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aSimon Fraser University, Burnaby, Canada
bUniversity of Oxford, UK

cQueen Mary, University of London, UK

Abstract

We study functional clones, which are sets of non-negative pseudo-Boolean functions (functions {0, 1}k →
R≥0) closed under (essentially) multiplication, summation and limits. Functional clones naturally form a
lattice under set inclusion and are closely related to counting Constraint Satisfaction Problems (CSPs). We
identify a sublattice of interesting functional clones and investigate the relationships and properties of the
functional clones in this sublattice.
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1. Introduction

There is a considerable literature on the topic of relational clones, also called co-clones. These are
sets of relations on a finite domain D that are closed under certain operations, the most interesting being
conjunction of two relations and existential quantification over a variable. (Other closure operations, such
as introduction of “fictitious arguments”, are technically but not conceptually important.) In this paper we
focus on the Boolean domain, and presently we will assume that D = {0, 1}. It is well known that in the
Boolean case, the set of relational clones is countably infinite and forms a lattice under set inclusion. The
lattice has been explicitly described by Post [19].

It seems natural to widen this study to other algebraic structures. Functional clones were introduced
formally by Bulatov, Dyer, Goldberg, Jerrum and McQuillan [2], with the motivation of studying the compu-
tational complexity of counting constraint satisfaction problems. A functional clone is a set of multivariate
functions from a finite domain D to a semiring R that is closed under multiplication, summing over a vari-
able and (optionally) taking a limit of a sequence of functions. (Other operations are needed for technical
completeness. Formal definitions are given in the following subsection.) In this paper, we focus attention
on the case D = {0, 1} and S = (R≥0,×,+). We reconsider functional clones as objects of interest in their
own right, though the results we prove may yield insights in other areas.

There are at least three motivations for the current investigation.
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1Supported by an NSERC Discovery Grant.
2The research leading to these results has received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828 (Goldberg and Richerby; this grant also
supported visits by Bulatov and Jerrum) and Horizon 2020 research and innovation programme (grant agreement no. 714532,
Živný). The paper reflects only the authors’ views and not the views of the ERC or the European Commission. The European
Union is not liable for any use that may be made of the information contained therein.

3Supported by EPSRC grant EP/N004221/1, an NSERC Discovery Grant and the SFU Distinguished Lecturers program.
4Supported by a Royal Society University Research Fellowship.

Preprint submitted to Elsevier April 28, 2017



The first, as indicated above, is intrinsic interest. Post’s lattice of relational clones has a fascinating
structure. There is a Galois connection between sets of relations on D and sets of operations on D which
establishes a beautiful duality between relational clones and clones of operations. Remarkably, the clo-
sure operator defined by the Galois connection exactly agrees with the one described earlier in terms of
conjunction of relations and existential quantification over variables [10].

The situation with functional clones is not quite so clean. There is apparently no Galois connection
between sets of functions onD and sets of (somehow appropriately generalised) operations onD that captures
the closure under multiplication and summation described above. Moreover, the lattice of functional clones
has the cardinality of the continuum (or even larger, depending on precise definitions) and there seems to be
no hope of providing a complete description of it. Still, it is interesting to map out some of the main features
of the lattice, to identify maximal functional clones, to identify sublattices of functional clones satisfying
additional properties, to find alternative characterisations of certain functional clones in terms of generating
sets or Fourier coefficients, etc. As a contribution in this direction we identify (Figure 1) a sublattice of
what seem to us to be interesting functional clones.

The second motivation, hinted at earlier, is the desire to understand the computational complexity of
certain counting problems. A classical (decision) Constraint Satisfaction Problem (CSP) is a generalised
satisfiability problem. Instead of restricting clauses to being disjunctions of literals, as in standard satisfi-
ability problems, we allow arbitrary relations between variables chosen from a specified set or “language”
of relations Γ. We are interested in how the computational complexity of a CSP varies as a function of Γ.
Clearly, extending the language Γ may increase the complexity of the corresponding CSP. It transpires that
the complexity of a CSP depends not on the fine structure of Γ, but only on the relational clone generated
by Γ. This observation makes feasible the detailed exploration of the complexity of classical CSPs.

A counting Constraint Satisfaction Problem (#CSP) asks for the number of satisfying assignments to
a CSP. In their weighted form, counting CSPs are general enough to express many partition functions
occurring in statistical physics. Just as with classical decision CSPs, the complexity of a counting CSP is
determined by the functional clone generated by the constraint language, which now consists of functions
taking, say, non-negative real values. Functional clones were introduced in [2] precisely as a tool for studying
the complexity of #CSPs. Referring to Figure 1, the equality at the bottom of the lattice expresses the
equivalence between (on the left) the partition function of the ferromagnetic Ising model and (on the right)
the so-called high-temperature expansion in terms of even subgraphs. Counting CSPs at this level of the
lattice can be approximated in polynomial time by an algorithm that exploits this equivalence [16]. Moving
up the lattice, perhaps the most intriguing functional clone from the complexity point of view is M which
includes the counting CSPs that would become feasible to approximate if we were to discover a polynomial
time approximation algorithm for counting matchings in a general (non-bipartite) graph.

A third motivation for our study is provided by the connection between functional clones and topics in
statistical physics and machine learning. Many models in statistical physics are “spin models” defined by a
graph or more generally a hypergraph on n vertices. To each vertex is associated a variable taking on values
from a set of “spins” which, in our case, is finite. A configuration of the system is an assignment of spins
to the n variables. The edges of the graph or hypergraph specify local interactions between spins. These
local interactions define a probability distribution on the set of all configurations. Take for example the
Ising model, which is characterised by having just two spins. An instance of the Ising model is specified by
an undirected graph; in other words, there are just pairwise interactions between spins. (Refer to Section 2
for details.) One question we may ask is: which k-way interactions may be induced in such a model? More
precisely, what are the possible marginal distributions that may be observed on some k-subset of the vertex
variables? This question is (modulo the normalising factor for the probability distribution in question)
precisely a question about functional clones. The possible marginal distributions are the k-ary functions in
the clone generated by the local pairwise interactions.

In the case of the antiferromagnetic Ising model, where the pairwise interactions favour unlike spins,
the answer is given by Theorem 48: the possible marginal distributions are precisely those that are “self-
dual”, i.e., invariant under exchange of 0 and 1. (It is clear that invariance under exchange of 0 and 1
is necessary; the point is that it is sufficient.) This result has an implication for the expressive power of
Boltzmann machines in machine learning [1]. Specifically, if the bias parameters of the units are all zero,
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then the distributions realisable at the visible units are precisely those that are self-dual. Note that this is
an expressibility result, in the spirit of Le Roux and Bengio [17], and says nothing about the feasibility of
learning the distributions in question from examples.

The analogous question in the ferromagnetic case is seemingly harder. The three-variable marginals of a
ferromagnetic Ising model can be described: they are the (normalised) functions of arity 3 in the functional
clone associated with the Ising model, and are given in Theorem 64. Already at arity 4 the elements of the
clone become hard to describe. Indeed, it is consistent with our current knowledge that membership in this
clone is undecidable, even for functions of some fixed arity greater than three.

Finally, there is a connection between functional clones and the idea of “universal models” in statistical
physics proposed by De las Cuevas and Cubitt [8]. In a sense, functional clones formalise De las Cuevas and
Cubitt’s notion of “closure”. A spin model is “universal” in their sense if (very roughly) the functional clone
generated by the model is the one at the top of the clone lattice, namely B, that contains all functions. They
identify the planar antiferromagnetic Ising model with external fields as an example of a universal model.

As we already noted, the antiferromagnetic Ising model generates the clone SD of self-dual functions.
Adding an external field takes us outside of SD. Now, according to Lemma 49, the clone SD is “maximal”,
from which we deduce that the antiferromagnetic Ising model with fields generates B, i.e., is universal in our
sense. Note, however, that our framework does not incorporate the notion of planarity, and in any case our
closures do not exactly correspond to those of De las Cuevas and Cubitt. However, the clone lattice gives
a more nuanced account of the expressive power of various spin models than simple universality. For more
on the expressive power of spin systems and their computational complexity, see Goldberg and Jerrum [14]
and Chen, Dyer, Goldberg, Jerrum, Lu, McQuillan and Richerby [6].

1.1. Functional Clones
For every non-negative integer k, let Bk be the set of all arity-k non-negative pseudo-Boolean functions

(i.e., the set of all functions {0, 1}k → R≥0). Let B be the set of all non-negative pseudo-Boolean functions
(of all arities), given by B = B0 ∪B1 ∪B2 ∪ · · · . Given a function f ∈ Bk and a permutation π of {1, . . . , k},
we write fπ for the function that maps (x1, . . . , xk) ∈ {0, 1}k to f(xπ(1), . . . , xπ(k)). Functional clones are
subsets of B that are closed under certain operations. We start by defining the operations. Consider a set
F ⊆ B.

• F is closed under the introduction of fictitious arguments if, for every k ≥ 0 and every k-ary function
f ∈ F , the (k + 1)-ary function g defined by g(x1, . . . , xk+1) = f(x1, . . . , xk) is also in F .

• F is closed under permuting arguments if, for every k ≥ 1, every k-ary function f ∈ F and every
permutation π of {1, . . . , k}, the function fπ is also in F .

• F is closed under product if, for every k ≥ 0, every k-ary function f ∈ F and every k-ary function
g ∈ F , the function h defined by h(x1, . . . , xk) = f(x1, . . . , xk) g(x1, . . . , xk) is also in F .

• F is closed under summation if, for every k ≥ 1 and every k-ary function f ∈ F , the (k − 1)-ary
function g defined by g(x1, . . . , xk−1) =

∑
xk∈{0,1} f(x1, . . . , xk) is also in F .

Functional clones are defined in [2, Section 2]. The definition that we give here is equivalent to the one
in [2], but is more suited to the setting of this paper. Let EQ be the binary equality function, which is the
function in B2 defined by EQ(0, 0) = EQ(1, 1) = 1, and EQ(0, 1) = EQ(1, 0) = 0. Suppose that F ⊆ B is a
set of functions. The functional clone 〈F〉 is defined to be the closure of F ∪ {EQ} under the introduction
of fictitious arguments, permuting arguments, product and summation.

Bulatov et al. [2, Proof of Lemma 2.1] show5 that the set 〈F〉 is unchanged if the order of closure is
restricted in the following way. Let A(F) be the closure of F ∪ {EQ} under the introduction of fictitious

5 Technically, the proof of Lemma 2.1 of [2] just shows that the closure of A(F) under product and summation is the same as
the closure of

∏
(F) under summation. That is, to produce the closure of A(F) under product and summation it suffices to first

close A(F) under product and then close the resulting set under summation. However, it is easy to show that
∏

(F) is closed
under the introduction of fictitious arguments and permuting arguments, and so is the closure of

∏
(F) under summation, so

without loss of generality, the three closures can be done in order: first close F ∪ {EQ} under the introduction of fictitious
arguments and permuting arguments, then close under product, then close under summation.
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arguments and permuting arguments. Let
∏

(F) be the closure of A(F) under product. Then 〈F〉 is the
closure of

∏
(F) under summation. In the paper, we will use the fact that the order of closure can be

restricted in this way. In particular, the definition of A(F) will be used.
The reason for defining functional clones is that they are closely connected to counting Constraint

Satisfaction Problems (CSPs). Every function in 〈F〉 can be represented by a pps-formula (“primitive
product summation formula”), which is a summation of a product of atomic formulas representing functions
in A(F).6 The pps-formula can be viewed as the input to a counting CSP whose output is the value
of the function. For example, consider the function XOR ∈ B2 defined by XOR(0, 0) = XOR(1, 1) = 0
and XOR(0, 1) = XOR(1, 0) = 1. Let h be the function in B3 defined by h(1, 1, 0) = h(0, 0, 1) = 1 and
h(x1, x2, x3) = 0 for any (x1, x2, x3) 6∈ {(1, 1, 0), (0, 0, 1)}. Let x denote the tuple (x1, x2, x3, x4). It is easy
to see that h is in 〈{XOR}〉 since the functions fi,j(x) = XOR(xi, xj) are in A(F) for any distinct i and j in
{1, 2, 3, 4} and the function g(x) = f1,4(x)f2,4(x)f1,3(x) is in

∏
(F). Finally, h(x1, x2, x3) =

∑
x4∈{0,1} g(x).

Now, for distinct i and j in {1, 2, 3, 4}, let φi,j(v1, v2, v3, v4) be an atomic formula representing the function
fi,j . The function g can be represented by the formula

φg(v1, v2, v3, v4) = φ1,4(v1, v2, v3, v4)φ2,4(v1, v2, v3, v4)φ1,3(v1, v2, v3, v4).

This formula can be viewed as a CSP with variables {v1, v2, v3, v4} and three XOR constraints. Finally, the
function h can be represented by the pps-formula φh(v1, v2, v3) =

∑
v4
φg(v1, v2, v3, v4).

In order to study approximate counting CSPs it is necessary to go beyond functional clones by also
allowing closure under limits. Given functions f and f ′ in Bk, we write ‖f −f ′‖∞ for the L-infinity distance
between f and f ′, which is given by ‖f − f ′‖∞ = maxx∈{0,1}k |f(x)− f ′(x)|. We say that a k-ary function
f is a limit of a set F ⊆ B if there is some finite Sf ⊆ F such that, for every ε > 0, there is a k-ary function
fε ∈ 〈Sf 〉 such that ‖f − fε‖∞ < ε. We say that F is closed under limits if, for every function f that is a
limit of F , f ∈ F . The ω-clone 〈F〉ω is defined to be the closure of F ∪ {EQ} under the introduction of
fictitious arguments, permuting arguments, product, summation, and limits. In [2], the set 〈F〉ω is referred
to as the “ppsω-definable functional clone generated by F”. Bulatov et al. [2, Lemma 2.2] show that this
set is unchanged if the order of closure is restricted so 〈F〉ω is the closure of 〈F〉 under limits.7

The following lemma is straightforward, given that 〈F〉 and 〈F〉ω are defined by closing a set (the set
F ∪ {EQ}) using various operations. Nevertheless, we state the lemma here for future use. The lemma
combines Lemmas 2.1 and 2.2 of [2]. (In that paper, the lemma was non-trivial, since the order of the
closure operators was restricted.)

Lemma 1. Suppose F ⊆ B. If g ∈ 〈F〉 then 〈F ∪ {g}〉 = 〈F〉. If g is a limit of 〈F〉 and h is a limit of
〈F ∪ {g}〉 then h is a limit of 〈F〉. Equivalently, if g ∈ 〈F〉ω then 〈F ∪ {g}〉ω = 〈F〉ω.

