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Abstract

A variable elimination rule allows the polynomial-
time identification of certain variables whose elim-
ination does not affect the satisfiability of an in-
stance. Variable elimination in the constraint sat-
isfaction problem (CSP) can be used in prepro-
cessing or during search to reduce search space
size. We show that there are essentially just four
variable elimination rules defined by forbidding
generic sub-instances, known as irreducible pat-
terns, in arc-consistent CSP instances. One of these
rules is the Broken Triangle Property, whereas the
other three are novel.

keywords: constraint satisfaction, tractability, arc consis-
tency, forbidden pattern.

1 Introduction
Constraint satisfaction has proved to be a useful modelling
tool in a variety of contexts, such as scheduling, timetabling,
planning, bio-informatics and computer vision[Dechter,
2003; Rossiet al., 2006].

In this model we have a number of variables, each of which
can take values from its particular finite domain. Certain sets
of the variables are constrained in that their simultaneous as-
signments of values is limited. We are required to assign
values to all variables so that every constraint is satisfied.
Complete solution algorithms for constraint satisfaction are
not polynomial time unless P=NP, since the graph colouring
problem, which is NP-complete, can be reduced to constraint
satisfaction[Dechter, 2003]. Hence we need to find ways to
reduce the search space.

Search algorithms for constraint problems usually proceed
by transforming the instance into a set of subproblems, for
example, by selecting a variable and assigning to it succes-
sively each value from its domain. This naive backtracking
approach is recursive and explores the search tree of partial
assignments in a depth first manner. Even though the algo-
rithm can take exponential time it is often effective in prac-
tice. So, we would like to improve its efficiency.
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There are many ways to improve naive backtracking by
pruning the search space in ways that cannot remove solu-
tions. This is done by avoiding searching exhaustively in all
generated subproblems when certain kinds of discovered ob-
struction to solution exists. Such techniques include Back
marking, Back jumping, CDBJ etc.[Prosser, 1993], As well
as these techniques it is also possible to maintain local con-
sistency by propagating the consequences of early decisions
or of the discovered structure. Of these techniques the most
common is to maintain so called generalised arc-consistency
(GAC). This technique identifies values for variables that can-
not possibly form part of a solution.

Of course, savings can be made if we are able to eliminate
variables from a sub-problem. Since backtracking is of expo-
nential time complexity the elimination of variables to reduce
instance size can in the best case reduce search time by an
exponential factor. To maintain the soundness of search we
require that such eliminations do not change the satisfiability
of the instance.

1.1 Simplification by variable elimination
Suppose thatx is a variable of an instanceI and that, when-
ever there is some valid assignment to all variables exceptx,
there is a solution to the whole instance; in this case, we can
safely remove variablex from I. The question we address in
this paper is how to identify such variables?

Variable elimination has been considered before in the lit-
erature. It has been observed that the (local) Broken Trian-
gle Property (lBTP)[Cooperet al., 2010], if it holds at some
variable, allows us to eliminate that variable. The closure
of a binary CSP instance under the elimination of all vari-
ables that satisfy the lBTP is unique and can be found in
O(ned3) time, wheren is the number of variables,e the num-
ber of constraints andd the maximum domain size, which
may well prove effective when compared to the exponential
cost of backtracking. As a concrete example, in a path consis-
tent binary CSP instance, all Boolean variables can be elimi-
nated since they necessarily satisfy the lBTP. The more gen-
eral local min-of-max extendable property (lMME) allows us
to eliminate more variables than the lBTP, but requires the
identification of a particular domain order. Unfortunately, this
domain order is NP-hard to discover[Cooperet al., 2010] for
unbounded domain size, and so the lMME is less likely to be
effective in practice.



An alternative to simple variable elimination is used in
Bucket Elimination[Larrosa and Dechter, 2003]. In this al-
gorithm variables are not simply eliminated. Instead they are
replaced by constraints on their neighbourhood. These new
constraints precisely capture the rules which allow an assign-
ment to the neighbourhood of a variable to be extended. Such
an approach may generate high order constraints, which are
exponentially hard to process and to store. The arity can be
bounded by the induced treewidth of the instance, but this still
limits the applicability of Bucket Elimination.

1.2 Our contribution
In this paper we characterise those local conditions under
which we can eliminate variables in binary CSPs without the
need to add compensating constraints. By local conditions we
mean here configurations of variables, values and constraints
which do notoccur. That is, we will identify (local) obstruc-
tions to variable elimination. We will call such constructions
variable elimination patterns.

