
BINARISATION FOR VALUED CONSTRAINT SATISFACTION
PROBLEMS∗

DAVID A. COHEN† , MARTIN C. COOPER‡ , PETER G. JEAVONS§ , ANDREI KROKHIN¶

, ROBERT POWELL‖, AND STANISLAV ŽIVNÝ#
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1. Introduction. The valued constraint satisfaction problem (VCSP) is a general
framework for problems that involve finding an assignment of values to a set of variables,
where the assignment must satisfy certain feasibility conditions and optimise a certain
objective function. The VCSP includes as a special case the (purely decision) constraint
satisfaction problem (CSP) [38] as well as the (purely optimisation) minimum constraint
satisfaction problem (Min-CSP), see [34] for a recent survey.

Different subproblems of the VCSP can be obtained by restricting, in various ways,
the set of cost functions that can be used to express the constraints. Such a set of
cost functions is generally called a valued constraint language [16, 34]. For any such
valued constraint language Γ there is a corresponding problem VCSP(Γ), and it has
been shown that the computational complexity of VCSP(Γ) is determined by certain
algebraic properties of the set Γ known as fractional polymorphisms [16]. The classical
constraint satisfaction problem (CSP) [20] is a special case of the VCSP in which all
cost functions are relations. If a valued constraint language Γ contains only relations
then we call Γ a constraint language.

There has been significant progress on classifying the computational complexity of
different constraint languages [43, 23, 8, 12] and valued constraint languages [32, 25,
31, 51, 33, 52, 30]. Most notably, it has been shown that a dichotomy for constraint
languages, conjectured by Feder and Vardi [20], implies a dichotomy for valued
constraint languages [30]. This result thus resolves the complexity of valued constraint
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languages modulo the complexity of constraint languages.
In binary VCSPs every valued constraint involves at most two variables; in other

words, the interaction between variables is only pairwise. In this paper we consider
transformations of the general VCSP, with constraints of arbitrary arity, to the binary
VCSP. There are several motivations for studying such reductions. Firstly, binary
VCSPs have been extensively studied in the context of energy minimisation problems
in computer vision and machine learning [7, 39] since pairwise interaction is enough to
model interesting problems. Secondly, algorithms for binary VCSPs may be easier to
design, as discussed below in the case of submodular VCSPs. Finally, various aspects
of binary VCSPs, such as the algebraic properties that capture the complexity of
valued constraint languages, may be easier to study on binary instances.

One important class of valued constraint languages are the submodular lan-
guages [45]. It is known that VCSP instances where all constraints are submodular
can be solved in polynomial time, although the algorithms that have been proposed to
achieve this in the general case are rather intricate and difficult to implement [27, 44].
In the special case of binary submodular constraints a much simpler algorithm can
be used to find a minimising assignment of values, based on a standard max-flow
algorithm [15]. Our results in this paper show that this simpler algorithm can be used
to obtain exact solutions to arbitrary VCSP instances with submodular constraints
(from a finite language) in polynomial time.

The more restricted question of which valued constraint languages can be trans-
formed to binary valued constraint languages over the same domain was studied in
[18]. It was shown in [55] that there are submodular valued constraint languages which
cannot be expressed (using min and sum) by binary submodular languages over the
same domain.

However, there are two well-known methods for transforming a non-binary CSP
into a binary one over a different domain of values; the dual encoding [19] and the
hidden variable encoding [42]. Both encode the non-binary constraints to variables
that have as domains of possible labels the valid tuples of the constraints. That is,
these techniques derive a binary encoding of a non-binary constraint by changing the
domain of the variables to an extensional representation of the original constraints.
A combination of these two encodings, known as the double encoding, has also been
studied [47]. It was observed in [36] that both of these standard encodings can be
extended to valued constraints.

It is also known that any CSP with a fixed constraint language is polynomial-time
equivalent to one where the constraint language consists of a single binary relation
(i.e., a digraph) [20, 1, 14]. Recent work by Buĺın et al. shows that this reduction can
be done in a way that preserves certain algebraic properties of the constraint language
that are known to characterise the complexity of the corresponding CSP [14].

As our first contribution, we extend the idea of the dual encoding to valued
constraint satisfaction and show that this standard encoding preserves many aspects
of the algebraic properties that capture the complexity of valued constraint languages.
In particular, we show that for any valued constraint language Γ of finite size, there
is a one-to-one correspondence between the fractional polymorphisms of Γ and the
fractional polymorphisms of the binary language Γd obtained by the dual encoding.
Moreover, we show that Γd preserves all identities involving (fractional) polymorphisms
of Γ, where an identity is an equality between arbitrary expressions involving only
polymorphisms and all variables are universally quantified. A large body of research
on the complexity of (valued) constraint languages has shown that it is the identities
satisfied by the (fractional) polymorphisms that determine both the complexity and
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suitable algorithmic solution techniques [34].
Hence, as well as providing a way to convert any given instance of the VCSP to

an equivalent binary instance, we show that the dual encoding also provides a way
to convert any valued constraint language to a binary language with essentially the
same algebraic properties, and hence essentially the same complexity and algorithmic
properties. We remark that a similar transformation from constraint languages of
arbitrary arity to sets of unary and binary relations was used in [5] (and also implicitly
in [3]), for the special case of the CSP.

While the idea of the dual encoding is very simple, the resulting Γd contains a
single unary cost function and more than one binary relation (in general). However,
all the binary relations that are included in Γd are of the same type and correspond to
enforcing equality on the shared variables between different constraints in instances of
VCSP(Γ).

As our second contribution, we adapt the proof from [14] to the VCSP framework
and show that each VCSP, with a fixed valued constraint language Γ of finite size, is
polynomial-time equivalent to a VCSP with valued constraint language Γe, where Γe
consists of a single unary cost function and a single binary relation (i.e., a digraph).
Problems of this type have been studied as the Minimum-Cost Homomorphism Problem
(MinCostHom) [22, 24, 49], which makes this result somewhat surprising as it was
believed that MinCostHom was essentially a more restricted optimisation problem
than the VCSP.

This second reduction, which we call the extended dual, again preserves many
aspects of the algebraic properties that capture the complexity of valued constraint
languages. In fact, we show that it preserves all identities involving (fractional)
polymorphisms of Γ which are linear and balanced. These are the key properties for
characterising most known tractable cases.

However, the extended dual encoding does not preserve all identities: in particular,
it does not preserve the (unbalanced) identities defining Mal’tsev polymorphisms. In
fact it is impossible for any reduction to a single binary relation to preserve such
identities, without changing the algorithmic nature of the problem, because it has
been shown that any single binary relation that has a Mal’tsev polymorphism also has
a majority polymorphism [29]; the former is solved by a generalised form of Gaussian
elimination whereas the latter is solved by local consistency operations.

In summary, our first reduction, using the dual encoding, transforms any valued
constraint problem over an arbitrary valued constraint language Γ of finite size to a
binary problem with more than one form of binary constraint, which satisfies all of the
identities on fractional polymorphisms satisfied by Γ. Our second reduction, using the
extended dual encoding, transforms any valued constraint problem over an arbitrary
valued constraint language Γ of finite size to a binary problem with just one form of
binary constraint, which satisfies an important subclass of the identities satisfied by Γ.

2. Background and Definitions. In this section we will give the necessary
background. Section 2.1 defines the VCSP, whereas Sections 2.2 and 2.3 present the
basics of the algebraic approach to studying the complexity of the VCSP.

