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Abstract. Tractable classes of binary CSP and binary Max-CSP have
recently been discovered by studying classes of instances defined by ex-
cluding subproblems. In this paper we characterise the complexity of all
classes of binary Max-CSP instances defined by forbidding a single sub-
problem. In the resulting dichotomy, the only non-trivial tractable class
defined by a forbidden subproblem corresponds to the set of instances
satisfying the so-called joint-winner property.

1 Introduction

Max-CSP is a generic combinatorial optimization problem which consists in find-
ing an assignment to the variables which satisfies the maximum number of a set
of constraints. Max-CSP is NP-hard, but much research effort has been devoted
to the identification of classes of instances that can be solved in polynomial time.

One classic approach consists in identifying tractable constraint languages,
i.e. restrictions on the constraint relations which imply tractability. For example,
if all constraints are supermodular, then Max-CSP is solvable in polynomial time,
since the maximization of a supermodular function (or equivalently the mini-
mization of a submodular function) is a well-known tractable problem in Oper-
ations Research [18]. Over two-element domains [8], three-element domains [14],
and fixed-valued languages [11], a dichotomy has been given: supermodularity
is the only basic reason for tractability. However, over four-element domains it
has been shown that other tractable constraint languages exist [15]. Another
classic approach consists in identifying structural reasons for tractability, i.e.
restrictions on the graph of constraint scopes (known as the constraint graph)
which imply the existence of a polynomial-time algorithm. In the case of binary
CSP the only class of constraint graphs which ensures tractability (subject to
certain complexity theory assumptions) are essentially graphs of bounded tree-
width [9, 12]. It is well known that structural reasons for tractability generalise
to optimisation versions of the CSP [1, 10].
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Recently, a new avenue of research has led to the discovery of tractable classes
of CSP or Max-CSP instances defined by forbidding a specific (set of) subprob-
lem(s). Novel tractable classes have been discovered by forbidding simple 3-
variable subproblems [4, 7]. In the present paper we consider all classes of binary
Max-CSP instances defined by forbidding occurrences of a single subproblem.
The dichotomy that we give can be seen as an important first step towards a com-
plete characterisation of the complexity of classes of binary Max-CSP instances
defined by forbidding sets of subproblems.

To relate this to similar work on the characterisation of the complexity of
forbidden patterns [3], we should point out that a pattern can represent a set of
subproblems by leaving the compatibility of some pairs of assignments undefined.
Another difference between subproblems and patterns is that in a subproblem
all variable-value assignments are assumed distinct, whereas in a pattern two
assignments may represent the same assignment in an instance [3]. In a related
avenue of research, other workers have defined tractable classes of binary CSP
instances by excluding (sets of) induced subgraphs in the microstructure of the
instance, where the microstructure of a CSP instance is the graph 〈V,E〉 with V
the set of all variable-value assignments and {p, q} ∈ E if and only if the pair of
variable-value assignments p, q are compatible [13, 2, 19]. These microstructure-
based tractable classes of CSP instances do not generalise to tractable classes of
Max-CSP instances. Indeed, we are not aware of any tractable classes of Max-
CSP defined exclusively in terms of the microstructure.

The complexity of classes of binary Max-CSP instances defined by local
properties of (in)compatibilities have previously been characterised, but only
for properties on exactly 3 assignments to 3 distinct variables [5]. In the present
paper we consider classes defined by forbidding subproblems of any size and
possibly involving several assignments to the same variable, thus allowing more
refinement in the definition of classes of Max-CSP instances.

2 Definitions and Basic Results

A subproblem P is simply a binary Max-CSP instance: variables are distinct,
each variable has its own domain composed of distinct values, and a cost of 0 or
1 is associated with each pair of assignments to two distinct variables. In a Max-
CSP instance defined in this way, the goal of maximising the number of satisfied
constraints is clearly equivalent to minimising the total cost. We consider that
in any subproblem or instance a constraint is given for each pair of distinct
variables (even if the constraint corresponds to a constant-0 cost function). We
only consider subproblems with all binary constraints but no unary constraints.
As we will show later, our results are independent of the presence of unary
constraints. It will sometimes be more convenient to consider an instance as a set
of variable-value assignments together with a function cost, such that cost(p, q) ∈
{0, 1} denotes the cost of simultaneously making the pair of assignments p, q,
together with a function var such that var(p) indicates the variable associated
with assignment p.
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Fig. 1. The instance I contains P and P ′ as subproblems but not P ′′.

