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Abstract. The complexity of any optimisation problem depends criti-
cally on the form of the objective function. Valued constraint satisfac-
tion problems are discrete optimisation problems where the function to
be minimised is given as a sum of cost functions defined on specified
subsets of variables. These cost functions are chosen from some fixed set
of available cost functions, known as a valued constraint language. We
show in this paper that when the costs are non-negative rational numbers
or infinite, then the complexity of a valued constraint problem is deter-
mined by certain algebraic properties of this valued constraint language,
which we call weighted polymorphisms. We define a Galois connection be-
tween valued constraint languages and sets of weighted polymorphisms
and show how the closed sets of this Galois connection can be charac-
terised. These results provide a new approach in the search for tractable
valued constraint languages.

1 Introduction

Classical constraint satisfaction is concerned with the feasibility of satisfying a
collection of constraints. The extension of this framework to include optimisation
is now also being investigated and a theory of so-called soft constraints is be-
ing developed. Several alternative mathematical frameworks for soft constraints
have been proposed in the literature, including the very general frameworks of
‘semi-ring based constraints’ and ‘valued constraints’ [6]. For simplicity, we shall
adopt the valued constraint framework here as it is sufficiently powerful to model
a wide range of optimisation problems [17]. In this framework, every tuple of val-
ues allowed by a constraint has an associated cost, and the goal is to find an
assignment with minimal total cost. The general constraint satisfaction prob-
lem (CSP) is NP-hard, and so is unlikely to have a polynomial-time algorithm.
However, there has been much success in finding tractable fragments of the CSP
by restricting the types of relation allowed in the constraints. A set of allowed
relations has been called a constraint language [26]. For some constraint lan-
guages the associated constraint satisfaction problems with constraints chosen
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from that language are solvable in polynomial-time, whilst for other constraint
languages this class of problems is NP-hard [27, 26, 23]; these are referred to as
tractable languages and NP-hard languages, respectively. Dichotomy theorems,
which classify each possible constraint language as either tractable or NP-hard,
have been established for languages over 2-element domains [32], 3-element do-
mains [10], for conservative languages [13, 4], and maximal languages [11, 9].

The general valued constraint satisfaction problem (VCSP) is also NP-hard,
but again we can try to identify tractable fragments by restricting the types of
allowed cost functions that can be used to define the valued constraints. A set of
allowed cost functions has been called a valued constraint language [17]. Much
less is known about the complexity of the optimisation problems associated with
different valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [17]. This result generalises a number of earlier results
for particular optimisation problems such as Max-Sat [20] and Min-Ones [21].
One class of tractable cost functions that has been extensively studied is the
class of submodular cost functions [21, 17, 28, 22, 29, 34].

In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [27, 26]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. In other words, it has been shown to be enough
to study just those constraint languages which are characterised by having a
given set of polymorphisms. Using the algebraic approach, considerable progress
has now been made towards a complete characterisation of the complexity of
constraint languages over finite domains of arbitrary size [23, 12, 3, 1, 2, 5].

In the VCSP framework it has been shown that a more general algebraic
property known as a multimorphism can be used to analyse the complexity of
certain valued constraint languages [14, 17]. Multimorphisms have been used to
show that there are precisely eight maximal tractable valued constraint languages
over a 2-element domain with real-valued or infinite costs, and each of these is
characterised by having a particular form of multimorphism [17]. Furthermore,
it was shown that many known maximal tractable valued constraint languages
over larger finite domains are precisely characterised by a single multimorphism
and that key NP-hard examples have (essentially) no multimorphisms [17, 16].

Cohen et al. [15] later generalised the notion of a multimorphism slightly, to
that of a fractional polymorphism. They showed that fractional polymorphisms,
together with the polymorphisms of the underlying feasibility relations, char-
acterise the complexity of any valued constraint language with non-negative
rational or infinite costs over any finite domain [15].

Contributions In this paper, we extend the results of [15] by introducing a
new algebraic construct which we call a weighted polymorphism. We are able to
show, using the ideas of [15], that the weighted polymorphisms of a valued con-
straint language are sufficient on their own to determine the complexity of that
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language. In addition, we are now able to define a Galois connection between val-
ued constraint languages and sets of weighted polymorphisms, and characterise
the closed sets on both sides.