Surprisingly we find that there are precisely four essen-
tially different local patterns whose absence permits variable
elimination. Searching for these local patterns takes polyno-
mial time and need only be done during the pre-processing
stage, before search. Any discovered obstructions to elim-
ination can be effectively monitored during the subsequent
search using techniques analogous to watched literals[Gent
et al., 2006]. Whenever a variable no longer participates in
any obstruction patterns it can safely be eliminated.

2 Definitions
When certain kinds of local obstructions are not present in a
binary CSP instance, variable elimination is possible. Such
obstructions are called quantified patterns. A pattern can be
seen as a generalisation of the concept of a constraint satisfac-
tion instance that leaves the consistency of some assignments
to pairs of variables undefined.

Definition 2.1 Apatternis a four-tuple〈V,D,A, cpt〉where:

• V is a finite set ofvariables;

• D is a finite set ofvalues;

• A ⊆ V × D is the set of possibleassignments; The
domainof v ∈ V is its setD(v) of possible values:
D(v) = {d ∈ D | 〈v, d〉 ∈ A}; and

• cpt is a partialcompatibility functionfrom the set of un-
ordered pairs of assignments{{〈v, a〉, 〈w, b〉} | v 6= w}
to {T, F}; if cpt({〈v, a〉, 〈w, b〉}) = T (resp.,F ) we
say that〈v, a〉 and〈w, b〉 are compatible(resp.,incom-
patible). We write dom(cpt) to represent the set of pairs
of assignments on which cpt is defined.

A quantified patternis a patternP with a distinguished
variable, v(P ) and a subset of existential valuese(P ) ⊆
D(v(P )).

A flat quantified patternis a quantified pattern for which
e(P ) is empty. Anexistential patternis a quantified patternP
for whiche(P ) is non-empty.

When the context variablev is clear we use the valued
to denote the assignment〈v, d〉 to v. We will often simplify

notation by writingcpt(p, q) for cpt({p, q}). We will also
use the terminology of graph theory, since a pattern can be
viewed as a labelled graph: ifcpt(p, q) = T (resp.,F ), then
we say that there is acompatibility (resp., incompatibility)
edgebetweenp andq.

We will use a simple figurative drawing for patterns. Each
variable will be drawn as an oval containing dots for each
of its possible assignments. Pairs in the domain of the func-
tion cpt will be represented by lines between values: solid
lines for compatibility and dashed lines for incompatibility.
The distinguished variable (v(P )) and any existential values
in e(P ) will be indicated by an∃ symbol. Examples of pat-
terns are shown in Figure 1.

We are never interested in the names of variables nor the
names of the domain values in patterns. So we define the
following equivalence.

Definition 2.2 Two patternsP andQ are equivalentif they
are isomorphic, i.e. if they are identical except for possible
injective renamings of variables and assignments which pre-
serveD, cpt, v ande.

We can refine patterns to give a definition of a (binary) CSP
instance.

Definition 2.3 A binary CSP instanceP is a pattern
〈V,D,A, cpt〉 wherecpt is a total function, i.e. the domain
of cpt is precisely{{〈v, a〉, 〈w, b〉} | v 6= w}.
• The relation Rv,w ⊆ D2 on 〈v, w〉 is {〈a, b〉 |

cpt({〈v, a〉, 〈w, b〉}) = T}.
• A partial solutionto P onX ⊆ V is a mappings : X →

D where, for allv 6= w ∈ X we have〈s(v), s(w)〉 ∈
Rv,w.

• A solutionto P is a partial solution onV .

2.1 Variable elimination
In this paper we are concerned with variable elimination char-
acterised by forbidden patterns. We define what this means in
this section.

Definition 2.4 We say that a variablex can beeliminatedin
the CSP instance〈V,D,A, cpt〉 if, whenever there is a partial
solution onV \ {x} there is a solution.

In practice, when solving CSP instances we prune the do-
mains of variables in such a way as to maintain all solutions.

Definition 2.5 Let P = 〈V,D,A, cpt〉 be a CSP instance.
An assignment〈v, a〉 ∈ A to variablev is called arc con-
sistentif, for all variablesw 6= v there is some assignment
〈w, b〉 compatible with〈v, a〉.

The CSP instance〈V,D,A, cpt〉 is calledarc consistentif
every assignment inA is arc consistent.