1.2. Lattices

A lattice is a set L equipped with two commutative, associative binary operations ∨ (join) and ∧ (meet)
with the absorption property: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a for all a, b ∈ L. The lattice operations ∨
and ∧ induce a partial order on L as follows: for a, b ∈ L, a ≤ b if and only if b = a ∨ b (or, equivalently,
a = a∧ b). It is easy to see that, for any a, b ∈ L, the elements a∨ b and a∧ b are the least upper bound and
greatest lower bound of a and b, with respect to the order ≤. In other words, for any c such that a ≤ c and
b ≤ c it holds that a ∨ b ≤ c, and for any d such that d ≤ a and d ≤ b it holds that d ≤ a ∧ b. Conversely, if

6There is one difference between pps-formulas as defined here, and pps-formulas as defined in [2], but it is not important.
Consider an arity-k function f . Clearly, the arity-(k − 1) function defined by g(x1, . . . , xk−1) = f(x1, . . . , xk−1, xk−1) is in
〈{f}〉 since g(x1, . . . , xk−1) =

∑
xk∈{0,1} f(x1, . . . , xk)EQ(xk−1, xk). The function g is not in the set A(F). Nevertheless,

Bulatov et al. [2] view the formula φg that represents g as an “atomic formula” since they allow repeated arguments. For us,
the formula φg is not atomic, but this makes no difference, since EQ is in all functional clones, so our functional clones are
exactly the same as those of [2].

7Technically, the proof of Lemma 2.2 of [2] just shows that the closure of A(F) under product, summation and limits is
the same as the closure of 〈F〉 under limits. However, it is easy to see that the closure of 〈F〉 under limits is closed under the
introduction of fictitious arguments and permuting arguments.
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a set L has a partial order ≤ such that any pair of elements has a least upper bound and a greatest lower
bound, then it can be converted into a lattice by defining the operations of join and meet as the least upper
bound and the greatest lower bound respectively. A subset L′ ⊆ L is called a sublattice if for all a, b ∈ L′,
a ∨ b and a ∧ b belong to L′. Note that ∨ and ∧ here are the operations of L.

1.3. Lattices of functional clones

Let Lf and Lω denote the set of all functional clones and all ω-clones, respectively, ordered with respect
to set inclusion. Then, for any two functional clones (or ω-clones) F and G, the least upper bound and the
greatest lower bound are given by 〈F ∪ G〉 (resp., 〈F ∪ G〉ω) and F ∩ G (in both cases). Therefore Lf and
Lω can be viewed as lattices with operations of join and meet

F ∨f G = 〈F ∪ G〉 , F ∧f G = F ∩ G for Lf ,
F ∨ω G = 〈F ∪ G〉ω , F ∧ω G = F ∩ G for Lω .

Since we are mostly concerned with ω-clones, we will omit the subscripts of ∨ω and ∧ω.

As we will show in Theorem 13, the lattices Lf and Lω are quite large, having cardinality i2 = 22
ℵ0

.
Therefore we will focus on the most interesting and important ω-clones.

Definition 2. An ω-clone F is maximal in an ω-clone G if F ⊆ G and there is no ω-clone C such that
F ⊂ C ⊂ G.

It is easily seen that F is maximal in G if and only if, for any function g ∈ G \ F , 〈F ∪ {g}〉ω = G.

2. Notation and the clones that we study

We denote tuples in {0, 1}k by boldface letters. We use the notation |x| to denote the Hamming weight
of x. The symbols 0 and 1 are used to denote the all-zeroes and all-ones tuple of arity appropriate to the
context. x is the bitwise complement of x. We define [k] = {1, . . . , k}.

Recall the function fπ from Section 1.1. We say that an arity-k function f is is symmetric if, for all
permutations π of [k], f = fπ. We often write symmetric k-ary functions as f = [f0, . . . , fk], where fi is
the value of f on arguments of Hamming weight i. Using this notation, the function EQ can be written as
EQ = [1, 0, 1]. We make use of the following unary functions: δ0 = [1, 0] and δ1 = [0, 1].

Definition 3. The Fourier transform of a function f : {0, 1}k → R≥0 is the function f̂ : {0, 1}k → R defined
by

f̂(x) =
1

2k

∑
w∈{0,1}k

(−1)|w∧x|f(w) .

Note that, although we only consider functions whose range is the nonnegative reals, the Fourier transform
of such a function may have negative numbers in its range. Readers who are familiar with the holant
framework [4, 21] will recognise that, if we represent k-ary functions as column vectors of length 2k, the

Fourier transform is equivalently defined as f̂ = H⊗kf where H = 1
2

(
1 1
1 −1

)
= 1

2H
−1. We will use this fact

in the proof of Theorem 54.

Definition 4. For a real number λ ≥ 0 and integer k ≥ 0, the k-ary hypergraph Ising function is given by

Iλk (x) =

{
1 if x ∈ {0,1}
λ otherwise.

The case λ ≤ 1 is known as ferromagnetic and λ ≥ 1 is antiferromagnetic.
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Definition 5. An arity-k match-circuit is given by an undirected weighted graphG with vertex set {u1, . . . , uk}∪
{v1, . . . , vn} for some n ≥ k. Vertices u1, . . . , uk have degree 1 and are called “external vertices”. The edges
adjacent to them (called “terminals”) are labelled y1, . . . , yk. Vertices v1, . . . , vn are called “internal ver-
tices”. Each terminal edge has weight 1 and each non-terminal edge e is equipped with a positive weight we.
Configurations assign spins 0 and 1 to edges. A configuration is a perfect matching if every internal vertex
has exactly one spin-1 edge adjacent to it. The match-circuit implements the function f , where f(y1, . . . , yk)
is the sum, over perfect matchings, of the product of the weights of edges with spin 1, where the empty
product has weight 1.

Note that, if f is implemented by a match-circuit then so are all functions c · f where c is a positive
real number: just add an isolated edge of weight c to the match-circuit implementing f . Also, some authors
require the underlying graphs of match-circuits to be planar, and some authors allow the edge weights to
be negative.

Definition 6. An arity-k even-circuit is given by an undirected weighted graphG with vertex set {u1, . . . , uk}∪
{v1, . . . , vn} for some n ≥ k. Vertices u1, . . . , uk have degree 1 and are called “external vertices”. The edges
adjacent to them (called “terminals”) are labelled y1, . . . , yk. Vertices v1, . . . , vn are called “internal ver-
tices”. Each terminal edge has weight 1 and each non-terminal edge e is equipped with a weight we ∈ (0, 1].
Configurations assign spins 0 and 1 to edges. A configuration is an even subgraph if every internal ver-
tex has an even number of spin-1 edge adjacent to it. The even-circuit implements the function f , where
f(y1, . . . , yk) is the sum, over even subgraphs, of the product of the weights of the edge with spin 1, where
the empty product has weight 1.

Note that, for even-circuits, we require all weights to be in (0, 1] whereas, for match-circuits, we only
require that weights be positive. In fact, match-circuits implement the same class of functions when restricted
to weights in (0, 1] as they do with arbitrary positive weights, but we use the less restricted definition for
convenience.

For convenience when discussing match-circuits and even-circuits, we associate an assignment σ of spins
to the edges of a graph G with the spanning subgraph H = (V (G), {e ∈ E(G) | σ(e) = 1}).

Definition 7. Given a weighted graph H, we write w(H) =
∏
e∈E(H) we for the weight of H.

Definition 8. We define the following subsets of B.

• SD: all self-dual functions f , i.e., functions such that f(x) = f(x) for all x.

• P: all functions f such that f̂(x) ≥ 0 for all x.

• PN : all functions f such that f̂(x) ≥ 0 when |x| is even and f̂(x) ≤ 0 when |x| is odd.

• SDP = SD ∩ P ∩ PN .

• E : all functions c · f , where c is a non-negative real number and f̂ is implemented by an even-circuit.

• M: all functions f such that f̂ is implemented by a match-circuit.

• FerroIsing = {Iλ2 | 0 ≤ λ ≤ 1}. The functions in the set FerroIsing model edge interactions in the
ferromagnetic Ising model. See Cipra [7] for an introduction to the Ising model.

• AntiFerroIsing = {Iλ2 | λ ≥ 1}. The functions in the set AntiFerroIsing model edge interactions in the
anti-ferromagnetic Ising model.

• FerroHyperIsing = {Iλk | k ≥ 2, λ ≤ 1}. The functions in the set FerroHyperIsing model “many-body
interactions” in a generalisation of the ferromagnetic Ising model which applies to hypergraphs — see
[15] and [12, Section 2].
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We emphasise that the sets we have defined are subsets of B, the class of non-negative pseudo-Boolean
functions. There are, for example, functions outside B whose Fourier transforms are in B, such as the
symmetric, ternary function f = [7,−1,−1, 7], which has Fourier transform f̂ = [1, 0, 2, 0]. Even though

f̂ is nonnegative, f is not in P because it is not in B. Likewise, f /∈M, even though f̂ is implemented by a
match-circuit (as shown in the proof of Theorem 64).

Instead of M, it may seem more natural to consider the set M′ of functions f that are implemented by
match-circuits. However, M′ is not a functional clone: for example, it is not closed under the introduction
of fictitious arguments. By a parity argument, any function f that is implemented by a match-circuit must
have f(x) = 0 for all x with even Hamming weight, or f(x) = 0 for all x with odd Hamming weight.
However, any function that is not everywhere zero and has a fictitious argument must be non-zero for inputs
with both odd and even Hamming weights, so cannot be implemented by a match-circuit.

As we have remarked, the Fourier transform corresponds in the holant framework to a holographic
transformation by (the appropriate tensor power of) the Hadamard matrix 1

2

(
1 1
1 −1

)
. This corresponds, in

a certain sense, to transforming the computation from using basis vectors ( 1
0 ) and ( 0

1 ) to using ( 1
1 ) and(

1
−1
)
. It has been shown that the latter is the unique basis in which the equality function can be expressed

using matchgates [5] and, thus, our use of the Fourier transform here is essential. Cai, Lu and Xia [5]
have used the Fourier transform as a holographic transformation from counting CSPs to counting weighted
perfect matchings, as the key tool to obtain polynomial-time algorithms for a wide range of weighted planar
counting CSPs.

Note that, in the definition of E , we allow scaling by a constant. We do this to allow the implementation
of functions that have f(0) < 1. This would be impossible without scaling, since the empty graph is an even
subgraph of every even-circuit. It has weight 1 and the weight of the empty graph is one of the terms of
the sum defining f(0). In contrast, match-circuits can already implement functions with f(0) < 1 without
the need for scaling, and adding scaling to the definition of M would not, in fact, change the class of
implementable functions.

To avoid issues with scaling of Ising and hypergraph Ising functions, we work with the following clones
rather than with 〈FerroIsing〉ω, etc.

Definition 9.

Iferro = 〈FerroIsing ∪ B0〉ω
Ianti = 〈AntiFerroIsing ∪ B0〉ω
Hferro = 〈FerroHyperIsing ∪ B0〉ω .

3. Main theorems

Let L′ = {B,SD,P,PN ,SDP, 〈〈M〉ω ∪Hferro〉ω, 〈M〉ω,Hferro, 〈M〉ω ∩Hferro, Iferro}.

Theorem 10. The lattice L′ shown in Figure 1 is a sublattice of Lω. That is, all elements of L′ are distinct
ω-clones, with the possible exceptions of SDP and 〈〈M〉ω ∪Hferro〉ω, and 〈M〉ω ∩ Hferro and Iferro, which
might be equal. (This is indicated by the dotted lines in Figure 1.) Furthermore, the meets and joins of
elements of L′ are as depicted in Figure 1 and

(i) SD = Ianti;

(ii) Iferro = 〈E〉ω;

(iii) SD, P and PN are maximal in B;

(iv) SDP is maximal in SD.

Theorem 10 is proven in Section 9.

Theorem 11. For any λ > 1, 〈Iλ2 ∪ B0〉ω = Ianti. For any λ ∈ (0, 1), 〈Iλ2 ∪ B0〉ω = Iferro.
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B

SD = Ianti P PN

SDP

〈〈M〉ω ∪Hferro〉ω

〈M〉ω Hferro

〈M〉ω ∩Hferro

Iferro = 〈E〉ω

Figure 1: The lattice L′.

Proof. The two parts are Corollaries 22 and 24, respectively, from Section 5. �

Theorem 12. E and M are functional clones, i.e., 〈E〉 = E and 〈M〉 =M.

Proof. 〈E〉 = E is Theorem 53 and 〈M〉 =M is Theorem 51. �

Theorem 13. |Lf | = |Lω| = i2.

Theorem 13 is proven in Section 11.
Theorem 62, proved in Section 10, shows that the set of monotone functions is an ω-clone and gives

examples of ω-clones that generalise this clone.

3.1. Ternary functions

Given n ≥ 0 and a set of functions F ⊆ B, we write [F ]n = F ∩ Bn. Note that [B]n = Bn. Although
[F ]n is a set of n-ary functions, it essentially includes all functions of smaller arity. In particular, if F is a
clone then it is closed under the introduction of fictitious arguments, as discussed in Section 1.1, and this
allows functions of smaller arity to be “padded” to arity n. However, [F ]n is not, itself, a clone.

We now focus on the ternary parts of the clones from L′, in which case certain distinctions, which were
present in L′, disappear.

Let S3 = {B3, [SD]3, [P]3, [PN ]3, [SDP]3, [〈M〉ω]3, [Hferro]3, [Iferro]3}.

Theorem 14. [SDP]3 = [〈M〉ω]3, [Hferro]3 = [Iferro]3, and any other two elements of S3 are distinct.
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B3

[SD]3 = [Ianti]3 [P]3 [PN ]3

[SDP]3 = [〈M〉ω]3

[Hferro]3 = [Iferro]3

Figure 2: Ternary parts of the clones in L′.

Theorem 14 is proved in Section 12 and illustrated in Figure 2, where solid lines indicate strict set
inclusions. The (non-strict) inclusions indicated in Figure 2 follow trivially from Theorem 10. The point of
Theorem 14, in addition to the two collapses, is that all inclusions are strict. We note that, however, unlike
in Figure 1, Figure 2 does not indicate any lattice order of S3 with respect to ∧ and ∨.

4. Finite generation

When we defined ω-clones in Section 1.1, we defined the limit of a set F ⊆ B to be a function f which is
approximated by a sequence of functions fε that are all in the functional clone of some finite subset Sf of
F . The finiteness restriction was present in the definitions of [2] and it is retained in this paper because it
strengthens our results. Nevertheless, it causes slight technical problems, and to avoid these problems, we
start the paper by defining a finite subset B′0 of B0 and showing that B0 ⊆ 〈B′0〉ω. In the following definition,
“e” is the base of the natural logarithm. The actual definition of B′0 is not very constrained, in the sense
that we could have made other choices, but it is important to include an irrational number, and to include
a number that it is smaller than 1 and one that is larger than 1. We use a set of size four to simplify the
argument.

Definition 15. B′0 = {1/e, 1/2, 2, e}

Lemma 16. B0 ⊆ 〈B′0〉ω.

Proof. We will show that every nullary function in B0 is a limit of the closure of B′0 under product. Let
α = ln 2. For any integers a and b, the quantity ea+bα (viewed as a nullary function) is in 〈B′0〉. So it
suffices to show that, for every real number z (where ez is viewed as a nullary function in B0) and any
ε > 0, there are integers a and b such that |ea+bα − ez| < ε. Given the universal quantification on ε,
we can work instead with additive approximation — it suffices to show that for every real number z and
every δ > 0, there are integers a and b such that |a + bα − z| < δ. (To see this, suppose that we are
given some z and ε. Let ε′ = min(ε, 2ez) and let δ = ε′e−z/2. Then since δ ≤ 1, we have eδ − 1 ≤ 2δ so
ez+δ − ez = ez(eδ − 1) ≤ 2δez = ε′ ≤ ε. Similarly, ez − ez−δ = ez(1− e−δ) ≤ 2δez ≤ ε.)

