Variable Elimination in Binary CSP via Forbidden Patterns *

David A. Cohen', Martin C. Cooper?, Guillaume Escamoche? and StanislavZivny?
'Royal Holloway, University of London, UKg.cohen@rhul.ac.uk
2IRIT, University of Toulouse, Francécooper|escamocher }@irit.fr
3University of Warwick, UK,S.Zivny@warwick.ac.uk

Abstract There are many ways to improve naive backtracking by

pruning the search space in ways that cannot remove solu-

A variable elimination rule allows the polynomial-
time identification of certain variables whose elim-
ination does not affect the satisfiability of an in-
stance. Variable elimination in the constraint sat-
isfaction problem (CSP) can be used in prepro-
cessing or during search to reduce search space
size. We show that there are essentially just four
variable elimination rules defined by forbidding
generic sub-instances, known as irreducible pat-
terns, in arc-consistent CSP instances. One of these
rules is the Broken Triangle Property, whereas the
other three are novel.

tions. This is done by avoiding searching exhaustively in all
generated subproblems when certain kinds of discovered ob-
struction to solution exists. Such techniques include Back
marking, Back jumping, CDBJ etfProsser, 1993 As well
as these techniques it is also possible to maintain local con-
sistency by propagating the consequences of early decisions
or of the discovered structure. Of these techniques the most
common is to maintain so called generalised arc-consistency
(GAC). This technigue identifies values for variables that can-
not possibly form part of a solution.

Of course, savings can be made if we are able to eliminate
variables from a sub-problem. Since backtracking is of expo-

. .) . . nential time complexity the elimination of variables to reduce
keywords: constraint satisfaction, tractability, arc consis- jnstance size can in the best case reduce search time by an
tency, forbidden pattern. exponential factor. To maintain the soundness of search we
require that such eliminations do not change the satisfiability

1 Introduction of the instance.

Constraint s_atisfaction has proved to be a gsefu_l model_linqll Simplification by variable elimination
tool in a variety of contexts, such as scheduling, timetabling, . . i
planning, bio-informatics and computer visidDechter, ~Suppose that is a variable of an instanceand that, when-
2003; Rosset al, 2004. ever there is some valid assignment to all variables except

In this model we have a number of variables, each of whictfhere is a solution to the whole instance; in this case, we can
can take values from its particular finite domain. Certain set§afely remove variable from /. The question we address in
of the variables are constrained in that their simultaneous adtiS paper is how to identify such variables? _ _
signments of values is limited. We are required to assign Variable elimination has been considered before in thell|t—
values to all variables so that every constraint is satisfied®rature. It has been observed that the (local) Broken Trian-
Complete solution algorithms for constraint satisfaction aredle Property (IBTP[Cooperet al, 2014, if it holds at some
not polynomial time unless P=NP, since the graph colouring/ariable, allows us to eliminate that variable. The closure
problem, which is NP-complete, can be reduced to constrairf @ binary CSP instance under the elimination of all vari-
satisfactior[Dechter, 200B Hence we need to find ways to ables that satisfy the IBTP is unique and can be found in
reduce the search space. O(ned?) time, wheren is the number of variables the num-

Search algorithms for constraint problems usually procee§er of constraints and the maximum domain size, which
by transforming the instance into a set of subproblems, fof@y well prove effective when compared to the exponential
example, by selecting a variable and assigning to it succe§0St of backtracking. As a concrete example, in a path consis-
sively each value from its domain. This naive backtrackingt€nt binary CSP instance, all Boolean variables can be elimi-
approach is recursive and explores the search tree of partiffted since they necessarily satisfy the IBTP. The more gen-
assignments in a depth first manner. Even though the algéral local min-of-max extendable property (IMME) allows us
rithm can take exponential time it is often effective in prac-t0 eliminate more variables than the IBTP, but requires the
tice. So, we would like to improve its efficiency. |dent|f_|cat|0n o_f a particular dqmam order. Unfortunately, this
domain order is NP-hard to discoV&ooperet al., 2014 for

“Martin Cooper and Guillaume Escamocher are supported byinbounded domain size, and so the IMME is less likely to be
ANR Project ANR-10-BLAN-0210. effective in practice.