2.1. Valued Constraint Satisfaction Problems. Throughout the paper, let
D be a fixed finite set and let Q = Q ∪ {∞} denote the set of rational numbers with
(positive) infinity. For any m-tuple x ∈ Dm we will write x[i] for its ith component.

Definition 1. An m-ary cost function over D is any mapping φ : Dm → Q. We

denote by Φ
(m)
D the set of all m-ary cost functions and let ΦD =

⋃
m≥1 Φ

(m)
D .
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We call D the domain, the elements of D labels (for variables), and we say that
the cost functions in ΦD take values (which are elements of Q).

We denote by Feas(φ) = {x ∈ Dm | φ(x) <∞} the underlying feasibility relation
of a given m-ary cost function. A cost function φ : Dm → Q is called finite-valued if
Feas(φ) = Dm.

It is convenient to highlight the special case when the values taken by a cost
function are restricted to 0 and ∞.

Definition 2. Any mapping φ : Dm → {0,∞} will be called a crisp cost function
(or simply a relation) and will be identified with the set {x ∈ Dm | φ(x) = 0}.

Definition 3. Let X = {x1, . . . , xn} be a set of variables. A valued constraint

over X is an expression of the form φ(x) where φ ∈ Φ
(m)
D and x ∈ Xm, for some

positive integer m. The integer m is called the arity of the constraint, the tuple x is
called the scope of the constraint, and the cost function φ is called the constraint cost
function.

Definition 4. An instance I of the valued constraint satisfaction problem, VCSP,
is specified by a finite set X = {x1, . . . , xn} of variables, a finite set D of labels, and
an objective function ΦI expressed as follows:

(1) ΦI(x1, . . . , xn) =

q∑
i=1

φi(xi)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over X. Each constraint can
appear multiple times in ΦI .

Any assignment of labels from D to the variables of X for which ΦI is finite will
be called a feasible solution to I. The goal is to find a feasible solution that minimises
ΦI .

Definition 5. Any set Γ ⊆ ΦD of cost functions on some fixed domain D is
called a valued constraint language, or simply a language.

We will denote by VCSP(Γ) the class of all VCSP instances in which the constraint
cost functions are all contained in Γ.

The classical constraint satisfaction problem (CSP) can be seen as a special case of
the VCSP in which all cost functions are crisp (i.e., relations). A language containing
only crisp cost functions is called crisp.

A language Γ is called binary if all cost functions from Γ are of arity at most two.

2.2. Fractional Polymorphisms. Over the past few years there has been con-
siderable progress in investigating the complexity of different kinds of constraint satis-
faction problems and valued constraint satisfaction problems by looking at the algebraic
properties of the relations and cost functions that define the constraints and valued
constraints [28, 20, 11, 16] resulting in strong complexity classifications [32, 25, 51, 30].
We present here some of the tools used in this line of work.

We first need some standard terminology. A function f : Dk → D is called a
k-ary operation on D. For any tuples x1, . . . ,xk ∈ Dm, we denote by f(x1, . . . ,xk)
the tuple in Dm obtained by applying f to x1, . . . ,xk componentwise.

Definition 6. Let φ : Dm → Q be a cost function. An operation f : Dk → D is a
polymorphism of φ if, for any x1, . . . ,xk ∈ Feas(φ) we have f(x1, . . . ,xk) ∈ Feas(φ).

We denote by Pol(Γ) the set of all operations on D which are polymorphisms of

all φ ∈ Γ. We denote by Pol(k)(Γ) the k-ary operations in Pol(Γ).
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The k-ary projections, defined for all 1 ≤ i ≤ k, are the operations e
(k)
i such that

e
(k)
i (x1, . . . , xk) = xi. It follows directly from Definition 6 that all projections are

polymorphisms of all valued constraint languages.
Polymorphisms are sufficient to analyse the complexity of the CSP, but for the

VCSP, it has been shown that in general we need a more flexible notion that assigns
weights to a collection of polymorphisms [16, 21].

Definition 7. Let φ : Dm → Q be a cost function. A probability distribution ω on
the set of k-ary polymorphisms of φ (i.e., ω : Pol(k)(φ)→ Q≥0 with

∑
f∈Pol(k)(φ) ω(f) =

1) is called a k-ary fractional polymorphism of φ if for any x1, . . . ,xk ∈ Feas(φ)

(2)
∑

f∈Pol(k)(φ)

ω(f)φ(f(x1, . . . ,xk)) ≤ 1

k

k∑
i=1

φ(xi) .

We denote by fPol(k)(Γ) the set of k-ary fractional polymorphisms of all φ ∈ Γ and set

fPol(Γ) =
⋃
k≥1 fPol(k)(Γ).

For any ω ∈ fPol(Γ) we denote by supp(ω) the set {f ∈ Pol(k)(φ) | ω(f) > 0} and
define supp(Γ) =

⋃
ω∈fPol(Γ) supp(ω).

Example 8. Let D = {0, 1}. Let Γ be the set of cost functions φ : Dm → Q
that admit ωsub as a fractional polymorphism, where ωsub is defined by supp(ωsub) =
{min,max} and ωsub(min) = ωsub(max) = 1

2 ; here min and max are the binary
operations returning the smaller and larger of their two arguments, respectively, with
respect to the usual order 0 < 1.

In this case Γ is precisely the well-studied class of submodular set functions [45].

2.3. Identities and Rigid Cores. Many important properties of polymor-
phisms can be specified by identities, i.e., equalities of terms that hold for all choices
of the variables involved in them. More formally, an operational signature is a set
of operation symbols with arities assigned to them and an identity is an expression
t1 = t2 where t1 and t2 are terms in this signature.

Here are some examples of important properties of operations that are specified
by identities:

• An operation f is idempotent if it satisfies the identity f(x, . . . , x) = x.
• A k-ary (k ≥ 2) operation f is weak near unanimity (WNU) if it is idem-

potent and satisfies the identities f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = · · · =
f(x, x, . . . , x, y).

• A k-ary (k ≥ 2) operation f is cyclic if f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1).
• A k-ary (k ≥ 2) operation f is symmetric if f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))

for each permutation π on {1, . . . , k}.
• A k-ary (k ≥ 3) operation f is edge if

f(y, y, x, x, . . . , x) = f(y, x, y, x, x, . . . , x) = x

and, for all 4 ≤ i ≤ k,

f(x, . . . , x, y, x, . . . , x) = x where y is in position i.

An identity t1 = t2 is said to be linear if both t1 and t2 involve at most one occurrence
of an operation symbol (e.g., f(x, y) = g(x), or h(x, y, x) = x). An identity t1 = t2 is
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said to be balanced1 if the set of variables occurring in t1 and t2 are the same. For
example, both f(x, x, y) = g(y, y, x) and f(x, x, x) = x are balanced identities. A
set Σ of identities is linear if it only contains linear identities, idempotent if for each
operation symbol, f , the identity f(x, x, ..., x) = x is in Σ and balanced if all of the
identities in Σ are balanced.

Note that the identities defining WNU, symmetric and cyclic operations above
are linear and balanced. The identities defining edge operations, on the other hand,
are linear but not balanced.

We now give some examples of results about the VCSP that are described using
identities. We start with the notion of rigid cores [33].

Definition 9. A valued constraint language Γ is a rigid core if the only unary
operation in supp(Γ) is the identity operation.