Now consider a real number δ > 0. By Dirichlet’s approximation theorem, there are integers p and q
such that 1 ≤ q and |p − qα| < δ. Since α is positive and q ≥ 1, it is clear that p is also positive if δ < α.
Also, since α is irrational, p− qα is non-zero.

Consider any real number z. Let n be the integer such that n× |p− qα| ≤ z < (n+ 1)× |p− qα|. Then
|z − n × |p − qα|| < |p − qα| < δ. If p > qα then a = pn and b = −qn suffices. Otherwise, a = −pn and
b = qn suffices. �
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The proof of Lemma 16 is useful for one more technical finite generation result, so we state that here.
For this, we need to define a class of parity functions.

Definition 17. For each k ∈ N and λ ∈ R≥0, we define the k-ary function

Parλk(x) =

{
1 if |x| is even

λ otherwise.

By analogy to B0, we also define a finite version.

Definition 18. Par′k = {Par1/ek ,Par
1/2
k ,Par2k,Par

e
k}.

Lemma 19. For any even positive integer k and any λ ∈ R≥0, Parλk ∈ 〈Par′k〉ω.

Proof. Consider the k-ary function consisting of the product of a copies of Parek and b copies of Par2k. If
the input has even parity, then the output is 1. Otherwise, the output is ea+bα. Combinations of other
functions in Par′k are similar. So the proof is essentially the same as the proof of Lemma 16. �

5. The Ising model

Recall the definition of Iλ2 from Definition 4, the definition of FerroIsing and AntiFerroIsing from Defini-
tion 8 and the definition of Ianti from Definition 9. The following lemma is well known. We include it (with
its standard proof) for completeness.

Lemma 20. FerroIsing ⊆ 〈AntiFerroIsing,B0〉.

Proof. We must show that Iλ2 ∈ 〈AntiFerroIsing,B0〉 for all λ ∈ [0, 1]. For λ = 0, Iλ2 = EQ, which is in
every functional clone by definition. For λ = 1, Iλ2 ∈ AntiFerroIsing by definition. Any other function in
FerroIsing is of the form Iλ2 for some λ ∈ (0, 1). Let λ′ = λ/(1 −

√
1− λ2). Note that λ′ is decreasing as λ

increases, and that λ′ > 1 so Iλ
′

2 ∈ AntiFerroIsing. Then note that Iλ2 (x, y) = 1
1+λ′2

∑
w I

λ′

2 (x,w)Iλ
′

2 (w, y)

since the weight is 1 if x = y and (2λ′)/(1 + λ′2) = λ, otherwise. �

The construction in the proof of the following lemma is based on one from the proof of [11, Lemma 3.3].
There are more efficient constructions, for example [13, Lemma 3.26] but we don’t need them here.

Lemma 21. Consider Iλ2 and Iλ
′

2 in AntiFerroIsing with λ > 1. Then Iλ
′

2 ∈ 〈{Iλ2 } ∪ B′0〉ω.

Proof. By the definition of AntiFerroIsing, λ′ ≥ 1. If λ′ = 1 then Iλ
′

2 is the arity-2 constant function (with
output 1). This can be obtained from the constant 1 by introducing two fictitious arguments, so it is in
〈{Iλ2 } ∪ B0〉ω.

So suppose λ′ > 1. Let y = 1/λ and let f be the symmetric arity-2 function [y1/2, y−1/2, y1/2], using the
symmetric function notation from Section 2. For every positive integer t, let F1,t(x1, x2) = f(x1, x2)t. For
every integer ` > 1, let X` be the tuple of variables in {xi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ `− 1} and let

F`,t(x1, x2) =
∑
X`

t∏
i=1

f(x1, xi,1)

`−2∏
j=1

f(xi,j , xi,j+1)

 f(xi,`−1, x2)

 .

Note that the quantity y1/2 can be viewed as a nullary function, so by Lemma 16, y1/2 is a limit of 〈B′0〉.
Since f = y1/2Iλ2 , Lemma 1 shows that f is a limit of 〈{Iλ2 } ∪ B′0〉. Finally, since F`,t is formed by summing
products of functions in A({f}), Lemma 1 shows that F`,t is also a limit of 〈{Iλ2 } ∪ B′0〉.

We wish to show that Iλ
′

2 is a limit of 〈{Iλ2 } ∪ B′0〉. To do this, we will show that, for every 0 < ε < 1,
there are positive integers t and ` and a non-negative constant c (viewed as a limit of 〈B′0〉) such that

max
(x1,x2)∈{0,1}2

|Iλ
′

2 (x1, x2)− cF`,t(x1, x2)| < ε .
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To see this, consider the following mutual recurrences.

m` =

{
y1/2, if ` = 1,

y1/2m`−1 + y−1/2b`−1, if ` > 1.

b` =

{
y−1/2, if ` = 1,

y−1/2m`−1 + y1/2b`−1, if ` > 1.

First, consider t = 1. Renaming the variables {x1,1, . . . , x1,`−1} to {x3, . . . , x`+1}, the definition of F`,t (for
` > 1) can be written as

F`,1(x1, x2) =
∑

(x3,...,x`+1)

f(x1, x3)

∏̀
j=3

f(xj , xj+1)

 f(x`+1, x2).

From the recurrences, it is easy to see that F`,1(0, 0) = F`,1(1, 1) = m` (“m” stands for “monochromatic”)
and F`,1(0, 1) = F`,1(1, 0) = b` (“b” stands for “bichromatic”). Thus, for general t, F`,t(0, 0) = F`,t(1, 1) =
mt
` and F`,t(0, 1) = F`,t(1, 0) = bt`.

Now the solution to the recurrences is

m` = y−`/2((y + 1)` + (y − 1)`)/2

b` = y−`/2((y + 1)` − (y − 1)`)/2 .

Thus, since 0 < y < 1, for odd ` we have

b`
m`

= 1 +
2(

1+y
1−y

)`
− 1

.

So finally, given 0 < ε < 1, let ` be the smallest odd integer so that(
1 + y

1− y

)`
> 1 +

2λ′

ε
.

Let t be the smallest integer so that 1 +
2(

1+y
1−y

)`
− 1


t

> λ′ .

Let c = m−t` . Then cF`,t(0, 0) = cF`,t(1, 1) = 1. Also cF`,t(0, 1) = cF`,t(1, 0) = (b`/m`)
t so

λ′ < cF`,t(0, 1) = cF`,t(1, 0) =

1 +
2(

1+y
1−y

)`
− 1


t

=

1 +
2(

1+y
1−y

)`
− 1


t−11 +

2(
1+y
1−y

)`
− 1


≤ λ′

(
1 +

ε

λ′

)
< λ′ + ε ,

as required. �
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Corollary 22. For any λ > 1, 〈Iλ2 ∪ B′0〉ω = Ianti.

Proof. Recall from definition 9 that Ianti = 〈AntiFerroIsing ∪ B0〉ω and from Definition 8 that for any
λ > 1, Iλ2 ∈ AntiFerroIsing. This shows 〈Iλ2 ∪ B′0〉ω ⊆ Ianti. To see that Ianti ⊆ 〈Iλ2 ∪ B′0〉ω we only need to
show that for any Iλ2 ∈ Ianti, Iλ2 ∈ 〈Iλ2 ∪ B′0〉ω, and this is Lemma 21. �

Lemma 23. Consider Iλ2 and Iλ
′

2 in FerroIsing with 0 < λ < 1. Then Iλ
′

2 ∈ 〈{Iλ2 } ∪ B′0〉ω.

Proof. As in the proof of Lemma 21, the proof is straightforward if λ′ ∈ {0, 1}, so assume 0 < λ′ < 1.
Define y, f and F`,t as in the proof of Lemma 21. Note that y > 1, so

m`

b`
= 1 +

2(
y+1
y−1

)`
− 1

.

Given 0 < ε < 1, let ` be the smallest positive integer so that(
y + 1

y − 1

)`
> 1 +

2

ε
.

Let t be the largest integer so that 1 +
2(

y+1
y−1

)`
− 1


t−1

≤ 1

λ′
.

Let c = λ′b−t` . Then cF`,t(0, 1) = cF`,t(1, 0) = λ′. Also cF`,t(0, 0) = cF`,t(1, 1) = λ′mt
`/b

t
` and mt

`/b
t
` > 1/λ′,

so

1 < cF`,t(0, 0) = cF`,t(1, 1) = λ′

1 +
2(

y+1
y−1

)`
− 1


t

= λ′

1 +
2(

y+1
y−1

)`
− 1


t−11 +

2(
y+1
y−1

)`
− 1


< 1 + ε ,

as required. �

The proof of the following corollary is straightforward and is essentially identical to the proof of Corol-
lary 22.

Corollary 24. For any λ ∈ (0, 1), 〈Iλ2 ∪ B′0〉ω = Iferro.

6. ω-clones defined by Fourier coefficients

6.1. Properties of Fourier coefficients

The proofs of the following three lemmas are routine calculations and we defer them to Appendix A.

Lemma 25. Let f and g be functions in Bk.

(i) For any permutation π of [k], f̂π(x) = f̂(π(x)).
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(ii) If h(xz) = f(x), then ĥ(x0) = f̂(x) and ĥ(x1) = 0.

(iii) If h(x) = f(x0) + f(x1), then ĥ(x) = 2f̂(x0).

(iv) If h(x) = f(x), then ĥ(x) = (−1)|x|f̂(x).

(v) If ‖g − f‖∞ < ε, then ‖ĝ − f̂‖∞ < ε.

(vi) If k = 0 then f̂ = f .

It is also well-known (see, e.g., [9, 18]) that, if f, g ∈ Bk, and h is defined by h(x) = f(x) g(x), then ĥ is
given by the convolution

ĥ(x) =
∑

w∈{0,1}k
f̂(w) ĝ(w ⊕ x) . (1)

We will later need to know the Fourier coefficients of hypergraph Ising functions and of the parity
functions defined in Definition 17.

Lemma 26. For any k and λ,

Îλk (x) =


λ+ (1− λ)/2k−1 if x = 0

(1− λ)/2k−1 if |x| is even and positive

0 if |x| is odd.

Lemma 27. For any k and λ, P̂arλk(0) = 1
2 (1 +λ), P̂arλk(1) = 1

2 (1−λ) and P̂arλk(x) = 0 for any x /∈ {0,1}.

6.2. P and PN
Recall from Definition 8 that P is the class of functions f such that f̂(x) ≥ 0 for all x, and that PN is

the class of functions f such that f̂(x) ≥ 0 if |x| is even and f̂(x) ≤ 0 if |x| is odd. We first show that P
and PN are ω-clones, and that they contain B0.

Theorem 28. 〈P〉ω = P and B0 ⊆ P.

Proof. By the definition of ω-clones, the fact that P is an ω-clone follows from the fact that it contains
EQ and that it is closed under the various operations.

• It is easily verified (for example, apply Lemma 26 with λ = 0) that ÊQ = 1
2EQ, which is a non-negative

function. Therefore, EQ ∈ P.

• For closure under permuting arguments, suppose that f ∈ P and let h = fπ for some permutation π.
By Lemma 25(i), f̂ and ĥ have the same range, so ĥ is a nonnegative function, so h ∈ P.

• For closure under introducing fictitious arguments, let f ∈ P and define h(xy) = f(x). Then h ∈ P
because, by Lemma 25(ii), every Fourier coefficient of h is either zero or a Fourier coefficient of f .

• For closure under summation, let f ∈ P and define h(x) = f(x0) + f(x1). By Lemma 25(iii),

ĥ(x) = 2f̂(x0) ≥ 0 for any x, so h ∈ P.

• For closure under products, let f, g ∈ P. f̂g(x) =
∑

w f̂(w) ĝ(w⊕x) ≥ 0, since every term of the sum
is nonnegative, so fg ∈ P.

• For closure under limits, let f be a function and suppose that, for every ε > 0, there is some fε ∈ P
with ‖fε − f‖∞ < ε (this is a weaker condition than requiring all such fε to be in 〈G〉 for some finite

G ⊆ P). Then, by Lemma 25(v), ‖f̂ε − f̂‖∞ < ε. In particular, f̂ε(x) ≥ 0 for all x so, for all x and all

ε > 0, f̂(x) > −ε. Therefore, f̂(x) ≥ 0 and f ∈ P.
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We now show that B0 ⊆ P. Consider any c ∈ R≥0 and let fc be the nullary function in B0 with range {c}.
Let gc be the unary function defined by gc(0) = gc(1) = c/2. ĝc(0) = c and ĝc(1) = 0, so gc ∈ P. But
fc(x1) =

∑
x1
gc(x1) and ω-clones are closed under summation, so fc ∈ P. �

Definition 29. Consider a function f ∈ Bk. We define the complement f of f by f(x) = f(x).

Theorem 30. 〈PN〉ω = PN and B0 ⊆ PN .

Proof. By Lemma 25(iv), PN = {f | f ∈ P}. We first show that PN is an ω-clone.

• Since EQ = EQ and P contains EQ, PN also contains EQ.

• For closure under permuting arguments, let f be a k-ary function in PN and let π be a permutation

of [k]. By Lemma 25(i), f̂π(x) = f̂(π(x)) and, since |x| = |π(x)|, we have fπ ∈ PN .

• For closure under introducing fictitious arguments, let f ∈ PN and define h(xy) = f(x). Then
h(xy) = h(xy) = f(x) = f(x) ∈ P, so h ∈ PN .

• For closure under summation, let f ∈ PN , so f ∈ P. Define h(x) = f(x0) + f(x1). Then h(x) =
h(x) = f(x0) + f(x1) = f(x1) + f(x0) ∈ P, so h ∈ PN .

• For closure under products, suppose f, g ∈ PN and let h(x) = f(x) g(x). Then h(x) = h(x) =
f(x) g(x) = f(x) g(x) ∈ P, so h ∈ PN .

• For closure under limits, let f be a function and suppose that, for all ε > 0, there is some fε ∈ PN
such that ‖fε − f‖∞ < ε. We must show that f ∈ PN .

By Lemma 25(v), ‖f̂ε − f̂‖∞ < ε. In particular, f̂ε(x) ≥ 0 for all even-weight x, and f̂ε(x) ≤ 0 for

all odd-weight x. Therefore, for all even-weight x, and all ε > 0, f̂(x) > −ε, so f̂(x) ≥ 0. Similarly,

f̂(x) ≤ 0 for all odd-weight x, so f ∈ PN .

The proof that B0 ⊆ PN is the same as the proof that B0 ⊆ P (see the proof of Theorem 28). �

We now investigate the position of P and PN in the lattice L′ from Theorem 10. To do this, we use two
technical lemmas, which we will also use in Section 7.2.

Lemma 31. Let f ∈ Bn. If f̂(a) < 0 for some a ∈ {0, 1}n, then there is a function g ∈ 〈{f}〉 such that
ĝ(1) < 0.