The Galois connection we establish here can be applied to the search for
tractable valued constraint languages in a very similar way to the application of
polymorphisms to the search for tractable constraint languages in the classical
CSP. First, we need only consider valued constraint languages characterised by
weighted polymorphisms. This greatly simplifies the search for a characterisa-
tion of all tractable valued constraint languages. Second, any tractable valued
constraint language with finite rational or infinite costs must have a non-trivial
weighted polymorphism. Hence the results of this paper provide a powerful new
set of tools in the search for a polynomial-time/NP-hard dichotomy for finite-
domain optimisation problems defined by valued constraints. In the conclusion
section we will mention recent results obtained using the Galois connection es-
tablished in this paper.

Despite the fact that the proof of the main result uses similar techniques
to [15], namely linear programming and Farkas Lemma, the main contribution
of this paper is significantly different: [15] has shown that fractional polymor-
phisms capture the complexity of valued constraint languages. Here, we prove
the same for weighted polymorphisms, but also establish a 1-to-1 correspon-
dence between valued constraint languages and particular sets of weighted poly-
morphisms, which we call weighted clones. This is crucial for using weighted
polymorphisms in searching for new tractable valued constraint languages. Our
results show that a linear program can be set up not only to answer the question
of whether a given cost function is expressible over a valued constraint language,
but also for the question of whether a given weighted operation belongs to a
weighted clone. (We do not elaborate on this application in much detail, but it
follows straightforwardly from the proofs of the main results.)

The structure of the paper is as follows. In Section 2 we describe the Val-
ued Constraint Satisfaction Problem and define the notion of expressibility. In
Sections 3 and 4 we introduce weighted relational clones (valued constraint lan-
guages closed under a certain notion of expressibility) and weighted clones re-
spectively, and state the main result: weighted relational clones are in 1-to-1
correspondence with weighted clones. In Section 5 we give a proof of the main
new theorem establishing the Galois connection. Finally, in Section 6, we men-
tion some recent results based on the results of this paper.

2 Valued Constraint Satisfaction Problems

We shall denote by Q+ the set of all non-negative rational numbers.4 We define
Q+ = Q+ ∪ {∞} with the standard addition operation extended so that for all
a ∈ Q+, a+∞ =∞ and a∞ =∞. Members of Q+ are called costs.

4 To avoid computational problems, we work with rational numbers rather than real
numbers. We could work with the algebraic reals, but the rationals are sufficiently
general to encode many standard optimisation problems; see, for example [17].
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A function φ from Dr to Q+ will be called a cost function on D of arity r.

Definition 1. An instance of the valued constraint satisfaction problem,
(VCSP), is a triple P = 〈V,D,C〉 where: V is a finite set of variables; D is
a set of possible values; C is a multi-set of constraints. Each element of C is
a pair c = 〈σ, φ〉 where σ is a tuple of variables called the scope of c, and φ is
a |σ|-ary cost function on D taking values in Q+. An assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP (s), is given
by the sum of the costs for the restrictions of s onto each constraint scope, that
is,

CostP (s) def=
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

A valued constraint language is any set Γ of cost functions from some fixed
set D. We define VCSP(Γ ) to be the set of all VCSP instances in which all cost
functions belong to Γ . A valued constraint language Γ is called tractable if,
for every finite subset Γf ⊆ Γ , there exists an algorithm solving any instance
P ∈ VCSP(Γf ) in polynomial time. Conversely, Γ is called NP-hard if there is
some finite subset Γf ⊆ Γ for which VCSP(Γf ) is NP-hard.

We now define a closure operator on cost functions, which adds to a set of
cost functions all other cost functions which can be expressed using that set, in
the sense defined below.

Definition 2. For any VCSP instance P = 〈V,D,C〉, and any list L = 〈v1, . . . , vr〉
of variables of P, the projection of P onto L, denoted πL(P), is the r-ary cost
function defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ ) and a list L of variables of P such
that πL(P) = φ. We define Express(Γ ) to be the expressive power of Γ ; that
is, the set of all cost functions expressible over Γ .

Note that the list of variables L may contain repeated entries, and we define the
minimum over an empty set of costs to be ∞.