An alternative to simple variable elimination is used in notation by writingcpt(p, ¢) for cpt({p, ¢}). We will also
Bucket Elimination[Larrosa and Dechter, 20D3In this al- use the terminology of graph theory, since a pattern can be
gorithm variables are not simply eliminated. Instead they areviewed as a labelled graph: dpt(p, ¢) = T (resp.,F'), then
replaced by constraints on their neighbourhood. These newe say that there is aompatibility (resp.,incompatibility)
constraints precisely capture the rules which allow an assigredgebetweerp andg.
ment to the neighbourhood of a variable to be extended. Such We will use a simple figurative drawing for patterns. Each
an approach may generate high order constraints, which arariable will be drawn as an oval containing dots for each
exponentially hard to process and to store. The arity can bef its possible assignments. Pairs in the domain of the func-
bounded by the induced treewidth of the instance, but this stiltion cpt will be represented by lines between values: solid

limits the applicability of Bucket Elimination. lines for compatibility and dashed lines for incompatibility.
o The distinguished variabl&(P)) and any existential values
1.2 Our contribution in ¢(P) will be indicated by ard symbol. Examples of pat-

In this paper we characterise those local conditions undefierns are shown in Figure 1.

which we can eliminate variables in binary CSPs without the We are never interested in the names of variables nor the
need to add compensating constraints. By local conditions weames of the domain values in patterns. So we define the
mean here configurations of variables, values and constraintsllowing equivalence.

which do notoccur. That is, we will identify (local) obstruc- pefinjtion 2.2 Two patternsP and Q are equivalentif they
tions to variable elimination. We will call such constructions 4, isomorphic, i.e. if they are identical except for possible

variable elimination patterns. _ injective renamings of variables and assignments which pre-
Surprisingly we find that there are precisely four essenserep, cpt, 7 ande.

tially different local patterns whose absence permits variable]] o i
elimination. Searching for these local patterns takes polyno- Ve can refine patterns to give a definition of a (binary) CSP
mial time and need only be done during the pre-processin§istance.
stage, before search. Any discovered obstructions to elimpefinition 2.3 A binary CSP instanceP is a pattern
ination can be effectively monitored during the subsequen(V7D7A’cpt> wherecpt is a total function, i.e. the domain
search using techniques analogous to watched lit@dst of cpt is precisely{{ (v, a), (w,b)} | v # w}.
et al, 2004d. Whenever a variable no longer participates in e The relation R C D? on (vw) is {(a,b) |

H H imi v,w =))
any obstruction patterns it can safely be eliminated. ept({(v, a), (w, b)}) = T}.

2 Definitions ¢ Apartial solutiorto P on X C V is a mappings : X —

L . . D where, for all € X we have , €
When certain kinds of local obstructions are not present in a R v (s(v), s(w))
v,W

binary CSP instance, variable elimination is possible. Such))))

obstructions are called quantified patterns. A pattern can be ® Asolutionto P is a partial solution orl/.
seen as a generalisation of the concept of a constraint satisfac- Variable eliminati
tion instance that leaves the consistency of some as:signmeﬁs:L ariable elimination

to pairs of variables undefined. In this paper we are concerned with variable elimination char-
Definition 2.1 A patterris a four-tuple(V, D, A, cpt) where: ﬁﬁtse;g;?otr)]y forbidden patterns. We define what this means in
°V '.S a f|'n|.te set ovariables Definition 2.4 We say that a variable can beeliminatedin
e D is afinite set ofvalues the CSP instancé/, D, A, cpt) if, whenever there is a partial
e A C V x D is the set of possiblassignmentsThe solution onV" \ {z} there is a solution.
domainof v € V'is its Set_D(”) of possible values: In practice, when solving CSP instances we prune the do-
D(v) ={d€ D |(v.d) € A}; and mains of variables in such a way as to maintain all solutions.