Proof. Since f̂(a) 6= 0, f cannot be the constant zero function. Therefore, f(x) > 0 for some x ∈ {0, 1}n,
which means that f̂(0) > 0, so a 6= 0. Since functional clones are closed under permuting arguments, and
(by Lemma 25(i)), permuting arguments just permutes Fourier coefficients, we may assume that, for some
k ∈ [n], a1 = · · · = ak = 1 and ak+1 = · · · = an = 0. Let

g(x1, . . . , xk) =
∑

xk+1,...,xn

f(x1, . . . , xn) .

By Lemma 25(iii), ĝ(1) = 2n−k f̂(a) < 0. �

Definition 32. A function f : {0, 1}k → R≥0 is permissive if its range is R>0.

Lemma 33. Let f ∈ Bn with f̂(1) < 0. Then, for every k > 0, there is a k-ary permissive function

h ∈ 〈{f,Par1/2k+n}〉 such that ĥ(1) < 0.

14



Proof. Let x = (x1, . . . , xk) and y = (y1, . . . , yn). Define the functions

f ′(x,y) = f(y)

g(x,y) = Par
1/2
k+n(x,y) f ′(x,y)

h(x) =
∑

y∈{0,1}n
g(x,y) .

Thus, h ∈ 〈{f,Par1/2k+n}〉. Further, since Par
1/2
k+n is permissive and f is not the constant zero function (because

f̂(1) 6= 0), h is also permissive.

For the claim that ĥ(1) < 0, we have the following. The first equality is by Lemma 25(iii) and the second
by Equation (1) from the beginning of Section 6. The third equality is because the first k arguments of f ′

are fictitious so, by Lemma 25(ii), f̂ ′(v,w) is f̂(w) when v = 1 and is zero, otherwise. The final equality is

because, by Lemma 27, P̂ar
1/2
k+n(1,w) is 1

4 when w = 1 and is zero, otherwise.

ĥ(1) = 2n ĝ(1,0)

= 2n
∑

vw∈{0,1}k+n̂

Par
1/2
k+n(v,w) f̂ ′(v,w)

= 2n
∑

w∈{0,1}n
P̂ar

1/2
k+n(1,w) f̂(w)

= 2n−2 f̂(1) < 0 . �

Lemma 34. P is maximal in B.

Proof. Consider any n-ary f ∈ B \P. By definition, f̂(a) < 0 for some a ∈ {0, 1}n and, by Lemma 31, we

may assume that f̂(1) < 0. By Lemma 33, there is a permissive unary function h ∈ 〈{f,Par1/2n+1}〉 such that

ĥ(1) < 0. By Lemma 27, Par
1/2
n+1 ∈ P for every n, so we have h ∈ 〈P ∪ {f}〉.

Since h is permissive and ĥ(1) = 1
2 (h(0)− h(1)), we have h(1) > h(0) > 0. We may further assume that

h(0) < 1
2 and h(1) = 1: if this is not the case, replace h with the function h′(x) = (h(x)/h(1))j for any

sufficiently large integer j. The function h′ is in 〈P ∪ {f}〉 since h ∈ 〈P ∪ {f}〉 and nullary functions such
as 1/h(1) are in P by Theorem 28.

Now, consider the symmetric binary function g = [h(0)−2, h(0)−1, 0], which is in P by the assumption
on h. We have

NAND(x, y) = [1, 1, 0] = g(x, y)h(x)h(y) ∈ 〈P ∪ {f}〉 .
By [2, Corollary 13.2(ii)], any ω-clone that contains NAND, a unary function h such that h(1) > h(0) > 0
and the nullary function 1/2 also contains all of B1. Therefore, B1 ∪ {NAND} ⊆ 〈P ∪ {f}〉ω. By Lemmas
7.1 and 8.1 of [2], this implies that that 〈P ∪ {f}〉ω = B, so P is maximal in B. �

Corollary 35. PN is maximal in B.

Proof. Let f ∈ B \PN . By Lemma 25(iv), we have f /∈ P. We will now show that 〈PN ∪ {f}〉 = {g | g ∈
〈P ∪ {f}〉}. To see this, suppose that g ∈ 〈PN ∪ {f}〉. Then g is defined by a summation of a product of
functions in A(PN ∪ {f}). Complementing all of the functions in A(PN ∪ {f}) exchanges the roles of 0’s
and 1’s so the summing the product of the complements defines g. Since the complements of the functions
in A(PN ∪ {f}) are in A(P ∪ {f}), this shows that g is in 〈P ∪ {f〉}. A similar argument gives the other
direction.

Closing under limits, we get

〈PN ∪ {f}〉ω = {g | g ∈ 〈P ∪ {f}〉ω}
= {g | g ∈ B}
= B . �
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Corollary 36. 〈P ∪ PN〉ω = B

Proof. Consider the symmetric function f = [0, 1, 2]. We have f̂ = [1,− 1
2 , 0], so f ∈ PN \ P and the

result is immediate from maximality of P in B (Lemma 34). �

7. Self-dual functions

Recall from Definition 8 that SD is the class of self-dual functions, i.e., functions for which f(x) = f(x)
for all x of appropriate arity.

Theorem 37. 〈SD〉ω = SD and B0 ⊆ SD.

Proof. By the definition of ω-clones, the fact that SD is an ω-clone follows from the fact that it contains
EQ and that it is closed under the various operations.

• The equality function is clearly self-dual so it is in SD.

• For closure under permuting arguments, let f ∈ SD be a k-ary function and let π be a permutation
of [k]. Then fπ ∈ SD, since fπ(x) = f(π(x)) = f(π(x)) = f(π(x)) = fπ(x).

• For closure under introducing fictitious arguments, let f ∈ SD and define h(xy) = f(x). Then
h(xy) = f(x) = f(x) = h(xy), so h is self-dual.

• For closure under summation, let f ∈ SD and define h(x) = f(x0) + f(x1). Then h(x) = f(x0) +
f(x1) = f(x1) + f(x0) = h(x), so h ∈ SD.

• For closure under products, let f, g ∈ SD and consider h(x) = f(x) g(x). We have h(x) = f(x) g(x) =
f(x) g(x) = h(x), so h ∈ SD.

• For closure under limits, let f ∈ B and suppose that, for all ε > 0, there is some fε ∈ SD such that
‖f − fε‖∞ < ε. We must show that f ∈ SD.

For any x, |f(x)−fε(x)| < ε and |f(x)−fε(x)| < ε. But, since fε is self-dual, this gives |f(x)−fε(x)| <
ε. It follows that |f(x)− f(x)| < 2ε for all ε > 0, so f(x) = f(x), so f ∈ SD.

The proof that B0 ⊆ SD is the same as the proof that B0 ⊆ P in the proof of Theorem 28. �

It turns out that the functions in SD also have a natural characterisation in terms of their Fourier
transforms. This allows us to study the relationship between SD and the ω-clones from Section 6.

Lemma 38. A k-ary function f is in SD if and only if f̂(x) = 0 for all x with odd Hamming weight.

Proof. Suppose f ∈ SD. We have f(x) = f(x) so, by Lemma 25(iv), f̂(x) = (−1)|x|f̂(x). When |x| is

odd, this implies that f̂(x) = 0.

Conversely, if f̂(x) = 0 for all x with |x| odd, then

2kf(x) =
∑

w∈{0,1}k
(−1)|w∧x|f̂(w)

=
∑

w∈{0,1}k,
|w| even

(−1)|w∧x|f̂(w)

=
∑

w∈{0,1}k,
|w| even

(−1)|w∧x|f̂(w) = 2kf(x) ,

so f ∈ SD. �
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Theorem 39. P ∩ SD = PN ∩ SD = P ∩ PN .

Proof. It is immediate from the definitions and Lemma 38 that each of these is the class of functions f
such that f̂(x) ≥ 0 if |x| is even and f̂(x) = 0 if |x| is odd. �

Recall from Section 1.3 that the intersection of two ω-clones is an ω-clone. In the light of Theorem 39,
we make the following definition.

Definition 40. Let SDP be the ω-clone SD ∩ P ∩ PN .

Theorem 39 makes it clear that SDP = P ∩ SD = PN ∩ SD = P ∩ PN .

Lemma 41. SD, P and PN are pairwise incomparable under subset inclusion.

Proof. Consider the functions f = [0, 1, 0] (the binary disequality function), g = [2, 1, 0] and h = [0, 1, 2].

We have f̂ = [ 12 , 0,−
1
2 ], ĝ = [1, 12 , 0] and ĥ = [1,− 1

2 , 0]. Lemma 38 and the definitions of P and PN imply
that, among the three ω-clones in the statement, f is only in SD, g is only in P and h is only in PN . �

For the relationship between SDP and Hferro, we use the concept of log-supermodular functions. A
function f : {0, 1}k → R≥0 is log-supermodular if f(x∨ y) f(x∧ y) ≥ f(x) f(y) for all x,y ∈ {0, 1}k, where
∨ and ∧ are applied bitwise.

Definition 42. Let LSM be the set of all log-supermodular functions.

LSM is an ω-clone [2, Lemma 4.2]. Note that all unary functions are trivially log-supermodular. Nullary
functions are also log-supermodular, for example, using the proof that B0 ⊆ P (proof of Theorem 28).

The following characterisation of permissive log-supermodular functions of arity at least 2 is due es-
sentially to Topkis [20] (see also [2, Lemma 5.1]). It provides a simple way to check that a permissive
function is log-supermodular. A 2-pinning of a k-ary function f (with k ≥ 2) is any binary function
g(x, y) = f(z1, . . . , zk) where each zi ∈ {0, 1, x, y} (i ∈ [k]), such that x and y each appear exactly once in
the sequence z1, . . . , zk. It is immediate from the definition that every 2-pinning of a log-supermodular func-
tion f is also log-supermodular. The following lemma states that, for permissive functions, this condition is
also sufficient.

Lemma 43 ([20]). A permissive k-ary function is log-supermodular if, and only if, every 2-pinning of f is
log-supermodular.

Theorem 44. Hferro ⊂ SDP.

Proof. Inspection of Lemma 26 shows that Hferro ⊆ P ∩ PN and, by Theorem 39, P ∩ PN = SDP. It
remains to show that the inclusion is strict.

It is easy to check that every function in FerroHyperIsing ∪ B0 is log-supermodular. It follows that
Hferro is a subset of the ω-clone of all log-supermodular functions so, in particular, every function in Hferro

is log-supermodular.
Consider the 4-ary function f = [13, 4, 1, 4, 13]. This function is not log-supermodular by Lemma 43,

since the pinning g(x, y) = f(x, y, 0, 0) has g(1, 1) g(0, 0) = 13 < g(0, 1) g(1, 0) = 16. Therefore, f /∈ Hferro.

However, f ∈ SD and we have f̂ = [4, 0, 32 , 0, 0] (the odd-weight coefficients are zero by Lemma 38) so
f ∈ P ∩ PN ∩ SD = SDP. �
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7.1. Self-dual functions and Ising

In this section, we prove that SD = Ianti (Theorem 48). To do this, we introduce a functional clone,
PARev, of weighted, even-arity parity functions. Recall from Definition 17 that, for k ∈ N and λ ∈ R≥0,

Parλk(x) = 1 if |x| is even, and Parλk(x) = λ, otherwise. Note that, when k is even, Parλk is self-dual. Note
also that Parλ2 = Iλ2 . Our new clone is

PARev = 〈{Parλk | k is even, λ ∈ R≥0}〉 .

Lemma 45. SD ⊆ 〈PARev ∪ B′0〉ω.

Proof. Recall from Definition 18 that Par′k = {Par1/ek ,Par
1/2
k ,Par2k,Par

e
k}. Let Par′ev≤k =

⋃
1≤j≤bk/2c Par

′
2j .

Recall from Definition 32 that a function F : {0, 1}k → R≥0 is permissive if its range is R>0. The proof
splits into two parts. First, we show that every k-ary permissive function in SD is a limit of 〈B′0 ∪ Par′ev≤k〉.
Then we show the same for every other function in SD.

Part One: Consider any permissive k-ary function F ∈ SD. Let f(y) = logF (y). (Note that f is not
necessarily in B, since its range may include negative numbers; this is not a problem.) By the definition of
the Fourier transform,

f(y) = 2−k
∑

w∈{0,1}k
(−1)|w∧y|f̂(w).

Exponentiating gives

F (y) =
∏

w∈{0,1}k
exp

(
2−k(−1)|w∧y| f̂(w)

)
.

Since f is self-dual, we may restrict the product to w with even Hamming weight, since the odd-weight
terms vanish by Lemma 38. Let

Gw(y) = exp
(
2−k(−1)|w∧y| f̂(w)

)
.

Then F (y) =
∏

w∈{0,1}k:|w| is evenGw(y), so to finish (using Lemma 1) we just have to show that, for any

w ∈ {0, 1}k with even Hamming weight, Gw is a limit of 〈B′0 ∪ Par′ev≤k〉.
Consider any such w. Let j = |w|/2. Given any y, let z be the arity-2j tuple obtained from y by

deleting all positions that are 0 in w. Let

G′w(z) = exp
(
2−k(−1)|z| f̂(w)

)
.

Note that the arity-k function Gw is constructed from the arity-2j function G′w by adding fictitous argu-
ments. We will show that every arity-2j function G′w is a limit of a function in 〈B′0 ∪ Par′2j〉. This is all
that we need since, by the closure of ω-clones under the addition of fictitious arguments, it also implies that
Gw is a limit of 〈B′0 ∪ Par′ev≤k〉.

NowG′w(z) is exp(2−kf̂(w)) if |z| is even and it is exp(−2−kf̂(w)) otherwise. Therefore, G′w is λ×Par1/λ
2

2j ,

where λ = exp(2−kf̂(w)). To finish note that λ is a limit of 〈B′0〉 (by Lemma 16) and Par
1/λ2

2j is a limit of
〈Par′2j〉 (by Lemma 19). Finally, their product is a limit of 〈B′0 ∪ Par′2j〉 by Lemma 1.

Part Two: Consider any non-permissive k-ary function F ∈ SD. Let G be the (k + 2)-ary function

G(xyz) =

{
F (x) if y 6= z

1 if y = z.

For every positive integer j, let Hj be the k-ary function

Hj(x) = 2−(j+1)
∑

y,z∈{0,1}

G(xyz)
(
I22 (yz)

)j
.
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Note that Hj is a good approximation for F in the sense that Hj(x) = F (x) + 2−j . Since F is self-dual, so
is Hj ; since Hj(x) > F (x) ≥ 0, Hj is permissive. By Part One, Hj is a limit of 〈B′0 ∪ Par′ev≤k〉.

For any ε > 0, there is j such that 2−j < ε and thus ‖F−Hj‖∞ < ε. By transitivity of limits (Lemma 1),
F itself is a limit of 〈B′0 ∪ Par′ev≤k〉. �

We define the family of k-ary functions

⊕odd
k (x) =

{
1 if |x| is odd

0 otherwise.

The function ⊕odd
4 turns out to be particularly useful.

Lemma 46. PARev ⊆ 〈AntiFerroIsing ∪ B′0 ∪ {⊕odd
4 }〉ω.

Proof. For any k > 1, we have

Parλk(x1, . . . , xk) = λ
∑

y∈{0,1}

⊕odd
k (x1, . . . , xk−1, y) I

1/λ
2 (y, xk).