Example 1. Let P be the VCSP instance with a single variable v and no con-
straints, and let L = 〈v, v〉. Then, by Definition 2,

πL(P)(x, y) =
{

0 if x = y
∞ otherwise .

Hence for any valued constraint language Γ , over any set D, Express(Γ ) contains
this binary cost function, which will be called the equality cost function.
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The next result shows that expressibility preserves tractability.

Theorem 1 ([15]). A valued constraint language Γ is tractable if and only if
Express(Γ ) is tractable; similarly, Γ is NP-hard if and only if Express(Γ ) is
NP-hard.

This result shows that, when trying to identify tractable valued constraint lan-
guages, it is sufficient to consider only languages of the form Express(Γ ). In the
following sections, we will show that such languages can be characterised using
certain algebraic properties.

3 Weighted Relational Clones

Definition 3. We denote by ΦD the set of cost functions on D taking values
in Q+ and by Φ(r)

D the r-ary cost functions in ΦD.

Definition 4. Any cost function φ : Dr → Q+ has an associated cost function
which takes only the values 0 and∞, known as its feasibility relation, denoted
Feas(φ), which is defined as follows:

Feas(φ)(x1, . . . , xr)
def=

{
0 if φ(x1, . . . , xr) <∞
∞ otherwise .

We now define a closure operator on cost functions with rational costs, which
adds to a set of cost functions all other cost functions which can be obtained
from that set by a certain affine transformation.

Definition 5. We say φ, φ′ ∈ ΦD are cost-equivalent, denoted by φ ∼ φ′, if
there exist α, β ∈ Q with α > 0 such that φ = αφ′ + β . We denote by Γ∼ the
smallest set of cost functions containing Γ which is closed under cost-equivalence.

The next result shows that adding feasibility relations or cost-equivalent cost
functions does not increase the complexity of Γ .

Theorem 2 ([15]). For any valued constraint language Γ , we have:

1. Γ ∪ Feas(Γ ) is tractable if and only if Γ is tractable, and Γ ∪ Feas(Γ ) is
NP-hard if and only if Γ is NP-hard.

2. Γ∼ is tractable if and only if Γ is tractable, and Γ∼ is NP-hard if and only
if Γ is NP-hard.

The algebraic approach to complexity for the classical CSP uses standard
algebraic notions of polymorphisms, clones and relational clones [12, 7, 24].

Here we introduce an algebraic theory for valued constraints based on the no-
tions of weighted polymorphisms, weighted clones and weighted relational clones,
defined below.
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Definition 6. We say a set Γ ⊆ ΦD is a weighted relational clone if it con-
tains the equality cost function and is closed under cost-equivalence and feasibil-
ity; rearrangement of arguments; addition of cost functions; and minimisation
over arbitrary arguments. For each Γ ⊆ ΦD we define wRelClone(Γ ) to be the
smallest weighted relational clone containing Γ .

It is a straightforward consequence of Definitions 2 and 6 that, for any valued
constraint language Γ ⊆ Φ, the set of cost functions that are cost equivalent to
the expressive power of Γ , together with all associated feasibility relations, is
given by the smallest weighted relational clone containing Γ , as the next result
indicates.

Proposition 1. For any Γ ⊆ ΦD, Express(Γ ∪ Feas(Γ ))∼ = wRelClone(Γ ).

Hence, by Theorem 1 and Theorem 2, the search for tractable valued constraint
languages taking values in Q+ corresponds to a search for suitable weighted
relational clones. As has been done in the crisp case [12], we will now proceed
to establish an alternative characterisation for weighted relational clones which
facilitates this search.

4 Weighted Clones

For any finite set D, a function f : Dk → D is called a k-ary operation on D.

Definition 7. We denote by OD the set of all finitary operations on D and by
O(k)
D the k-ary operations in OD.

Definition 8. The k-ary projections on D are the operations

e
(k)
i : Dk → D , (a1, . . . , ak) 7→ ai .

Definition 9. We define a k-ary weighted operation on a set D to be a
partial function ω : O(k)

D → Q such that ω(f) < 0 only if f is a projection and∑
f∈dom(ω)

ω(f) = 0 .

The domain of ω, denoted dom(ω), is the subset of O(k)
D on which ω is defined.

We denote by ar(ω) = k the arity of ω.
We denote by WD the finitary weighted operations on D and by W(k)

D the
k-ary weighted operations on D.

