AN ALGEBRAIC THEORY OF COMPLEXITY FOR DISCRETE OPTIMISATION*

DAVID A. COHENT, MARTIN C. COOPER?, PAIDI CREEDS, PETER G. JEAVONSY AND STANISLAV
ZIVNY!

Abstract. Discrete optimisation problems arise in many different areas and are studied under many different
names. In many such problems the quantity to be optimised can be expressed as a sum of functions of a restricted
form. Here we present a unifying theory of complexity for problems of this kind. We show that the complexity of a
finite-domain discrete optimisation problem is determined by certain algebraic properties of the objective function,
which we call weighted polymorphisms. We define a Galois connection between sets of rational-valued functions
and sets of weighted polymorphisms and show how the closed sets of this Galois connection can be characterised.

These results provide a new approach to studying the complexity of discrete optimisation. We use this approach
to identify certain maximal tractable subproblems of the general problem, and hence derive a complete classification
of complexity for the Boolean case.

Key words. Galois connection, constraint optimisation, discrete optimisation, valued constraint satisfaction
problems, weighted clones, weighted polymorphisms

AMS subject classifications. 08A70, 68Q25, 68Q17

1. Introduction. Discrete optimisation problems arise in many different areas and are
studied under many different names, including Min-Sum Problems, Gibbs energy minimisa-
tion, Markov Random Fields, Conditional Random Fields, 0/1 integer programming, pseudo-
Boolean function minimisation, constraint optimisation and valued constraint satisfaction [6,
7,12,19,21-23,39,49-51].

Here we adopt a very general framework where each problem instance is specified by a
set of variables, a set of possible values for those variables, and a set of constraints. Each
combination of values allowed by each constraint has an associated cost, and the goal is to
find an assignment with minimal total cost. This simple abstract mathematical framework can
be used to express discrete optimisation problems arising in a wide variety of fields, includ-
ing operational research (scheduling, resource utilisation, transportation), computer vision
(region segmentation, object recognition, image enhancement), automated reasoning (Max
SAT, Min ONES), graph theory (Min-Cut, Maximum Independent Set), and many others.

In the special case when all defined costs are zero, the problem we are studying collapses
to the standard constraint satisfaction problem (CSP). The general CSP is NP-hard, and so
is unlikely to have a polynomial-time algorithm. However, there has been much success in
finding tractable fragments of the CSP by restricting the types of relation allowed in the con-
straints. A set of allowed relations has been called a constraint language [35]. For some
constraint languages the associated constraint satisfaction problems with constraints chosen
from that language are solvable in polynomial-time, whilst for other constraint languages this

* Part of this work (by D. A. Cohen, M. C. Cooper, and P. G. Jeavons) appeared in Proceedings of the 12th
International Conference on Principles and Practice of Constraint Programming (CP), pp. 107-121, 2006 [18].
Part of this work (by D. A. Cohen, P. Creed, P. G. Jeavons, and S. Zivny) appeared in Proceedings of the 36th
International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 231-242, 2011 [20].
Part of this work (by P. Creed and S. Zivny) appeared in Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP), pp. 210-224, 2011 [24]. Part of this work appeared in
Stanislav Zivny’s doctoral thesis at the University of Oxford, 2009. This research was supported by EPSRC grant
EP/F01161X/1. Stanislav Zivny was supported by a Junior Research Fellowship at University College, Oxford.

T Department of Computer Science, Royal Holloway, University of London, UK (d. cohen@rhul . ac. uk)

¥ IRIT, University of Toulouse III, France (cooper@irit. fr)

§ School of Mathematical Sciences, Queen Mary, University of London, UK (p . creed@gmul . ac . uk)

il Department of Computer Science, University of Oxford, UK (peter. jeavons@cs.ox.ac.uk)

I Department of Computer Science, University of Oxford, UK (standa@cs.ox.ac.uk)

1

class of problems is NP-hard [29, 35, 36]; these two cases are referred to as tractable lan-
guages and NP-hard languages, respectively. Dichotomy theorems, which classify each pos-
sible constraint language as either tractable or NP-hard, have been established for languages
over 2-element domains [42], 3-element domains [14], for conservative languages [1,16], and
maximal languages [13, 17].

The more general framework we consider here, which allows non-zero costs, is also NP-
hard, but again we can try to identify tractable fragments by restricting the types of allowed
constraints. Each type of constraint is specified by a rational-valued function defined on a
set of tuples, which specifies the cost associated with each allowed tuple of values. Such a
function is called a weighted relation, and a set of weighted relations will be called a val-
ued constraint language [19]. Much less is known about the complexity of the optimisation
problems associated with different valued constraint languages, although some results have
been obtained for certain special cases. In particular, a complete characterisation of complex-
ity has been obtained for valued constraint languages over a 2-element domain [19]. This
result generalises a number of earlier results for particular optimisation problems such as
MAX-SAT [25] and MIN-ONES [26]. A complete classification has also been obtained for
valued constraint languages containing all unary {0, 1}-valued weighted relations (such lan-
guages are called conservative) [38]. This result generalises a number of earlier results such
as GRAPH MIN-COST-HOM [32] and DIGRAPH MIN-COST-HOM [46].

One class of weighted relations that has been extensively studied and shown to be tractable
is the class of submodular functions [19,26,28,37,38,52].

In the classical CSP framework it has been shown that the complexity of any constraint
language over any finite domain is determined by certain algebraic properties known as poly-
morphisms [35,36]. This result has reduced the problem of the identification of tractable
constraint languages to that of the identification of suitable sets of polymorphisms. In other
words, it has been shown to be enough to study just those constraint languages which are
characterised by having a given set of polymorphisms. Using this algebraic approach, con-
siderable progress has now been made towards a complete characterisation of the complexity
of constraint languages over finite domains of arbitrary size [2-5, 15,29].

In this paper, we introduce a new algebraic construct which we call a weighted polymor-
phism. We are able to show that the weighted polymorphisms of a valued constraint language
are sufficient to determine the complexity of that language. In addition, we are able to define a
Galois connection between valued constraint languages and sets of weighted polymorphisms,
and characterise the closed sets on both sides.

This paper builds on and extends our earlier attempts to develop an algebraic theory of
complexity for valued constraints [18, 19]. These earlier papers introduced the notions of
multimorphism [19] and fractional polymorphism [18], and provided a number of new tools
for analysing the complexity of this class of problems. These earlier approaches have led
to considerable progress, including a characterisation of languages solvable by a standard LP
relaxation in terms of fractional polymorphisms [47], a complete complexity classification for
valued constraint languages including all unary {0, 1}-valued weighted relations [38], and a
complete complexity classification for valued constraint languages whose weighted relations
allow all tuples [48]. However, the algebraic objects introduced in these earlier approaches
could not be successfully combined to obtain a suitable closure operation, and hence could
not be used to define a Galois connection. The notion of weighted polymorphism introduced
here subsumes all the earlier notions and finally allows the development of a fully algebraic
approach.

The Galois connection we establish here can be used in the search for tractable val-
ued constraint languages in a very similar way to the use of polymorphisms in the search

2

for tractable constraint languages in the classical CSP. First, we need only consider valued
constraint languages characterised by weighted polymorphisms. This greatly simplifies the
search for a characterisation of all tractable valued constraint languages. Second, we will
show below that any tractable valued constraint language must have an associated non-trivial
weighted polymorphism. Hence the results of this paper provide a powerful new set of tools
for analysing the complexity of finite-domain discrete optimisation problems.

The structure of the paper is as follows. In Section 2 we introduce the general framework
of the Valued Constraint Satisfaction Problem (VCSP) and define the notion of expressibility.
In Section 3 we focus on the classical Constraint Satisfaction Problem and show how it fits in
the VCSP framework as a special case. We briefly recall the notion of a polymorphism, and
the Galois connection that has been so fruitful in the study of the complexity of the classical
Constraint Satisfaction Problem. In Sections 4 and 5 we introduce weighted relational clones
(valued constraint languages closed under expressibility and certain other operations) and
the corresponding closed sets of weighted polymorphisms, which we call weighted clones.
We then state our main result: weighted relational clones are in 1-to-1 correspondence with
weighted clones. In Section 6 we give proofs of the theorems establishing this Galois con-
nection. In Section 7 we use the algebraic theory to establish necessary conditions that must
be satisfied by any tractable valued constraint language. Using these results, we obtain a
complete classification for the Boolean case in Section 8. Finally, in Section 9, we state some
conclusions and outline directions for future work.

2. The Valued Constraint Satisfaction Problem. For any set D, the set of tuples of
length r over D is denoted by D", and a subset of D" is called a relation over D of arity r.
A (partial) function o from D" to QQ associates a rational' weight with each of the tuples in
some subset of D", and so will be called a weighted relation on D of arity r.

The idea of a weighted relation is very general, and can be used to define a wide variety
of discrete optimisation problems. The general framework we shall use for such problems is
defined as follows.

DEFINITION 2.1. An instance of the valued constraint satisfaction problem, (VCSP),
is a triple P = (V, D, C) where: V is a finite set of variables; D is a finite set of possible
values; C is a finite multi-set of constraints. Each element of C is a pair ¢ = (o, ¢) where o
is a tuple of variables called the scope of ¢, and g is a weighted relation on D of arity |o|.

An assignment for P is a mapping s : V. — D. The cost of an assignment s, denoted
Costp(s), is given by the sum of the weights assigned to the restrictions of s onto each
constraint scope, that is,

Costp(s) def Z o(s(v1), s(va), ..., s(vm)).

({(v1,v2,...,0m),0)EC

If o(s(v1),8(v2), ..., $(vm)) is undefined for some {(v1,va,...,Um),0) € C, then the as-
signment s is said to be infeasible and Costp(s) is undefined.

A solution fo P is a feasible assignment with minimal cost.

In many earlier treatments of the VCSP (e.g. [19]) infeasible assignments are given an
infinite cost, whereas here the cost of an infeasible assignment is simply undefined.