If λ ≤ 1 then I
1/λ
2 is in AntiFerroIsing. Otherwise, by Lemma 20, there is a c ∈ B0 and a Iλ

′

2 ∈ AntiFerroIsing

such that I
1/λ
2 ∈ 〈{c, Iλ′2 }〉. The nullary functions λ and c are limits of 〈B′0〉ω by Lemma 16.

We now show that, for any even k > 0, ⊕odd
k ∈ 〈⊕odd

4 〉. For k = 2, we have

⊕odd
2 (x, y) =

∑
w,z

⊕odd
4 (x, y, w, z) EQ(x,w) EQ(x, z) ,

and the case k = 4 is trivial. For k ≥ 6,

⊕odd
k (x1, . . . , xk) =

∑
y,z∈{0,1}

⊕odd
4 (x1, x2, x3, y)⊕odd

2 (y, z)⊕odd
k−2(z, x4, . . . , xk) ,

and the claim follows by induction on even k. The lemma follows by Lemma 1. �

Lemma 47. There exist λ, λ′ > 1 such that ⊕odd
4 ∈ 〈{Iλ2 , Iλ

′

2 } ∪ B′0〉ω.

Proof. Let λ′ = 2. (Any value that is greater than one would do, but we take λ′ = 2 for concreteness.)

Let λ =

√
λ′4 +

√
λ′8 − 1. Note that λ > 1. Consider the (self-dual, symmetric) function

f(x1, x2, x3, x4) =
∑

y∈{0,1}

∏
i∈[4]

Iλ2 (xi, y)
∏

i∈[4],j 6=i∈[4]

Iλ
′

2 (xi, xj) .

Note that f(0, 0, 0, 0) = (λ4 + 1) = 2λ2λ′
4

= f(0, 0, 1, 1) = 1023. Also, f(0, 0, 0, 1) = (λ + λ3)λ′
3 ≈ 1491.

Now, define the function g(x) = f(x)/f(0, 0, 0, 1). Note that f(x) ∈ 〈{Iλ2 , Iλ
′

2 }〉 and 1/f(0, 0, 0, 1) ∈ 〈B′0〉ω
by Lemma 16. So, by Lemma 1, for every positive integer j, gj ∈ 〈{Iλ2 , Iλ

′

2 } ∪ B′0〉ω.
We have g(x) = 1 if |x| is odd, and g(x) < 1, otherwise. This gives ‖g − ⊕odd

4 ‖∞ = g(0, 0, 0, 0) < 1 so,
for any ε > 0, we can choose an integer j such that ‖gj −⊕odd

4 ‖∞ < ε. �

Theorem 48. SD = Ianti.

Proof. Since every function in AntiFerroIsing ∪ B0 is self-dual by definition and SD is an ω-clone by
Theorem 37, we have Ianti ⊆ SD.

We now show SD ⊆ Ianti. Lemmas 45 and 46 (together with Lemma 1) imply SD ⊆ 〈AntiFerroIsing ∪ B′0 ∪ {⊕odd
4 }〉ω.

From this and Lemma 47 (together with Lemma 1) we have SD ⊆ 〈AntiFerroIsing ∪ B′0〉ω. �
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7.2. Maximality

Lemma 49. SD is a maximal ω-clone in B; i.e., for any function f 6∈ SD, 〈SD ∪ {f}〉ω = B.

Proof. Let k be the arity of f . First, we show that 〈SD ∪ {f}〉ω contains δ0 = [1, 0] or δ1 = [0, 1]. If
f(1) > f(0), we have f(1) > 0 so the nullary function f1 = 1/f(1) is well-defined, and it is in 〈SD ∪ {f}〉ω
since B0 ⊆ SD by Theorem 37. In this case,

δ1(x) = lim
n→∞

∑
x2,...,xk

f(x1, x2, . . . , xk)n

(
k−1∏
i=1

EQ(xi, xi+1)

)(
1

f(1)

)n
,

so δ1(x) ∈ 〈SD ∪ {f}〉ω. If f(1) < f(0), we similarly show δ0 ∈ 〈SD ∪ {f}〉ω.
If f(0) = f(1) there is some a ∈ {0, 1}k such that f(a) 6= f(a) so k ≥ 2. Because ω-clones are

closed under permuting arguments, we may assume without loss of generality that a1 = · · · = a` = 0 and
a`+1 = · · · = ak = 1. Let

g(x1, xk) =
∑

x2,...,xk−1

f(x1, . . . , xk)

(
`−1∏
i=1

EQ(xi, xi+1)

)(
k−1∏
i=`+1

EQ(xi, xi+1)

)
.

Clearly, g ∈ 〈f〉. The function g satisfies g(0, 0) = g(1, 1) and g(0, 1) 6= g(1, 0). Set h(x) = g(x, 0) + g(x, 1).
We have h(0) = g(0, 0)+g(0, 1) 6= g(1, 0)+g(1, 1) = h(1) and h ∈ 〈f〉. An argument similar to the one in the
first paragraph of this proof shows that δ0 or δ1 is in 〈SD ∪ {h}〉ω. By Lemma 1, δ0 or δ1 is in 〈SD ∪ {f}〉ω.

For the rest of the proof, suppose that δ0 ∈ 〈SD ∪ {f}〉ω; the case where δ1 ∈ 〈SD ∪ {f}〉ω is very similar.
Take any g ∈ B, say of arity k. Let h be the (k + 1)-ary function defined as follows: for any x ∈ {0, 1}k,
h(x0) = h(x1) = g(x). As is easily seen, h ∈ SD. It is also easy to see that g(x) =

∑
y h(xy) δ0(y). Thus,

by Lemma 1, g ∈ 〈SD ∪ {f}〉ω. �

Next, we prove that SDP is a maximal ω-clone in SD. Recall the functions Parλk from Definition 17.

Theorem 50. SDP is a maximal ω-clone in SD; i.e., for any n-ary self-dual function f ∈ SD \ SDP,
〈SDP ∪ {f}〉ω = SD.

Proof. Since B0 ⊆ SDP by Theorems 37 and 28, it suffices by Theorem 48, Corollary 22 and Lemma 1,
to show that Iλ2 ∈ 〈SDP ∪ {f}〉ω for some λ > 1. Since f ∈ SD \ SDP, there is some a ∈ {0, 1}n such that

f̂(a) < 0. By Lemma 31, we may assume that a = 1. Then, by Lemma 33, there is a permissive binary

function h ∈ 〈{f,Par1/2n+2}〉 such that ĥ(1, 1) < 0.

Because the n-ary function f is self-dual and f̂(1) 6= 0, n must be even by Lemma 38. For all even n,

Par
1/2
n+2 is self-dual. Also, Par

1/2
n+2 ∈ P by Lemma 27, so it is in SDP and, by Lemma 1, h ∈ SDP.

Since ĥ(1, 1) < 0 and h is permissive, there are constants c > b > 0 such that h(0, 0) = h(1, 1) = b and

h(0, 1) = h(1, 0) = c. Therefore, the function (1/b)h is I
c/b
2 , with c/b > 1, and this function belongs to

〈SDP ∪ {f}〉ω. �

8. Match-circuits and even-circuits

8.1. Match-circuits

We first show that M and E are functional clones. It is still open whether they are ω-clones. As far as
we know, there may be a function in 〈M〉ω that is the limit of a sequence of functions fε where each fε is
implemented by a match-circuit with its own underlying graph. It is not clear in this case whether f itself
can be implemented by a match-circuit. A similar comment applies to E .

Theorem 51. 〈M〉 =M and B0 ⊆M.
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u1 u2

1
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1
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a)

u1
...

uk

v1

...

vk

vk+1

...

v2k

uf,1
...
uf,k

ug,1
...
ug,k

F

G

b)

Figure 3: Match-circuits used in the proof of Theorem 51. Every edge has weight 1 unless otherwise indicated. a) The equality
function. b) The product of functions implemented by the match-circuits F and G.

Proof. We show that M contains the equality function and has all the closure properties required by the
definition of functional clone.

• For the equality function, we have ÊQ = 1
2EQ. This function is implemented by the graph shown in

Figure 3(a).

• Permuting arguments corresponds directly to renaming the terminals of the circuit, so it is clear that
M is closed under this operation.

• For closure under the introduction of fictitious arguments, let g(xz) = f(x) for some k-ary f ∈ M.

By Lemma 25(ii), ĝ(x0) = f̂(x) and ĝ(x1) = 0. The match-circuit for ĝ is the disjoint union of the

match-circuit F for f̂ and a weight-1 path on new vertices uk+1, v and v′ (in that order). If yk+1 is
assigned 0, then any perfect matching is the union of the edge (v, v′) and a perfect matching of F ,

so has weight f̂(y1, . . . , yk); if yk+1 is assigned 1, there is no perfect matching, so the assignment has
weight 0, as required.

• For closure under summation, let g(x) =
∑
z f(xz) for some (k + 1)-ary function f ∈ M. By

Lemma 25(iii), ĝ(x) = 2f̂(x0), so we obtain a match-circuit for ĝ from the circuit F for f̂ by deleting
the vertex uk+1 (which is equivalent to forcing its adjacent edge in F to be spin-0) and adding a new
weight-2 edge between two new vertices (which doubles the weight of any perfect matching).

• For closure under products, let h(x) = f(x) g(x) for k-ary functions f, g ∈ M. Let f̂ and ĝ be imple-
mented by match-circuits F and G, with terminal vertices uf,1, . . . , uf,k and ug,1, . . . , ug,k, respectively.
For each i ∈ [k], let yf,i be the unique edge adjacent to uf,i in F and define yg,i similarly in G. Recall

that ĥ(y) =
∑

w∈{0,1}k f̂(w) ĝ(w ⊕ y).

Let σ be any assignment of spins 0 and 1 to the edges of the match-circuit H shown in Figure 3(b).
We claim that, if σ is a perfect matching then, for all i ∈ [k], σ(yf,i) = σ(yg,i)⊕ σ(yi).

If σ(yi) = 0 then we must have σ(vi, vk+i) = 1. We may have σ(yf,i) = 0 or σ(yf,i) = 1 but, in either
case, σ(yf,i) = σ(yg,i) = σ(yg,i)⊕ 0.

Otherwise, σ(yi) = 1 and we must have σ(vi, vk+i) = 0. Now there are two cases. If σ(vk+i, vf,i) = 1,
then σ(yf,i) = 0 = σ(yg,i)⊕ 1; if σ(vk+i, vg,i) = 1, then σ(yf,i) = 1 = σ(yg,i)⊕ 1. This completes the
proof of the claim.
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Figure 4: The match-circuit with terminals (u1, v1) and (u2, v2), used in the proof of Theorem 52.

For any choice of spins x1, . . . , xk for the edges y1, . . . , yk we can choose any spins w1, . . . , wk for the
edges yf,1, . . . , yf,k. Doing so forces us to assign the spin wi⊕xi to yg,i. Therefore, the value computed

by the match-circuit is
∑

w f̂(w) ĝ(w ⊕ x), as required.

The fact that B0 ⊆M comes from the definition of match-circuit. Any positive c ∈ B0 can be implemented
by a match-circuit with no terminals containing one edge with weight c. The constant 0 is implemented by
a match-circuit with no terminals whose three edges form a 3-cycle. �

Theorem 52. Iferro ⊆ 〈M〉ω ∩Hferro.

Proof. It is trivial that Iferro ⊆ Hferro, so it remains to prove that Iferro ⊆ 〈M〉ω.

By Corollary 24, it suffices to show that f = I
1/2
2 ∈ M. By Lemma 26, we have f̂ = [34 , 0,

1
4 ]. This is

implemented by the match-circuit shown in Figure 4. �

We do not know whether the inclusion in the statement of Theorem 52 is strict. This corresponds to the
dotted line in Figure 1.

8.2. Even-circuits

The proof that E is a functional clone is similar to Theorem 51.

Theorem 53. 〈E〉 = E and B0 ⊆ E.

Proof. We show that E contains the equality function and has all the closure properties required by the
definition of functional clone.

• For the equality function, we have ÊQ = 1
2EQ. The definition of E accounts for the multiplication

by 1/2, so we need only show that EQ is implemented by an even-circuit. Indeed, it is implemented
by a three-edge path between two terminals (where all edges have weight 1).

• Permuting arguments corresponds directly to renaming the terminals of the circuit, so it is clear that
E is closed under this operation.

• For closure under the introduction of fictitious arguments, let g(xz) = f(x) for some k-ary f ∈ E .

By Lemma 25(ii), ĝ(x0) = f̂(x) and ĝ(x1) = 0. The even-circuit for ĝ is the disjoint union of the

even-circuit F for f̂ and a weight-1 edge on new vertices uk+1 and vk+1. Even subgraphs with yk+1 = 0
correspond to even subgraphs of F . There are no even subgraphs with yk+1 = 1.

• For closure under summation, let g(x) =
∑
z f(xz) for some (k + 1)-ary function f ∈ E . By

Lemma 25(iii), ĝ(x) = 2f̂(x0), so we obtain an even-circuit for ĝ/2 from the circuit F for f̂ by
deleting the vertex uk+1 (which is equivalent to forcing its adjacent edge in F to be spin-0).

• For closure under products, let h(x) = f(x) g(x) for k-ary functions f, g ∈ E . Let f̂ and ĝ be imple-
mented by even-circuits F and G, with terminal vertices uf,1, . . . , uf,k and ug,1, . . . , ug,k, respectively.
For each i ∈ [k], let yf,i be the unique edge adjacent to uf,i in F and define yg,i similarly in G. Recall

that, by (1), ĥ(y) =
∑

w∈{0,1}k f̂(w) ĝ(w ⊕ y).
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Let H be the even-circuit that is the same as the one shown in Figure 3(b) except that the edges
(uf,j , ug,j) are deleted. Let σ be any assignment of spins 0 and 1 to the edges of H. We claim that, if
σ is an even subgraph then, for all i ∈ [k], σ(yf,i) = σ(yg,i)⊕ σ(yi).

If σ(yi) = 1 then we must have σ(vi, vk+i) = 1. Thus, exactly one of the edges (vk+i, uf,i) and
(vk+i, ug,i) has spin one. So σ(yf,i) and σ(yg,i) differ.

Otherwise, σ(yi) = 0 so σ(vi, vi+i) = 0 so σ(yfi) and σ(yg,i) agree. This completes the proof of the
claim.

For any choice of spins x1, . . . , xk for the edges y1, . . . , yk we can choose any spins w1, . . . , wk for the
edges yf,1, . . . , yf,k. Doing so forces us to assign the spin wi⊕xi to yg,i. Therefore, the value computed

by the even-circuit is
∑

w f̂(w) ĝ(w ⊕ x), as required.

The fact that B0 ⊆ E comes from the definition of even-circuit. The nullary zero function f = 0 is in E ,
since f = 0 · g for any function g implemented by an even-circuit. Any non-zero nullary function f = c is
in E , since f = c · 1, where 1 is the constant one function implemented by the empty graph, whose unique
even subgraph is the empty graph, which has weight 1. �

The next theorem shows that the functional clone E is the same as the clone generated by nullary
functions and ferromagnetic Ising model interactions. Something very close to this equivalence is seen in the
“high-temperature expansion” of the Ising model, first elucidated by Van der Waerden [22]. In our proof,
we employ the framework of holants and holographic transformations. See Cai, Lu and Xia [5] for the wider
context, particularly the introduction to that paper and Theorem IV.1.