Definition 10. We say that two k-ary weighted operations ω, µ ∈ W(k)
D are

weight-equivalent if dom(ω) = dom(µ) and there exists some fixed positive
rational c, such that ω(f) = cµ(f), for all f ∈ dom(ω).
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Definition 11. For any ω1, ω2 ∈W(k)
D , we define the sum of ω1 and ω2, denoted

ω1+ω2, to be the k-ary weighted operation ω with dom(ω) = dom(ω1)∪dom(ω2)
and

ω(f) =

ω1(f) + ω2(f) f ∈ dom(ω1) ∩ dom(ω2)
ω1(f) f ∈ dom(ω1)\dom(ω2)
ω2(f) f ∈ dom(ω2)\dom(ω1)

. (1)

Definition 12. Let f ∈ O(k)
D and g1, . . . , gk ∈ O(l)

D . The superposition of f
and g1, . . . , gk is the l-ary operation f [g1, . . . , gk] : Dl → D , (x1, . . . , xl) 7→
f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)) .

Definition 13. For any ω ∈W(k)
D and any g1, g2, . . . , gk ∈ O(l)

D , we define the
translation of ω by g1, . . . , gk, denoted ω[g1, . . . , gk], to be the partial function
ω[g1, . . . , gk] from O(l)

D to Q defined by

ω[g1, . . . , gk](f) def=
∑

f ′∈dom(ω)
f=f ′[g1,...,gk]

ω(f ′) . (2)

The domain of ω[g1, . . . , gk] is the set of l-ary operations {f ′[g1, g2, . . . , gk] | f ′ ∈
dom(ω)} .

Example 2. Let ω be the 4-ary weighted operation on D given by

ω(f) =
{
−1 if f is a projection
+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)} ,

and let
〈g1, g2, g3, g4〉 =

〈
e
(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉
.

Then, by Definition 13 we have

ω[g1, g2, g3, g4](f) =

−1 if f is a projection
+1 if f ∈ {max(x1, x2, x3),min(x1, x2),min(x3,max(x1, x2))}
0 if f = max(x1, x2)

.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 9 and hence is a
weighted operation.

Example 3. Let ω be the same as in Example 2 but now consider

〈g′1, g′2, g′3, g′4〉 =
〈
e
(4)
1 ,max(x2, x3),min(x2, x3), e(4)4

〉
.

By Definition 13 we have

ω[g′1, g
′
2, g
′
3, g
′
4](f) =

−1 if f ∈ {e(4)1 ,max(x2, x3),min(x2, x3), e(4)4 }

+1 if f ∈
{

max(x1, x2, x3),min(x1,max(x2, x3)),
max(min(x2, x3), x4),min(x2, x3, x4)

}
.

Note that ω[g′1, g
′
2, g
′
3, g
′
4] does not satisfy the conditions of Definition 9 because,

for example, ω[g′1, g
′
2, g
′
3, g
′
4](f) < 0 when f = max(x2, x3), which is not a pro-

jection. Hence ω[g′1, g
′
2, g
′
3, g
′
4] is not a weighted operation.
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Definition 14. If the result of a translation is a weighted operation, then that
translation will be called a proper translation.

Remark 1. For any ω ∈W(k)
D , if g1, . . . , gk are projections, then it can be shown

that the function ω[g1, . . . , gk] satisfies the conditions of Definition 9, and hence
is a weighted operation. This means that a translation by any list of projections
is always a proper translation.

We are now ready to define weighted clones.

Definition 15. Let C be a clone of operations on D. We say a set W ⊆WD is
a weighted clone with support C if it contains all zero-valued weighted oper-
ations whose domains are subsets of C and is closed under weight-equivalence,
addition, and proper translation by operations from C.

For each W ⊆WD we define wClone(W ) to be the smallest weighted clone
containing W .

Remark 2. The support of wClone(W ) is the clone generated by the domains of
the elements of W . That is, the support of wClone(W ) is Clone(∪ω∈W dom(ω)).

Example 4. For any clone of operations, C, there exists a unique weighted clone
which consists of all weighted operations assigning weight 0 to each subset of C.