e cpt isaparpial compgtibility functionfrom the setof un- pefinition 2.5 Let P = (V, D, A, cpt) be a CSP instance.
ordered pairs of assignment§ (v, a), (w,b)} | v # w} A assignmentv,a) € A to variablew is called arc con-
to {T, F'}; if cpt({(v,a), (w,b)}) = T (resp., F) We gjstentif, for all variablesw # v there is some assignment
say that(v, a) and (w, b) are compatible(resp.,incom- (w, b) compatible with(v, a).
patible_). We write dom_(cpt) to represent the set of pairs ' The csp instancéV, D, A, cpt) is calledarc consisterif
of assignments on which cpt is defined. every assignment id is arc consistent.

A quantified patterris a pattern P with a distinguished
variable, 7(P) and a subset of existential value§P) C
D(v(P)). 3 _ 3 _

A flat quantified patteriis a quantified pattern for which

Assignments that are not arc-consistent cannot be part of a
solution so can safely be removed. There are many quadratic-
time algorithms for establishing arc consistency which re-

.) . X . eatedly remove such valufBessereet al, 2005. Hence,
e(P) is empty. Arexistential patterfs a quantified patterd IPOI‘ the Elemainder of this paper we will assume that all CSP

for whiche(F) is non-empty. instances are arc-consistent.

When the context variable is clear we use the valué In order to use (the absence of) patterns for variable elim-
to denote the assignmefi, d) to v. We will often simplify ination we need to define what we mean when we say that a

guantified pattern occurs at variahlef a CSP instance. We The definition of a variable elimination pattern is defined
define occurrence in terms of reductions on patterns. The defn terms of occurrence.

initions of occurrence and reduction between quantified pat
terns extend definitions previously given for non-quantifiedger the pattern does not occur at a variablgn an arc-

patterndCooper and Escamocher, 2012 consistent CSP instanck for at least one injective value
Definition 2.6 LetP = (V, D, A, cpt) be any pattern. mapping,z can be eliminated id.

* We say ;hat_fa p/atterrfP/’V: 91//’ l()j/’ A’, cpt’) is asub- Existential patterns may allow more variables to be elimi-
patternof P if V/ /g V,A"C Aandept’ = cpt [nated than flat patterns. For example, as we will show later,
If, furthermore, P’ is quantified then we require th& the patterns snake afidnake shown in Figure 1 are both VE

Definition 2.8 A quantified pattern is & E patternif, when-

is quantified and thati(P’) = v(P) patterns, but the latter allows more variables to be eliminated

ande(P’) C e(P). since we only require that it does not occur on a single value
e Valuesa,b € D(v) are mergeabldn a pattern if there in the domain of the variable to be eliminated.

is no assignmenp € A for which cpt({(v,a),p}), Suppose that we can assign value 0 to a suBset the

cpt({(v,b), p}) are both defined andpt({ (v, a), p}) # Variables of aninstance, independently of assignments to any
cpt({{v,b), p}). In a quantified pattern we also require Other variables. Furthermore suppose that, wihi0 is only
thata € e(P) if and only ifb € e(P). compatible with 0. The VE patterBinvsubBTP, shown in

Whena, b € D(v) are mergeable we define the merged Figure 1, allows us to eliminate all variables $) without
reductién(V D, A\ {(v,a)}, cpt’) by reducing the set having to explicitly search fof. This is because the pattern

of assignments. This naturally makes: does not occur for the mapping— 0. The flat variant (in-
' ' vsubBTP) would not allow these eliminations.

cpt((v,a),q) if p=(v,b)and We conclude this section with the simple observation that
cpt’(p,q) = cpt({v,b), ¢) undefined, VE patterns define tractable classes. It takes polynomial
cpt(p, q) otherwise. time to establish arc consistency and to detect (by exhaustive

search) the non-occurrence of a VE pattern. Hence it takes
polynomial time to identify arc-consistent CSP instances for
which all variables can be eliminated one by one by a VE
patternP. Such instances are solvable in a greedy fashion.
X . ! X . Hence we are able to significantly extend the list of known
gling assignmenp, we de/fme the dangling reduction y5ctaple classes defined by forbidden patterns since among
(V. D, A’ cpt [ar) whereA” = A\ {p}. known tractable patterns, namely Bf®ooperet al, 2014,
¢ Anirreducible patteriis one on which no merged or dan- 2-constraint patternfCooper and Escamocher, 201 piv-
gling reduction can be performed. ots[Cohenet al, 2014 and JWHCooper andivny, 2014,