Theorem 54. 〈FerroIsing ∪ B0〉 = E.

Proof. Theorem 53 shows that B0 ⊆ E . It is also true that I12 ∈ E since it can be constructed from B0 by
introducing fictitious arguments. To see that FerroIsing ⊆ E consider any function Iλ2 with 0 ≤ λ < 1. Let

f(x1, x2) = (2/(1 + λ))Iλ2 , By Lemma 26, f̂(0, 0) = 1, f̂(0, 1) = f̂(1, 0) = 0 and f̂(1, 1) = (1 − λ)/(1 + λ).

But f̂ can be implemented by an even-circuit consisting of a three-edge path between two terminals in which
the middle edge has weight (1 − λ)/(1 + λ). Thus, Iλ2 ∈ 〈E〉. By Lemma 1, 〈FerroIsing ∪ B0〉 ⊆ 〈E〉, so by
Theorem 53, 〈FerroIsing ∪ B0〉 ⊆ E .

We now show that E ⊆ 〈FerroIsing ∪ B0〉. It is obvious that any nullary function is in 〈FerroIsing ∪ B0〉
so consider any function g ∈ E with arity k ≥ 1. From the definition of E , g = c · f for some non-negative
real number c and f̂ is implemented by an even-circuit G.

We will show that f is in 〈FerroIsing ∪ B0〉, which implies that g is also in 〈FerroIsing ∪ B0〉. To do this,
we start by viewing the even-circuit G as an instance of a holant problem. A holant problem [5] consists of
a graph in which, for all d, every degree-d vertex v is equipped with a function fv ∈ Bd. A configuration
assigns spins 0 and 1 to the edges, and the weight of a configuration is the product, over all vertices v, of
fv(x), where x is the string of spins of edges around v (in some appropriate order). The partition function
is the sum of the weights of the configurations.

To represent the relevant holant problem cleanly, we first construct G′ from G by two-stretching the
internal edges of G (turning them all into two-edge paths). That is, if G contains an edge e = (vi, vj), we
add a new vertex ve to G′. We view G′ has a holant problem, so configurations assign spins 0 and 1 to the
edges of G′. At each vertex vi of G′ we add a function fvi which is 1 if an even number of its arguments
have spin-1 and is 0 otherwise. At each new vertex ve of G′ we add a function fve which is the symmetric
arity-2 function [1, 0, we]. This ensures that, in configurations with non-zero weight, the two edges adjacent
to the new vertex ve get the same spin (so non-zero configurations of G′ correspond to even subgraphs of
G). It also ensures also that the weight we of the edge e of the even-circuit G is accounted for. It is easy
to see that the partition function of the holant problem G′ is the same as the function implemented by the
even-circuit G, which is f̂ .

Now we apply a standard trick from the holant literature. Let H = 1
2 [1, 1,−1] be the symmetric arity-2

Hadamard/FFT function. Construct a new holant instance G′′ from G′ by three-stretching every edge of
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G′ and equipping every new vertex with the function H. Since H = 1
2H
−1, the partition function of G′′ is

2−|E(G′)| times the partition function of G′, so it is, up to a constant factor, f̂ .
Now construct a new holant problem G′′′ from G′′ by considering all of the original vertices of G′.

• For any arity-d vertex vi (which is an original internal vertex of G), replace the subgraph consisting
of vi (with its “arity-d even parity” function) and all of its neighbours (which have H functions) with
an equivalent arity-d vertex equipped with the arity-d equality function. This leaves the partition
function unchanged.

• For any vertex ve (one of the new nodes with [1, 0, we] functions added in the construction of G′) let
λe = (1−we)/(1 +we) and replace ve together with its two neighbours (which have H functions) with
the equivalent degree-2 vertex whose function is 1

4 (1 + we)[1, λe, 1]. Again, this does not change the
partition function.

• The only remaining vertices with H functions are adjacent to the external vertices of G. Replacing
these functions with arity-2 equality, we obtain a holant problem G′′′ whose partition function is the
Fourier transform of that of G′′. Thus, its partition function is f .

We now have a holant problem G′′′ implementing f , up to a constant factor. All of the functions at
the vertices of G′′′ are equality (of any arity) or 1

4 (1 + we)[1, λe, 1] for some 0 ≤ λe < 1 so they are all
in 〈FerroIsing ∪ B0〉. Moreover, the equality constraints correspond to the original internal vertices vi of G
and the new Ising constraints correspond to edges between internal vertices of G. Thus, G′′′ implements a
sum (over the spins of the internal vertices of G) of a product (over the spins of the internal edges of G) of
constraints in 〈FerroIsing ∪ B0〉. This shows that f is in the closure of 〈FerroIsing ∪ B0〉 under product and
summation, so f itself is in 〈FerroIsing ∪ B0〉. �

Recall that Iferro = 〈FerroIsing ∪ B0〉ω. The following corollary follows immediately from Theorem 54
and Theorem 53 using the definition of an ω-clone.

Corollary 55. Iferro = 〈E〉ω.

8.3. Relationship of 〈M〉ω with other clones

In this section, we give, in Lemma 56, a necessary condition for a 4-ary function to be in M. Moreover,
we show, in Lemma 57, that for symmetric functions this condition is also sufficient. We then use these
results to study the relationship between 〈M〉ω and the clones around it in the lattice L′.

Lemma 56. For every 4-ary function f ∈M,

f̂(0011) f̂(1100) + f̂(0101) f̂(1010) + f̂(0110) f̂(1001) ≥ f̂(0000) f̂(1111) . (2)

Proof. Consider an arity-4 match-circuit G that implements f̂ as described in Definition 5. Let S =
{u1, u2, u3, u4} be the set of external vertices of G. For A ⊆ S, let MA denote the set of perfect matchings
which include terminals adjacent to A (by assigning them spin 1) and exclude terminals adjacent to S \ A
(by assigning them spin 0). We exhibit an injective map

ν : M∅ ×MS →M{u1,u2} ×M{u3,u4} ∪M{u1,u3} ×M{u2,u4} ∪M{u1,u4} ×M{u2,u3}

which is weight-preserving in the sense that, for matchings m1, . . . ,m4 with ν(m1,m2) = (m3,m4), we have
w(m1)w(m2) = w(m3)w(m4). The existence of ν implies (2).

Given (m1,m2) ∈M∅ ×MS , consider m1 ⊕m2 and note that this is a collection of cycles together with
two paths π and π′. Let π1 be the path connecting vertex u1 to one of the other external vertices; the
other path connects the remaining external vertices. If π joins u1 to u2, then m3 := m1 ⊕ π ∈ M{u1,u2}
and m4 := m2 ⊕ π ∈ M{u3,u4}, with similar claims for π joining u1 to u3 or u4. The construction is
invertible, since m3 ⊕ m4 = m1 ⊕ m2, from which we can recover π and, hence, m1 and m2. Therefore,
ν : (m1,m2) 7→ (m3,m4) is an injection as claimed.
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Figure 5: Match-circuits used in the proof of Lemma 57. Every edge has weight 1 unless otherwise indicated. a) The case
C0 > 0, C2 = C4 = 0. b) The case C0, C2 > 0, C4 ≥ 0.

To see that ν is weight-preserving, observe that the edges of π each appear in exactly one of m1 and m2

and in exactly one of m3 and m4 and that, for i ∈ {1, 2}, mi \ π = mi+2 \ π.

w(m1)w(m2) =
∏

e∈m1\π

we
∏

e∈m2\π

we
∏
e∈π

we =
∏

e∈m3\π

we
∏

e∈m4\π

we
∏
e∈π

we = w(m3)w(m4) . �

We give the converse of Lemma 56 for symmetric functions.

Lemma 57. If f is a symmetric, arity-4, self-dual function such that

3f̂(0011)2 ≥ f̂(0000) f̂(1111) , (3)

then f ∈M.

Note that (3) is just (2) specialised to symmetric functions.

Proof. For ease of notation, let C0 = f̂(0, 0, 0, 0), C2 = f̂(0, 0, 1, 1) and C4 = f̂(1, 1, 1, 1). Since C0 =
1
16

∑
z∈{0,1}4 f(z) is a sum of nonnegative terms, if C0 = 0, then f is the constant zero function, which is

in M by Theorem 51. For the rest of the proof, we assume that C0 > 0.
If C2 = C4 = 0, then f̂ is implemented by the match-circuit shown in Figure 5(a). If at most one of C2

and C4 is zero, then (3) implies that C2 > 0.

We will construct a match-circuit G for f̂ (see Figure 5(b)). In addition to the terminal edges yi =
(ui, vi) for i ∈ [4], G will have edges (vi, wi) and (wi, xi). It will also contain a clique on the six vertices
x1, x2, x3, x4, x5, x6. The edge (x5, x6) has weight λ and the edges (wi, xi) have weight µ. All other edges
have weight 1.

Let S = {u1, u2, u3, u4}. Following the proof of Lemma 56, for A ⊆ S, MA denotes the set of perfect
matchings which include terminals adjacent to A (by assigning them spin 1) and exclude terminals adjacent
to S \A (by assigning them spin 0). Let ZA denote the sum of the weights of the perfect matchings in MA.

The perfect matchings in M∅ contain all of the edges (vi, wi) and none of the edges (ui, vi) or (wi, xi).
There are three perfect matchings of the clique that include the weight-λ edge (x5, x6) and twelve perfect
matchings of the clique that do not include this edge, so Z∅ = 3λ+12. Similarly, the single perfect matching
in MS contains all of the edges (ui, vi) and (wi, xi) (which have weight µ) and none of the edges (vi, wi). The
edge (x5, x6) is present, so ZS = λµ4. Finally, the perfect matchings in M{u1,u2} contain the two weight-µ
edges (w1, x1) and (w2, x2) but not the two weight-µ edges (w3, x3) and (w4, x4). There are three matchings
of the 4-clique containing x3, x4, x5, x6, one of which has weight λ, so Z{u1,u2} = (λ+ 2)µ2 and the same is
true for ZA for any other size-two set A ⊆ S. Now let

z(λ) =
Z∅ZS

Z{u1,u2}Z{u1,u2}
.
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Note that z(λ) = λ(3λ+ 12)/(λ+ 2)2, and that the range of z(λ) includes the interval [0, 3). There are now
three cases.

If 3C2
2 > C0C4 > 0, we can choose λ so that z(λ) = C0C4/C

2
2 . Now choose µ to obtain (Z∅, Z{u1,u2}, ZS) ∝

(C0, C2, C4). In order to get the constant multiple correct, G can be supplemented with an additional edge.
If 3C2

2 > C0C4 = 0 (so C4 = 0, since C0 and C2 are positive), we can simulate λ = 0 by deleting the
edge (x5, x6). We have Z∅ = 12 and Z{u1,u2} = 2µ2 and, as before, we can choose µ so that (Z∅, Z{u1,u2}) ∝
(C0, C2) and add an edge to G for the required constant multiple.

Finally, if 3C2
2 = C0C4 > 0, we must achieve z(λ) = 3. This can be done by effectively setting λ = ∞

by removing the vertices x5 and x6 and their incident edges. �

Theorem 58. 〈M〉ω ⊂ SDP.

Proof. Let G be a match-circuit with terminals y1, . . . , yk, where yi = (ui, vi) for each i ∈ [k], which

implements the function f̂(y). For any assignment a to y, f̂(a) is the total weight of the perfect matchings
of the graph G − {vi | ai = 1}. Since a graph with an odd number of vertices has no perfect matchings,

f̂(a) = 0 whenever |a| is odd or f̂(a) = 0 whenever |a| is even. (This is the so-called “parity condition” of
match-circuits; see, e.g., [3].)

We first show that M⊆ SDP. Suppose that f ∈ M. We will show that f ∈ SDP. Since Theorems 37
and 28 guarantee that B0 ∈ SDP, we can assume without loss of generality that the arity, k, of f is positive.
Since f̂ is implemented by a match-circuit, f̂(x) ≥ 0 for all x, so f ∈ P. If f is the constant arity-k zero
function, then f ∈ SDP trivially, so assume that f(a) > 0 for at least one a ∈ {0, 1}k. This implies that

f̂(0) = 2−k
∑

x f(x) > 0 so, by the parity condition, f̂(x) = 0 whenever |x| is odd. By Lemma 38, f ∈ SD,
and we have established that f ∈ SD ∩ P. But SDP = SD ∩ P by Theorem 39, so f ∈ SDP.

To show thatM⊂ SDP, consider the function g = I
1/4
4 = [1, 14 ,

1
4 ,

1
4 , 1], which is in SD. By Lemma 26,

ĝ(0000) = 11
32 , ĝ(x) = 3

32 when |x| ∈ {2, 4} and ĝ(x) = 0, otherwise, so g ∈ P ∩ PN = SDP. However,
g /∈M by Lemma 56.

It remains to “lift” the result to ω-clones. We have 〈M〉ω ⊆ 〈SDP〉ω = SDP, so it is enough to show

that g = I
1/4
4 /∈ 〈M〉ω. Suppose, towards a contradiction, that g ∈ 〈M〉ω. By the definition of ω-clones,

for every ε > 0, there is a function f ∈ 〈M〉 such that ‖f − g‖∞ < ε/32. Since M is a functional clone by

Theorem 51, f ∈M. Then Lemma 25(v) implies that ‖f̂ − ĝ‖∞ < ε/32, also. Thus, for all x ∈ {0, 1}4,

ĝ(x)− ε/32 < f̂(x) < ĝ(x) + ε/32 . (4)

Since f ∈M, (2) must hold. Plugging (4) and the values of ĝ into (2) gives

3
(

3
32 + ε

32

)2
>
(
11
32 −

ε
32

)(
3
32 −

ε
32

)
,

but this only holds for sufficiently large positive values of ε, contradicting the assumption that g ∈ 〈M〉ω.�

Lemmas 56 and 57 also allow us to separate Hferro from 〈M〉ω.

Lemma 59. 〈M〉ω and Hferro are incomparable under ⊆.

Proof. Let f = [13, 4, 1, 4, 13]. We saw in the proof of Theorem 44 that f /∈ Hferro and that f̂ = [4, 0, 32 , 0, 0].
However, f ∈ 〈M〉ω by Lemma 57.

Now, let g = I
1/2
4 ∈ Hferro. By Lemma 26, ĝ = [ 9

16 , 0,
1
16 , 0,

1
16 ] and g /∈ 〈M〉ω by Lemma 56, since

3( 1
16 )2 < 9

16 ·
1
16 . �

9. The lattice L′

In this section, we prove Theorem 10.

26



Theorem 10. The lattice L′ shown in Figure 1 is a sublattice of Lω. That is, all elements of L′ are distinct
ω-clones, with the possible exceptions of SDP and 〈〈M〉ω ∪Hferro〉ω, and 〈M〉ω ∩ Hferro and Iferro, which
might be equal. (This is indicated by the dotted lines in Figure 1.) Furthermore, the meets and joins of
elements of L′ are as depicted in Figure 1 and

(i) SD = Ianti;

(ii) Iferro = 〈E〉ω;

(iii) SD, P and PN are maximal in B;

(iv) SDP is maximal in SD.