Assignments that are not arc-consistent cannot be part of a
solution so can safely be removed. There are many quadratic-
time algorithms for establishing arc consistency which re-
peatedly remove such values[Bessìereet al., 2005]. Hence,
for the remainder of this paper we will assume that all CSP
instances are arc-consistent.

In order to use (the absence of) patterns for variable elim-
ination we need to define what we mean when we say that a



quantified pattern occurs at variablex of a CSP instance. We
define occurrence in terms of reductions on patterns. The def-
initions of occurrence and reduction between quantified pat-
terns extend definitions previously given for non-quantified
patterns[Cooper and Escamocher, 2012].
Definition 2.6 LetP = 〈V,D,A, cpt〉 be any pattern.
• We say that a patternP ′ = 〈V ′, D′, A′, cpt′〉 is a sub-

patternof P if V ′ ⊆ V,A′ ⊆ A andcpt′ = cpt �A′ .
If, furthermore,P ′ is quantified then we require thatP
is quantified and thatv(P ′) = v(P )
ande(P ′) ⊆ e(P ).

• Valuesa, b ∈ D(v) are mergeablein a pattern if there
is no assignmentp ∈ A for which cpt({〈v, a〉, p}),
cpt({〈v, b〉, p}) are both defined andcpt({〈v, a〉, p}) 6=
cpt({〈v, b〉, p}). In a quantified pattern we also require
thata ∈ e(P ) if and only ifb ∈ e(P ).
Whena, b ∈ D(v) are mergeable we define the merged
reduction〈V,D,A \ {〈v, a〉}, cpt′〉 by reducing the set
of assignments. This naturally makes:

cpt′(p, q) =


cpt(〈v, a〉, q) if p = 〈v, b〉 and

cpt(〈v, b〉, q) undefined,
cpt(p, q) otherwise.

• A dangling assignmentp of P is any assignment not
in {〈v(P ), a〉 | a ∈ e(P )} for which there is at most
one assignmentq for which cpt(p, q) is defined, and
furthermore (if defined)cpt(p, q) = T . For any dan-
gling assignmentp, we define the dangling reduction
〈V,D,A′, cpt �A′〉 whereA′ = A \ {p}.

• An irreducible patternis one on which no merged or dan-
gling reduction can be performed.

Now we want to define when a quantified pattern occurs at
a variable in a CSP instance, in order to characterise those pat-
terns whosenon-occurrenceallows this particular variable to
be eliminated. We define the slightly more general notion of
occurrence of a pattern in another pattern. Recall that a CSP
instance corresponds to the special case of a pattern whose
compatibility function is total. Essentially we want to say
that patternP occurs in patternQ if P is homomorphic to a
sub-pattern ofQ via an injective renaming of variables and a
(possibly non-injective) renaming of assignments[Cohenet
al., 2012]. However, we find it simpler to define occurrence
using the notions of sub-pattern, reduction and equivalence.
We first make the observation that dangling assignments in a
pattern provide no useful information since we assume that
all CSP instances are arc consistent, which explains why dan-
gling assignments can be eliminated from patterns.

We can then define occurrence in terms of reduced patterns.
Definition 2.7 We say that a quantified patternP occursin a
patternQ (and thatQ containsP ) if some reduction ofP is
equivalent to a sub-pattern ofQ.

If Q is a CSP instance, thenP occurs at variablex of Q if
some reduction ofP is equivalent to a sub-pattern ofQ andx
is the variable of the sub-pattern ofQ corresponding tov(P ).

We say thatP occurs at variablex of Q with value mapping
m : e(P ) → D(x) if the values of variablex corresponding
to eachd ∈ e(P ) are given by the mappingm.

The definition of a variable elimination pattern is defined
in terms of occurrence.

Definition 2.8 A quantified pattern is aVE patternif, when-
ever the pattern does not occur at a variablex in an arc-
consistent CSP instanceI, for at least one injective value
mapping,x can be eliminated inI.

Existential patterns may allow more variables to be elimi-
nated than flat patterns. For example, as we will show later,
the patterns snake and∃snake shown in Figure 1 are both VE
patterns, but the latter allows more variables to be eliminated
since we only require that it does not occur on a single value
in the domain of the variable to be eliminated.