It is known that with respect to tractability it suffices to consider valued constraint
languages that are rigid cores. Indeed, for every valued constraint language Γ which is
not a rigid core there is another language Γ′ which is a rigid core2 and with the property
that VCSP(Γ) is polynomial-time equivalent to VCSP(Γ′) [33]. It is also known that
Γ is a rigid core if and only if all operations from supp(Γ) are idempotent [33].

The “algebraic dichotomy conjecture” [11], a refinement of the dichotomy con-
jecture for the CSP [20], can be re-stated as follows [11, 37]: for a rigid core crisp
language Γ, CSP(Γ) is tractable if Γ admits a WNU polymorphism of some arity,
and NP-complete otherwise. Equivalently, CSP(Γ) is tractable if Γ admits a cyclic
polymorphism of some arity, and is NP-complete otherwise.

The “bounded-width theorem” for the CSP can be restated as follows [35, 4, 9, 13]:
for a rigid core crisp language Γ, the problem CSP(Γ) has bounded width (and thus can
be solved using local consistency methods) if and only if Γ has WNU polymorphisms
of all arities.

There is an algorithmic technique for the CSP that generalises the idea of using
Gaussian elimination to solve simultaneous linear equations. The most general version
of this approach is based on the property of having a polynomial-sized representation
for the solution set of any instance [10, 26]. This algorithm is called the “few subpowers”
algorithm (because it is related to a certain algebraic property to do with the number
of subalgebras in powers of an algebra). Crisp languages where this algorithm is
guaranteed to find a solution (or show that none exists) were captured in [26]: for a
crisp language Γ, the problems CSP(Γ) are solvable using the few subpowers algorithm
if Γ admits an edge polymorphism of some arity. In fact the converse to this theorem
is true in the following sense: the absence of edge polymorphisms of Γ implies that
the presence of small enough representations is not guaranteed [26].

For finite-valued constraint languages, the following complexity classification has
been obtained [51]: for a finite-valued constraint language Γ, VCSP(Γ) is tractable if
supp(Γ) contains a binary symmetric operation, and is NP-complete otherwise.

The power of the basic linear programming relaxation has been characterised as
follows [31]: for a valued constraint language Γ, the problem VCSP(Γ) is solvable
optimally by the basic linear programming relaxation if and only if supp(Γ) contains
symmetric operations of all arities.

The power of constant-level Sherali-Adams linear programming relaxations has
been characterised as follows [52]: for a valued constraint language Γ, the problem

1 This notion of balanced identity is not related to the balanced digraphs introduced in Section 5.
2 Γ′ is the restriction of Γ to a subset D′ of the domain of Γ together with the unary relations ud

for every d ∈ D′, where ud is defined by ud(d) = 0 and ud(x) = ∞ if x 6= d.
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VCSP(Γ) is solvable optimally by a constant-level of the Sherali-Adams linear pro-
gramming relaxation [46] if and only if the problem VCSP(Γ) is solvable optimally
by the third level of the Sherali-Adams linear programming relaxation if and only if
supp(Γ) contains WNU operations of all arities.

3. Reduction to a Single Combined Cost Function. Throughout this paper
we will make use of the following simple but useful observation about arbitrary finite
languages.

Proposition 10. For any valued constraint language Γ such that |Γ| is finite,
there is a single cost function φΓ over the same domain such that:

1. Pol(Γ) = Pol({φΓ});
2. fPol(Γ) = fPol({φΓ});
3. VCSP(Γ) and VCSP({φΓ}) are polynomial-time equivalent.

Proof. Let Γ consist of q cost functions, φ1, . . . , φq, with arities m1, . . . ,mq, re-
spectively. Without loss of generality, we assume that none of the φi are the con-
stant function ∞. Let m =

∑q
i=1mi. Define the cost function φΓ, with arity

m, by setting φΓ(x1, . . . , xm) = φ1(x1, . . . , xm1
) + φ2(xm1+1, . . . , xm1+m2

) + . . . +
φq(xm−mq+1, . . . , xm), and set Γc = {φΓ}.

Since the operations in Pol(Γ) are applied co-ordinatewise, it follows easily from
Definition 6 that Pol(Γ) = Pol({φΓ}), and since inequalities are preserved by addition,
it follows easily from Definition 7 that fPol(Γ) = fPol({φΓ}).

For any instance I of VCSP(Γ) we can obtain an equivalent instance I ′ of
VCSP({φΓ}) by simply adding irrelevant variables to the scope of each constraint
φi(x), which are constrained by the elements of Γ \ {φi}, and then minimising over
these. The assignments that minimise the objective function of I can then be obtained
by taking the assignments that minimise the objective function of I ′ and restricting
them to the variables of I.

Conversely, any instance I ′ of VCSP({φΓ}) can clearly be expressed as an instance
of VCSP(Γ) since each constraint in I ′ can be expressed as a sum of constraints whose
constraint cost functions are contained in Γ.

4. Reduction by the Dual Encoding. In this section we will describe the
dual encoding introduced in [19] for the CSP and later extended in [36] to the VCSP.

4.1. From a language Γ to a binary language Γd.

Definition 11. Let Γ be any valued constraint language over D, such that |Γ| is
finite, and let φΓ be the corresponding single cost function, of arity m, as defined in
Proposition 10.

The dual of Γ, denoted Γd, is the binary valued constraint language with domain
D′ = Feas(φΓ) ⊆ Dm, defined by

Γd = {φ′Γ} ∪
⋃

i,j∈{1,...,m}

{matchi,j} ,

where φ′Γ : D′ → Q is the unary finite-valued cost function on D′ defined by φ′Γ(x) =
φΓ(x1, . . . , xm) for every x = (x1, . . . , xm) ∈ D′, and each matchi,j : D′ ×D′ → Q is
the binary relation on D′ defined by

matchi,j(x,y) =

{
0 if x[i] = y[j]

∞ otherwise.
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The language Γd contains a single unary cost function, which returns only finite values,
together with m2 binary relations and hence is a binary valued constraint language.

Example 12. Let Γ = {φeq}, where φeq is the equality relation on D, i.e., φeq :
D ×D → Q is defined by φeq(x, y) = 0 if x = y and φeq(x, y) =∞ if x 6= y.

Then D′ = Feas(φeq) = {(a, a) | a ∈ D} and Γd consists of a single unary
finite-valued cost function φ′eq, together with the following four binary relations
match1,1,match1,2,match2,1, and match2,2.

Moreover, φ′eq(x) = 0 for every x ∈ D′, and hence is trivial. All four of the other re-
lations are in fact equal to the equality relation on D′ defined by {((a, a), (a, a)) |(a, a) ∈
D′}. Thus, the dual of the equality relation on D consists of a trivial unary relation,
together with the equality relation on D′, where |D| = |D′|.

Example 13. Let Γ = {φsum}, where φsum : {0, 1}3 → Q is defined as follows:

φsum(x, y, z) =

{
x+ 2y + 3z if x+ y + z = 1

∞ otherwise.

Then D′ = Feas(φsum) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and Γd consists of a single unary
finite-valued cost function φ′sum, together with nine binary relations match1,1,match1,2,
match1,3, . . . ,match3,3.