EXAMPLE 1 (MAX-CUT). In graph theory a cut of a graph is a partition of the vertices
into two disjoint sets. The size of a cut is the number of edges of the graph that intersect both
sides of this partition. The MAX-CUT problem for a graph is to find a cut with the largest
possible size. This problem is NP-hard [30].

1To avoid representational issues, we restrict ourselves to rational rather than real-valued weights. The resulting
framework is sufficiently general to encode very many standard optimisation problems; for examples, see [19].

3

The MAX-CUT problem for the graph (V, E) can be expressed as the VCSP instance
(V,{0,1},C), where C = {(e, o) | e € E}, and o4 is the binary weighted relation on the
set {0, 1} defined by:

def 0 if.%‘?éy
ox(z,y) = { 1 otherwise.

Any assignment for this VCSP instance partitions the elements of V into those assigned the
value 0 and those assigned the value 1. The cost of the assignment is equal to the number of
edges minus the size of the corresponding cut.

EXAMPLE 2 (DIGRAPH MIN-COST-HOM). Given two directed graphs (digraphs) G =
(Ve, Eg) and H = (Vy, Ey), a homomorphism from G to H is a mapping : Vg — Vg
that preserves edges, that is, (u,v) € Eq implies (f(u), f(v)) € Ey. Assume that for any
u € Vg and v € Vi a rational cost ¢, (v) is given. The cost of a homomorphism f from G
to H is then defined to be 3, v, cu(f(u)). The DIGRAPH MIN-COST-HOM problem is to
find a homomorphism from G to H of minimum cost [32,46].

Given a fixed digraph H = (Vg, E), we denote by oy the binary weighted relation on
the set Vi defined by:

(. 9) def [O if (z,y) € Eg
QH\L,Y) = undefined otherwise.

The DIGRAPH MIN-COST-HOM problem for input graph G = (V, Eg) and fixed target
graph H = (Vi, Ey) can be expressed as an instance (Vg, Vi, C) of VCSP by setting
C={{e,om) | e€ EqtU{{u,c,) | ue Vgt

A valued constraint language is any set I' of weighted relations on some fixed set D.
We define VCSP(I") to be the class of all VCSP instances in which all weighted relations in
all constraints belong to I

Example 1 shows that VCSP({o}) includes the MAX-CUT problem. In fact the class
of instances VCSP({o-}) corresponds very closely to the MAX-CUT problem, in the sense
that any instance from VCSP({o.}) can be interpreted as an instance of the MAX-CUT
problem on the graph defined by the constraint scopes.

Valued constraint languages may be infinite, but it will be convenient to follow [19] and
define the complexity of a valued constraint language in terms of its finite subsets.

DEFINITION 2.2. A valued constraint language 1" is called tractable if, for every finite
subset T C T, there exists an algorithm solving any instance P € VCSP(I") in polyno-
mial time. Conversely, T' is called NP-hard if there is some finite subset I'' C T for which
VCSP(T) is NP-hard.

One advantage of defining tractability in terms of finite subsets is that the tractability
of a valued constraint language is independent of whether the cost functions are represented
explicitly (via tables of values) or implicitly (via oracles) since in a finite subset the weighted
relations necessarily have bounded arity.

Example 1 shows that the valued constraint language {0~ } is NP-hard.

We now define a closure operator on weighted relations, which adds to a given set of
weighted relations all other weighted relations which can be expressed using that set, in the
sense defined below.

DEFINITION 2.3. For any VCSP instance P = (V, D, C), and any list L = (v1,...,v,)
of variables of P, the projection of P onto L, denoted 71, (P), is the weighted relation on D
of arity r defined as follows:

T(P) (@1, ... 2) = min . Costp(s) .

4

We say that a weighted relation o is expressible over a valued constraint language T if there
exists a VCSP instance P € VCSP(T") and a list L of variables of P such that w,(P) = o.
We call the pair (P, L) a gadget for expressing o over T

We define Express(I') to be the expressive power of I'; that is, the set of all weighted
relations expressible overT'.

Note that the list of variables L in a gadget may contain repeated entries, the sum over
an empty set is zero, and the minimum over an empty set is undefined.

EXAMPLE 3. Let P be the VCSP instance with a single variable v and no constraints,
and let L = (v,v). Then, by Definition 2.3,

~_J 0 ife=y
T (P)(@,y) = { undefined otherwise.
Hence for any valued constraint language T, over any set D, Express(I") contains this binary
weighted relation, which will be called the weighted equality relation.
EXAMPLE 4. Let P be the VCSP instance with domain {0, 1}, variables vy ,vs, vs, and
constraints ((v1,v2) , 0+) and ((va,vs) , 0+), and let L = (vy, v3). Then, by Definition 2.3,

0 ifx=y
T (P)(@,y) = { 1 otherwise.
Hence Express({o+}) contains this binary weighted relation, which will be denoted o—

However, using the results of this paper, we will be able to show, for example, that 0+ ¢
Express({o=}) (see Example 12).

The next result shows that expressibility preserves tractability.

THEOREM 2.4. A valued constraint language T is tractable if and only if Express(T") is
tractable; similarly, T is NP-hard if and only if Express(T") is NP-hard.

Proof. By the definition of a tractable valued constraint language, it is sufficient to show
that for any finite subset IV of Express(I') there exists a polynomial-time reduction from
VCSP(I) to VCSP(I'), where I'” is a finite subset of T".

Let I be a finite subset of Express(I') and let P’ be any instance of VCSP(I”). By
Definition 2.3, any weighted relation ¢’ € Express(T") can be constructed by using some
gadget (P, , L) where P, is an instance of VCSP(T"). Hence we can simply replace each
constraint in " which has a weighted relation ¢’ not already in " with the corresponding
gadget to obtain an instance P of VCSP(T") which has exactly the same solutions as P’. The
maximum size of any of the gadgets used is a constant determined by the finite set T, so this
construction can be carried out in polynomial time in the size of P’. 0

This result shows that, when trying to identify tractable valued constraint languages, it is
sufficient to consider only languages of the form Express(I'). In the following sections, we
will show that such languages can be characterised using certain algebraic properties.

3. Classical Constraint Satisfaction. In this section we consider the special case when
the weights are all zero.

DEFINITION 3.1. We denote by R p the set of all zero-valued weighted relations on a set
D. There is a one-to-one correspondence between the set of zero-valued weighted relations
R p and the set of all relations over D. In this correspondence each weighted relation o in Rp
is associated with the relation R(p) containing precisely those tuples on which g is defined.
Similarly, each zero-valued weighted relation in R p is associated with the predicate which
is true for precisely those tuples where the weighted relation is defined. Subsets of Rp are
sometimes referred to as crisp constraint languages [19] and VCSP(Rp) is equivalent to the

5

classical constraint satisfaction problem, or CSP, where each assignment is either allowed
(cost 0) or disallowed (infeasible, or cost undefined).

DEFINITION 3.2. A weighted relation ¢ of arity v can be obtained by addition from the
weighted relation o1 of arity s and the weighted relation oo of arity t if o satisfies the identity
o(x1, ..., xr) = 01(y1, ..., ys) + 02(21, ..., 2t), for some (fixed) choice of y1,...,ys and
21, ..., 2t from amongst the x1, . . ., x,. For zero-valued weighted relations this notion of ad-
dition corresponds to performing a relational join operation on the associated relations R (1)
and R(p2) [33]. It also corresponds to taking a conjunction of the associated predicates [15].
Moreover, minimising a weighted relation ¢ € Rp over one of its arguments corresponds to
taking a relational projection of R(p) onto its remaining co-ordinates. It also corresponds to
existential quantification of the associated predicate over that argument.

DEFINITION 3.3. A set I' C Rp is called a relational clone if it contains the weighted
equality relation and is closed under addition and minimisation over arbitrary arguments.

For eachT' C Rp we define RelClone(T") to be the smallest relational clone containing
T.

It is a straightforward consequence of Definitions 2.3 and 3.3 that the expressive power
of a crisp constraint language is given by the smallest relational clone containing it, as the
next result indicates.

PROPOSITION 3.4. For any ' C Rp, Express(I") = RelClone(T").

This alternative characterisation for the expressive power of a crisp constraint language
was first observed in [35], and used to study the complexity of such languages using tools
from universal algebra. We now give a brief summary of this algebraic approach.

For any set D, a function f : D* — D is called a k-ary operation on D.

DEFINITION 3.5. We denote by O p the set of all finitary operations on D and by Og)
the k-ary operations in O p.

DEFINITION 3.6. The k-ary projections on D are the operations egk) : D* — D such
that (ay,...,ax) — a;.

DEFINITION 3.7. Let f € O([]f) and g1,...,9x € O(De). The superposition of f
and gy,...,qy is the l-ary operation flgi,...,qg1] : D* — D such that (z1,...,x4)
f(gl(xla v 7x5)7 s 7gk(x1 cee ,IEZ))-

DEFINITION 3.8. A set F' C Op is called a clone of operations if it contains all the
projections on D and is closed under superposition. For each F' C O p we define Clone(F)
to be the smallest clone containing F.

We can extend k-ary operations to operate on tuples in a natural way, as follows. Let
X1,...,X}) be tuples of length r over a set D, where each x; = (:172-71, Ti2,- .. , ;). We can
obtain another element of D" by applying f to the tuples x; co-ordinatewise, as follows:

f(X17""X/€) déf <f<x1,la--~7xk,1)7f(x1,23--'7xk,2)a"'7f<x1,7‘7~-'amk,’r‘)> .

DEFINITION 3.9. Let g be a weighted relation of arity r on a set D and let f € Og{). We
say that f is a polymorphism of o if, for any x1,Xa, ..., X € D" such that o(x;) is defined
SJori=1,... k, we have that o(f(x1,X2,...,Xg)) is also defined.

If f is a polymorphism of o we say o is invariant under f.