Now we want to define when a quantified pattern occurs aénly BTP (and its sub-patterns) allow variable elimination.
avariable in a CSP instance, in order to characterise those pat-Indeed, a general hybrid tractable class can be defined:
terns whoseon-occurrencallows this particular variable to the set of binary CSP instances which fall in some known
be eliminated. We define the slightly more general notion oftractable class after we have performed all variable elimina-
occurrence of a pattern in another pattern. Recall that a CS#ons by the rules given in this paper.
instance corresponds to the special case of a pattern whose
compatibility function is total. Essentially we want to say 3 Variable elimination by forbidden patterns
that pattern? occurs in patter® if P is homomorphicto & ., i naner we characterise irreducible VE patterns. There
sub-pgttern OQ via an injective renaming of variables and a are essentially just four: the patterns BTBSubBTP,
(possibly non-injective) renaming of as&gnr_ne[ﬁ:shenet JinvsubBTP anddsnake, shown in Figure 1, together with
al., 2013. However, we find it simpler to define occurrence woicirraducible sub-patterns. We begin by showing that each
using the notions of sub-pattern, reductl_on and_ eqU|vaIenc%f these four patterns allows variable elimination.

We first make the observation that dangling assignments in a _
pattern provide no useful information since we assume thatheorem 3.1 The patterns BTRisubBTPdinvsubBTP and

all CSP instances are arc consistent, which explains why darisnake are VE patterns.

gling assignments can be eliminated from patterns. Proof: Since it is known that BTP is a VE pattef@ooper

We can then define occurrence in terms of reduced patterngt al, 2014, we only need to prove the result for the three
Definition 2.7 We say that a quantified pattefhoccursina existential patternsisubBTP3invsubBTP andisnake.
pattern@ (and that@ containsP) if some reduction oP is Every two variable arc-consistent CSP instance allows ei-
equivalent to a sub-pattern ¢J. ther variable to be eliminated. So we only have to prove that

If Q is a CSP instance, theR occurs at variable of Q if these patterns allow variable elimination in CSP instances
some reduction aP is equivalent to a sub-pattern fandxz with at least three variables.
is the variable of the sub-pattern fcorresponding t@(P). We first set up some general machinery which will be used

We say thaf” occurs at variable of @ with value mapping in each of the three cases. Consider an arc-consistent CSP
m : e(P) — D(z) if the values of variable: corresponding instancel = (X, D, A, cpt) and lets be a partial solution on
to eachd € e(P) are given by the mapping. X\ {z}.

e A dangling assignment of P is any assignment not
in {(v(P),a) | a € e(P)} for which there is at most
one assignmeng for which cpt(p, q) is defined, and
furthermore (if definedypt(p,q) = 7. For any dan-

invsubBTP

dzda

dinvsubBTP

IsubBTP

Jsnake

Figure 1: Variable elimination patterns.

Fix some assignmetit, d), and let:

V' ={ye X\ {a}|cpt((y,s(y)) (z,d)) =T},

Y ={ze X\ {z}|cpt((zs(2)),(z,d)) = F}.

For ally,z € X, sinces is a partial solution, we know
cpt({y, s(v)), (z,s(2))) = T. Thus, ifX = Y U {z} then
we can extend to a solution tol by choosing valuel for
variablez. So, in this case: could be eliminated. So we
assume from now on thaf # (.

By arc consistency, for all € Y, there is soméz, t(z)) €
A such thatpt((z,t(z)), (z,d)) = T.

We now prove the result for each pattern in turn.