Proof. First, we check that the vertices of L′ are, indeed, ω-clones. B is trivially an ω-clone. 〈M〉ω, Hferro,
〈〈M〉ω ∪Hferro〉ω and Iferro, are ω-clones by definition. Hence, so is the intersection 〈M〉ω ∩Hferro. P, PN
and SD are ω-clones by Theorems 28, 30 and 37, so their intersection SDP is also an ω-clone.

Next, we check the lattice structure.
We start with the strict inclusions (indicated by the solid lines in Figure 1). It is easy to see, using

the definitions, that SD, P and PN are strict subsets of B. SD, P and PN are pairwise-incomparable
under ⊆ by Lemma 41. SDP is a subset of SD, P and PN by definition; it is a strict subset because SD, P
and PN are distinct. 〈M〉ω and Hferro are ⊆-incomparable by Lemma 59. Consequently, 〈M〉ω ∩ Hferro is
a strict subset of both 〈M〉ω and Hferro and 〈〈M〉ω ∪Hferro〉ω is a strict superset of both 〈M〉ω and Hferro.
For the remaining two inclusions (which we do not know to be strict, as indicated by the dotted lines in
Figure 1), Iferro ⊆ 〈M〉ω ∩ Hferro by Theorem 52. Also, 〈M〉ω ⊂ SDP by Theorem 58 and Hferro ⊂ SDP
by Theorem 44. Hence 〈〈M〉ω ∪ SDP〉ω ⊆ SDP since SDP is an ω-clone.

Note that since the meet of any two clones is defined as their intersection the meets of any two ω-clones
from L′ are indeed as shown in Figure 1 (this uses Theorem 39). We now show that also the joins of any two
ω-clones from L′ are as shown in Figure 1. Lemma 49 implies SD ∨ P = SD ∨ PN = B. By Corollary 36,
P ∨ PN = B. 〈M〉ω ∨Hferro = 〈〈M〉ω ∪Hferro〉ω by definition.
SD = Ianti by Theorem 48. Iferro = 〈E〉ω by Corollary 55.
Maximality of SD, P and PN in B is by Lemma 49, Lemma 34 and Corollary 35, respectively. Maximality

of SDP in SD is by Theorem 50. �

10. Clones of monotone functions

For x,y ∈ {0, 1}n, x ≤ y denotes the fact that xi ≤ yi for all i ∈ [n]. For any function f(x1, . . . , xn) ∈ Bn,
let ∼f denote the equivalence relation on [n] given by i ∼f j if and only if for every x ∈ {0, 1}n, f(x) = 0

whenever xi 6= xj . Let V1, . . . , V` be the equivalence classes of ∼f and let f̃ be the function in B` defined
as follows. For any x ∈ {0, 1}`, construct y ∈ {0, 1}n as follows. For all i ∈ [n], if i ∈ Vj , then set yi = xj .

Then f̃(x) = f(y).

Lemma 60. For any f ∈ B, f̃ ∈ 〈f〉 and f ∈ 〈f̃〉.

Proof. The function f is constructed from f̃ by introducing fictitious arguments and adding EQ factors.
The function f̃ is constructed from f by summing out variables. �

Definition 61. (Definition of monotone and block-monotone functions.)

• Given a function f ∈ Bn and an index i ∈ [n], the argument xi is said to be fictitious in f if, for all x
and x′ that differ only at position i, f(x) = f(x′).

• For any non-negative integer n and any α ≥ 0, the function f(x1, . . . , xn) ∈ Bn is said to be α-
monotone if, for every argument xi that is not fictitious in f , and every x with xi = 0, αf(x) ≤
f(x1, . . . , xi−1, xi, xi+1, . . . , xn).
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• A function f ∈ B is said to be block-α-monotone if f̃ is α-monotone.

• 1-monotone functions are called monotone functions. Block-1-monotone functions are called block-
monotone functions.

• The set of all block-monotone functions is denoted by MON, and the set of all block-α-monotone
functions is denoted by MONα.

Note that if α ≥ β then αf(x) ≤ f(y) implies βf(x) ≤ f(y). Thus, every α-monotone function is
β-monotone and MONα ⊆ MONβ . We next show that, for any α ≥ 1, MONα is an ω-clone. Since
MON1 =MON, this implies that MON is an ω-clone.

Theorem 62. For any α ≥ 1, 〈MONα〉ω =MONα and B0 ⊆MONα.

Proof. Fix any α ≥ 1. We will show that EQ ∈MONα and that it is closed under the usual operations.

• ẼQ is the unary constant function ẼQ(x) = 1. Its only argument is fictitious. Thus, it is in MONα.

• For closure under permuting arguments, suppose that f ∈ MONα and that g is formed from f by
permuting arguments. Then g̃ is formed from f̃ by permuting arguments. Since f̃ is α-monotone, so
is g̃, so g ∈MONα.

• For closure under introducing fictitious arguments, let f ∈ MONα and define h(xy) = f(x). Then
the argument y is in its own equivalence class in ∼h so h̃(xy) = f̃(x). Since f̃ is α-monotone, and y
is fictitious, h̃ is α-monotone.

• For closure under summation, let f ∈MONα and define h(x) = f(x0) + f(x1). Let n+ 1 be the arity
of f . There are two possibilities.

– First, suppose that xn+1 is equivalent to some other argument under ∼f (for convenience, assume

that it is equivalent to xn). Then f(x1, . . . , xn, xn) = h(x1, . . . , xn) so f̃ = h̃, and h̃ is α-monotone
because f̃ is.

– Otherwise, let V1, . . . , V`+1 be the equivalence classes of ∼f , where V`+1 contains only xn+1. Then
V1, . . . , V` are the equivalence classes of ∼h. We claim that if the argument corresponding to Vi is
not fictitious in h̃ then it is not fictitious in f̃ . Then, since f̃ is α-monotone, changing the value
of this argument increases the value of the function by a factor of α, both when xn+1 = 0 and
when xn+1 = 1. Thus, changing the value of the argument also inceases the value of h̃ by a factor
of α, and h̃ is α-monotone.

• For closure under products, let f, g ∈MONα and consider h(x) = f(x) g(x). Let n be the arity of h,
f and g. Suppose that V1, . . . , V` are the equivalence classes of ∼f . Consider an equivalence class Vi
and a string x ∈ {0, 1}n which sets all arguments in Vi to 0. Let x′ be the string constructed from x
by changing the value of the arguments in Vi to 1. Since f̃ is α-monotone, there are two possibilities:

1. If the argument of f̃ corresponding to Vi is fictitious then f(x′) = f(x).

2. If the argument of f̃ corresponding to Vi is not fictitious then f(x′) ≥ αf(x).

A similar comment applies to g. Now let the equivalence classes of ∼h be V ′1 , . . . , V
′
`′ . Consider some

equivalence class V ′i — this is a union of ∼f classes and a union of ∼g classes. Suppose that the

argument corresponding to V ′i is not fictitious in h̃. We want to argue that there is at least one of the
∼f and ∼g classes corresponding to V ′i that is not fictitious. To see this, suppose for contradiction
that they are all fictitious. Start with a string x in which all of the arguments in V ′i are the same.
First consider changing, one-by-one all of the values of arguments in the ∼f classes corresponding to
V ′i . Since they are fictitious, this does not change the value of f . Similarly, changing-one-by-one all
of the values in the ∼g classes corresponding to V ′i does not change the value of g. So if x′ is the
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string derived from x by changing the spin of V ′i , then f(x′) = f(x) and g(x′) = g(x). But this is
a contradiction, since the argument corresponding to V ′i is not fictitious in h̃. Now suppose that x
takes value 0 on V ′i . Changing the value of some ∼f or ∼g class inside V ′i inceases the value of the
function by a factor of α. Changing each other ∼f or ∼g class inside V ′i either leaves the value alone,

or inceases it by another factor of α. Hence, h̃ is α-monotone.

• For closure under limits, let f ∈ Bn and suppose that, for all integers i > 0, there is some gi ∈MONα
such that ‖f − gi‖∞ < 2−i. We must show that f ∈MONα.

There must be some equivalence relation ∼g on [n] such that ∼gi = ∼g for infinitely many i. In fact,
we may assume that ∼gi = ∼g for all i: if not, let g′1, g

′
2, . . . be the subsequence of functions whose

equivalence relation is ∼g, note that ‖f − g′i‖∞ < 2−i for all i and use the sequence g′1, g
′
2, . . . in place

of g1, g2, . . . .

Now, every equivalence class of ∼f is a union of equivalence classes of ∼g. To see this suppose that
r ∼g s. For all i and all x ∈ {0, 1}n with xr 6= xs, we have gi(x) = 0. Therefore, |f(x)| < 2−i for all i,
so f(x) = 0 and r ∼f s.8

Now, consider some argument xj that is not fictitious in f . Let x ∈ {0, 1}n be a tuple such that
xj = 0 and xr = xs whenever r ∼f s. Let y be the tuple with ys = xs for all s 6∼f j and ys = 1 for
s ∼f j. We must show that f(y) ≥ αf(x). This is trivial when f(x) = 0 so we consider the case that
f(x) = λ > 0. Then, for all large enough i, gi(x) > λ − 2−i > 0 so, by block-α-monotonicity of gi,
gi(y) > α(λ− 2−i). So, for all large enough i, g(y) > α(λ− 2−i)− 2−i, so g(y) ≥ αλ, as required.

The proof that B0 ⊆ MONα is straightforward since a function f ∈ B0 has no arguments, fictitious or
otherwise. �

11. Cardinality of the set of clones

In this section we determine the cardinality of the lattices of functional and ω-clones, proving Theorem 13.

Theorem 13. |Lf | = |Lω| = i2.

Since |B| = i1, we have |Lf |, |Lω| ≤ i2. Therefore, we focus on proving the inverse inequality. As every
ω-clone is also a functional clone, it suffices to prove that |Lω| ≥ i2. We construct a set of functions, F ⊆ B2
with |F| = i1 that has the following property: For any G ⊆ F , 〈G〉ω ∩ F = G. This immediately implies
that, for any G1,G2 ⊆ F with G1 6= G2 we have 〈G1〉ω 6= 〈G2〉ω. Therefore, |Lω| ≥ 2|F| = i2.

For any real α > 2, let fα denote the binary function given by fα(0, 0) = 1, fα(0, 1) = fα(1, 0) = 2 and
fα(1, 1) = 2α. Let F denote the set {fα | α > 3}. Note that fα is 2-monotone for any α > 2. Therefore
〈F〉ω ⊆MON2.

Lemma 63. Let G ⊆ F be a finite set and let β = min{α | fα ∈ G}. If f ∈ 〈G〉 is a binary function

such that f̃ = f , then either γf ∈ G for some constant γ or f(0, 1) ≥ min
{

4, 2+β2

}
f(0, 0), or f(1, 0) ≥

min
{

4, 2+β2

}
f(0, 0).

Proof. Suppose f is a binary function in 〈G〉. As noted in the introduction to the paper, f can be expressed
as

f(x, y) =
∑

x1,...,xk

t∏
j=1

g′j(x, y, x1, . . . , xk), (5)

8Note that we do not necessarily have ∼f = ∼g . For example, the 2-monotone symmetric binary function f(x, y) = [0, 0, 1]
has just one equivalence class, but it is the limit of the 2-monotone functions fi(x, y) = [0, 2−i, 1] for i ≥ 1, and each of these
functions has two equivalence classes.
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where t and k are non-negative integers and each function g′j is a (k + 2)-ary function in A(G). Recall that
A(G) is the closure of G ∪ {EQ} under the introduction of fictitious arguments and permuting arguments.
Thus, every function g′j in (5) is constructed from a binary function h ∈ G ∪ {EQ} by introducing fictitious
arguments and permuting arguments. If h = EQ than g′j can be removed from the expression on the right-
hand-side of (5) without changing the function f(x, y) by instead allowing re-use of variables. (If h forces
xi and xj to be equal, then we can just remove all instances of xj and replace them with xi and we can
also remove xj from the sum.) Also, we can remove the fictitious arguments in the g′j functions, replacing

each g′j with the corresponding binary function gj ∈ G. Suppose that f = f̃ (so the variables x and y are in
different ∼f classes and removing the h = EQ functions from (5) does not remove either x or y). Then, by
these transformations, (5) shows that there are non-negative integers s and m so that

f(x, y) =
∑

u1,...,um

s∏
j=1

gj(xj,1, xj,2), (6)

where, for all j ∈ [s], gj ∈ G and xj,1 and xj,2 are in {x, y, u1, . . . , um} (though xj,1 and xj,2 may not
necessarily be distinct).

Without loss of generality we assume that there are 0 ≤ p, q, r ≤ s such that functions gj for 0 < j ≤ p
involve both x and y; functions gj for p < j ≤ p+q involve x but not y; functions gj for p+q < j ≤ p+q+r
involve y but not x; and the remaining functions do not involve x or y. Note that since none of x, y is
fictitious, p+ q > 0 and p+ r > 0. For x, y ∈ {0, 1} and u ∈ {0, 1}m, let also

Txy(x, y) =

p∏
j=1

gj(xj,1, xj,2) , Tx(x,u) =

p+q∏
j=p+1

gj(xj,1, xj,2) ,

Ty(y,u) =

p+q+r∏
j=p+q+1

gj(xj,1, xj,2) , T0(u) =

s∏
j=p+q+r+1

gj(xj,1, xj,2) .

Thus,

f(x, y) =
∑

u∈{0,1}m
Txy(x, y)Tx(x,u)Ty(y,u)T0(u) .

If p = 1 and q = r = 0 then γf ∈ G for 1/γ =
∑

u∈{0,1}m T0(u). If p+ q > 1 we have for any y ∈ {0, 1}
and u ∈ {0, 1}m

4Txy(0, y)Tx(0,u)Ty(y,u)T0(u) ≤ Txy(1, y)Tx(1,u)Ty(y,u)T0(u),

because every gj ∈ G is 2-monotone. This implies that 4f(0, y) ≤ f(1, y) for all y so, in particular,
4f(0, 0) ≤ f(1, 0). Similarly, 4f(0, 0) ≤ f(0, 1) if p+ r > 1. Therefore, the only remaining case is p = 0 and
q = r = 1.

Define α so that g1 is the function fα(x, u1), where fα ∈ G. Then

f(1, 0) =
∑

u∈{0,1}m
fα(1, u1)Ty(0,u)T0(u)

=
∑

u′∈{0,1}m−1

fα(1, 0)Ty(0, 0,u′)T0(0,u′) +
∑

u′∈{0,1}m−1

fα(1, 1)Ty(0, 1,u′)T0(1,u′)

= 2
∑

u′∈{0,1}m−1

fα(0, 0)Ty(0, 0,u′)T0(0,u′) + α
∑

u′∈{0,1}m−1

fα(0, 1)Ty(0, 1,u′)T0(1,u′)

= 2f(0, 0) + (α− 2)
∑

u′∈{0,1}m−1

fα(0, 1)Ty(0, 1,u′)T0(1,u′)

≥ 2f(0, 0) + (α− 2)
∑

u′∈{0,1}m−1

1

2

(
fα(0, 0)Ty(0, 0,u′)T0(0,u′) + fα(0, 1)Ty(0, 1,u′)T0(1,u′)

)
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=
2 + α

2
f(0, 0) .