DEFINITION 3.10. For any valued constraint language I" over a set D, we denote by
Pol(T") the set of all operations on D which are polymorphisms of all weighted relations
0 € I and by Pol'¥)(T) the k-ary operations in Pol(T").

DEFINITION 3.11. For any F C Op, we denote by Inv(F) the set of all weighted
relations in R p that are invariant under all operations f € F.

6

For any set D, the mappings Pol and Inv form a Galois connection between Op and
Rp [11]. A characterisation of this Galois connection for finite sets D is given by the fol-
lowing two theorems, originally obtained for sets of relations [10,31].

THEOREM 3.12. For any finite set D, and any finite ' C R p, Inv(Pol(T")) = RelClone(T").

THEOREM 3.13. For any finite set D, and any finite F' C O p, Pol(Inv(F')) = Clone(F).
As with any Galois connection [11], this means that there is a one-to-one correspondence be-
tween clones and relational clones. Together with Proposition 3.4, this result shows that
the expressive power of any crisp constraint language I' on a finite set D corresponds to a
particular clone of operations on D. Hence, by Theorem 2.4, the search for tractable crisp
constraint languages corresponds to a search for suitable clones of operations [15,35]. This
key observation paved the way for applying deep results from universal algebra in the search
for tractable constraint languages [2-5,13, 14,16, 17].

4. Weighted Relational Clones. In this section we return to the general case of weighted
relations taking arbitrary values in @ in order to define the notion of a weighted relational
clone.

DEFINITION 4.1. We denote by ® p the set of all weighted relations on D taking values
in Q and by ‘I’(DT) the weighted relations in ® p of arity r.

We now define a closure operator on weighted relations, which adds to a set of weighted
relations all other weighted relations which can be obtained from the original set by non-
negative scaling and addition of a constant.

DEFINITION 4.2. A weighted relation ¢’ € ® p can be obtained from a weighted relation
o € ®p by non-negative scaling and addition of constants if there exist o, 5 € Q with
a > 0 such that o = ap + 3. We denote by I, the smallest set of weighted relations
containing I which is closed under non-negative scaling and addition of constants.

The next result shows that adding weighted relations that can be obtained by non-negative
scaling and addition of constants preserves tractability.

THEOREM 4.3. A valued constraint language I is tractable if and only if I' . is tractable;
similarly, I' is NP-hard if and only if I is NP-hard.

Proof. By Definition 2.2, it is sufficient to show that for each finite subset IV of I, there
exists a polynomial-time reduction from VCSP(I") to VCSP(T").

Let I be a fixed finite subset of I'.. We will show that each weighted relation o' € T’
that is not in I" can be replaced by a weighted relation from I" to obtain a polynomial-time
reduction from VCSP(IV) to VCSP(I”\ { ¢’ } UT"). By performing each of these reductions in
sequence we can obtain the desired polynomial-time reduction from VCSP(I'") to VCSP(T").

Let P’ be any instance of VCSP(I), and choose any weighted relation o' € I”. By
Definition 4.2, ¢’ can be obtained by non-negative scaling and addition of constants from
some weighted relation o € T'. Hence, we can replace each constraint of the form (o, ¢’) in
P’ with a new constraint (o, o), where o € I and ¢’ = ap+ 3 for some non-negative rational
value « and some arbitrary rational constant 3, to obtain an instance of VCSP (I \ {¢’} UT).
It only remains to ensure that this new instance has the same solutions as P’.

The constant 3 is added to the cost of all assignments and so does not affect the choice
of solution.

Since « is a non-negative rational value, it can be expressed as p/q for some non-negative
integer p and positive integer q.

If p is non-zero, then the effect of the scale factor p/g can be simulated by taking p copies
of the new constraints and g copies of all other constraints. The values of p, ¢ are constants
determined by the choice of ¢/, so this construction can be carried out in polynomial time in
the size of P’.

It only remains to deal with the case where p is zero. In this case we still need to replace
each constraint (o, ¢’) with one copy of the corresponding constraint (o, o), to ensure that
infeasible assignments to o’ are still excluded. Assume that P’ contains k such constraints.
Let M be the maximum weight assigned by o', and let m be the minimum difference between
any two distinct weights assigned by any other weighted relations in I. The cost of any
feasible assignment after replacing the k constraints (o, ¢’) is greater by at most kM than
the cost of the same assignment for P’. Hence if we also take [% + 1] copies of all the
remaining constraints of 7', then we obtain an instance of VCSP(I” \ {¢'} UT) with the
same solutions as P’. Since M and m are constants determined by the finite set I, this
construction can again be carried out in polynomial time in the size of P’. 0

DEFINITION 4.4. A set ' C ®p is a weighted relational clone if it contains the
weighted equality relation and is closed under non-negative scaling and addition of con-
stants, addition, and minimisation over arbitrary arguments.

For eachT' C ®p we define wRelClone(T') to be the smallest weighted relational clone
containing T

It is a straightforward consequence of Definitions 2.3, 4.2 and 4.4 that, for any val-
ued constraint language I' C @, the set of weighted relations that can be expressed using
weighted relations obtained from I' by non-negative scaling and addition of constants, is given
by the smallest weighted relational clone containing I', as the next result indicates.

PROPOSITION 4.5. Forany I' C ®p, Express(I'..) = wRelClone(I).

Hence, by Theorem 2.4 and Theorem 4.3, the search for tractable valued constraint lan-
guages corresponds to a search for suitable weighted relational clones.

In the next section we establish an alternative characterisation for weighted relational
clones which facilitates this search.

5. Weighted Clones. To obtain a suitable alternative characterisation for weighted re-
lational clones we now generalise the notion of a clone of operations, introduced in Defini-
tion 3.8, by introducing the notion of a weighted clone.

Recall from Definition 3.8 that a clone of operations, C, is a set of operations on some
fixed set D that contains all projections and is closed under superposition. The k-ary opera-
tions in a clone C' will be denoted C'%) .

DEFINITION 5.1. We define a k-ary weighting of a clone C to be a function w : C%) —
Q such that w(f) < 0 only if f is a projection and

> w(f)=0.

fec®)

We denote by W ¢ the set of all possible weightings of C and by W(C]f) the set of k-ary
weightings of C.

For any weighting w, we denote by dom(w) the set of operations C'¥) on which w is
defined. We denote by ar(w) the arity of w.

Since a weighting is simply a rational-valued function satisfying certain linear inequal-
ities it can be scaled by any non-negative rational to obtain a new weighting. Similarly, any
two weightings of the same clone of the same arity can be added to obtain a new weighting
of that clone.

The notion of superposition from Definition 3.7 can also be extended to weightings in a
natural way, by forming a superposition with each argument of the weighting, as follows.

DEFINITION 5.2. For any clone C, any w € W(Ck) and any g1, 9z, ..., gx € CO, we
define the superposition of w and g1,. .., gx, to be the function Wgi, ..., g1 : CY — Q

8

defined by

Wlgr,- gl (f) =Y w(f). 5.1)
fec®
Flgrse-grl=1'

EXAMPLE 5. Let D be a totally ordered set, and let C' = Clone({max}) where max is
the binary maximum operation on D. Note that C'?) contains just three binary operations:

652), 6(22) and max. Let w be the 2-ary weighting of C' given by

! if f=el®

e

w(f) = ¢ 41 it f=e?
0 if f = max

and let

(g1,92) = <e§),max> .

Note that e§2)[g1,gg] =g = eé) and es

we have

(2)[gl,gg] = g = max, so, applying Definition 5.2,

0 iff=el?
wlgr,92)(f) =9 -1 if f =e?
+1 if f = max

Note that w|g1, g2| satisfies the conditions of Definition 5.1 and hence is a 2-ary weighting of
C.

EXAMPLE 6. Let C be a clone on some totally ordered set D and assume that C contains
the binary maximum and minimum operations on D, which are denoted by max and min.
Note that C'Y) contains operations such as max|e; (4), g)} which returns the maximum of the
ith and jth argument values. Operations of this form will be denoted max(z;, ;).

Let w be the 4-ary weighting of C' given by
—1 if f is a projection, thatis, f € {e1 ,eé ,e3 ,e4)}

w(f) = +1 if f € {max(x1,z2), min(z1, x2), max(xs, r4), min(zs, x4)}
0 otherwise

<gl7g27g3ag4> <€g),eég),eg),max(xl,m2)> .

Then, by Definition 5.2 we have
—1 if fis a projection, that is, f € {e1 ,e§3),eg3)}
wlg, 92,93, 94](f) = § +1 if f € {max(xy, 2, x3), min(xy, z2), min(z3, max(xy,z2))}
0 otherwise.

Note that w(gi1, g2, gs, ga] satisfies the conditions of Definition 5.1 and hence is a 3-ary
weighting of C.

EXAMPLE 7. Let C and w be the same as in Example 6 but now consider

4 . 4
(9% 94 94 95) = (€1, max(ws, z), min(wz,), o) .

By Definition 5.2 we have
-1 iffe {654),max(x2,m3)7min(:v2,x3),6514)}
o _ . max(z1, T2, r3), min(zy, max(zra, x3)),
“ls, 92,92, 94l() +hoAfe { max(min(zs, ¥3), ¥4), min(zs, ¥3, z4)

0 otherwise.

Note that w(g}, g5, 9%, g4 does not satisfy the conditions of Definition 5.1 because, for exam-
ple, we have that w(g}, g5, 95, g4](f) < 0 when f = max(z2, x3), which is not a projection.
Hence w(g, g5, g5, g4 is not a valid weighting of C.

It follows immediately from Definition 3.7 that the sum of the weights in any superpo-
sition w[gs, . . ., gk is equal to the sum of the weights in w, which is zero, by Definition 5.1.
However, as we have seen in Example 7, it is not always the case that an arbitrary superposi-
tion satisfies the other condition in Definition 5.1, that negative weights are only assigned to
projections. Hence we make the following definition:

DEFINITION 5.3. If the result of a superposition is a valid weighting, then that superpo-
sition will be called a proper superposition.