If we set a = (1, 0, 0),b = (0, 1, 0), c = (0, 0, 1), then we have φ′sum(a) =
1;φ′sum(b) = 2 and φ′sum(c) = 3. Also

match1,1(x,y) =

{
0 if (x,y) ∈ {(a,a), (b,b), (b, c), (c,b), (c, c)}
∞ otherwise

match1,2(x,y) =

{
0 if (x,y) ∈ {(a,b), (b,a), (b, c), (c,a), (c, c)}
∞ otherwise

and so on.

4.2. The dual encoding using Γd. We will need the following notation: for
any xi ∈ Xm with xi = (xi1 , . . . , xim), we write vars(xi) for the set {xi1 , . . . , xim}.

Definition 14. Let Γ be any valued constraint language over D, such that |Γ|
is finite, and let φΓ be the corresponding single cost function, of arity m, as defined
in Proposition 10. Let I be an arbitrary instance of VCSP({φΓ}) with variables
X = {x1, . . . , xn}, domain D, and constraints φΓ(x1), . . . , φΓ(xq), where xi ∈ Xm for
all 1 ≤ i ≤ q.

The dual of I, denoted Id, is defined to be the following instance of VCSP(Γd):
• The variables V ′ = {x′1, . . . , x′q} of Id are the constraints of I.
• The domain of Id is D′ = Feas(φΓ) ⊆ Dm.
• For every 1 ≤ i ≤ q, there is a unary constraint φ′Γ(x′i), where φ′Γ : D′ → Q is

as defined in Definition 11.
• If the scopes of two constraints of I, say φΓ(xi) and φΓ(xj), overlap, then

there are binary constraints between x′i and x′j enforcing equality at the
overlapping coordinate positions. More specifically, if xi = (xi1 , . . . , xim),
xj = (xj1 , . . . , xjm), and vars(xi) ∩ vars(xj) 6= ∅ then there is a binary
constraint matchk,l(x

′
i, x
′
j) for every k, l ∈ {1, . . . ,m} with ik = jl.

The dual encoding provides a way to reduce instances of VCSP(Γ) to instances of
VCSP(Γd). Our next result extends this observation to obtain the reverse reduction
as well.
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Proposition 15. For any valued constraint language Γ such that |Γ| is finite, if
Γd is the dual of Γ, then VCSP(Γ) and VCSP(Γd) are polynomial-time equivalent.

Proof. By Proposition 10 we may assume that Γ consists of a single cost function
φΓ : Dm → Q. Moreover, since D is finite, and m is fixed, we may assume that this
cost function is given extensionally as a table of values.

Hence, for any instance I of VCSP(Γ) we can construct in polynomial time the
dual instance Id in VCSP(Γd), as defined above (Definition 14). It is straightforward
to show that the assignments that minimise the objective function of Id correspond
precisely to the assignments that minimise the objective function of I, and hence we
have a polynomial-time reduction from VCSP(Γ) to VCSP(Γd).

For the other direction, given any instance I ′ in VCSP(Γd) we now indicate how
to construct a corresponding instance I in VCSP(Γ).

For each variable x′i of I ′ we introduce a fresh set of m variables for I. If there is a
unary constraint φ′Γ(x′i) ∈ I ′, then we introduce the constraint φΓ on the corresponding
variables of I. If there is no unary constraint on x′i, then we introduce the constraint
Feas(φΓ) on the corresponding variables of I to code the fact that the domain of x′i
is D′. If there is a binary constraint matchk,l(x

′
i, x
′
j) in I ′, then we merge the kth

and lth variables in the corresponding sets of variables in I. This construction can be
carried out in polynomial time.

We have constructed an instance I in VCSP({φΓ,Feas(φΓ)} such that assignments
minimising the objective function of I correspond precisely to assignments minimising
the objective function of I ′. Hence we have established a polynomial-time reduction
from VCSP(Γd) to VCSP(Γ ∪ {Feas(φΓ)}).

However, it follows from the proof of [16, Theorem 4.3] that VCSP(Γ∪{Feas(φΓ)})
can be reduced to VCSP(Γ) in polynomial time.

4.3. Preservation of algebraic properties. Our next result shows that the
polymorphisms of Γd are very closely related to the polymorphisms of Γ.

Theorem 16. Let Γ be a valued constraint language such that |Γ| is finite, and let
Γd be the dual of Γ. There is a one-to-one correspondence between the polymorphisms
of Γ and the polymorphisms of Γd, defined as follows. For any f ∈ Pol(k)(Γ) the

corresponding operation fd ∈ Pol(k)(Γd) is defined by fd(x1, . . . ,xk) = f(x1, . . . ,xk)
for all xi in the domain of Γd.

Proof. By Proposition 10 we may assume that Γ consists of a single cost function
φΓ : Dm → Q, and hence that the domain D′ of Γd is a subset of Dm.

First, consider any f : Dk → D ∈ Pol(k)(Γ), and the corresponding fd : (D′)k →
D′ given by fd(x1, . . . ,xk) = f(x1, . . . ,xk) for all xi ∈ D′. Since f is a polymorphism
of φΓ, it is also a polymorphism of the unary cost function φ′Γ in Γd. It is straightforward
to check that fd is also a polymorphism of all binary matchi,j relations in Γd (since it
will return the same label at all positions where its arguments have the same label).

Hence fd ∈ Pol(k)(Γd).

Now consider any fd : (D′)k → D′ ∈ Pol(k)(Γd). Since fd is a polymorphism of
matchi,i it must return an element of D′ whose label in position i is a function, gi,
of the labels in position i of its arguments. Moreover, since fd is a polymorphism
of matchi,j , the functions gi and gj must return the same results for all possible
arguments from D′. Hence, there is a single function g : Dk → D such that the result
returned by fd(x1, . . . ,xk) is equal to g(x1, . . . ,xk). Now, since fd must return an
element of D′, it follows that g must be a polymorphism of φΓ, which gives the result.
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The individual cost functions in Γd often have other polymorphisms, that are not of
the form indicated in Theorem 16, but the only polymorphisms that are shared by
every cost function in Γd are those that correspond to polymorphisms of Γ in this way,
as the next example illustrates.

Example 17. Recall the language Γ = {φsum}, defined in Example 13.
The cost function φsum has no polymorphisms, except for the projection operations

on D = {0, 1}.
However, the unary finite-valued cost function φ′sum, has every operation on

D′ = {a,b, c} as a polymorphism.
The binary relation match1,1 has many operations on D′ as polymorphisms, in-

cluding all of the constant operations.
The binary relation match1,2 also has many operations on D′ as polymorphisms,

including the ternary majority operation g defined by

g(x,y, z) =


x if x = y or x = z

y if y = z

c otherwise

but not including the constant operation returning the label a, or the constant operation
returning the label b.

Continuing in this way it can be shown that the only operations that are polymor-
phisms of every cost function in Γd are the projection operations on D′.

One simple consequence of Theorem 16 is that the polymorphisms of Γ and the
polymorphisms of Γd satisfy exactly the same identities.

Corollary 18. Let Γ be a valued constraint language such that |Γ| is finite, and
let Γd be the dual of Γ. Then the operations in Pol(Γ) and the operations in Pol(Γd)
satisfy exactly the same identities.

Corollary 19. Let Γ be a valued constraint language such that |Γ| is finite, and
let Γd be the dual of Γ. Then Γ is a rigid core if and only if Γd is a rigid core.

Proof. Follows immediately from Corollary 18, since the property of being idem-
potent is specified by an identity, as discussed in Section 2.3.

