Gd,m, 53
Gmax
d,m , 54

OD, 36
Of
D, 43

Om
D , 46

RD, 36
Rd,m, 53
Rmax
d,m , 54

Cone(·), 84
CostP(·), 11
Eval(·), 20

Feas(·), 11
fPol(·), 28
FPol(·), 27
Imp(·), 43
Inv(·), 36
Mul(·), 28
Pol(·), 26
VCSP(·), 14

〈·〉, 25
[·], 45
[·]m, 47

A, 11
πi, 26
πx(P)(·), 22

#CSP, 20, 21
#H-Colouring, see #CSP

A
algorithm

combinatorial, 30
fully combinatorial, 30
polynomial, 30
strongly polynomial, 30
weakly polynomial, 30

Allen’s interval algebra, 32
arity, 10
assignment, 11

B
Booleanisation, 85

C

141

INDEX 142

CNF, 55
Conditional Random Field, see CRF
cone, 84
Conjunctive Normal Form, see CNF
Conjunctive Query Containment, 12
Conjunctive Query Evaluation, 12
constraint, 9

constant, 18
hard, 10
soft, 10
valued, 11

constraint network, 14
Constraint Optimisation, see COP
Constraint Satisfaction, see CSP
constraint scope, 11
COP, 10
cost, 10
cost function, 10
{0, 1}-valued, 90
2-monotone, 90, 115
crisp, 10
dual, 100
fan, 99
finite-valued, 10
general, 10
lower fan, 99
negative-positive, 89
permutable max-closed, 80
permutable submodular, 96
renamable max-closed, 80
renamable submodular, 96
submodular, 31
upper fan, 99

CRF, 31
CSP, 11

3-element, 17
Boolean, 16
conservative, 17
Counting, see #CSP
dichotomy, 17
Max-, see Max-CSP
Min-, see Min-CSP
nonuniform, 17
relatively quantified, 32
semi-ring, 9, 10

soft, 9
temporal, 32
uniform, 14
Valued, see VCSP
without sources and sinks, 17

D
Datalog, 17
derivative, 86
Dichotomy Conjecture, 17, 26
Digraph Homomorphism, 19
Digraph List Homomorphism, 19
Digraph Min-Cost Homomorphism,

19
domain, 10

Boolean, 14
finite, 10

dual representation, 115

E
expressibility, 22, 84
expressive power, 25
extra variables, see hidden variables

F
Farkas’ Lemma, 42, 46
feasibility operator, 11
fractional clone, 45
function

almost-negative, 95
conservative, 103
fractionally conservative, 105
homogeneous, 102
locally-defined submodular, 31
Majority, 57
Max, 55
Min, 55
modular, 86
negative-positive, 95
polar, 102
pseudo-Boolean, 86, 95
quasi-indecomposable, 109
Second, 55
submodular, 95
submodular with succinct representa-

tion, 31

INDEX 143

supermodular, 86, 95
unate, 96
unimodular, 115
weighted, 27

G
gadget, 22, 84
Galois connection, 36
Gibbs Energy Minimisation, 31
Graph Homomorphism, 18
Graph List Homomorphism, 19
Graph Min-Cost Homomorphism, 19

H
H-Colouring, see Graph Homomor-

phism
Hall’s Theorem, 76
Hamming distance, 103

weighted, 106
hidden variables, 22, 84
Homomorphism, 17
homomorphism, 18
Hypergraph Partition Function, see

#CSP

I
implementation, 22
indicator problem, see IP
IP , 34

K
k-min-max ordering, 31

L
lattice, 31

M
MAP, 114
Markov Random Field, see MRF
Max-CSP, 12
Max-Cut, 16, 30
Max-Ones, 12
maximum a-posteriori, see MAP
Maximum Solution, 20
Maximum Weighted Satisfiability,

13
microstructure, 64, 74

Min-CSP, 12
Min-Cut, 16
min-max ordering, 31
Min-Ones, 12
MMSNP, 17
MRF, 31, 114
multi-clone, 47
multi-projection, 28
multimorphism, 27

min-max, 31
tournament-pair, 31

N
NPO, 13

O
oracle value model, 30

P
Partition Function, see #CSP
Polyanna, 35
polymorphism, 26

feasibility, 27
fractional, 27
Taylor, 26

posiform, 88, 102
primitive positive formula, 22
problem

Hilbert’s 10th, 4
projection, 22
Pseudo-Boolean Optimisation, 31

R
relation, 10
relational clone, 37

S
set function, 29

submodular, 29
solution, 11
squashing, 50
(s, t)-Connectivity, 23
(s, t)-Min-Cut, 13, 15
(s, t)-Min-CutMax-Flow Theorem, 70
Submodular Function Maximisation,

30

INDEX 144

Submodular Function Minimisation,
30

Bounded, 31
Sudoku, 2

T
tableau, 27
treewidth, 14

V
valuation structure, 11
valued constraint language, 14

globally tractable, 15
intractable, 15
locally tractable, 15
tractable, 15

VCSP, 11
language restrictions, 14
structure restrictions, 13

W
Weighted #CSP, see #CSP
weighted indicator problem, see WIP
weighted mapping, 27
WIP , 40

X
X-underbar, 55

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Background
	Valued constraints
	Complexity of VCSP
	Expressibility
	Algebraic properties
	Submodularity
	Summary

	Expressive Power of Valued Constraints
	Introduction
	Indicator problem
	Weighted indicator problem
	Fractional clone theory
	Fractional polymorphisms
	Multimorphisms

	Expressibility versus tractability
	Summary

	Expressive Power of Fixed-Arity Languages
	Introduction
	Results
	The expressive power of arbitrary relations and max-closed relations
	Relations over a Boolean domain
	Relations over larger domains

	Finite-valued cost functions
	General cost functions
	Characterisation of Mul(Fdmax) and fPol(Fdmax)
	Summary

	Expressive Power of Submodular Functions
	Introduction
	Results
	Preliminaries
	Reduction to (s,t)-Min-Cut
	Known classes of expressible functions
	New classes of expressible functions
	Summary

	Non-Expressibility of Submodular Functions
	Introduction
	Results
	Expressibility of upper fans and lower fans
	Characterisation of Mul(sub,2) and fPol(sub,2)
	Non-expressibility of sub over sub,2
	The complexity of recognising expressible functions
	Summary

	Summary and Open Problems
	Summary
	Open problems