REMARK 1. The superposition of a projection operation and other projection operations
is always a projection operation. So, by Definition 5.2, for any clone C and any w € W(k),
ifg1,..., g9k € CO are projections, then the function wlgi, ..., gr] can take negative values
only on projections, and hence is a valid weighting. This means that a superposition with any
list of projections is always a proper superposition.

We are now ready to define weighted clones.

DEFINITION 5.4. A weighted clone, W, is a non-empty set of weightings of some fixed
clone C which is closed under non-negative scaling, addition of weightings of equal arity,
and proper superposition with operations from C. The clone C'is called the support of W.

EXAMPLE 8. For any clone, C, the set W ¢ containing all possible weightings of C'is a
weighted clone with support C.

EXAMPLE 9. For any clone, C, the set W% containing all zero-valued weightings of C
is a weighted clone with support C. Note that W% contains exactly one weighting of each
possible arity, which assigns the value 0 to all operations in C' of that arity.

We now establish a link between weightings and weighted relations, which will allow us
to link weighted clones and weighted relational clones.

DEFINITION 5.5. Let g be a weighted relation of arity r on some set D and let w be a
k-ary weighting of some clone of operations C' on the set D.

We say that w is a weighted polymorphism of o if, for any x1,Xs,...,x; € D" such
that o(x;) is defined for i = 1,... k, we have that o(f(x1,Xa,...,Xx)) is defined for all
feC®, and

Z w(f)o(f(x1,%x2,...,%xx)) < 0. (5.2)

fec)

If w is a weighted polymorphism of o we say o is improved by w.
Note that, by Definition 3.9, if g is improved by the weighting w € W(Ck)

element of C'*) must be a polymorphism of o.
10

, then every

Sets of
weighted relations

Sets of
clone weightings

Imp(wPol(T)) @
= wRelClone(T")

Sets of
weighted relations

Sets of
clone weightings

© wPol(Imp(W))
= wClone(W)

0

FIGURE 5.1. Galois connection between ® p and W p.

EXAMPLE 10. Consider the class of submodular functions [40]. These are precisely the
functions o on an ordered domain which satisfy the following identity:

o(min(x1,x2)) + o(max(x1,%2)) — o(x1) — o(x2) < 0.

In other words, the set of submodular functions is the set of weighted relations with a 2-ary
weighted polymorphism wg,y, defined by:

dof -1 iffe {6(12),622)}
wsub(f) = +1 if f € {min(z1, z2), max(z1, z2)}
0 otherwise.

Submodular function minimisation is known to be tractable [34, 44].

DEFINITION 5.6. For any I' C ®p, we denote by wPol(T") the set of all weightings of
Pol(T") which are weighted polymorphisms of all weighted relations ¢ € T. The set of k-ary
weightings in wPol(T) will be denoted wPol®) (I").

To define a mapping in the other direction, we need to consider the union of the sets
‘W over all clones C on some fixed set D, which will be denoted W p. If we have a set

11

W C Wp which may contain weightings of different clones over D, then we can extend
each of these weightings with zeros, as necessary, so that they are weightings of the same
clone C, given by

C' = Clone(U dom(w)).

weWw

This set of extended weightings obtained from W will be denoted W. For any set W C W p,
we define wClone(W) to be the smallest weighted clone containing .

DEFINITION 5.7. For any W C W p, we denote by Imp(W) the set of all weighted
relations in ® p which are improved by all weightings w € W. The set of r-ary weighted
relations in Imp(W) will be denoted Tmp'™ (W).

It follows immediately from the definition of a Galois connection [11] that, for any set D,
the mappings wPol and Imp form a Galois connection between W p and ® p, as illustrated
in Figure 5.1. A characterisation of this Galois connection for finite sets D is given by the
following two theorems, which are proved in Section 6.

THEOREM 5.8. For any finite D, and any finiteT' C ® p, Imp(wPol(T")) = wRelClone(T").

THEOREM 5.9. For any finite D, and any finite W C W p, wPol(Imp(W)) = wClone(W).

As with any Galois connection [11], this means that there is a one-to-one correspondence
between weighted clones and weighted relational clones. Hence, by Proposition 4.5, Theo-
rem 2.4, and Theorem 4.3, the search for tractable valued constraint languages over a finite
set corresponds to a search for suitable weighted clones of operations.

6. Proofs of Theorems 5.8 and 5.9. Our proofs of Theorems 5.8 and 5.9 will both
use the following result, which is a variant of the well-known Farkas’ Lemma used in linear
programming [40,43].

LEMMA 6.1 (Farkas 1894). Let S and T be finite sets of indices, where T is the disjoint
union of two subsets, T> and I_. For alli € S, and all j € T, let a; ; and b; be rational
numbers. Exactly one of the following holds:

o Either there exists a set of non-negative rational numbers {x; | i € S} and a rational
number c such that

foreach j € T>, Zai’j z; > bj+c, and,
ieS
foreach j € T, Zai’j x; = bj+ec.

i€S

e Or else there exists a set of integers {y; | j € T'} such that } ;. y; = 0 and:

foreachjeT>, y; > 0,

foreachi € S, Zyj a;; <0, and

JET

Zyj bj > 0.

JET

Such a set is called a certificate of unsolvability.
We note that there is an effective procedure to decide which of the cases mentioned in
Lemma 6.1 holds for any instance, and to calculate the values of the corresponding coef-
ficients x; or y; [43].
12

We will prove Theorem 5.8 in two parts. First, we show in Proposition 6.2 that the set of
all weighted relations improved by any given set of weightings is always a weighted relational
clone. Then we show that for any finite set I' the set of weighted relations improved by all
weightings in wPol(T") is precisely the weighted relational clone wRelClone(T).

PROPOSITION 6.2. For any finite set D, and any W C W p, Imp(W) is a weighted
relational clone.

Proof. Certainly Imp(W) contains the weighted equality relation (defined in Example 3),
since this weighted relation satisfies inequality (5.2) in Definition 5.5 for all tuples x; on
which it is defined. Similarly, Imp(W) is closed under non-negative scaling, addition of
constants, addition and rearrangement of arguments, since all of these operations preserve
inequality (5.2). Hence, to show Imp(W) is a weighted relational clone we only need to
show Imp(W) is closed under minimisation.

Let o € Imp") (W) and assume that ¢’ is obtained from o by minimising over the last
argument. In other words, o' (z1, 22, ...,2,—1) = min, (o(z1,z2,...,z,)). We will now
show that ¢’ € Imp(W).

Let w € W be a k-ary weighting of a clone C. Since ¢ € Imp(WW), we know that o
and w satisfy inequality (5.2) for all x1,Xs, . .., Xy such that o(x;) is defined. Now consider
any x}, X5, ..., X}, for which each ¢’(x}) is defined. Extend each x; to a tuple x/ of arity
r in such a way that o(x}) is minimised. Since all negative values of w are associated with
projections, we have

D W (F X, x) < Y w(felf (%5, %)) <0,

feC(k) feC(k)

a

We now prove Theorem 5.8, which states that that for any finite set D, and any finite
I' ¢ ®p, Imp(wPol(T")) = wRelClone(T").

Proof. We first establish that for any I' C ® we have the inclusion wRelClone(T") C
Imp(wPol(T")). To see this, observe that I' C Imp(wPol(I")) and, hence, wRelClone(I") C
wRelClone(Imp(wPol(T"))) which is equal to Imp(wPol(I")) by Proposition 6.2.

We will prove the reverse inclusion, Imp(wPol(T")) € wRelClone(T"), as follows. Given
a weighted relation p of arity r, we will show that either there exists a weighted operation
w € wPol(T") such that ¢ & Imp({w}) or else p plus some constant can be obtained by
minimisation from a non-negative weighted sum of weighted relations in I', and hence ¢ €
wRelClone(T").

We now give the details of this argument. Let k& be the number of r-tuples for which o
is defined and fix an arbitrary order, x1, ..., Xy, for these tuples. This list of tuples can be
viewed as (the rows of) a matrix with £ rows and 7 columns, which we will call S,.

By Proposition 4.5, o € wRelClone(T") if and only if it can be expressed using weighted
relations from I'.. By Definition 2.3, a weighted relation ¢’ is expressible over I if and
only if there exists an instance P € VCSP(I'.) and a list L of variables of P such that
m(P)=10"

We consider instances P with | D¥| variables, where each variable is associated with a
distinct tuple from D¥. Each constraint of P is a pair (S,) for some v € I" and some list of
variables S. Each such S can be viewed as a list of k-tuples over D, and hence as a matrix
over D, whose columns are these k-tuples. Since we are using P to express the defined values
of p, it is sufficient to consider only matrices S with rows ty, . . ., t; such that y(t;) is defined
fori =1,...,k. Forany~y € I, a pair (S,) with this property will be called a k-match to
T.

13

Each assignment to the variables of P can be seen as a mapping from k-tuples over D
to D, and hence associated with an operation f &€ Osjk). For any list of variables S of P,
we will write f(S) to denote the assignment to those variables obtained by applying f to the
columns of S, viewed as a matrix. With this notation, we have that 71, (P) = p with L = 5,
if we can find non-negative rationals s, for all k-matches to I', and a constant ¢ € Q, such
that the following system of inequalities and equations is satisfied:

For each f ¢ O%),

> > w5 Y(f(9))

v€T' {all k-matches (S, ~v)}

\Y
2
=
n
>
|
o

For each projection e € Ogjk),

> S aso(elS) = oale(S,) +c

v€l' {all k-matches (S, ~)}

Moreover, if f & Pol(k)(F) then the left-hand-side of the corresponding inequality will be
undefined, by Definition 3.9, so it is sufficient to consider only f € Pol(k)(F). This gives us
a system of inequalities and equations with rational coefficients.