Following our discussion in Section 2.3, Corollary 18 shows that the property of
being solvable using local consistency methods or by the few subpowers algorithm is
possessed by a language Γ if and only if it is also possessed by the associated binary
language Γd.

Although the polymorphisms of Γ and Γd satisfy the same identities, the polymor-
phisms of Γd do not, in general, have all the same properties as the polymorphisms
of Γ. For example, Pol(Γ) might include the binary operation min that returns the
smaller of its two arguments, according to some fixed ordering of D. This operation
has the property of being conservative, which means that the result is always equal to
one of the arguments. However, the corresponding operation mind in Pol(Γd) is not
generally conservative, since, for example, mind((a, b), (b, a)) = (a, a) for all a < b.

Our next result shows that the fractional polymorphisms of Γd are closely related
to the fractional polymorphisms of Γ.

Theorem 20. Let Γ be a valued constraint language such that |Γ| is finite, and
let Γd be the dual of Γ. There is a one-to-one correspondence between the fractional
polymorphisms of Γ and the fractional polymorphisms of Γd, defined as follows. For any
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ω : Pol(k)(Γ)→ Q≥0 ∈ fPol(k)(Γ) the corresponding function ωd : Pol(k)(Γd)→ Q≥0 ∈
fPol(k)(Γd) is defined by ωd(fd) = ω(f) for all f ∈ Pol(k)(Γ) and their corresponding

operations fd ∈ Pol(k)(Γd) (as defined in Theorem 16).

Proof. By Proposition 10 we may assume that Γ consists of a single cost function
φΓ : Dm → Q, and hence that the domain D′ of Γd is a subset of Dm.

First, consider any ω : Pol(k)(Γ) → Q≥0 ∈ fPol(k)(Γ), and the corresponding

ωd : Pol(k)(Γd) → Q≥0 given by ωd(fd) = ω(f) for all f ∈ Pol(k)(Γ). Since ω is a
fractional polymorphism of φΓ, it is easy to check that ωd satisfies the conditions in
Definition 7, and hence is a fractional polymorphism of the unary cost function φ′Γ
in Γd. Since all other cost functions in Γd are the matchi,j relations, the inequality
condition in Definition 7 holds trivially for all these cost functions, and hence ωd is a
fractional polymorphism of all cost functions in Γd.

Now consider any ωd : Pol(k)(Γd) → Q≥0 ∈ fPol(k)(Γd). Since ωd is a fractional

polymorphism of φ′Γ, the function ω : Pol(k)(Γ)→ Q≥0 that assigns the same weights

to corresponding elements of Pol(k)(Γ) satisfies the condition of Definition 7, and hence
is a fractional polymorphism of φΓ.

Following our discussion in Section 2.3, combining Corollary 18 with Theorem 20
shows that the property of being solvable using the basic linear programming relaxation
or by constant levels of the Sherali-Adams linear programming relaxations is possessed
by a language Γ if and only if it is also possessed by the associated binary language Γd.

5. Reduction by the Extended Dual Encoding. In this section we will
describe our new extension of the reduction from [14] to the VCSP.

5.1. From a language Γ to a binary language Γe. Throughout this section
it will be helpful to view a binary relation on a set as a directed graph (digraph) where
the vertices are the elements of the set, and the directed edges are the binary tuples
in the relation.

First we introduce some simple definitions relating to digraphs that we will need
in our constructions. We define a digraph as a structure G = (V G, EG) with vertices
v ∈ V G and directed edges e ∈ EG. We will sometimes write the directed edge
(a, b) ∈ EG as a→ b.

Definition 21. A digraph is an oriented path if it consists of a sequence of
vertices v0, v1, ...vk such that precisely one of (vi−1, vi), (vi, vi−1) is an edge, for each
i = 1, ..., k.

We now adapt the construction from [14] to valued constraint languages. The
construction makes use of zigzags, where a zigzag is the oriented path • → • ← • → •.
The important property we will use is that there is a surjective homomorphism from a
zigzag to a single edge but not from a single edge to a zigzag.

Definition 22. Let Γ be any valued constraint language over D, such that |Γ| is
finite, and let φΓ be the corresponding single cost function, of arity m, as defined in
Proposition 10. As before, we define D′ = Feas(φΓ) ⊆ Dm.

The extended dual of Γ, denoted Γe, is the binary valued constraint language
{DΓ, µΓ}, where DΓ is a binary relation, and µΓ is a unary cost function, as defined
below.

For S ⊆ {1, 2, . . . ,m} define QS,i to be a single edge if i ∈ S, and a zigzag if
i ∈ {1, 2, . . . ,m} \ S. Now define the oriented path QS by

QS = • → • +̇ QS,1 +̇ QS,2 +̇ · · · +̇ QS,m +̇ • → •
11



0 1

(1, 0) (0, 1)

Figure 1. The digraph DΓ built from the valued constraint language Γ described in Example 23.

where +̇ denotes the concatenation of paths.
To define the digraph DΓ, consider the binary relation D ×D′ as a digraph, and

replace each edge (d,x) with the oriented path Q{i | x[i]=d}. The resulting digraph DΓ

has vertex set V DΓ = D ∪ D′ ∪ E, where E consists of all the additional internal
vertices from the oriented paths QS.

Finally, let µΓ be the unary cost function on V DΓ such that

µΓ(v) =

{
φΓ(v) if v ∈ D′
0 otherwise.

The language Γe contains a single binary relation DΓ, together with a unary cost
function µΓ, which returns only finite values, and hence is a binary valued constraint
language with domain V DΓ .

Example 23. Consider the valued constraint language Γ over the domain D =
{0, 1} containing the single (binary) cost function

ρ(x, y) =

 2 if (x, y) = (0, 1)
1 if (x, y) = (1, 0)
∞ otherwise.

The digraph DΓ constructed from ρ is shown in Figure 1. The unary cost function built
from ρ is

µΓ(v) =

 2 if v = (0, 1)
1 if v = (1, 0)
0 otherwise

for every vertex v ∈ V DΓ .

The binary relation DΓ defined in Definition 22 is identical to the digraph defined
in [14, Definition 3.2], where it is shown that the number of vertices in DΓ is (3n +
1)|D′||D| + (1 − 2n)|D′| + |D| and the number of edges is (3n + 2)|D′||D| − 2n|D′|.
Also, as noted in [14], this construction can be performed in polynomial time.

5.2. The extended dual encoding using Γe. We now show how to reduce
instances of VCSP(Γ) to instances of VCSP(Γe) using a construction that we call the
extended dual encoding. This construction is similar in overall structure to the hidden
variable encoding described in [42], but has only one form of binary constraint.

12



Definition 24. Let Γ be any valued constraint language over D, such that |Γ|
is finite, and let φΓ be the corresponding single cost function, of arity m, as defined
in Proposition 10. Let I be an arbitrary instance of VCSP({φΓ}) with variables
X = {x1, . . . , xn}, domain D, and constraints φΓ(x1), . . . , φΓ(xq), where xi ∈ Xm for
all 1 ≤ i ≤ q.