Suppose thatsubBTP does not occur atn I for the map-
ping a — d. Consider anyy € Y. By arc consistency,
3b € D(x) such thatept({y, s(y)), (x,b)) = T. Since the

Triangle

do

T
Kite(sym) Kite(asym) rotsubBTP
dx dx
-0 -6 00
o \ T ~ R
0 ¢
Pivot(sym) Pivot(asym) Cycle(3)

Figure 2: Patterns which do not allow variable elimination.

{(y,s(y)), (x,d)}. If both y and z both belong toY,
then we can deduce first thapt({y, s(y)), (z,t(2))) = T
(as in the previous case) and then, as a consequence, that

patterndsubBTP does not occur, and in particular on the setpt((y, t(y)), (z,t(z))) = T (otherwise the pattern would oc-

of assignmentg(y, s(v)), (z, s(z)), {x,d), (z,b)}, we can
deduce that, for every variablee X different from bothz
andy, cpt((z, s(z)), (x,b)) = T. Hence, we can extendto
a solution tol by choosings(z) = b. So, in any case can
be eliminated andsubBTP is indeed a VE pattern.

Now instead, supposéinvsubBTP does not occur at
x in I for the mappinga +— d. Since the pattern
JinvsubBTP does not occur, if bothandz belong toY then
cpt({y, t(y)), (2,t(2))) = T otherwise the pattern would oc-
cur on the assignmenfgy, s(y)), (v, t(y)), (2, t(2)), (x. d)}.
Also, if y € Y, 2 € Y, thencpt((y, s(v)), (2,t(2))) = T
otherwise the pattern would occur diiz, s(z)), (z,t(2)),
(y, s(y)), (x,d)}.

So, in this case we have a solutigito I, where

d if v =1,
s'(v)=1qs(v) fvey,
t(v) otherwise.

SodinvsubBTP is indeed a VE pattern.

For the final pattern, suppose thasnake does not oc-
cur atz in I for the mappinga — d. Ify € Y, 2z €
Y, since the patterrdsnake does not occur, we can de-
duce thatept((y, s(y)), (z,t(2))) T otherwise the pat-
tern would occur on the assignmenté:, s(z)), (z,t(z)),

curon{(y, s(y). (y. t(y)), (z.1(2)), (z,d)}).
So, again in this case we have a solutidtio I, wheres’
is defined as above. Stsnake is also a VE pattern.]

4 Characterisation of quantified VE patterns

Our aim is to precisely characterise all irreducible patterns
which allow variable elimination in an arc-consistent binary
CSP instance. We begin by identifying many patterns, in-
cluding all those shown in Figure 2, which are not variable
elimination patterns.

Lemma 4.1 None of the following patterns allow variable
elimination in arc-consistent binary CSP instances: any pat-
tern on more than three variables, any pattern with three
distinct values for the same variable, any pattern with
two non-mergeable incompatibility edges in the same con-
straint, Diamond, Z, XL, \{—), Triangle(asym), Triangle,
Kite(sym), Kite(asym), rotsubBTP, Pivot(asym), Pivot(sym),
Cycle(3).

Proof: For each pattern we exhibit a binary arc-consistent
CSP instance that:

e does not contain the given pattefhat a variabler;

e has a partial solution on all the variables except

a|(& |- _
¢ has no solution.) = c
_— : : e
By definition, any such instance is enough to prove that a® @‘ - ‘@ a N o
Yo U1

pattern is not a VE pattern. vo
o | e
e For any pattern? which is either Diamond, Z, XL, or .
Triangle, or has at least four variables, or has three dis- I s I

tinct values for the same variable.

Let 139" be the CSP instance (corresponding to 2- Figyre 3: The possible negative skeletons of VE patterns.
colouring on 3 variables) with three Boolean variables,

where the constraint between any two variables forces

them to take different values. e For Cycle(3) or Pivot(asym), or any pattern with two
This instance has partial solutions on any two variables, non.-mergeable incompatibility edges in the same con-
but has no solution, and does not cont&in straint.
_ Let 1547 be the 2SAT instance on six Boolean variables
e For V(+—) and Triangle(asym). T1, T2, T3, Ta, T5, x With the following constraintszy v
Let I} be the instance on four variables, -, x5 andz, T2, T1 VT4, T1 VT3, 21 VTs5, T2 VT, x4V, T3 VT,
where the domains af;, 2o andzs are all{0, 1,2} and 5V T.

the domain of: is {0, 1,2, 3}. Each pair of variables in
{1, x2, 23} must take values if(0,0), (1,2),(2,1)}.
There are three further constraints: foe= 1,2, 3, we
have tha(xz; > 0) V (z = 7).