If this system has a solution then ¢ € wRelClone(T"). On the other hand, if this system of
equations and inequalities has no solution, then we appeal to Lemma 6.1, to get a certificate
of unsolvability. That is, in this case we know that there exists a set of integers {y; | f €

Pol®) (T)}, such that ZfePol<k)(F) yr =0, yr < Oonly if fis a projection, and:

for each k-matching (S,) of T, Z yrv(f(S)) < 0, and 6.1)
FEPOIR)(T)

> wrolf(S,) > 0 (6.2)
FEPOIF)(T)

Now, consider the k-ary weighting w of the clone Pol(I") defined by w(f) = y; for each
f € Pol™(T"). From (6.1), we can see that w is a weighted polymorphism of every v € T.
On the other hand, (6.2) shows that w is not a weighted polymorphism of o. [

REMARK 2. The proof of Theorem 5.8 demonstrates the decidability of the following
question: for any finite ' C ® p and any weighted relation ¢ defined on D, does o belong to
wRelClone(T")?

We will prove Theorem 5.9 in two parts. First, we show in Proposition 6.3 that the
set of weighted polymorphisms of any given set of weighted relations is always a weighted
clone. Then we show that for any finite set W the set of weightings that improve all weighted
relations in Imp (W) is precisely the weighted clone wClone(W).

PROPOSITION 6.3. For any finite set D, and any I' C ®p, wPol(T') is a weighted
clone.

Proof. By Definition 5.6, wPol(T") is a set of weightings of Pol(I"). Similarly, wPol(T")
is closed under addition and non-negative scaling, since both of these operations preserve
inequality (5.2). Hence, to show wPol(T") is a weighted clone we only need to show wPol(T")
is closed under proper superposition by members of Pol(T").

Let w € wPol®(I) and suppose w’ = wlgy, ..., gx] is a proper superposition of w,
where g1, g, ..., gr € Pol®(I'). We will now show that «’ € wPol(I"). Suppose g is a

14

weighted relation of arity r satisfying w € wPol({p}), i.e., 0 and w satisfy inequality (5.2)
for all x1,x2,...,X such that each o(x;) is defined. Given any x},x5,...,x} for which
each o(x}) is defined, set x; = g;(x},x5,...,x}) for ¢ = 1,2,..., k. Then, if we set
f'=flo1,...,gx], wehave f'(x],x5,...,%}) = f(x1,X2,...,Xy), forany f € Pol(k)(F).
Hence, by Definition 5.2, we have

Z w/(f/)g(f/(X/hX/27"'vxé)) = Z w(f)@(f(XhXZ?"'vxk)) <0.

frepPol®O () fePol(F) ()

a
We will make use of the following technical lemma, which shows that any weighted sum
of arbitrary superpositions of a pair of weightings w; and ws can be obtained by taking a
weighted sum of superpositions of w; and wy with projection operations, and then taking a
superposition of the result. This result implies that any weighting which can be expressed
as a weighted sum of arbitrary superpositions can also be expressed as a superposition of a
weighted sum of proper superpositions.
LEMMA 6.4. Let C be a clone, and let wy and wo be weightings of C, of arity k and £
respectively. For any g, ..., g, € ") and any ¢}, ..., g, € C™),

crwilgr, gk + cowalgl, - g0l = wlgr, - Grs 9L -5 0], (6.3)
ke ke ke ke
wherew:clwl[eg+),...,e§€+)]+ czwg[e,(cjl),...,e,(ﬂﬁ)]

Proof. For any f € C™) the result of applying the right-hand side expression in equa-
tion (6.3) to f is:

> doaml) + 3wl
flect+o n'ec® n'ec®

f'[gl,m,gk,gi,~-~’gé]:f h/[e§k+€) egck+l)]:f/ h/[egcl:iil) """" eg:;f)]:f/

Replacing each f’ by the equivalent superposition of 4’ with projections, we obtain:

Z crwi(h) + Z cowa(h),

!/ hleC(k) ! ’lI/EC(l;)
R'g1,..96]=f R'lg1,-.90]=f

which is the result of applying the left-hand-side of Equation 6.3 to f. O

We now prove Theorem 5.9, which states that for any finite set D, and any finite W C
W p, wPol(Imp(W)) = wClone(W).

Proof. We first establish that for any W C W p we have the inclusion wClone(WW) C
wPol(Imp(W)). To see this, observe that every operation in C' = Clone(|J,,cy dom(w))
is a polymorphism of Imp(W), by Definition 3.9, so W C wPol(Imp(W)). Hence, we
have that wClone(W) C wClone(wPol(Imp(W))) which is equal to wPol(Imp(1/)) by
Proposition 6.3.

We will prove the reverse inclusion, wPol(Imp(W)) C wClone(WV), as follows. Given
any weighting wyg € Wp, we will show that either there exists a weighted relation o €
Imp (W) such that wy & wPol({p}) or else wy is equal to a non-negative weighted sum of
superpositions of weightings in W, and hence wy € wClone(W).

We now give the details of this argument. Let k be the arity of w, and let M = |D|".
We first observe that it is sufficient to consider weighted relations of arity M in Imp(W). To

15

see this, suppose there exists a weighted relation o € Imp(W) with arity N > M such that
wo & wPol({p}) and let x1,...,x, € DY be any set of tuples for which inequality (5.2)
fails to hold for wg and p. Let X be the £ x N matrix whose rows are the tuples x1, ..., X.
Since N > M it follows that some of the columns in this matrix must be equal. Moreover,
if the -th and j-th column of X are equal, then so will be the ¢-th and j-th entry of the tuple
f(x1,...,xi) obtained by applying any f € O([];) to these k tuples.

Now let ¢’ be the weighted relation of arity < M that depends only on the first of each
of these repeated columns, and takes the same values as o takes on arguments with the appro-
priate entries repeated. Let X’ be the reduced form of X (with repeated columns deleted). By
this approach, we can construct ¢’ so that ¢’ € Imp(W), but X’ gives a certificate to show
that wy & wPol({¢'}), i.e., the rows of X’ form a list of tuples for which (5.2) fails to hold
for wg and o’.

Moreover, if we have a weighted relation ¢ € Imp(W) with arity N < M such that
wo € wPol({p}), then p can be extended to a weighted relation ¢’ of arity M that does not
depend on the M — N added inputs, and, hence, is also contained in Imp(W) and is such
that wy & wPol({o'}).

By the argument given above, there exists a weighted relation o € Imp(W) such that
wo € wPol({p}) if and only if there exists a weighted relation g, of arity M in Imp(W)
such that wy & wPol({oas}). Furthermore, by reordering the arguments of gp; if necessary,

we can assume that g; and wq violate (5.2) on the particular list of tuples x1, ..., x) given
by taking the rows of a matrix, X7, whose columns are precisely the tuples in D¥, ordered
lexicographically.
By Definition 5.5, such a weighted relation g exists if and only if the following system
of inequalities can be satisfied, for all w € W and all t1, ..., t. () € DM such that o (t;)
is defined fori = 1,. .., ar(w),
Z w(g) Q]\/[(g(tla-~-7tar(w))> S 07 (64)
gedom(w)
and, for the tuples x1, .. ., Xy, forming the rows of X, opr(x;) is defined fori = 1,...,k
and
Z wo(f) QM(f(Xl,...,Xk)) > 0. (65)
fedom(wop)

There is a one-to-one correspondence between operations g : D* — D and tuples t, €
DM where the tuple t,, contains the list of values returned by the operation g applied to the
columns of Xpg.

Set C' = Clone(|J,,cy dom(w)). We observe that, to satisfy inequality (6.4), for any
w e W, if gp(t;) is defined for i = 1,...,ar(w), then onr(g(t1, ..., tar())) must be
defined for all g € dom(w). To achieve this, it is sufficient to ensure that, for all g € C (k),
om(tgy) is defined. All other values of pas can be left undefined, as this just reduces the
number of inequalities in the system.

Using superposition (Definition 5.2), we can rewrite inequalities (6.4) to obtain the fol-
lowing equivalent system: for allw € W, and all g1, ... s Jar(w) € ck),

Z w[glv"'agar(w)}(f) Q]\/I(f(xla"'vxk)) < 0. (66)
fedom(w(gi,.-.,gar(w)])

The values of ops (f (X1, .. .,Xx) may be scaled to obtain a corresponding set of integer
values yy foreach f € C (k) Moreover, if we add any constant value to each y +» this will not

16

affect inequalities 6.6 and 6.5, since the sum of the values of any weighting is zero. Hence
we may assume that > fect Y = 0, and then apply Lemma 6.1 to the resulting system of
inequalities, with T = C*) and S = {w[g1, ... Garw)) | @ € W,g1,. .., Gar(w) € c®y.
We conclude that either a solution gy exists, in which case wy ¢ wPol(Imp(W)), or else
there exists a set of non-negative rational numbers {x,, [g1,.. w

Gar(w)] ‘ w e Wagh -+ Yar(w) €
C®)} such that for every f € C*),

Z Z xw[.‘h,m,gar(w)]w[gla cee 7gar(w)](f) > wO(f) +c (6.7)

wewW <gl;-~~’gar(u))>
giec(k)

for some constant value c.

By Definition 5.1, adding the left-hand side of these inequalities over all f gives 0, and
adding the values of wy (f) over all f also gives zero, so the value of ¢ must be zero. Moreover,
each inequality in 6.7 must actually be an equality. In other words, wy is equal to a non-
negative weighted sum of superpositions of weightings in W.

Hence, by Lemma 6.4 and Remark 1, wq is equal to a proper superposition of some
element w), € wClone(W), so wy € wClone(W). O

REMARK 3. The proof of Theorem 5.9 demonstrates the decidability of the following
question: for any finite W C W p and any weighting w defined on D, does w belong to
wClone(W)?

7. Necessary Conditions For Tractability. In this section, we will start to investigate
the structure of weighted clones, and hence establish some necessary conditions for any val-
ued constraint language to be tractable.

Note that, by Definition 3.8, the smallest possible clone of operations over a fixed set D
is the set of all projection operations on D, which is denoted J p.