Suppose that we can assign value 0 to a subsetS of the
variables of an instance, independently of assignments to any
other variables. Furthermore suppose that, withinS, 0 is only
compatible with 0. The VE pattern∃invsubBTP, shown in
Figure 1, allows us to eliminate all variables inS, without
having to explicitly search forS. This is because the pattern
does not occur for the mappinga 7→ 0. The flat variant (in-
vsubBTP) would not allow these eliminations.

We conclude this section with the simple observation that
VE patterns define tractable classes. It takes polynomial
time to establish arc consistency and to detect (by exhaustive
search) the non-occurrence of a VE pattern. Hence it takes
polynomial time to identify arc-consistent CSP instances for
which all variables can be eliminated one by one by a VE
patternP . Such instances are solvable in a greedy fashion.

Hence we are able to significantly extend the list of known
tractable classes defined by forbidden patterns since among
known tractable patterns, namely BTP[Cooperet al., 2010],
2-constraint patterns[Cooper and Escamocher, 2012], piv-
ots[Cohenet al., 2012] and JWP[Cooper anďZivný, 2012],
onlyBTP (and its sub-patterns) allow variable elimination.

Indeed, a general hybrid tractable class can be defined:
the set of binary CSP instances which fall in some known
tractable class after we have performed all variable elimina-
tions by the rules given in this paper.

3 Variable elimination by forbidden patterns
In this paper we characterise irreducible VE patterns. There
are essentially just four: the patterns BTP,∃subBTP,
∃invsubBTP and∃snake, shown in Figure 1, together with
their irreducible sub-patterns. We begin by showing that each
of these four patterns allows variable elimination.

Theorem 3.1 The patterns BTP,∃subBTP,∃invsubBTP and
∃snake are VE patterns.

Proof: Since it is known that BTP is a VE pattern[Cooper
et al., 2010], we only need to prove the result for the three
existential patterns:∃subBTP,∃invsubBTP and∃snake.

Every two variable arc-consistent CSP instance allows ei-
ther variable to be eliminated. So we only have to prove that
these patterns allow variable elimination in CSP instances
with at least three variables.

We first set up some general machinery which will be used
in each of the three cases. Consider an arc-consistent CSP
instanceI = 〈X, D, A, cpt〉 and lets be a partial solution on
X \ {x}.
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Figure 1: Variable elimination patterns.

Fix some assignment〈x, d〉, and let:

Y = {y ∈ X \ {x} | cpt(〈y, s(y)〉, 〈x, d〉) = T} ,

Y = {z ∈ X \ {x} | cpt(〈z, s(z)〉, 〈x, d〉) = F} .

For all y, z ∈ X, sinces is a partial solution, we know
cpt(〈y, s(y)〉, 〈z, s(z)〉) = T . Thus, if X = Y ∪ {x} then
we can extends to a solution toI by choosing valued for
variablex. So, in this casex could be eliminated. So we
assume from now on thatY 6= ∅.

By arc consistency, for allz ∈ Y , there is some〈z, t(z)〉 ∈
A such thatcpt(〈z, t(z)〉, 〈x, d〉) = T .

We now prove the result for each pattern in turn.
Suppose that∃subBTP does not occur atx in I for the map-

ping a 7→ d. Consider anyy ∈ Y . By arc consistency,
∃b ∈ D(x) such thatcpt(〈y, s(y)〉, 〈x, b〉) = T . Since the
pattern∃subBTP does not occur, and in particular on the set
of assignments{〈y, s(y)〉, 〈z, s(z)〉, 〈x, d〉, 〈x, b〉}, we can
deduce that, for every variablez ∈ X different from bothx
andy, cpt(〈z, s(z)〉, 〈x, b〉) = T . Hence, we can extends to
a solution toI by choosings(x) = b. So, in any casex can
be eliminated and∃subBTP is indeed a VE pattern.

Now instead, suppose∃invsubBTP does not occur at
x in I for the mappinga 7→ d. Since the pattern
∃invsubBTP does not occur, if bothy andz belong toY then
cpt(〈y, t(y)〉, 〈z, t(z)〉) = T otherwise the pattern would oc-
cur on the assignments{〈y, s(y)〉, 〈y, t(y)〉, 〈z, t(z)〉, 〈x, d〉}.
Also, if y ∈ Y , z ∈ Y , thencpt(〈y, s(y)〉, 〈z, t(z)〉) = T
otherwise the pattern would occur on{〈z, s(z)〉, 〈z, t(z)〉,
〈y, s(y)〉, 〈x, d〉}.