The inequality here holds because all the functions involved are monotone and therefore

fα(0, 0)Ty(0, 0,u′)T0(0,u′) ≤ fα(0, 1)Ty(0, 1,u′)T0(1,u′) .

The result follows by the choice of β. �

We can now prove Theorem 13.

Proof. As we observed at the beginning of the section, to prove that |Lω| ≥ i2, it suffices to show that for
any G1,G2 ⊆ F with G1 6= G2, 〈G1〉ω 6= 〈G2〉ω. Suppose fα ∈ G1 \G2. We show that fα 6∈ 〈G2〉ω. The function

fα is symmetric and binary and it satisfies fα = f̃α so take any binary symmetric function f ∈ 〈G2〉ω with
f̃ = f . We will show that f 6= fα.

By the definition of ω-clone, there is a finite set G′′ ⊆ 〈G2〉 such that f = limn→∞ hn where each hn is
a binary function in 〈G′′〉. Each of the finitely many functions in G′′ can be written as a finite sum of a
product of (finitely many) functions in A(G2). Let G′ be the finite set of functions in G2 which correspond
to the relevant functions in A(G2). Then clearly each hn ∈ 〈G′〉.

Since f̃ = f there are at most finitely many n such that h̃n 6= hn — so we will remove these from the
sequence of functions {hn} and of course it is still true that f = limn→∞ hn.

Let β = min{µ | fµ ∈ G′}. By Lemma 63, either there is a γn such that γnhn ∈ G′ or hn(0, 1) ≥
min

{
4, 2+β2

}
hn(0, 0), or hn(1, 0) ≥ min

{
4, 2+β2

}
hn(0, 0).

If there are infinitely many hn such that γnhn ∈ G′ for some constants γn then, since G′ is finite, infinitely
many of the γnhn functions are equal. Since f(0, 0) = 1, limn→∞ γn = 1 for such functions. Therefore, each
of γnhn is equal to f . Thus f ∈ G′ in this case. Clearly, f 6= fα since fα 6∈ G2 so fα 6∈ G′.

If there are finitely many hn with γnhn ∈ G′ then we can remove these from the sequence of functions
{hn} and as before it is still true that f = limn→∞ hn. From now on, we therefore assume that none of

the functions hn belong to G′. Suppose that hn(1, 0) ≥ min
{

4, 2+β2

}
hn(0, 0) for infinitely many hn. Then

f(1, 0) ≥ min
{

4, 2+β2

}
f(0, 0), and f 6∈ F so clearly f 6= fα. The case when there are infinitely many hn

with hn(1, 0) ≥ min
{

4, 2+β2

}
hn(0, 0) is similar. �

12. Ternary functions

In this section, we prove Theorem 14, which we restate here for convenience.
Recall that S3 = {B3, [SD]3, [P]3, [PN ]3, [SDP]3, [〈M〉ω]3, [Hferro]3, [Iferro]3}.

Theorem 14. [SDP]3 = [〈M〉ω]3, [Hferro]3 = [Iferro]3, and any other two elements of S3 are distinct.

Proof. The two collapses are proved in Theorem 64 and Theorem 65, respectively.
Trivially, [SD]3, [P]3, and [PN ]3 are strict subsets of [B]3. We now show that these three sets are distinct.

Recall the binary functions f, g, h from the proof of Lemma 41 with f ∈ SD\ (P ∪PN ), g ∈ P \ (SD∪PN )
and h ∈ PN \ (SD ∪ P). Define f ′(x, y, z) = f(x, y), g′(x, y, z) = g(x, y), and h′(x, y, z) = h(x, y). From

the proof Lemma 41, f̂ = [ 12 , 0,−
1
2 ], ĝ = [1, 12 , 0] and ĥ = [1,− 1

2 , 0]. By Lemma 25(ii), f̂ ′(x, y, 0) = f̂(x, y)

and f̂ ′(x, y, 1) = 0, and similarly for ĝ′ and ĥ′. It is now easy to verify that f ′ ∈ [SD]3 \ ([P]3 ∪ [PN ]3),
g′ ∈ [P]3 \ ([SD]3 ∪ [PN ]3) and h′ ∈ [PN ]3 \ ([SD]3 ∪ [P]3).

Since [SD]3, [P]3, [PN ]3 are distinct, we have [SDP]3 ⊂ [SD]3, [P]3, [PN ]3.
Finally, we show that [Hferro]3 ⊂ [SDP]3. The non-strict inclusion [Hferro]3 ⊆ [SDP]3 comes from the

fact that Hferro ⊆ SD (from Theorem 10). To get the strict inclusion, we will exhibit a ternary function
that is in [SDP]3, but is not in [LSM]3 (so is not in [Hferro]3 since Hferro ⊆ LSM, as discussed in the proof
of Theorem 44, and hence [Hferro]3 ⊆ [LSM]3).
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u1

u2

u3

d/a

b/a
c/a a

Figure 6: The match-circuit used in the proof of Theorem 64. Every edge has weight 1 unless otherwise indicated.

Consider the 3-ary self-dual function f defined by f(0, 0, 0) = 6, f(0, 0, 1) = 4, and f(0, 1, 0) = f(1, 0, 0) =
5. It can be verified that f ∈ P and thus f ∈ [SDP]3. We use Lemma 43 to show that f 6∈ LSM: for
2-pinning g(x, y) = f(x, y, 1) we have g(0, 0) g(1, 1) = 4 · 6 = 24 < 25 = 5 · 5 = g(0, 1) g(1, 0). �

Theorem 64. [SDP]3 = [〈M〉ω]3.

Proof. By Theorem 10, 〈M〉ω ⊆ SDP and thus [〈M〉ω]3 ⊆ [SDP]3. It remains to show the other inclusion,
[SDP]3 ⊆ [〈M〉ω]3. Consider a 3-ary function f(x, y, z) ∈ SDP. If f is the constant zero function then

f ∈ [〈M〉ω]3 since f̂ is also the constant zero function, and it can be implemented by a match-circuit with
three terminals and a disjoint triangle.

If f is not the constant zero function, then f̂(0, 0, 0) > 0. There are values a > 0 and b, c, d ≥ 0 such that

f̂(0, 0, 0) = a, f̂(0, 1, 1) = b, f̂(1, 0, 1) = c, f̂(1, 1, 0) = d and (by Lemma 38) f̂(x) = 0 when |x| is odd. It

is easily verified that, for b, c, d > 0, f̂ is implemented by the match-circuit shown in Figure 6. Definition 5
does not allow zero-weight edges but we can implement f̂ in cases where some of b, c and d are zero by
deleting the corresponding edge or edges from the match-circuit in Figure 6. Hence, f ∈ [M]3, so it is in
[〈M〉ω]3. �

Theorem 65. [Hferro]3 = [Iferro]3.

Proof. By Theorem 10, Iferro ⊆ Hferro and thus [Iferro]3 ⊆ [Hferro]3. It remains to show the other inclusion,
[Hferro]3 ⊆ [Iferro]3. In fact, we prove something stronger, namely that [SDP ∩ LSM]3 ⊆ [Iferro]3. By the
proof of Theorem 44, Hferro ⊆ SDP ∩ LSM so the required inclusion follows.

An arbitrary 3-ary function f ∈ SDP is given by f(0, 0, 0) = f(1, 1, 1) = λ, f(0, 0, 1) = f(1, 1, 0) = a,
f(0, 1, 0) = f(1, 0, 1) = b, and f(1, 0, 0) = f(0, 1, 1) = c.

For f to be in LSM, by Lemma 43 (and in particular the fact that the necessary condition of Lemma 43
holds even for non-permissive functions, as discussed in Section 7), the following functions must also be in
LSM: f1, . . . , f6 ∈ LSM where f1(x, y) = f(0, x, y), f2(x, y) = f(x, 0, y), f3(x, y) = f(x, y, 0), f4(x, y) =
f(1, x, y), f5(x, y) = f(x, 1, y) and f6(x, y) = f(x, y, 1). This gives

λc ≥ ab , λb ≥ ac and λa ≥ bc . (7)

Assume that f is permissive. Without loss of generality (by scaling since B0 ⊆ Iferro), let λ = 1.
Let g(x, y, z) = Iλ1

2 (x, y) Iλ2
2 (x, z) Iλ3

2 (y, z), where λ1 =
√
bc/a, λ2 =

√
ac/b and λ3 =

√
ab/c. By (7),

λ1, λ2, λ3 ≤ 1, and hence g ∈ [Iferro]3. We now verify that f = g. By the definition of g, g(0, 0, 0) =
g(1, 1, 1) = 1, g(0, 0, 1) = g(1, 1, 0) = 1 · λ2 · λ3 = a, g(0, 1, 0) = g(1, 0, 1) = λ1 · 1 · λ3 = b, and g(1, 0, 0) =
g(0, 1, 1) = λ1 · λ2 · 1 = c.

It remains to deal with non-permissive f . If λ = 0 then (7) implies that at most one of a, b, and c is non-
zero. If all three are zero then f is the constant zero function and thus trivially in [Iferro]3 since B0 ⊆ Iferro.

Otherwise, let a > 0 and b = c = 0; the other two cases are symmetric. Since f̂(1, 1, 0) = −a/4 < 0,
f 6∈ SDP, a contradiction. If λ > 0 then, by scaling, let λ = 1. The inequalities (7) imply that at most one
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of a, b, and c is non-zero. If all three are zero then f(x, y, z) = EQ(x, y) EQ(y, z). Otherwise, let a > 0 and
b = c = 0; the other two cases are symmetric. In this case f(0, 0, 0) = f(1, 1, 1) = 1, f(0, 0, 1) = f(1, 1, 0) = a
and f(x, y, z) = 0 otherwise. Thus f(x, y, z) = EQ(x, y) Ia2 (y, z). Now, because f ∈ LSM, we must have
f(0, 0, 0) f(1, 1, 1) = 1 ≥ f(0, 0, 1) f(1, 1, 0) = a2, so a ≤ 1 and f ∈ [Iferro]3. �
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Appendix A. Fourier transforms

In this appendix, we prove Lemmas 25–27.

Lemma 25. Let f and g be functions in Bk.

(i) For any permutation π of [k], f̂π(x) = f̂(π(x)).
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(ii) If h(xz) = f(x), then ĥ(x0) = f̂(x) and ĥ(x1) = 0.

(iii) If h(x) = f(x0) + f(x1), then ĥ(x) = 2f̂(x0).

(iv) If h(x) = f(x), then ĥ(x) = (−1)|x|f̂(x).

(v) If ‖g − f‖∞ < ε, then ‖ĝ − f̂‖∞ < ε.

(vi) If k = 0 then f̂ = f .

Proof. (i) In the following, the third equality is because permuting a Boolean vector doesn’t change its
Hamming weight and the fourth equality is reordering the terms of the sum.

f̂π(x) =
1

2k

∑
w∈{0,1}k

(−1)|x∧w|fπ(w)

=
1

2k

∑
w∈{0,1}k

(−1)|x∧w|f(π(w))

=
1

2k

∑
w∈{0,1}k

(−1)|π(x)∧π(w)|f(π(w))

=
1

2k

∑
w∈{0,1}k

(−1)|π(x)∧w|f(w)

= f̂(π(x)) .

(ii) For any z ∈ {0, 1},

ĥ(xz) =
1

2k+1

∑
w∈{0,1}k

(−1)|xz∧w0|f(w) +
1

2k+1

∑
w∈{0,1}k

(−1)|xz∧w1|f(w)

=
1

2k+1

∑
w∈{0,1}k

(−1)|x∧w| f(w)
(
(−1)|z∧0| + (−1)|z∧1|

)
= 1

2 f̂(x)
(
1 + (−1)|z|

)
=

{
f̂(x) if z = 0

0 if z = 1 .

(iii) For any x,

ĥ(x) =
1

2k−1

∑
w∈{0,1}k−1

(−1)|x∧w|
(
f(w0) + f(w1)

)
=

1

2k−1

∑
w∈{0,1}k−1

(−1)|x0∧w0|f(w0) +
1

2k−1

∑
w∈{0,1}k−1

(−1)|x0∧w1|f(w1)

=
1

2k−1

∑
w∈{0,1}k

(−1)|x0∧w|f(w)

= 2f̂(x0) .
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(iv) Noting that (−1)a−b = (−1)a+b, we have

ĥ(x) =
1

2k

∑
w∈{0,1}k

(−1)|x∧w|f(w)

=
1

2k

∑
w∈{0,1}k

(−1)|x∧w|f(w)

=
1

2k

∑
w∈{0,1}k

(−1)|x|−|x∧w|f(w)

=
1

2k
(−1)|x|

∑
w∈{0,1}k

(−1)|x∧w|f(w)

= (−1)|x|f̂(x) .

(v)

‖ĝ − f̂‖∞ =

∥∥∥∥ 1

2k

∑
w∈{0,1}k

(−1)|x∧w|
(
g(w)− f(w)

)∥∥∥∥
∞
<

1

2k
2kε = ε .

(vi) Suppose k = 0 so f() = c. Consider the unary function h defined by h(0) = h(1) = c/2. Then

f() = h(0) + h(1) so by item iii, f̂() = 2ĥ(0) = c. �

Lemma 26. For any k and λ,

Îλk (x) =


λ+ (1− λ)/2k−1 if x = 0

(1− λ)/2k−1 if |x| is even and positive

0 if |x| is odd.

Proof. We have

2k Îλk (x) =
∑

w∈{0,1}k
(−1)|x∧w|Iλk (w)

=
(
1− λ

)(
1 + (−1)|x|

)
+ λ

∑
w∈{0,1}k

(−1)|x∧w|

=
(
1− λ

)(
1 + (−1)|x|

)
+ λ 2k−|x|

∑
u∈{0,1}|x|

(−1)|u| ,

where we adopt the convention that {0, 1}0 contains exactly one tuple, which has Hamming weight 0. This
means the sum evaluates to 1 if x = 0 and to zero, otherwise. �

Lemma 27. For any k and λ, P̂arλk(0) = 1
2 (1 +λ), P̂arλk(1) = 1

2 (1−λ) and P̂arλk(x) = 0 for any x /∈ {0,1}.

Proof. The first two equalities are straightforward from the definition. Let x ∈ {0, 1}n \ {0,1}.

P̂arλk(x) =
1

2n

∑
w∈{0,1}n

(−1)|w∧x| Parλk(x)

=
1

2n

∑
|w| even

(−1)|w∧x| +
λ

2n

∑
|w| odd

(−1)|w∧x|.

Suppose without loss of generality that x1 = 0 and x2 = 1. Then, for every w ∈ {0, 1}n, the tuples
w = (w1, . . . , wn) and w′ = (w1, w2, w3, . . . , wn) have the same parity, but |w ∧ x| 6= |w′ ∧ x|. Therefore∑

|w| even

(−1)|w∧x| =
∑
|w| odd

(−1)|w∧x| = 0 . �
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