PROPOSITION 7.1. For any non-empty finite set D, there are precisely two weighted
clones with support J p. These are W3, and W b

Proof. Let W be a weighted clone with support J p.

If the weights assigned by every weighting w € W are all zero, then W is the zero-valued
weighted clone Wg ., described in Example 9.

Otherwise, there is some w € W (of arity k) such that w assigns positive weight to
some k-ary projections and negative weights to some of the others (the sum of the weights is
zero, by Definition 5.1). If we form the superposition of w with the sequence of projections

91,92, - -, gk, Where g; = e if w(egk)) is positive, and g; = egk) otherwise, then we obtain

a new weighting w[g1, g2, - . ., gx] of Jp which assigns some positive weight w to el and
(k)

—wtoe, .

By adding appropriate multiples of such functions for each successive pair of indices a
and b, we can obtain any desired weighting of J p. Hence, in this case W contains all possible
weightings of Jp,so W = Wy, .0

Any weighting w which is defined only for projection operations will be called a trivial
weighting,

PROPOSITION 7.2. For any finite set D with at least 2 elements, and any set of trivial
weightings W C W p, Imp(W) is NP-hard.

Proof. If W contains only trivial weightings, then wClone(W') has support J p, so it is
equal to Wy, or Wg , by Proposition 7.1.

Every weighting in Wg , is a weighted polymorphism of any possible weighted relation,
by Definition 5.5. Hence Imp(W}_) = ®p.

17

The weighted relations that are improved by all weightings are precisely those which
take at most one value. Hence Imp(Wj,) = (Rp)~.

In both cases the resulting valued constraint language is NP-hard for any D with 2 or
more elements. Hence Imp(wClone(1V)) is NP-hard, and hence Imp(1/) is NP-hard. O

Now consider weightings whose values are all 0.

PROPOSITION 7.3. For any finite set D with at least 2 elements, and any set of zero-
valued weightings W C W p, Imp(W) is NP-hard.

Proof. By Definition 5.5, a zero-valued weighting will be a weighted polymorphism
of any weighted relation which is a total function (i.e., any weighted relation where all as-
signments are feasible). Some valued constraint languages containing only total functions
are NP-hard [19]. For example, consider the valued constraint language consisting of the
following total function:

[0 ifx#y
Q¢($7y) _{ 1 otherwise.

We observed in Example 1 that on the domain {0, 1} the problem VCSP ({0 }) corresponds
to the MAX-CUT problem which is known to be NP-hard. Over domains of size k > 2 this
problem corresponds to the problem MAX-k-CUT, which is also known to be NP-hard. 0

Using the Galois connection developed in the previous sections, these two results tell
us that any valued constraint language that is not NP-hard must have a weighted polymor-
phism which is non-trivial and assigns at least some non-zero weights. A weighting which
assigns positive weight to at least one operation that is not a projection will be called a
positive weighting.

COROLLARY 7.4. For any finite set D with at least 2 elements, and any I' C ® p, either
T is NP-hard, or else wPol(I') is a weighted clone containing some positive weightings.

Proof. By Proposition 6.3, in all cases wPol(I") is a weighted clone.

By Theorem 5.8, for any finite IV C T', Imp(wPol(I'")) = wRelClone(I"). By Propo-
sition 4.5, Theorem 2.4, and Theorem 4.3, if T is NP-hard, then wRelClone(T") is also
NP-hard, so Imp(wPol(I")) must be NP-hard.

Conversely, if I is not NP-hard, then the same argument shows that Imp(wPol(I")) is
not NP-hard, so by Propositions 7.2 and 7.3, wPol(T"") must contain some weightings that are
non-trivial and some weightings that are not zero-valued.

Choose a weighting w € wPol(T") that is not zero-valued, and a weighting w’ that is
non-trivial (but may be zero-valued). If w assigns positive weight to any non-projection, then
it is a positive weighting and we are done.

Otherwise, we have that w assigns positive weight to some projections and negative
weight to some other projections. Let f be an operation on which w’ is defined that is not a
projection, and let k be the arity of f. If we form the superposition of w with the sequence of
functions g1, g2, . . ., Gar(w). Where g; = f if w(egar(w))) is positive, and g; = egk) otherwise,
then we obtain a new weighting w[g1, g2, . . ., Jar(w)] Which assigns positive weight to f (see
Example 5). O

Assuming that P # NP, this result tells us that tractable valued constraint languages are
associated with certain kinds of weighted clones.

To obtain further information about the weighted clones associated with tractable valued
constraint languages, we now consider some special kinds of operations. For any k > 2, a k-
ary operation f is called sharp if f is not a projection, but the operation obtained by equating
any two inputs in f is a projection [27]. In other words, f is sharp if forall ,j € {1,...,k}
with ¢ < j, there exists an index m € {1,...,k — 1} such that f satisfies the identity:
flxi, 2, .., @1, 24, &5, &j41,...,Zk—1) = Tm. For instance, when k = 7, choosing

18

it =3 and j = 5, we get that f satisfies the identity f(x1,x2,x3, x4, T3, Ts5,2T5) = Xy for
some 1 < m < 6.
THEOREM 7.5. Any weighted clone W containing positive weightings must contain a
weighting that assigns positive weight to either:
1. A set of unary operations that are not projections, or
2. A set of sharp operations.
Proof. Let w be a positive weighting in W with the smallest possible arity, k. If & = 1,
then we are done. Otherwise, we consider the weightings

k—1 k—1 k—1 k—1 k—1 k—1
w[eg)veé),...78571)761(‘),85»)a"'ve;c,l)]

forall¢,j with1 <i < j<k.

Each of these weightings has arity k& — 1, so, by the choice of w, must not assign positive
weight to any operation except (possibly) projections. Hence all non-projection operations
assigned positive weight by w are sharp. O

We can obtain further details about these weighted clones by considering the possible
types of sharp operations.

First, we observe that all sharp operations must satisfy the identity f(z,z,...,2) = x;
such operations are called idempotent.

Ternary sharp operations may be classified according to their values on tuples of the form
(z,z,y), (x,y,x) and (y, x, z), which must be equal to either « or y. There are precisely 8
possibilities, as listed in Table 7.1.

Input |1 2 3 4 5 6 7 8

(z,2,y) T T T T y Yy Y y

(z,y,x) r x Yy y T x y y

(y,z,z) T Yy x Yy T Yy x Yy
TABLE 7.1

Sharp ternary operations

The first column in Table 7.1 corresponds to operations that satisfy the identities f(x, z, y)
flz,y,2) = f(y,z,x) = x for all z,y € D; such operations are called majority op-
erations. The last column in the table corresponds to operations that satisfy the identities
flz,z,y) = f(z,y,2) = f(y,x,2) = y for all z,y € D; such operations are called
minority operations. Columns 4, 6 and 7 in Table 7.1 correspond to operations that satisfy
the identities f(y,y,z) = f(x,y,2) = f(y,z,x) = y forall z,y € D (up to permutations
of inputs); such operations are called Pixley operations [41].

For any & > 3, a k-ary operation f is called a semiprojection if it is not a projection,
but there is an index i € {1,...,k} such that f(x1,...,z) = x; forall x1,..., 24 € D
such that z1, . . ., zj are not pairwise distinct. In other words, a semiprojection is a particular
form of sharp operation where the operation obtained by equating any two inputs is always
the same projection. Columns 2,3 and 5 in Table 7.1 correspond to semiprojections.

The following lemma shows that the only sharp operations of arity k& > 4 are semipro-
jections.

LEMMA 7.6 (Swierczkowski’s Lemma [45]). Given an operation of arity > 4, if every
operation arising from the identification of two variables is a projection, then these projec-
tions coincide.

Hence we may refine Theorem 7.5 to obtain the following corollary.

COROLLARY 7.7. Any weighted clone W containing positive weightings must contain a
weighting that assigns positive weight to either:

19

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not projections, or
3. A set of ternary operations that are majority operations, minority operations, Pixley
operations or semiprojections; or
4. A set of k-ary semiprojections (for some k > 3).
Corollary 7.7 can be used to guide the search for tractable valued constraint languages,
as we illustrate in the next section.

8. Classification of Boolean Valued Constraint Languages. In this section, we con-
sider the special case of valued constraint languages over a 2-valued domain, such as the
Boolean domain D = {0, 1}.

There are only four unary operations on the Boolean domain, and one of these is the pro-
jection operation egl), which is the identity operation. The remaining three unary operations
are the operations given by f(z) =0, f(x) = 1, and f(z) = 1 — z. These will be referred to
as constant 0, constant 1, and inversion.

There are only two binary idempotent operations on the Boolean domain that are not
projections: the operations min and max. The only sharp ternary operations are the unique
majority operation (which we will call Mjrty), the unique minority operation (which we will
call Mnrty), and three Pixley operations. There are no semiprojections.

Hence we can refine Corollary 7.7 even further in the special case of the Boolean do-
main, to limit the possibilities for weighted clones associated with tractable valued constraint
languages to just nine cases.

THEOREM 8.1. Any weighted clone W on the Boolean domain that contains positive
weightings must contain a weighting w that assigns positive weight to either:

1. Exactly one of the unary operations constant 0, constant 1, or inversion;

2. Exactly one of the binary operations min and max, or both of them equally;

3. Exactly one of the ternary operations Mjrty and Mnrty, or both of them with
w(Mjrty) = 2w(Mnrty).

Proof. Let C be the support of W, and let w be a positive weighting in W with minimal
possible arity. Since there are no semiprojections on the Boolean domain, Corollary 7.7 tells
us that w is either unary, binary or ternary.

Consider first the case when w is unary. Since there are just three unary operations on
the Boolean domain that are not projections, scale w so it assigns weight —1 to the projection
egl), weight a to the constant O operation fj, weight b to the constant 1 operation f;, and
weight c to the inversion operation f_. If ¢ = 1, then w assigns positive weight only to f_,
and we are done. Otherwise, if f—, € C, and hence c is defined, we consider the weighting
W= Cj_lw + Hwlf-]. Itis straightforward to check that w’ assigns weight ¢ — 1 to egl),
weight a to fy, weight b to f; and weight O to f—. By Lemma 6.4, w’ belongs to .