Definition 16. Let φ ∈ Φ(r)
D and let ω ∈W(k)

D . We say that ω is a weighted
polymorphism of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) < ∞ for
i = 1, . . . , k, we have ∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (3)

If ω is a weighted polymorphism of φ we say φ is improved by ω.

Note that, because a∞ = ∞ for any value a (including a = 0), if inequality
(3) holds we must have φ(f(x1, . . . , xk)) < ∞, for all f ∈ dom(ω), i.e., each
f ∈ dom(ω) is a polymorphism of φ.

Example 5. Consider the class of submodular set functions [31]. These are pre-
cisely the cost functions on {0, 1} satisfying

φ(min(x1, x2)) + φ(max(x1, x2))− φ(x)− φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of cost
functions on {0, 1} with the 2-ary weighted polymorphism

ω(f) =
{
−1 if f ∈ {e(2)1 , e

(2)
2 }

+1 if f ∈ {min(x1, x2),max(x1, x2)}
.

Definition 17. For any Γ ⊆ ΦD, we denote by wPol(Γ ) the set of all finitary
weighted operations on D which are weighted polymorphisms of all cost function
φ ∈ Γ and by wPol(k)(Γ ) the k-ary weighted operations in wPol(Γ ).
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Definition 18. For any W ⊆ WD, we denote by Imp(W ) the set of all cost
functions in ΦD that are improved by all weighted operations ω ∈ W and by
Imp(r)(W ) the r-ary cost functions in Imp(W ).

It follows immediately from the definition of a Galois connection [8] that, for
any set D, the mappings wPol and Imp form a Galois connection between WD

and ΦD. A characterisation of this Galois connection for finite sets D is given
by the following two theorems:

Theorem 3. For any finite set D, and any finite Γ ⊆ ΦD,

Imp(wPol(Γ )) = wRelClone(Γ ).

Theorem 4. For any finite set D, and any finite W ⊆WD,

wPol(Imp(W )) = wClone(W ).

As with any Galois connection [8], this means that there is a one-to-one cor-
respondence between weighted clones and weighted relational clones. Hence,
by Proposition 1, Theorem 1, and Theorem 2, the search for tractable valued
constraint languages taking values in Q+ corresponds to a search for suitable
weighted clones of operations.

5 Proof of Theorems 3 and 4

A similar result to Theorem 3 was obtained in [15, Theorem 4] using the re-
lated algebraic notion of fractional polymorphism. The proof given in [15] can
be adapted in a straightforward way, and we omit the details due to space con-
straints. We will sketch the proof of Theorem 4. First, we show in Proposition 2
that the weighted polymorphisms of a set of cost functions form a weighted
clone. The rest of the theorem then follows from Theorem 5, which states that
any weighted operation that improves all cost functions in Imp(W ) is an element
of the weighted clone wClone(W ). Due to space constraints we will not include
the proof of Theorem 5.

Proposition 2. Let D be a finite set.

1. For all Γ ⊂ ΦD, wPol(Γ ) is a weighted clone with support Pol(Γ ).
2. For all W ⊂WD, wClone(W ) ⊆ wPol(Imp(W )).

Proof. Certainly wPol(Γ ) contains all zero-valued weighted operations with do-
mains contained in Pol(Γ ), since all of these satisfy the conditions set out in Def-
inition 16. Similarly, wPol(Γ ) is closed under addition and weight-equivalence,
since both of these operations preserve inequality (3). Hence, to show wPol(Γ )
is a weighted clone we only need to show wPol(Γ ) is closed under proper trans-
lations by members of Pol(Γ ).

Let ω ∈ wPol(k)(Γ ) and suppose ω′ = ω[g1, . . . , gk] is a proper translation
of ω, where g1, g2, . . . , gk ∈ Pol(l)(Γ ). We will now show that ω′ ∈ wPol(l)(Γ ).

9



Suppose φ is an r-ary cost function satisfying ω ∈ wPol({φ}), i.e., φ and ω sat-
isfy (3) for any x1, x2, . . . , xk ∈ Feas(φ). Given any x′1, x

′
2, . . . , x

′
l ∈ Feas(φ), set

xi = gi(x′1, x
′
2, . . . , x

′
l) for i = 1, 2, . . . , k. Then, if we set f ′ = f [g1, . . . , gk], we

have f ′(x′1, x
′
2, . . . , x

′
l) = f(x1, x2, . . . , xk), for any f ∈ O(k)

D . Hence, by Defini-
tion 13, we have∑
f ′∈dom(ω′)

ω′(f ′)φ(f ′(x′1, x
′
2, . . . , x

′
k) =

∑
f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk) ≤ 0 .