So, in this case we have a solutions′ to I, where

s′(v) =


d if v = x,
s(v) if v ∈ Y ,
t(v) otherwise.

So∃invsubBTP is indeed a VE pattern.
For the final pattern, suppose that∃snake does not oc-

cur at x in I for the mappinga 7→ d. If y ∈ Y , z ∈
Y , since the pattern∃snake does not occur, we can de-
duce thatcpt(〈y, s(y)〉, 〈z, t(z)〉) = T otherwise the pat-
tern would occur on the assignments{〈z, s(z)〉, 〈z, t(z)〉,
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Figure 2: Patterns which do not allow variable elimination.

〈y, s(y)〉, 〈x, d〉}. If both y and z both belong toY ,
then we can deduce first thatcpt(〈y, s(y)〉, 〈z, t(z)〉) = T
(as in the previous case) and then, as a consequence, that
cpt(〈y, t(y)〉, 〈z, t(z)〉) = T (otherwise the pattern would oc-
cur on{〈y, s(y)〉, 〈y, t(y)〉, 〈z, t(z)〉, 〈x, d〉}).

So, again in this case we have a solutions′ to I, wheres′

is defined as above. So∃snake is also a VE pattern.

4 Characterisation of quantified VE patterns
Our aim is to precisely characterise all irreducible patterns
which allow variable elimination in an arc-consistent binary
CSP instance. We begin by identifying many patterns, in-
cluding all those shown in Figure 2, which are not variable
elimination patterns.

Lemma 4.1 None of the following patterns allow variable
elimination in arc-consistent binary CSP instances: any pat-
tern on more than three variables, any pattern with three
distinct values for the same variable, any pattern with
two non-mergeable incompatibility edges in the same con-
straint, Diamond, Z, XL, V(+−), Triangle(asym), Triangle,
Kite(sym), Kite(asym), rotsubBTP, Pivot(asym), Pivot(sym),
Cycle(3).

Proof: For each pattern we exhibit a binary arc-consistent
CSP instance that:

• does not contain the given patternP at a variablex;



• has a partial solution on all the variables exceptx;

• has no solution.

By definition, any such instance is enough to prove that a
pattern is not a VE pattern.

• For any patternP which is either Diamond, Z, XL, or
Triangle, or has at least four variables, or has three dis-
tinct values for the same variable.
Let I2COL

3 be the CSP instance (corresponding to 2-
colouring on 3 variables) with three Boolean variables,
where the constraint between any two variables forces
them to take different values.
This instance has partial solutions on any two variables,
but has no solution, and does not containP .

• For V(+−) and Triangle(asym).
Let I∃4 be the instance on four variablesx1, x2, x3 andx,
where the domains ofx1, x2 andx3 are all{0, 1, 2} and
the domain ofx is {0, 1, 2, 3}. Each pair of variables in
{x1, x2, x3} must take values in{〈0, 0〉, 〈1, 2〉, 〈2, 1〉}.
There are three further constraints: fori = 1, 2, 3, we
have that(xi > 0) ∨ (x = i).
I∃4 contains neither V(+−) nor Triangle(asym) at vari-
ablex for the value mappingm(a) = 0.

• For Kite(sym).
Let I4 be the CSP instance on four variablesx1, x2, x3, x
wherex1, x2 andx3 are Boolean andD(x) = {1, 2, 3},
with the following constraints:x1∨x2, x1∨x3, x2∨x3,
xi ⇔ (x = i) (i = 1, 2, 3).

• For Kite(asym).
Let IZOA

4 be the CSP instance on the four variables
x1, x2, x3, x where x1, x2 and x3 are Boolean and
D(x) = {1, 2, 3}, with the following constraints:
x1, x2, x3, x ∈ {1, 2, 3}, x1 = x2, x1 = x3, x2 = x3,
(x1 = 1)∨(x = 1), (x2 = 2)∨(x = 2), (x3 = 3)∨(x =
3).

• For rotsubBTP.
Define the three binary relations:

R = {〈0, 0〉, 〈1, 2〉, 〈2, 1〉},
R0 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉},
R1 = {〈0, 1〉, 〈1, 0〉, 〈2, 0〉}.