If a = 1, then ' assigns positive weight only to fy and we are done. Otherwise, if fy €
C, and hence a is defined, we consider the weighting w" = w’+ $w’[fo]. It is straightforward
to check that w’ assigns positive weight only to f;. By Lemma 6.4, w" belongs to W.

Next consider the case when w is binary. By Corollary 7.7 and our observations above
about the possible binary idempotent operations on the Boolean domain, we know that w
assigns positive weight only to one or both of the operations min and max. If either of these
weights is undefined (because the corresponding function does not belong to C'), or zero, then
we are done, so assume that w assigns positive weight to both min and max. By taking the
weighting w + w[ef), ef)], with a suitable scaling, we can obtain a weighting w, € W that
assigns weight —1 to both binary projections, weight a to min and weight 2 — a to max, for
some 0 < a < 2.

20

If @ < 1, then the weighting w, + 1%-w,[min, max]| assigns positive weight only to

max. If @ > 1, then the weighting w, + 3:‘1‘ [min, max] assigns positive weight only to
min. If a = 1, then w, assigns equal weight to min and max.

Finally, we consider the case when w is ternary. By Corollary 7.7 and our observations
above about the possible ternary sharp operations on the Boolean domain, we know that
w assigns positive weight to some subset of Mjrty, Mnrty and the three Boolean Pixley
operations f1, f3 and f3 (corresponding to the fourth, sixth and seventh columns of Table 7.1).
We note that f; [eéS), eég), egs)] = f3, fo [e§3), eg?’), e&S)] = fi and f3 [eég), egS), (13)] = fo.
Hence, if w assigns positive weight to any Pixley operation, then we have that W also contains
the weighting w’ = w + w[eés), eé), e§3>] + wles % e§3) (3)] which assigns equal negative
weight to each projection, and equal positive We1ght to each Pixley operation. By a suitable
scaling we shall assume that ' assigns weight -1 to each projection.

Suppose first that w’ assigns positive weight to at least one of Mjrty and Mnrty, and
assigns weight 0 < w < 1 to the three Pixley operations. We note that f;[f1, f2, f3] = e(?’)
for each ¢ = 1,2, 3. Moreover, Mjrty[f1, f2, f3] = Mnrty and Mnrty[f1, f2, f3] = Mthy
Thus, the weighting w”’ = W’ + ww'[f1, fo, f3] is non-zero, assigns weight 0 to each Pixley
operation and equal negative weight to all projections. By Lemma 6.4, w” € W.

Assume that w” assigns positive weight to both Mnrty and Mjrty. By taking a suitable
scaling, we can obtain a weighting w, € W that assigns weight —1 to all three projections,
weight a to Mnrty and weight 3 — a to Mjrty, for some 0 < a < 3.

If a < 1, then the weighting w, + 1% w, [Mjrty, Mjrty7 Mnrty] assigns positive weight
only to Mjrty. If @ > 1, then the welghtmg wq + 3=%w, [Mjrty, Mjrty, Mnrty] assigns
positive weight only to Mnrty. If a = 1, then w, assigns positive weight to both Mjrty and
Mnrty, in the ratio 2:1.

The only remaining case is when w’ assigns positive weight 1 just to the three Pixley

operations. In this case we note that f; [e?),e2 , f1] = Mjrty, f2[61 ,eég), 1] = e1 and

f3 [eg‘;)7 e23), f1] = ea. Thus the function p; = w'[ey, e, f1] assigns weight —1 to f1, +1 to
Mijrty, and O otherwise. For 7 = 2,3, we can obtain in a similar way a function p,;, which
assigns weight —1 to f; and +1 to Mjrty. Then the weighting w” = W' + 1 + p2 + ps will
assign positive weight only to Mjrty. Again, by Lemma 6.4, w” € W. 0O
Each of the nine types of weightings mentioned in Theorem 8.1 can be supported by a
different clone, so these nine types of weightings can each generate different weighted clones.
Using the Galois connection developed above, this result tells us that any tractable valued
constraint language over the Boolean domain must have as a weighted polymorphism one of
nine specific kinds of weightings. Eight of these can be shown to be sufficient to ensure
tractability using the results of [19]. The only remaining case is the unary weighting that
assigns positive weight to the inversion operation only. Our next result shows that having a
weighted polymorphism of this kind is not a sufficient condition for tractability on its own,
but if a language has any additional positive weightings as weighted polymorphisms which
are not implied by this one, then it will be tractable.
COROLLARY 8.2. Any weighted clone W on the Boolean domain that contains positive
weightings, satisfies exactly one of the following:
1. W = wClone({w-} U W), for some unary weighting w-, that assigns positive
weight to the inversion operation only, where C' is the support of W; in this case
Imp (W) is NP-hard.
2. W contains one of the eight other kinds of weighting listed in Theorem 8.1; in each
of these eight cases Tmp(W) is tractable.
Proof. By Theorem 8.1, W must contain either a weighting w-, that assigns positive

21

weight to the inversion operation only, or at least one of the eight other kinds of weighting
listed in Theorem 8.1 (or both).

If W = wClone({w- }UWY,), for some unary weighting w_, that assigns positive weight
to the inversion operation only and C'is the support of W, then we are in case (1). In this
case, the weighted relation g defined in Example 1 is an element of Imp (W), so Imp (W)
is NP-hard (see the proof of Proposition 7.3).

If W contains a suitable weighting w-, but W # wClone({w-} U W2), then W must
also contain a non-zero weighting w of minimal possible arity such that w & wClone({w-}U
W),

If w is unary, then we can use the same argument as in the proof of Theorem 8.1 to show
that W must contain a unary operation that assigns positive weight to the constant 1 operation
only or the constant O operation only.

If w is not unary, then w[egl), . 7egl)] must lie in wClone(w-,), so w assigns positive
weights only to operations f such that f(x,...,z) =z or f(z,...,x) =1 —z. Ifw(f) =
a > 0 for some f such that f(z,...,x) = 1 — x, then we consider the weighting v’ =
w + aw-[f], and note that w’(f) = 0. By repeating this process we obtain a weighting
w' which assigns positive weight only to operations f such that f(x,...,x) = . Since
w has minimal arity, these must be sharp operations, so we can proceed as in the proof of
Theorem 8.1 to show that case (2) holds.

Each of the eight types of weightings in case (2) is sufficient to ensure the tractability of
Imp (W), by the results of [19]. O

The corresponding classification for valued constraint languages over the Boolean do-
main was obtained in [19] using a more intricate argument involving the explicit construction
of gadgets to express particular weighted relations. Here we have considered only the prop-
erties of weighted clones.

EXAMPLE 11. The weighted relation o— defined in Example 4 has as a weighted poly-
morphism the weighting ws,p, defined in Example 10 which assigns equal positive weight to
max and min.

Hence the valued constraint language T' = {o_} is tractable, and remains tractable if we
add to T" any other weighted relations that have this weighting as a weighted polymorphism.
For example, we may add unary weighted relations with a single allowed value, which allow
us to fix individual variables to a desired value, and still retain tractability.

Such an extended valued constraint language allows us to express, for example, the (s, t)-
MIN-CUT problem [40].

EXAMPLE 12. The weighted relation o4 defined in Example 1 has a unary weighted
polymorphism that assigns positive weight only to the inversion function. It has none of the
other eight types of weightings listed in Theorem 8.1.

It follows that 9+ ¢ Express({o=}) (cp. Example 4).

9. Conclusions. We have presented an algebraic theory of valued constraint languages
that generalizes and extends the algebraic theory developed over the past few years to study
the complexity of the classical constraint satisfaction problem. We have shown that the com-
plexity of any valued constraint language over a finite domain with rational-valued costs is
determined by certain algebraic properties which we have called weighted polymorphisms.

When the weights are all zero, the optimisation problem we are considering collapses to
the classical constraint satisfaction problem, CSP. In previous work [35,36] it has been shown
that every tractable constraint language for the CSP can be characterised by an associated
clone of operations. That work initiated the use of algebraic properties in the search for
tractable constraint languages, an area that has seen considerable activity in recent years; see,
for instance, [2-5,14-17,28,37].

22

The results in this paper show that a similar result holds for the valued constraint satis-
faction problem: every tractable valued constraint language is characterised by an associated
weighted clone. We therefore hope that our results here will provide a similar impetus for the
investigation of a much broader class of discrete optimisation problems. For example, a re-
cent result on the power of linear programming for valued constraint languages [47] provides
a characterisation of languages solvable by a standard LP relaxation in terms of algebraic
properties similar to weighted polymorphisms. Moreover, another recent result that classifies
the complexity of all valued constraint languages consisting of total weighted relations [48]
also relies heavily on algebraic properties of this kind.

Many questions about the complexity of discrete optimisation problems over finite do-
mains can now be translated into questions about the structure of weighted clones. This
provides a new approach to tackling such questions by investigating the algebraic properties
of weighted clones.

This work raises many open questions. In particular, we would like to know whether our
key results, Theorems 5.8 and 5.9, can be extended to infinite valued constraint languages
and infinite sets of weightings, or to infinite domains of values [8, 9]. In the case of the
CSP, considerable progress resulted from showing that clones of idempotent operations play
a special role [15]. Moreover, it has been shown that rather than specific clones of operations
one can consider large families of abstract algebras, known as varieties [15]. It remains to be
seen whether such notions have interesting counterparts in the theory of weighted clones.

REFERENCES

[1] LIBOR BARTO, The dichotomy for conservative constraint satisfaction problems revisited, in Proceedings of
the 26th IEEE Symposium on Logic in Computer Science (LICS’11), IEEE Computer Society, 2011,
pp- 301-310.

[2] LIBOR BARTO AND MARCIN KOZIK, Constraint Satisfaction Problems of Bounded Width, in Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), IEEE Computer
Society, 2009, pp. 461-471.