I3 contains neither \{-—) nor Triangle(asym) at vari-
ablez for the value mapping:(a) = 0.

The following lemma is then key to proving that we have
identified all possible quantified VE patterns.

Lemma 4.2 The only flat quantified irreducible patterns that
) do not contain any of the patterns listed in Lemma 4.1 are
e For Kite(sym). contained in BTP, invsubBTP or snake (shown in Figure 1).

Let/, be the CSP instance on four variablgszs, 3,2 proof. Consider a flat quantified irreducible pattefh =
wherex,, x> andu; are Boolean an®(«) = {1,2,3}, 1 x D, A, cpt) that does not contain any of the patterns listed

V‘_’ith the following constraintsz, vz, 21 V23, 22 V23, in Lemma 4.1. Thus has at most three variables each with
v & (r=1) (1 =1,2,3). domain size less than three.
e For Kite(asym). We consider first the case of a 2-variable pattéxn By

Lemma 4.1,P does not have two distinct non-mergeable in-
compatibility edges and does not contain Z. Sitdeés ir-
reducible and hence does not have any dangling assignment,
we can deduce by exhausting over all possibilities thedbes

Let 7794 be the CSP instance on the four variables
r1, 22,23, Where x1,x2o and x3 are Boolean and
D(z) = {1,2,3}, with the following constraints:
x1, T2, 23, € {1,2,3}, 11 = 22, 11 = T3, T2 = T3,

- _ z _ . e not have any compatibility edge and a single incompatibility
%1 =DV =1), (@ =2)V(z=2), (@ =3)v(z = edge. Henceé is contained in BTP. We can therefore assume
that P has exactly three variables.
e For rotsubBTP. Now consider the negative sub-patteri?~ =
Define the three binary relations: (X, D, A,neg) where the compatibility functiomeg is
cpt with its domain reduced to the incompatible pairs of
R ={(0,0),(1,2),(2, 1)}, assignments oP.
Ro = {(0,0),(1,1),(2,1)}, Any irreducible pattern on three variables that does not

contain an incompatible pair of assignments must contain Tri-
angle. Moreover, if any assignment is incompatible with two
other assignments thei must contain either Pivot(sym) or
?Divot(asym). Now, sincé’ does not contain Cycle(3), it fol-

Ry = {<071>7<170>7<270>}'

Let I; be the CSP instance on the seven variable

x1,...,2e,x WhereD(z;) = {0,1,2},fori =1,...,6, | 7 g

vt . S S ows thatP~ is I; or I5, as shown in Figure 3.
andD(z) = {Q, 1}, with the fgllovylng constraints: We first consider the latter case. Without loss of generality,
For(l <i<j<3)andd <i<j<6),(z;x;) Must e assume thdtis compatible with, to avoida andb being

For (1 < i < 3), (z;, z) must take values ifR,. Since the domains have at most two elements, we begin
For (4 < i < 6), (x;, =) must take values i, . by assuming thaD(v,) = {c,d} andD(vz) = {e, f}. In
. this casex andd must be compatible to avoid andc being
e For the pattern Pivot(sym). mergeable. Alsd and f must be compatible to stapand
Let 7747 be the 2SAT instance on four Boolean vari- f being mergeable. Moreovet,ande cannot be compatible
ableszy, x5, x3, x with the following constraintsz; = since otherwise XL occurs if?. Furthermored andf cannot

To, X1 = T3, LoV x3,T3 VX, T3 VIT. be compatible since, whichever variable is chosere{dt),

either Kite(sym) or Kyte(asym) occurs iP. It follows thatd
can be removed as it is a dangling assignment.