For the second part, we observe that W ⊆ wPol(Imp(W )). Hence, wClone(W ) ⊆
wClone(wPol(Imp(W ))) = wPol(Imp(W )). ut

We will make use of the following lemma, which shows that a weighted sum
of arbitrary translations of any weighted operations ω1 and ω2 can be obtained
by translating ω1 and ω2 by projection operations, forming a weighted sum, and
then translating the result.

Lemma 1. For any weighted operations ω1 ∈ W(k)
D and ω2 ∈ W(l)

D and any
g1, . . . , gk ∈ O(m)

D and g′1, . . . , g
′
l ∈ O(m)

D ,

c1 ω1[g1, . . . , gk] + c2 ω2[g′1, . . . , g
′
l] = ω[g1, . . . , gk, g′1, . . . , g

′
l] , (4)

where ω = c1 ω1[e(k+l)1 , . . . , e
(k+l)
k ] + c2 ω2[e(k+l)k+1 , . . . , e

(k+l)
k+l ]

Proof. For any f ∈ dom(ω), the result of applying the right-hand side expression
in equation (4) to f is:

∑
f ′∈dom(ω)

f=f ′[g1,...,gk,g
′
1,...,g

′
l]


∑

h′∈dom(ω1)

f ′=h′[e
(k+l)
1 ,...,e

(k+l)
k ]

c1 ω1(h′) +
∑

h′∈dom(ω2)

f ′=h′[e
(k+l)
k+1 ,...,e

(k+l)
k+l ]

c2 ω2(h′)

 .

Replacing each f ′ by the equivalent superposition of h′ with projections, we
obtain: ∑

h′∈dom(ω1)
f=h′[g1,...,gk]

c1 ω1(h′) +
∑

h′∈dom(ω2)
f=h′[g′

1,...,g
′
l]

c2 ω2(h′) ,

which is the result of applying the left-hand-side of Equation 4 to f . ut

Theorem 5. For all finite W ⊂WD, wPol(Imp(W )) ⊆ wClone(W ).

6 Conclusions

We have presented an algebraic theory of valued constraint languages analogous
to the theory of clones used to study the complexity of the classical constraint
satisfaction problem. We showed that the complexity of any valued constraint
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language with rational costs is determined by certain algebraic properties of
the cost functions allowed in the language: the weighted polymorphisms. Com-
pared to the results in [15], not only have we captured the complexity of valued
constraint languages, but we have also established a 1-to-1 connection between
valued constraint languages and sets of weighted polymorphisms.

In previous work [27, 26] it has been shown that every tractable crisp con-
straint language can be characterised by an associated clone of operations. This
work initiated the use of algebraic properties in the search for tractable con-
straint languages, an area that has seen considerable activity in recent years;
see, for instance, [11, 13, 12, 10, 28, 22, 3, 1, 2, 5]. The results in this paper show
that a similar result holds for the valued constraint satisfaction problem: every
tractable valued constraint language is characterised by an associated weighted
clone.

We believe that our results here will provide a similar impetus for the in-
vestigation of tractable valued constraint satisfaction problems. In fact, we have
already commenced investigating minimal weighted clones in order to under-
stand maximal valued constraint languages [19]. Building on Rosenberg’s famous
classification of minimal clones, we have obtained a similar classification of min-
imal weighted clones [19]. Furthermore, using the results from this paper, we
have proved maximality of several known tractable valued constraint languages,
including an alternative proof of the characterisation of all maximal Boolean
valued constraint languages from [17]. Details on minimal weighted clones and
other applications of our results will be included in the full version of this paper.
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30. V. Kolmogorov, S. Živný, Generalising tractable VCSPs defined by symmetric
tournament pair multimorphisms, Tech. rep., arXiv:1008.3104 (August 2010).

31. G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, John Wiley &
Sons, 1988.

32. T. Schaefer, The Complexity of Satisfiability Problems, in: Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), 1978, pp. 216–226.

33. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, Inc.,
1986.
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