Let I7 be the CSP instance on the seven variables
x1, . . . , x6, x whereD(xi) = {0, 1, 2}, for i = 1, . . . , 6,
andD(x) = {0, 1}, with the following constraints:
For (1 ≤ i < j ≤ 3) and4 ≤ i < j ≤ 6), 〈xi, xj〉 must
take values inR.
For (1 ≤ i ≤ 3), 〈xi, x〉 must take values inR0.
For (4 ≤ i ≤ 6), 〈xi, x〉 must take values inR1 .

• For the pattern Pivot(sym).
Let ISAT

4 be the 2SAT instance on four Boolean vari-
ablesx1, x2, x3, x with the following constraints:x1 ≡
x2, x1 ≡ x3, x2 ∨ x3, x2 ∨ x, x3 ∨ x.
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Figure 3: The possible negative skeletons of VE patterns.

• For Cycle(3) or Pivot(asym), or any pattern with two
non-mergeable incompatibility edges in the same con-
straint.
Let ISAT

6 be the 2SAT instance on six Boolean variables
x1, x2, x3, x4, x5, x with the following constraints:x1∨
x2, x1 ∨ x4, x1 ∨ x3, x1 ∨ x5, x2 ∨ x, x4 ∨ x, x3 ∨ x,
x5 ∨ x.

The following lemma is then key to proving that we have
identified all possible quantified VE patterns.

Lemma 4.2 The only flat quantified irreducible patterns that
do not contain any of the patterns listed in Lemma 4.1 are
contained in BTP, invsubBTP or snake (shown in Figure 1).

Proof: Consider a flat quantified irreducible patternP =
〈X, D, A, cpt〉 that does not contain any of the patterns listed
in Lemma 4.1. ThusP has at most three variables each with
domain size less than three.

We consider first the case of a 2-variable patternP . By
Lemma 4.1,P does not have two distinct non-mergeable in-
compatibility edges and does not contain Z. SinceP is ir-
reducible and hence does not have any dangling assignment,
we can deduce by exhausting over all possibilities thatP does
not have any compatibility edge and a single incompatibility
edge. HenceP is contained in BTP. We can therefore assume
thatP has exactly three variables.

Now consider the negative sub-patternP− =
〈X, D, A,neg〉 where the compatibility functionneg is
cpt with its domain reduced to the incompatible pairs of
assignments ofP .

Any irreducible pattern on three variables that does not
contain an incompatible pair of assignments must contain Tri-
angle. Moreover, if any assignment is incompatible with two
other assignments thenP must contain either Pivot(sym) or
Pivot(asym). Now, sinceP does not contain Cycle(3), it fol-
lows thatP− is I1 or I2, as shown in Figure 3.

We first consider the latter case. Without loss of generality,
we assume thatb is compatible withc, to avoida andb being
mergeable.

Since the domains have at most two elements, we begin
by assuming thatD(v1) = {c, d} andD(v2) = {e, f}. In
this casea andd must be compatible to avoidd andc being
mergeable. Alsob andf must be compatible to stope and
f being mergeable. Moreover,d ande cannot be compatible
since otherwise XL occurs inP . Furthermore,d andf cannot
be compatible since, whichever variable is chosen fore(P ),



either Kite(sym) or Kyte(asym) occurs inP . It follows thatd
can be removed as it is a dangling assignment.

Now we begin again. As before, to avoid merginge and
f or Diamond occurring inP , we have thatf is compatible
with b and not compatible witha. Sof must be compatible
with c to avoidf being a dangling assignment. In this caseP
contains Triangle.

Finally, we haveD(v1) = {c} andD(v2) = {e}. Suppose
that there is a compatibility edge betweenc ande. If the dis-
tinguished variablev(P ) is v0 then, whether or not there is a
compatibility edge betweena ande, the pattern is contained
in BTP. If v(P ) = v1 and there is no compatibility edge be-
tweena ande, then the pattern is contained in invsubBTP. If
v(P ) = v1 and there is a compatibility edge betweena ande,
then the pattern contains rotsubBTP. Ifv(P ) = v2, then the
pattern contains rotsubBTP. Since we have covered all cases
in which there is a compatibility edge betweenc ande, we
assume that there is no edge betweenc ande.

Whether or not there is an incompatibility edge betweena
ande, the pattern is contained in BTP ifv(P ) = v0, and the
pattern is contained in snake ifv(P ) is eitherv1 or v2.