A subproblem P occurs in a binary Max-CSP instance (or, equivalently,
another subproblem) I if P is isomorphic to some sub-instance of I obtained by
taking a subset U of the variables of I and subsets of each of the domains of
the variables in U . We also say that I contains P as a subproblem. To illustrate
this notion, consider the instance I and the three subproblems P, P ′, P ′′ shown
in Fig. 1. A bullet point represents a variable-value assignment, assignments to
the same variable are grouped together in the same oval, a dashed line between
points a and b means cost(a, b) = 1 and a solid line means cost(a, b) = 0. In this
example, subproblem P occurs in I with the corresponding isomorphism p 7→ a,
q 7→ b, r 7→ c. Similarly, P ′ occurs in I with the corresponding isomorphism
t 7→ c, u 7→ d, v 7→ a. On the other hand, P ′′ does not occur in I.

In this paper we denote by F(P ) the set of Max-CSP instances in which
the subproblem P is forbidden, i.e. does not occur. Thus if I, P ′ and P ′′ are
as shown in Fig. 1, I ∈ F(P ′′) but I /∈ F(P ′). If Σ = {P1, . . . , Ps} is a set of
subproblems, then we use F(Σ) or F(P1, . . . , Ps) to denote the set of Max-CSP
instances in which no subproblem Pi ∈ Σ occurs. The following lemma follows
from the above definitions, by transitivity of the occurrence relation.

Lemma 1. If ∀P ∈ Σ1, ∃Q ∈ Σ2 such that Q occurs in P , then F(Σ2) ⊆
F(Σ1).

We say that F(Σ) is tractable if there is a polynomial-time algorithm to solve
it. We say that F(Σ) is intractable if it is NP-hard. We assume throughout this
paper that P 6= NP . Suppose that F(Σ1) ⊆ F(Σ2). Clearly, F(Σ1) is tractable
if F(Σ2) is tractable and F(Σ2) is intractable if F(Σ1) is intractable. Our aim
is to characterise the tractability of F(P ) for all subproblems P . We first show
that we only need to consider subproblems with domains of size at most 2.

Lemma 2. Let P be a subproblem with three or more values in the domain
of some variable and let F(P ) be the set of Max-CSP instances in which the
subproblem P is forbidden. Then F(P ) is intractable.

Proof. Max-Cut is intractable and can be reduced to Max-CSP on Boolean do-
mains [8]. Thus F(P ) is intractable since it includes all instances of Max-CSP
on Boolean domains. ut
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Fig. 2. Subproblems on two variables (showing inclusions between subproblems).

3 Subproblems on Two Variables

We now consider the subproblems on just two variables shown in Fig. 2. Modulo
independent permutations of the variables and of the two domains, these are the
only possible subproblems with domains of size at most 2.

Lemma 3. If Q1 is the subproblem shown in Fig. 2, then F(Q1) is intractable.

Proof. Let I be an instance in F(Q1). It is easy to see that all binary cost func-
tions between any pair of variables in I must be constant. Hence I is equivalent
to a trivial Max-CSP instance with no binary cost functions. ut

Lemma 4. If Q0 and U are as shown in Fig. 2, then F({Q0, U}) is intractable.

Proof. Max-Cut can be coded as Max-CSP over Boolean domains in which all
constraints are of the form Xi 6= Xj . We can replace each constraint Xi 6= Xj

by an equivalent gadget G with two extra variables Yij , Zij , where G is given by
¬Xi ∧ Yij , ¬Yij ∧¬Xj , Xi ∧¬Zij , Zij ∧Xj . It is easily verified that placing the
gadget G on variables Xi, Xj is equivalent to imposing the constraint Xi 6= Xj ;
when Xi = Xj at most one of these constraints can be satisfied and when
Xi 6= Xj at most two constraints can be satisfied.