The extended dual of I, denoted Ie, is defined to be the following instance of
VCSP(Γe):

• The variables of Ie are X ∪ {x′1, . . . , x′q} ∪ Y where {x′1, . . . , x′q} correspond
to the constraints of I and Y contains additional variables as described below.
• The domain of Ie is the same as the domain of Γe, as defined in Definition 22;

that is, D∪D′∪E, where D′ = Feas(φΓ) ⊆ Dm and E contains the additional
vertices of DΓ.
• For every 1 ≤ i ≤ q, there is a unary constraint µΓ(x′i), where µΓ is as defined

in Definition 22.
• For each constraint φΓ(xi) of I, where xi = (xi1 , . . . , xim), there is an oriented

path Q{j} from each xij to x′i (where QS for any S ⊆ {1, 2, . . . ,m} is as defined
in Definition 22). Each such path uses disjoint sets of intermediate vertices,
and each oriented edge on these paths, say (y, y′), is the scope of a constraint
in Ie with relation DΓ. The set Y is the union of all such intermediate vertices
over all such paths.

To verify that the extended dual of I gives a reduction from VCSP(Γ) to VCSP(Γe)
we introduce the following terminology.

Given any digraph G, we can define an associated undirected graph G∗ where
each directed edge of G is replaced by an undirected edge on the same pair of vertices.
We will say that a digraph G is connected if G∗ is connected, and we will define the
connected components of G to be the connected components of G∗.

For any digraph G, if G∗ contains a cycle, then the corresponding set of directed
edges in G will be called an oriented cycle. The length of an oriented cycle is defined as
being the absolute value of the difference between the number of edges oriented in one
direction around the cycle and edges oriented in the opposite direction. A connected
digraph G is said to be balanced if all of its oriented cycles have zero length [20].

Note that the digraph DΓ described in Definition 22 is balanced. Moreover, the
binary scopes of the extended dual instance Ie constructed in Definition 24 also form a
balanced digraph which we will call GIe (if GIe is not connected then we may consider
each connected component separately).

The vertices of any balanced digraph G can be organised into levels, which are non-
negative integers given by a function lvl such that for every directed edge (a, b) ∈ EG,
lvl(b) = lvl(a) + 1. The minimum level of G is 0, and the top level is called the height
of G.

Any feasible solution to Ie must assign to each vertex x in GIe a label dx chosen
from the vertices of DΓ, which must be at the same level as x.

Every variable xi ∈ X of Ie is at level 0 in GIe , and so any feasible solution to Ie
must assign to xi a label at level 0 in DΓ, that is, an element d(xi) of D. Similarly,
every variable x′j of Ie is at level m+ 2 in GIe , and so any feasible solution to Ie must
assign to x′j a label at level m+ 2 in DΓ, that is, an element d(x′j) of D′ = Feas(φΓ).

Every other variable y of Ie lies on an oriented path of the form Q{k} from some
xi to x′j , and so any feasible solution to Ie must assign to all variables on this oriented
path a label on some fixed oriented path of the form QS in DΓ. By the construction
of the oriented paths QS (see Definition 22), the labels assigned to the variables in a

13



path of the form Q{k} must lie in an oriented path of the form QS for some set S that
contains the index k [14, Observation 3.1]. By Definition 22, such a path exists in DΓ

if and only if d(xi) = d(x′j)[k].
Hence there is a one-to-one correspondence between feasible solutions to Ie and

feasible solutions to I. The cost of each feasible solution to Ie is determined by the
sum of the values given by the cost function µΓ for the labels assigned to the variables
x′i, and hence is equal to the cost of the corresponding solution to I. Hence the
extended dual encoding specified in Definition 24 provides a way to reduce instances
of VCSP(Γ) to instances of VCSP(Γe).

Our next result extends this observation to obtain the reverse reduction as well.

Theorem 25. For any valued constraint language Γ such that |Γ| is finite, if Γe is
the extended dual of Γ, then VCSP(Γ) and VCSP(Γe) are polynomial-time equivalent.

Proof. By Proposition 10 we may assume that Γ consists of a single cost function
φΓ : Dm → Q. Moreover, since D is finite, and m is fixed, we may assume that this
cost function is given extensionally as a table of values.

Hence, for any instance I of VCSP(Γ) we can construct in polynomial time the
extended dual instance Ie in VCSP(Γe) as described in Definition 24. As we have
just shown, the assignments that minimise the objective function of Ie correspond
precisely to the assignments that minimise the objective function of I, and hence we
have a polynomial-time reduction from VCSP(Γ) to VCSP(Γe).

For the other direction, given any instance I ′ in VCSP(Γe) we now indicate how
to solve it in polynomial time, or else construct in polynomial time a corresponding
instance I ′d in VCSP(Γd). We can then appeal to Proposition 15.

Consider the digraph G formed by the binary scopes of I ′. Since each connected
component can be considered separately, we may assume that G is connected. Moreover,
if G is not balanced, then I ′ has no feasible solutions, so we may assume that G is
balanced (which can be checked in polynomial time).

Any feasible solution to I ′ must assign each vertex in G a label chosen from the
vertices of DΓ, in a way which preserves the differences in levels between different
vertices. Hence if the height of G is greater than the height of DΓ, then I ′ has no
feasible solutions, so we may assume that the height of G is less than or equal to the
height of DΓ.

Now consider the case when G is balanced and of height h which is strictly less
than the height of DΓ. In this case every vertex of G must be assigned a vertex in
some induced sub-graph of DΓ which is connected and of height h. For a fixed DΓ,
there are a fixed number of such subgraphs, and they all have one of three forms:

• An oriented path which is a subpath of QS , for some set S, as defined in
Definition 22;

• A collection of such oriented paths which all share their initial vertex (and no
others);

• A collection of such oriented paths which all share their final vertex (and no
others).

In all three cases we can order the vertices of the subgraph by increasing level in DΓ,
and within that by which path they belong to (when there is more than one), and
within that by the distance along the path. With the vertices ordered in this way, the
subgraph has the property that for all edges (a, b), (c, d) with a < c we have b ≤ d, so
it admits the binary polymorphisms min and max. Together with the fact that any
unary cost function is submodular for any ordering of the domain, it follows that in
all such cases the corresponding valued constraint language is submodular, and an
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optimal solution can be found in polynomial time [15].
Finally, we consider the case when G is balanced and has the same height as

DΓ. In this case only vertices at the top level in G can be assigned labels at the top
level in DΓ. Let these vertices of G be x1, x2, . . . , xq. We will build an instance I ′d of
VCSP(Γd) beginning with these vertices as variables.

If there is a unary constraint with cost function µΓ on any of these vertices in I ′,
then we add a unary constraint with cost function φ′Γ in I ′d, where φ′Γ is the unary
cost function defined in Definition 11. (Note that any other unary constraints on other
variables in I ′ will not affect the cost of a feasible solution, because all other variables
must be assigned a label with cost 0.)

To complete the construction of I ′d we will add constraints of the form matchk,l
between pairs of vertices xi and xj where it can be shown from the structure of G
that they must be assigned labels that agree in positions k and l respectively.

To examine the structure of G, consider the connected components of the induced
subgraph of G obtained by removing all vertices at the top level and all vertices at
level 0. Each such component is a balanced digraph of height at most m which must
be assigned labels from a single oriented path in DΓ of the form QS , for some set
S ⊆ {1, ...,m}. Note that the choice of oriented path in DΓ is fixed by the assignment
to any vertex in the component.

For any such component C there will be a unique smallest set S0 ⊆ {1, ...,m}
such that any feasible solution to I ′ can assign labels to the variables in C from the
oriented path QS0 [14]. Moreover, it is shown in [14] that this set S0 can be computed
in polynomial time (in fact, in logarithmic space). For each component C this set will
be denoted3 by S0(C).