Now we begin again. As before, to avoid mergingnd
f or Diamond occurring inP, we have thaff is compatible
with b and not compatible witlh. So f must be compatible
with ¢ to avoid f being a dangling assignment. In this cd3e
contains Triangle.

Finally, we haveD(v;) = {c} andD(v2) = {e}. Suppose
that there is a compatibility edge betweeande. If the dis-
tinguished variabl&(P) is vy then, whether or not there is a
compatibility edge betweedm ande, the pattern is contained

We are now able to provide the characterisation for exis-
tential patterns after a little extra work.

Theorem 4.6 The only irreducible existential patterns which
allow variable elimination in arc-consistent binary CSP in-
stances aredsubBTP,JinvsubBTP,3snake (and their irre-
ducible sub-patterns).

Proof: We know from Theorem 3.1 thaBsubBTP,
JinvsubBTPdsnake are VE patterns.

Theorem 4.5 and Corollary 4.4 show that when we flatten
an existential VE pattern then the resulting flat quantified pat-

in BTP. If 5(P) = v, and there is no compatibility edge be- ternis contained in BTP, invsubBTP or snake.

tweena ande, then the pattern is contained in invsubBTP. If

©7(P) = v, and there is a compatibility edge betweeande,
then the pattern contains rotsubBTPz(fP) = v9, then the

Inthe case of invsubBTP and snake, the existential versions
of these patterns are VE patterns and so there is nothing left to
prove. So we only need to consider quantified patterns which

pattern contains rotsubBTP. Since we have covered all casd@tten into sub-patterns of BTP.

in which there is a compatibility edge betweemande, we
assume that there is no edge betweande.

Whether or not there is an incompatibility edge between
ande, the pattern is contained in BTP@{P) = vy, and the
pattern is contained in snaketif P) is eitherv; or vs.

The final case to consider is whéhis a 3-variable pattern
with P~ = I;. Any two assignments for the third variahle

We firstly consider the case in which is an existential
version of a sub-pattern of BTP witla(P)| = 2. In this
case, the two assignments for the distinguished variglite
are mergeable unledd contains V{—). Hence, eithel” is
reducible or, by Lemma 4.1 and Lemma 4£3js not a VE
pattern.

Let 3BTP denote the existential versidp of BTP such

could be merged, so we can assume its domain is a singletdRat|e(Q)| = 1. By symmetry3BTP is unique. The only re-

which we denote bya”}. SinceP is irreducible, does not

maining case is wheR is an irreducible subpattern @8TP

contain Diamond, Triangle, Kite(sym) or Kite(asym), we canWith |e(P)| = 1. By a straightforward exhaustive case anal-
deduce that the only compatible pairs of assignments includ¥sis, we find that, in this case, eith&r contains V(-—) or

a”. In fact, both{a,a”} and{d’,a”} must be compatible
sinceP isirreducible. But the® is contained in BTP ifi(P)
is eitheruvy or vy, and is contained in invsubBTPif(P) =
V2. | |

Triangle(asym) ot is a sub-pattern ofisubBTP. The result
then follows by Lemma 4.1 and Lemma 4.3. "

Combining Theorem 4.5 and Theorem 4.6, we obtain the
characterisation of irreducible quantified VE patterns.

We need the following technical lemma which shortensTheorem 4.7 The only irreducible quantified patterns which

several proofs.

Lemma 4.3 If a pattern P occurs in a VE patterid), thenP
is also a VE pattern.

Proof: Suppose thaP occurs in the VE patter§. By tran-
sitivity of the occurrence relation, @ occurs in a binary CSP
instancel (at variablez), then so doe$. It follows that if
P does not occur (at variable) in an arc consistent binary
CSP instancé, then neither doe® and variable elimination
is possible.]

According to Definition 2.7, a flat pattedhis a sub-pattern
of any existential versio® of P (and henceP occurs inQ).
We state this special case of Lemma 4.3 as a corollary.

Corollary 4.4 Let@ be an existential VE pattern. R is the
flattened version of patter@, corresponding te(P) = 0,
thenP is also a VE pattern.