For each pair of variables X, X ′ in the resulting instance of Max-CSP such
that there is no constraint between X and X ′, we place a binary constraint on
X,X ′ of constant cost 1. In the resulting Max-CSP instance, there are no two
zero costs in the same binary cost function. Thus, this polynomial reduction from
Max-Cut produces an instance in F({Q0, U}). Intractability of F({Q0, U}) then
follows from the NP-hardness of Max-Cut. ut

Lemma 5. If Q2 and U are as shown in Fig. 2, then F({Q2, U}) is intractable.
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Proof. As in the proof of Lemma 4, the proof is again by a polynomial reduction
from Max-Cut. This time each constraint Xi 6= Xj is replaced by the gadget G′

where G′ is ¬Xi ∨Yij , ¬Yij ∨¬Xj , Xi ∨¬Zij , Zij ∨Xj . When Xi = Xj at most
three of these constraints can be satisfied and when Xi 6= Xj all four constraints
can be satisfied.

For each pair of variables X,X ′ in the resulting instance of Max-CSP such
that there is no constraint between X and X ′, we place a binary constraint on
X,X ′ of constant cost 0. The resulting instance is in F({Q2, U}). ut

This provides us with a dichotomy for subproblems on just two variables.

Theorem 1. If P is a 2-variable binary Max-CSP subproblem, then F(P ) is
tractable if and only if P occurs in Q1 (shown in Fig. 2).

Proof. By Lemma 2, we only need to consider subproblems in which each domain
is of size at most two.

Since each of P0 and P1 occur in Q1, it follows from Lemma 3 and Lemma 1
that F(P0) and F(P1) are also tractable. Since Q0 occurs in R, T , V and Q2

occurs in S, W , it follows from Lemmas 4, 5 and Lemma 1 that F(Q0), F(Q2),
F(R), F(S), F(T ), F(U), F(V ), F(W ) are all intractable. This covers all the
possible subproblems with domains of size at most 2 as shown in Fig. 2. ut

4 Subproblems on Three Variables

We recall the following result which follows directly from Theorem 5 of [5].

Lemma 6. A class of binary Max-CSP instances defined by forbidding a single
subproblem comprised of a triangle of three assignments to three distinct variables
is tractable if and only if the three binary costs are 0,1,1.

Binary Max-CSP instances in which the triple of binary costs 0,1,1 does not
occur in any triangle satisfy the so-called joint-winner property [7]. This class
has recently been generalised to the hierarchically-nested convex class which is a
tractable class of Valued CSP instances involving cost functions of arbitrary ar-
ity [6]. The following corollary is just a translation of Lemma 6 into the notation
of forbidden subproblems.
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Fig. 3. Subproblems on three or four variables
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Corollary 1. Let A,B,C,D be the subproblems shown in Fig. 3. Then F(C) is
tractable, but F(A), F(B), and F(D) are intractable.

Lemma 7. Given the subproblem E shown in Fig. 3 and the set F(E) of Max-
CSP instances in which the subproblem E is forbidden, then F(E) is intractable.

Proof. The constraint graph of a Max-CSP instance is the graph 〈V,E〉 where V
is the set of variables and {Xi, Xj} ∈ E if there is a pair of assignments p, q with
var(p) = Xi, var(q) = Xj and such that cost(p, q) = 1. Clearly the constraint
graph of any instance in which E occurs contains a triangle. Max-Cut is NP-
hard even on triangle-free graphs [17]. Any such instance of Max-Cut coded as
an instance I of binary Max-CSP does not contain E as a subproblem since the
constraint graph of I is triangle-free. Hence F(E) is intractable. ut

Lemma 8. The only 3-variable subproblem P for which the set F(P ) is tractable
is the subproblem C shown in Fig. 3.