If there are edges in G from one such component C to two distinct vertices xi and
xj at the top level of G, then these vertices must be assigned the same label in any
feasible solution to I ′, due to the structure of the paths in DΓ, so we add a constraint
matchkk(xi, xj) to I ′d for k = 1, 2, . . . ,m.

Next, if there is an edge in G from some component C to a vertex xi at the top
level of G, and S0(C) contains two distinct indices k and l, then the label assigned to
xi in any feasible solution to I ′ must agree in positions k and l. Hence for each such
case we add a constraint matchkl(xi, xi) to I ′d.

Next, if there is an edge in G from some vertex y1 at level 0 to some component
C, and another edge in G from some vertex y2 at level 0 to the same component C,
then we know that any feasible solution to I ′ must assign the same label to y1 and
y2, so we say that y1 and y2 are linked. Taking the reflexive, transitive closure of this
linking relation gives an equivalence relation on the vertices in G at level 0.

Finally, if there is an edge in G from a vertex y1 at level 0 in G to a component
C1, and an edge from C1 to a vertex xi at the top level, and there is also a vertex y2

at level 0 which is equivalent to y1, and an edge from y2 to a component C2, and an
edge from C2 to a vertex xj at the top level in G, then we proceed as follows: choose
an index k ∈ S0(C1) and an index l ∈ S0(C2) and add the constraint matchkl(xi, xj)
to I ′d. This ensures that the label assigned to xi in any feasible solution to I ′ must
agree in position k with the label assigned to xj in position l.

Now we have constructed an instance I ′d in VCSP(Γd) whose constraints impose
precisely the same restrictions on feasible solutions as the binary constraints in I ′
(whose scopes are specified by the edges of G). We have also imposed unary constraints

3The notation used in [14] is Γ(C), but we use a different notation here to avoid confusion with
the valued constraint language Γ.
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on the variables of I ′d to ensure that the cost of any feasible solution is the same as
the cost of the corresponding feasible solution to I ′. Hence for any feasible solution
to I ′ there will be a feasible solution to I ′d with the same cost, and vice versa, which
gives the result.

5.3. Preservation of Algebraic Properties. We now investigate how the
polymorphisms of a valued constraint language Γ (with finitely many cost functions)
are related to the polymorphisms of the extended dual language Γe. In the proof of
Theorem 26 we will closely follow results from [14].

Theorem 26. Let Γ be any valued constraint language over D, such that |Γ| is
finite, and let Γe be the extended dual of Γ. If Γ is a rigid core, then {fe|D : fe ∈
Pol(Γe)} = Pol(Γ).

Moreover, for each f ∈ Pol(k)(Γ) there is at least one operation fe ∈ Pol(k)(Γe)
such that fe satisfies all linear balanced identities satisfied by f and

(3) fe(x1, . . . ,xk) =

{
f(x1, . . . ,xk) if each xi ∈ D′

some label not in D′ otherwise.

where D′ denotes the set Feas(φΓ) ⊆ Dm for the single cost function φΓ defined in
Proposition 10.

Proof. First, consider any fe ∈ Pol(Γe). If we apply the extended dual construction
given in Definition 24, we obtain an instance Ie of CSP(Γe) where in any feasible
solution the variables at level 0 must take values from D that together form tuples
from Feas(φΓ). Hence fe|D must be a polymorphism of Γ.

For the converse, consider any f ∈ Pol(Γ). As noted in Section 2.3, assuming
that Γ is a rigid core ensures that every polymorphism of Γ is idempotent. It is
shown in [14, Proof of Theorem 5.1] that any idempotent polymorphism f of the
relation Feas(φΓ) can be extended to a polymorphism fe of the associated digraph
DΓ described in Definition 22 that satisfies Equation 3. Since any operation defined
on the vertices of DΓ is a polymorphism of the unary finite-valued cost function µΓ

described in Definition 22, the operation fe is a polymorphism of Γe.
Moreover, it is also shown in [14, Proof of Theorem 5.1] that fe satisfies many

of the same identities as f , including all linear balanced identities that are satisfied
by the polymorphisms of the zigzag. By Lemma 5.3 of [14], all balanced identities
are satisfied by the polymorphisms of the zigzag, so fe satisfies all linear balanced
identities satisfied by f .

For the special case of unary polymorphisms, we can say more: Lemma 4.1 of [14]
states that the unary polymorphisms of a relation and of the corresponding digraph
DΓ are in one-to-one correspondence. Hence, we immediately get the following.

Lemma 27. Let Γ be a valued constraint language such that |Γ| is finite, and let
Γe be the extended dual of Γ. Γ is a rigid core if and only Γe is a rigid core.

Following our discussion in Section 2.3, Theorem 26 and Lemma 27 show that if a
rigid core crisp language Γ has the property of being solvable using local consistency
methods then so does the associated binary language Γe.

Our next result shows that for finite rigid core valued constraint languages Γ, the
fractional polymorphisms of Γe are closely related to the fractional polymorphisms of
Γ.

Theorem 28. Let Γ be a valued constraint language such that |Γ| is finite and let
Γe be the extended dual of Γ.
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If Γ is a rigid core, then for any fractional polymorphism ω of Γ there is a
corresponding fractional polymorphism ωe of Γe such that for each f ∈ supp(ω) there
is a corresponding fe ∈ supp(ωe) and vice versa. Moreover, ωe(fe) = ω(f) for all
fe ∈ supp(ωe).

Proof. By Proposition 10 we may assume that Γ consists of a single cost function
φΓ : Dm → Q, where Feas(φΓ) = D′.

Now consider any function ω : Pol(k)(Γ)→ Q≥0 ∈ fPol(k)(Γ). By Theorem 26, for

each f ∈ Pol(k)(Γ) we can choose a corresponding fe ∈ Pol(k)(Γe) satisfying Equation 3.

Hence we can define a function ωe : Pol(k)(Γe)→ Q≥0 by setting ωe(fe) = ω(f) for all

f ∈ Pol(k)(Γ) (and setting all other values of ωe to zero).
To check that ωe is a fractional polymorphism of Γe we only need to verify that it

satisfies Equation 2 in Definition 7 for each cost function in Γe.
The language Γe contains just the binary relation DΓ and the unary cost function

µΓ, as specified in Definition 22. As DΓ is a relation, and each fe is a polymorphism
of DΓ, the inequality in Definition 7 is trivially satisfied by DΓ (both sides are equal
to zero).

It remains to show that ωe is a fractional polymorphism of µΓ. When applied to
µΓ, this condition says that, for any x1, . . . , xk in the domain of Γe, we must have∑

fe∈Pol(k)(Γe)

ωe(fe)µΓ(fe(x1, ..., xk)) ≤ 1

k
(µΓ(x1) + . . .+ µΓ(xk)).

Recall that, by definition, µΓ(x) = 0 for all x 6∈ D′. By Theorem 26, it follows that
if fe(x1, . . . , xk) ∈ D′ then x1, . . . , xk ∈ D′. Thus, if not all x1, . . . , xk are in D′, the
only possible non-zero terms appear in the RHS of the inequality, and hence it is
trivially true.