The following theorem is a direct consequence of The
orem 3.1 and Corollary 4.4 together with Lemma 4.1

Lemma 4.2 and Lemma 4.3.
Theorem 4.5 The irreducible flat quantified patterns allow-

ing variable elimination in arc-consistent binary CSP in-

allow variable elimination in arc-consistent binary CSP in-
stances areBT P, 3subBTPdinvsubBTP3snake (and their
irreducible sub-patterns).

5 Conclusion

This paper has introduced the notion of quantified pattern
which has allowed us to uncover sound variable elimination
rules in binary CSPs. We have identified all irreducible quan-
tified patterns whose absence allows variable elimination. As
a consequence, we have also identified novel tractable classes
of binary CSPs.

There are several interesting directions for further research.
Are there interesting patterns allowing variable elimination
after (1r) consistency for some > 2? Can we find a char-
acterisation result for all possibly-reducible VE patterns or
for the even more general case ofsdtsof patterns allowing
variable elimination? Can we generalise any of the VE pat-
terns described in this paper to general-arity CSP instances?

"Are there quantified patterns which are not VE patterns but
'which nonetheless define tractable classes? Do the VE pat-

terns introduced in this paper generalise to other versions
of constraint satisfaction, such as the QCSP (as is the case
for the tractable class defined by BTBaoet al, 2011)

stances are BTP, invsubBTP or snake (and their irreducibleor the WCSP (as is the case for tractable class defined by

sub-patterns).

JWP[Cooper an&ivny, 2014)?

References

[Bessereet al, 2009 Christian Besgire, Jean-Charles
Régin, Roland H. C. Yap, and Yuanlin Zhang. An optimal
coarse-grained arc consistency algorithm.Atrtificial
Intelligence 165(2):165-185, 2005.

[Cohenet al, 2014 David A. Cohen, Martin C. Cooper,
Paidi Creed, Caniel Marx, and Andais Z. Salamon. The
tractability of CSP classes defined by forbidden patterns.
J. Artif. Intell. Res. (JAIR}45:47-78, 2012.

[Cooper and Escamocher, 2Q1Rlartin C. Cooper and Guil-
laume Escamocher. A dichotomy for 2-constraint forbid-
den csp patterns. Irddg Hoffmann and Bart Selman, edi-
tors,AAAIl. AAAI Press, 2012.

[Cooper andZivny, 2014 Martin C. Cooper and Stanislav
Zivny. Tractable triangles and cross-free convexity in dis-
crete optimisation. J. Artif. Intell. Res. (JAIR)44:455—
490, 2012.

[Cooperet al, 201d Martin C. Cooper, Peter G. Jeavons,
and Andas Z. Salamon. Generalizing constraint satisfac-
tion on trees: Hybrid tractability and variable elimination.
Artif. Intell., 174(9-10):570-584, 2010.

[Dechter, 200B Rina Dechter.Constraint ProcessingMor-
gan Kaufmann Publishers, 340 Pine Street, Sixth Floor,
San Francisco, CA 94104-3205, 2003.

[Gaoet al, 2011 Jian Gao, Minghao Yin, and Junping
Zhou. Hybrid tractable classes of binary quantified con-
straint satisfaction problems. KAAI, 2011.

[Gentet al, 2004 lan P. Gent, Christopher Jefferson, and
lan Miguel. Watched literals for constraint propagation
in minion. In Fiederic Benhamou, editorCP, volume
4204 ofLecture Notes in Computer Sciengages 182—
197. Springer, 2006.

[Larrosa and Dechter, 20pJavier Larrosa and Rina
Dechter. Boosting search with variable elimination
in constraint optimization and constraint satisfaction
problems.Constraints 8(3):303—-326, 2003.

[Prosser, 1993P. Prosser. Hybrid algorithms for the con-
straint satisfaction problemComputational Intelligence
9(3):268-299, November 1993.

[Rossiet al,, 200§ F. Rossi, P. van Beek, and T. Walsh, edi-
tors. The Handbook of Constraint Programmiriglsevier,
2006.