Proof. Let P be a 3-variable subproblem. For F(P ) to be tractable, P must not
have as a subproblem any of Q0, Q2, A, B, D, E which have all been shown to
define intractable classes (Lemmas 4, 5, 7 and Corollary 1). The only 3-variable
subproblem which does not contain any of Q0, Q2, A, B, D, E is C. The result
then follows from Lemma 1. ut

5 Subproblems on More Than Three Variables

It turns out that the tractable classes we have already identified, defined by
forbidden subproblems on two or three variables, are the only possible tractable
classes defined by forbidding a single subproblem. To complete our dichotomy,
we require one final lemma.

Lemma 9. If F is the subproblem shown in Fig. 3, then F(F ) is intractable.

Proof. It is known that Max-Cut on C4-free graphs is NP-hard [16]. To see this,
let G be a graph and G′ a version of G in which each edge is replaced by a path
composed of three edges. Clearly, G′ is C4-free and the maximum cut of G′ is of
the same size as the maximum cut of G.

When a Max-Cut instance on a C4-free graph is coded as a Max-CSP instance
I, the subproblem F cannot occur since there can be no length-4 cycles of non-
trivial constraints in I. Hence F(F ) is intractable. ut

By looking at all possible combinations of edges in a subproblem, it is possible
to show that F is the only subproblem on four variables in which neither A,
B, D nor E shown in Fig. 3 occur. Since F(A), F(B), F(D) and F(E) are
intractable, then from Lemma 9 the classes of Binary Max-CSP instances defined
by forbidding a single subproblem on four or more variables are all intractable
and we can now state our dichotomy.
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Theorem 2. If P is a binary Max-CSP subproblem, then F(P ) is tractable if
and only if P occurs either in Q1 (shown in Fig. 2) or in C (shown in Fig. 3).

It follows that F(P ) is tractable only for P = P0, P1, Q1 (shown in Fig. 2) or
C (shown in Fig. 3). It follows that the only non-trivial tractable class defined
by a forbidden subproblem corresponds to the set of instances satisfying the
so-called joint-winner property. The joint-winner property encompasses, among
other things, codings of non-intersecting graph-based or variable-based SoftAllD-
iff constraints together with arbitrary unary constraints [7]. It is worth pointing
out that Theorem 2 is independent of the presence of unary cost functions, in
the sense that tractable classes remain tractable when arbitrary unary costs are
allowed and NP-hardness results are valid even if no unary costs are allowed.

6 Forbidding Sets of Subproblems

Certain known tractable classes can be defined by forbidding more than one
subproblem. For example, in [5] it was shown that F({A,B}), F({B,D}) and
F({A,D}) are all tractable (where A,B,C,D are the subproblems given in
Fig. 3). The most interesting of these three tractable classes is F({A,B}) which
is equivalent to maximum matching in graphs.

In this section we give a necessary condition for a forbidden set of subprob-
lems to define a tractable class of binary Max-CSP instances.

Definition 1. A subproblem (or an instance) P is Boolean if the size of the
domain of each variable in P is at most two.

A negative edge pair is a set of variable-value assignments p, q, r, s such that
var(p) = var(r) 6= var(q) = var(s), cost(p, q) = cost(r, s) = 1 and p 6= r. A
positive edge pair is a set of variable-value assignments p, q, r, s such that var(p)
= var(r) 6= var(q) = var(s), cost(p, q) = cost(r, s) = 0 and p 6= r.

A negative cycle is a set of variable-value assignments p1, . . . , pm, with m >
2, such that the variables var(pi) (i = 1, . . . ,m) are all distinct, cost(pi, pi+1) =
1 (i = 1, . . . ,m) and cost(pm, p1) = 1. A positive cycle is a set of assignments
p1, . . . , pm (m > 2), such that the variables var(pi) (i = 1, . . . ,m) are all distinct,
cost(pi, pi+1) = 0 (i = 1, . . . ,m) and cost(pm, p1) = 0.

A negative pivot point is a variable-value assignment p such that there are
two assignments q, r with var(p), var(q), var(s) all distinct and cost(p, q) =
cost(p, r) = 1. A positive pivot point is an assignment p such that there are
two assignments q, r with var(p), var(q), var(s) all distinct and cost(p, q) =
cost(p, r) = 0.