The final case to consider is whenP is a 3-variable pattern
with P− = I1. Any two assignments for the third variablev2

could be merged, so we can assume its domain is a singleton
which we denote by{a′′}. SinceP is irreducible, does not
contain Diamond, Triangle, Kite(sym) or Kite(asym), we can
deduce that the only compatible pairs of assignments include
a′′. In fact, both{a, a′′} and{a′, a′′} must be compatible
sinceP is irreducible. But thenP is contained in BTP ifv(P )
is eitherv0 or v1, and is contained in invsubBTP ifv(P ) =
v2.

We need the following technical lemma which shortens
several proofs.

Lemma 4.3 If a patternP occurs in a VE patternQ, thenP
is also a VE pattern.

Proof: Suppose thatP occurs in the VE patternQ. By tran-
sitivity of the occurrence relation, ifQ occurs in a binary CSP
instanceI (at variablex), then so doesP . It follows that if
P does not occur (at variablex) in an arc consistent binary
CSP instanceI, then neither doesQ and variable elimination
is possible.

According to Definition 2.7, a flat patternP is a sub-pattern
of any existential versionQ of P (and henceP occurs inQ).
We state this special case of Lemma 4.3 as a corollary.

Corollary 4.4 LetQ be an existential VE pattern. IfP is the
flattened version of patternQ, corresponding toe(P ) = ∅,
thenP is also a VE pattern.

The following theorem is a direct consequence of The-
orem 3.1 and Corollary 4.4 together with Lemma 4.1,
Lemma 4.2 and Lemma 4.3.

Theorem 4.5 The irreducible flat quantified patterns allow-
ing variable elimination in arc-consistent binary CSP in-
stances are BTP, invsubBTP or snake (and their irreducible
sub-patterns).

We are now able to provide the characterisation for exis-
tential patterns after a little extra work.

Theorem 4.6 The only irreducible existential patterns which
allow variable elimination in arc-consistent binary CSP in-
stances are∃subBTP,∃invsubBTP,∃snake (and their irre-
ducible sub-patterns).

Proof: We know from Theorem 3.1 that∃subBTP,
∃invsubBTP,∃snake are VE patterns.

Theorem 4.5 and Corollary 4.4 show that when we flatten
an existential VE pattern then the resulting flat quantified pat-
tern is contained in BTP, invsubBTP or snake.

In the case of invsubBTP and snake, the existential versions
of these patterns are VE patterns and so there is nothing left to
prove. So we only need to consider quantified patterns which
flatten into sub-patterns of BTP.

We firstly consider the case in whichP is an existential
version of a sub-pattern of BTP with|e(P )| = 2. In this
case, the two assignments for the distinguished variablev(P )
are mergeable unlessP contains V(+−). Hence, eitherP is
reducible or, by Lemma 4.1 and Lemma 4.3,P is not a VE
pattern.

Let ∃BTP denote the existential versionQ of BTP such
that |e(Q)| = 1. By symmetry,∃BTP is unique. The only re-
maining case is whenP is an irreducible subpattern of∃BTP
with |e(P )| = 1. By a straightforward exhaustive case anal-
ysis, we find that, in this case, eitherP contains V(+−) or
Triangle(asym) orP is a sub-pattern of∃subBTP. The result
then follows by Lemma 4.1 and Lemma 4.3.

Combining Theorem 4.5 and Theorem 4.6, we obtain the
characterisation of irreducible quantified VE patterns.

Theorem 4.7 The only irreducible quantified patterns which
allow variable elimination in arc-consistent binary CSP in-
stances areBTP , ∃subBTP,∃invsubBTP,∃snake (and their
irreducible sub-patterns).

5 Conclusion
This paper has introduced the notion of quantified pattern
which has allowed us to uncover sound variable elimination
rules in binary CSPs. We have identified all irreducible quan-
tified patterns whose absence allows variable elimination. As
a consequence, we have also identified novel tractable classes
of binary CSPs.

There are several interesting directions for further research.
Are there interesting patterns allowing variable elimination
after (1,r) consistency for somer > 2? Can we find a char-
acterisation result for all possibly-reducible VE patterns or
for the even more general case of allsetsof patterns allowing
variable elimination? Can we generalise any of the VE pat-
terns described in this paper to general-arity CSP instances?
Are there quantified patterns which are not VE patterns but
which nonetheless define tractable classes? Do the VE pat-
terns introduced in this paper generalise to other versions
of constraint satisfaction, such as the QCSP (as is the case
for the tractable class defined by BTP[Gao et al., 2011])
or the WCSP (as is the case for tractable class defined by
JWP[Cooper anďZivný, 2012])?
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