[3] LIBOR BARTO, MARCIN KOZIK, MIKLOS MAROTI, AND TODD NIVEN, CSP dichotomy for special triads,
Proceedings of the American Mathematical Society, 137 (2009), pp. 2921-2934.

[4] LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN, The CSP dichotomy holds for digraphs with no sources
and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell), SIAM Journal on Computing,
38 (2009), pp. 1782-1802.

[5] JOEL BERMAN, PAWEL IDZIAK, PETAR MARKOVIC, RALPH MCKENZIE, MATTHEW VALERIOTE, AND
ROSS WILLARD, Varieties with few subalgebras of powers, Transactions of the American Mathematical
Society, 362 (2010), pp. 1445-1473.

[6] STEFANO BISTARELLI, UGO MONTANARI, AND FRANCESCA ROSSI, Semiring-based Constraint Satisfac-
tion and Optimisation, Journal of the ACM, 44 (1997), pp. 201-236.

[71 STEFANO BISTARELLI, UGO MONTANARI, FRANCESCA ROSSI, THOMAS SCHIEX, GERARD VERFAIL-
LIE, AND HELENE FARGIER, Semiring-based CSPs and Valued CSPs: Frameworks, Properties, and
Comparison, Constraints, 4 (1999), pp. 199-240.

[8] MANUEL BODIRSKY, Constraint Satisfaction Problems with Infinite Templates, in Complexity of Con-
straints, vol. 5250 of Lecture Notes in Computer Science, Springer, 2008, pp. 196-228.

[9] MANUEL BODIRSKY AND JAN KARA, The complexity of temporal constraint satisfaction problems, Journal
of the ACM, 57 (2010).

[10] V.G. BODNARCUK, L.A. KALUZNIN, V.N. KOTOV, AND B.A. ROMOV, Galois theory for Post algebras. I,
Cybernetics and Systems Analysis, 5 (1969), pp. 243-252.

[11] FERDINAND BORNER, Basics of Galois connections, in Complexity of Constraints, vol. 5250 of Lecture
Notes in Computer Science, Springer, 2008, pp. 38-67.

[12] ENDRE BOROS AND PETER L. HAMMER, Pseudo-Boolean optimization, Discrete Applied Mathematics, 123
(2002), pp. 155-225.

[13] ANDREI BULATOV, A Graph of a Relational Structure and Constraint Satisfaction Problems, in Proceed-
ings 19th IEEE Symposium on Logic in Computer Science (LICS’04), IEEE Computer Society, 2004,
pp. 448-457.

, A dichotomy theorem for constraint satisfaction problems on a 3-element set, Journal of the ACM, 53

23

[14]

[15]
[16]

(17]

(18]

(19]

[20]

[21]
[22]
(23]

[24]

[25]
[26]
[27]
(28]

(29]

[30]
(31]
(32]
[33]
[34]
[35]
[36]
[37]
(38]

(39]
[40]

[41]

[42]

(2006), pp. 66—120.

ANDREI BULATOV, ANDREI KROKHIN, AND PETER JEAVONS, Classifying the Complexity of Constraints
using Finite Algebras, SIAM Journal on Computing, 34 (2005), pp. 720-742.

ANDREI A. BULATOV, Complexity of conservative constraint satisfaction problems, ACM Transactions on
Computational Logic, 12 (2011). Article 24.

ANDREI A. BULATOV, ANDREI A. KROKHIN, AND PETER G. JEAVONS, The complexity of maximal con-
straint languages, in Proceedings 33rd ACM Symposium on Theory of Computing (STOC’01), 2001,
pp. 667-674.

DAVID A. COHEN, MARTIN C. COOPER, AND PETER G. JEAVONS, An Algebraic Characterisation of
Complexity for Valued Constraints, in Proceedings of the 12th International Conference on Principles
and Practice of Constraint Programming (CP’06), vol. 4204 of Lecture Notes in Computer Science,
Springer, 2006, pp. 107-121.

DAVID A. COHEN, MARTIN C. COOPER, PETER G. JEAVONS, AND ANDREI A. KROKHIN, The Complexity
of Soft Constraint Satisfaction, Artificial Intelligence, 170 (2006), pp. 983-1016.

DAVID A. COHEN, PAIDI CREED, PETER G. JEAVONS, AND STANISLAV ZIVNY, An algebraic theory of
complexity for valued constraints: Establishing a Galois connection, in Proceedings of the 36th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS’11), vol. 6907 of Lecture
Notes in Computer Science, Springer, 2011, pp. 231-242.

MARTIN C. COOPER AND STANISLAV ZIVNY, Hybrid tractability of valued constraint problems, Artificial
Intelligence, 175 (2011), pp. 1555-1569.

, Tractable triangles and cross-free convexity in discrete optimisation, Journal of Artificial Intelligence
Research, 44 (2012), pp. 455-490.

YVES CRAMA AND PETER L. HAMMER, Boolean Functions - Theory, Algorithms, and Applications, Cam-
bridge University Press, 2011.

PAIDI CREED AND STANISLAV ZIVNY, On minimal weighted clones, in Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming (CP’11), vol. 6876 of Lecture Notes
in Computer Science, Springer, 2011, pp. 210-224.

NADIA CREIGNOU, A dichotomy theorem for maximum generalized satisfiability problems, Journal of Com-
puter and System Sciences, 51 (1995), pp. 511-522.

NADIA CREIGNOU, SANJEEV KHANNA, AND MADHU SUDAN, Complexity Classification of Boolean Con-
straint Satisfaction Problems, vol. 7 of SIAM Monographs on Discrete Mathematics and Applications,
SIAM, 2001.

BELA CSAKANY, Minimal clones — a minicourse, Algebra Universalis, 54 (2005), pp. 73-89.

VLADIMIR DEINEKO, PETER JONSSON, MIKAEL KLASSON, AND ANDREI KROKHIN, The approximability
of Max CSP with fixed-value constraints, Journal of the ACM, 55 (2008). Article 16.

TOMAS FEDER AND MOSHE Y. VARDI, The Computational Structure of Monotone Monadic SNP and Con-
straint Satisfaction: A Study through Datalog and Group Theory, SIAM Journal on Computing, 28
(1998), pp. 57-104.

MICHAEL R. GAREY AND DAVID S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, 1979.

DAVID GEIGER, Closed systems of functions and predicates, Pacific Journal of Mathematics, 27 (1968),
pp. 95-100.

GREGORY GUTIN, PAVOL HELL, ARASH RAFIEY, AND ANDERS YEO, A dichotomy for minimum cost
graph homomorphisms, European Journal of Combinatorics, 29 (2008), pp. 900-911.

MARC GYSSENS, PETER G. JEAVONS, AND DAVID A. COHEN, Decomposing Constraint Satisfaction Prob-
lems Using Database Techniques, Artificial Intelligence, 66 (1994), pp. 57-89.

SATORU IWATA, LISA FLEISCHER, AND SATORU FUIJISHIGE, A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions, Journal of the ACM, 48 (2001), pp. 761-777.

PETER G. JEAVONS, On the Algebraic Structure of Combinatorial Problems, Theoretical Computer Science,
200 (1998), pp. 185-204.

PETER G. JEAVONS, DAVID A. COHEN, AND MARC GYSSENS, Closure Properties of Constraints, Journal
of the ACM, 44 (1997), pp. 527-548.

PETER JONSSON, MIKAEL KLASSON, AND ANDREI KROKHIN, The Approximability of Three-valued MAX
CSP, SIAM Journal on Computing, 35 (2006), pp. 1329-1349.

VLADIMIR KOLMOGOROV AND STANISLAV ZIVNY, The complexity of conservative valued CSPs, Journal
of the ACM, 60 (2013).

STEFFEN L. LAURITZEN, Graphical Models, Oxford University Press, 1996.

GEORGE L. NEMHAUSER AND LAURENCE A. WOLSEY, Integer and Combinatorial Optimization, John
Wiley & Sons, 1988.

ALDEN F. PIXLEY, Distributivity and permutability of congruence relations in equational classes of algebras,
Proceedings of the American Mathematical Society, 14 (1963), pp. 105-109.

THOMAS J. SCHAEFER, The Complexity of Satisfiability Problems, in Proceedings of the 10th Annual ACM

24

(43]
[44]

[45]

[46]

[47]

(48]
[49]
(501
[51]

[52]

Symposium on Theory of Computing (STOC’78), ACM, 1978, pp. 216-226.

ALEXANDER SCHRUVER, Theory of linear and integer programming, John Wiley & Sons, Inc., 1986.

, A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time, Journal
of Combinatorial Theory, Series B, 80 (2000), pp. 346-355.

STANISLAV SWIERCZKOWSKI, Algebras which are independently generated by every n elements, Funda-
menta Mathematicae, 49 (1960), pp. 93-104.

RUSTEM TAKHANOV, A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem,
in Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS’10), 2010, pp. 657-668.

JOHAN THAPPER AND STANISLAV ZIVNY, The power of linear programming for valued CSPs, in Proceed-
ings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12), IEEE, 2012,
pp. 669-678.

, The complexity of finite-valued CSPs, in Proceedings of the 45th ACM Symposium on the Theory of
Computing (STOC’13), ACM, 2013, pp. 695-704.

MARTIN J. WAINWRIGHT AND MICHAEL 1. JORDAN, Graphical models, exponential families, and varia-
tional inference, Foundations and Trends in Machine Learning, 1 (2008), pp. 1-305.

TOMAS WERNER, A Linear Programming Approach to Max-Sum Problem: A Review, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29 (2007), pp. 1165-1179.

STANISLAV ZIVNY, The complexity of valued constraint satisfaction problems, Cognitive Technologies,
Springer, 2012.

STANISLAV ZIVNY, DAVID A. COHEN, AND PETER G. JEAVONS, The Expressive Power of Binary Sub-
modular Functions, Discrete Applied Mathematics, 157 (2009), pp. 3347-3358.

25