Proposition 1. If Σ is a finite set of subproblems, then F(Σ) is tractable only
if

1. There is a Boolean subproblem P ∈ Σ such that P contains no negative edge
pair, no negative cycle and at most one negative pivot point, and

2. There is a Boolean subproblem Q ∈ Σ such that Q contains no positive edge
pair, no positive cycle and at most one positive pivot point, and
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3. There is a Boolean subproblem B ∈ Σ such that B contains neither Q0 nor
Q2 (as shown in Fig. 2).

Proof. Suppose that condition (1) is not satisfied. We will show that F(Σ) is
NP-hard. Let t be an odd integer strictly greater than the number of variables
in any subproblem in Σ. As in Lemma 5 the proof is by a polynomial reduction
from Max-Cut. This time each constraint Xi 6= Xj is replaced by the gadget Gt

where Gt is ¬Xi ∨ Y1, ¬Yk ∨ Yk+1 (k = 1, . . . , t− 1), ¬Yt ∨ ¬Xj , and Xi ∨ ¬Z1,
Zk ∨¬Zk+1 (k = 1, . . . , t− 1), Zt ∨Xj . The gadget Gt is equivalent to Xi 6= Xj

since when Xi = Xj one of its constraints must be violated, but when Xi 6= Xj

all of its constraints can be satisfied. For each pair of variables X,X ′ in the
resulting instance of Max-CSP such that there is no constraint between X and
X ′, we place a binary constraint on X,X ′ of constant cost 0.

The resulting instance I has no domain of size greater than two, and contains
no negative edge pair, no negative cycle of length at most t and no two negative
pivot points at a distance at most t. Let P ∈ Σ. Since (1) is not satisfied, and
by definition of t, either P has a domain of size more than two, or contains a
negative edge pair, a negative cycle of length at most t or two negative pivot
points at a distance at most t. It follows that P cannot occur in I. Thus, we
have demonstrated a polynomial reduction from Max-Cut to F(Σ).

The proof for condition (2) is similar. This time each constraint Xi 6= Xj

is replaced by the gadget G′
t given by ¬Xi ∧ Y1, ¬Yk ∧ Yk+1 (k = 1, . . . , t − 1),

¬Yt ∧¬Xj , and Xi ∧¬Z1, Zk ∧¬Zk+1 (k = 1, . . . , t), Zt ∧Xj . The gadget G′
t is

equivalent to the constraint Xi 6= Xj ; when Xi = Xj at most t of its constraints
can be satisfied and whenXi 6= Xj at most t+1 of its constraints can be satisfied.
For each pair of variables X, X ′ in the resulting instance of Max-CSP such that
there is no constraint between X and X ′, we place a binary constraint on X,X ′

of constant cost 1.
The resulting instance I has no domain of size greater than two, and contains

no positive edge pair, no positive cycle of length at most t and no two positive
pivot points at a distance at most t. Let P ∈ Σ. If condition (2) is not satisfied,
no P ∈ Σ can occur in I. Thus, this polynomial reduction is from Max-Cut to
F(Σ).

If condition (3) is not satisfied, then, by Lemma 1, F(Σ) contains all Boolean
instances in F(Q0, Q2). But F(Q0, Q2) is equivalent to the set of Boolean in-
stances of Max-CSP in which for each pair of variablesXi, Xj there is a constraint
between Xi and Xj with this constraint being either Xi = Xj or Xi 6= Xj . This
set of Max-CSP instances is equivalent to the 2-Cluster Editing problem whose
decision version is known to be NP-complete [20]3. Hence F(Σ) is NP-hard if
condition (3) is not satisfied. ut

7 Conclusion

We have given a dichotomy concerning the tractability of classes of binary Max-
CSP instances defined by forbidding a single subproblem. We have also given a
3 We are grateful to Peter Jeavons for pointing out this equivalence.
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necessary condition for the tractability of classes defined by forbidding sets of
subproblems.

Classes defined by forbidding (sets of) subproblems are closed under permu-
tations of the set of variables and independent permutations of each variable
domain. An interesting avenue of future research is to place structure, such as
an ordering, on the set of variables or on domain elements within the forbidden
subproblems with the aim to uncover novel tractable classes.
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