On the other hand, if all x1, . . . , xk are in D′ then we have µΓ(xi) = φΓ(xi) for i =
1, 2, . . . , k. Moreover, since fe(x1, . . . , xk) = f(x1, . . . , xk), and f is a polymorphism
of Γ, we have fe(x1, . . . , xk) ∈ D′ and so µΓ(fe(x1, . . . , xk)) = φΓ(f(x1, . . . , xk)). In
this case, the inequality holds because the inequality∑

f∈Pol(k)(Γ)

ω(f)φΓ(f(x1, ..., xk)) ≤ 1

k
(φΓ(x1) + . . .+ φΓ(xk))

holds for ω, because it is a fractional polymorphism of Γ.

Following our discussion in Section 2.3, combining Theorem 26 with Theorem 28
shows that the property of being solvable using the basic linear programming relaxation
is possessed by the binary language Γe if it is possessed by Γ. Similarly, the property of
being solvable by constant levels of the Sherali-Adams linear programming relaxations
is possessed by the binary language Γe if it is possessed by Γ.

5.4. Reduction to Minimum Cost Homomorphism. We have shown that
for any valued constraint language with a finite number of cost functions of arbitrary
arity we can construct an equivalent language with a single unary cost function and a
single binary crisp cost function.

Valued constraint problems with a single binary crisp cost function, described
by a digraph H, can also be seen as graph homomorphism problems. In a graph
homomorphism problem we are given an instance specified by a digraph G and asked
whether there is a mapping from the vertices of G to the vertices of a fixed digraph H
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such that adjacent vertices in G are mapped to adjacent vertices in H. Such a mapping
is called a homomorphism from G to H.

If we have a VCSP instance I over a language containing only a single binary
relation H, then it is easy to check that the feasible solutions to I are precisely the
homomorphisms from G to H, where G is the digraph whose edges are the scopes of
the constraints in I.

If our instance I also has unary finite-valued cost functions, then it is equivalent
to the so-called Minimum Cost Homomorphism Problem [22], where the cost of a
homomorphism is defined by a unary function on each vertex of the input that assigns a
cost to each possible vertex of the target digraph. The Minimum Cost Homomorphism
Problem for a fixed digraph H is denoted MinCostHom(H). The special case where
all the unary finite-valued cost functions are chosen from some fixed set ∆ is denoted
MinCostHom(H,∆).

The problem MinCostHom(H) was studied in a series of papers, and complete
complexity classifications were given in [22] for undirected graphs, in [24] for digraphs,
and in [49] for more general structures. Partial complexity classifications for the prob-
lem MinCostHom(H,∆) were obtained in [50, 53, 54]. One can see that MinCostHom
is an intermediate problem between CSP and VCSP, as there is an optimisation aspect,
but it is limited in the sense that it is controlled by separate unary cost functions,
without explicit interactions of variables.

By Theorem 25 and Lemma 27 we obtain the following corollary, which shows
that a very restricted case of binary MinCostHom can express all valued constraint
problems.

Corollary 29. Let Γ be a valued constraint language such that |Γ| is finite and Γ
is a rigid core. There is a balanced digraph DΓ which is a rigid core and a finite-valued
unary cost function µΓ such that problems VCSP(Γ) and MinCostHom(DΓ, {µΓ}) are
polynomial-time equivalent.

An interesting problem is to characterise which digraph homomorphism problems
can capture NP-hard VCSPs. For the restricted case of ordinary CSPs the following
result is known.

Theorem 30 ([20]). Every CSP is polynomial-time equivalent to a balanced di-
graph homomorphism problem with only 5 levels.

Recall that an n-level digraph has height n− 1. We remark that [20] also shows that
the digraph homomorphism problem for a balanced digraph with 4 levels is solvable in
polynomial time.

To illustrate how the digraph homomorphism problem can capture NP-hard VCSPs
we give an example of a 5-level digraph and unary weighted relation which can capture
Max-Cut, a canonical NP-hard VCSP.

Example 31. Consider the digraph H shown Figure 2. Let the unary weighted
relation µ(v) be

µ(v) =

{
1 if v = b or v = c
0 otherwise

for every vertex v ∈ V H.
Now consider the instance of MinCostHom(H, {µ}) with the source digraph G

shown in Figure 3 and the unary cost function µ applied to all vertices of G. It
is straightforward to check that the homomorphism that maps x → 0 and y → 1
has cost 0, as does the homomorphism that maps x → 1 and y → 0. However
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Figure 2. The target digraph H of Example 31.

x y

Figure 3. The source digraph G of Example 31.

the homomorphism that maps x → 0 and y → 0 has cost 2, and likewise for the
homomorphism that maps x→ 1 and y → 1. If we consider these homomorphisms as
the possible assignments of labels to the variables we have a VCSP instance I with
ΦI(0, 0) = ΦI(1, 1) > ΦI(0, 1) = ΦI(1, 0), and thus we capture Max-Cut.

Note that following the construction in Definition 22 for any binary finite-valued
cost function φΓ we obtain a digraph DΓ which is quite similar to H, except for an
additional oriented path from 0 to c and another from 1 to b, each consisting of a
single edge followed by two zigzags and another single edge. However no path in G
can possibly map onto these oriented paths, so they are omitted from H to simplify the
diagram.

6. Conclusion. Transforming a constraint satisfaction problem to a binary prob-
lem has a number of advantages and disadvantages which have been investigated by
many authors [42, 20, 2, 48, 1, 14]. Such a transformation changes many aspects of
the problem, such as what inferences can be derived by various kinds of propagation.
One might expect that achieving the simplicity of a binary representation would incur
a corresponding increase in the sophistication of the required solving algorithms.

However, we have shown here that the well-known dual encoding of the VCSP
converts any finite language, Γ, of arbitrary arity to a binary language, Γd, of a very
restricted kind, such that there is a bijection between the polymorphisms of Γ and
the polymorphisms of Γd, and the corresponding polymorphisms satisfy exactly the
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same identities. Hence we have shown that the algebraic analysis of valued constraint
languages can focus on a very restricted class of binary languages (at least in the
case of finite languages). Moreover, many important algorithmic properties, such
as the ability to solve problems using a bounded level of consistency, or by a linear
programming relaxation, are also preserved by the dual encoding.

Furthermore, we have adapted the recently obtained reduction for CSPs [14]
to VCSPs and thus obtained a polynomial-time equivalence between VCSPs and
MinCostHom problems. In order to study families of valued constraint languages
with finitely many cost functions defined by fractional polymorphisms satisfying linear
balanced identities, we now know that we need only study MinCostHom problems.
This is important since, for example, to prove the algebraic dichotomy conjecture for
core crisp languages we only need to study polymorphisms satisfying linear balanced
identities [6].

We remark that the CSP reduction from [14] is shown to preserve a slightly
larger class of identities than that of linear balanced identities, and works not only
in polynomial time but actually in logarithmic space. We believe that our extension
of this reduction can also be adapted to derive similar conclusions, but we leave this
as an open problem. Our contribution is to show that the CSP reduction from [14]
can be extended to the more general setting of the VCSP, and that the extended
reduction preserves all linear balanced identities. Finally we remark that, even in the
more general setting of the VCSP, using the dual construction as a stepping stone
considerably simplifies the proof.
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[14] J. Buĺın, D. Delic, M. Jackson, and T. Niven, A finer reduction of constraint problems to
digraphs, Logical Methods in Computer Science, 11 (2015).

[15] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, A Maximal Tractable Class of Soft
Constraints, Journal of Artificial Intelligence Research, 22 (2004), pp. 1–22.

[16] D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, and S. Živný, An algebraic theory of
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