
Tractable Combinations of Global Constraints

David A. Cohen1, Peter G. Jeavons2,
Evgenij Thorstensen2, and Stanislav Živný3

1 Department of Computer Science, Royal Holloway, University of London, UK
d.cohen@rhul.ac.uk

2 Department of Computer Science, University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

3 Department of Computer Science, University of Warwick, UK
s.zivny@warwick.ac.uk

Abstract. We study the complexity of constraint satisfaction problems
involving global constraints, i.e., special-purpose constraints provided by
a solver and represented implicitly by a parametrised algorithm. Such
constraints are widely used; indeed, they are one of the key reasons for
the success of constraint programming in solving real-world problems.
Previous work has focused on the development of efficient propagators
for individual constraints. In this paper, we identify a new tractable class
of constraint problems involving global constraints of unbounded arity.
To do so, we combine structural restrictions with the observation that
some important types of global constraint do not distinguish between
large classes of equivalent solutions.

1 Introduction

Constraint programming (CP) is widely used to solve a variety of practical prob-
lems such as planning and scheduling [23,30], and industrial configuration [1,22].
The theoretical properties of constraint problems, in particular the computa-
tional complexity of different types of problem, have been extensively studied
and quite a lot is known about what restrictions on the general constraint sat-
isfaction problem are sufficient to make it tractable [2,7,11,17,20,25].

However, much of this theoretical work has focused on problems where each
constraint is represented explicitly, by a table of allowed assignments.

In practice, however, a lot of the success of CP is due to the use of special-
purpose constraint types for which the software tools provide dedicated algo-
rithms [28,16,31]. Such constraints are known as global constraints and are usu-
ally represented implicitly by an algorithm in the solver. This algorithm may take
as a parameter a description that specifies exactly which kinds of assignments a
particular instance of this constraint should allow.

Theoretical work on global constraints has to a large extent focused on de-
veloping efficient algorithms to achieve various kinds of local consistency for
individual constraints. This is generally done by pruning from the domains of
variables those values that cannot lead to a satisfying assignment [5,29]. Another

strand of research has explored when it is possible to replace global constraints
by collections of explicitly represented constraints [6]. These techniques allow
faster implementations of algorithms for individual constraints, but do not shed
much light on the complexity of problems with multiple overlapping global con-
straints, which is something that practical problems frequently require.

As an example, consider the following family of constraint problems involving
clauses and cardinality constraints of unbounded arity.

Example 1. Consider a family of constraint problems on a set of Boolean vari-
ables {x1, x2, . . . , x3n} (where n = 2, 3, 4, . . .), with the following five constraints:

– C1 is the binary clause x1 ∨ x2n+1;
– C2 is a cardinality constraint on {x1, x2, . . . , xn} specifying that exactly one

of these variables takes the value 1;
– C3 is a cardinality constraint on {x2n+1, x2n+2, . . . , x3n} specifying that ex-

actly one of these variables takes the value 1;
– C4 is a cardinality constraint on {x2, x3, . . . , x3n}− {x2n+1} specifying that

exactly n+ 1 of these variables takes the value 1;
– C5 is the clause ¬xn+1 ∨ ¬xn+2 ∨ · · · ∨ ¬x2n.

This problem is illustrated in Figure 1.

x1

x2
x3

x4

xn-1

xn

.

.

.

xn+1

xn+2
xn+3

xn+4

x2n-1

x2n

.

.

.

x2n+1

x2n+2
x2n+3

x2n+4

x3n-1
x3n

.

.

.

C1
C2 C3

C5 C4

Fig. 1. The structure of the constraint problems in Example 1

This family of problems is not included in any previously known tractable
class, but will be shown to be tractable using the results of this paper.

As discussed in [9], when the constraints in a family of problems have un-
bounded arity, the way that the constraints are represented can significantly

affect the complexity. Previous work in this area has assumed that the global
constraints have specific representations, such as propagators [19], negative con-
straints [10], or GDNF/decision diagrams [9], and exploited properties particular
to that representation. In contrast, here we investigate the conditions that yield
efficiently solvable classes of constraint problems with global constraints, with-
out requiring any specific representation. Many global constraints have succinct
representations, so even problems with very simple structures are known to be
hard in some cases [24,29]. We will therefore need to impose some restrictions
on the properties of the individual global constraints, as well as on the problem
structure.

To obtain our results, we define a notion of equivalence on assignments and
a new width measure that identifies variables that are constrained in exactly the
same way. We then show that we can replace variables that are equated under our
width measure with a single new variable whose domain represents the possible
equivalence classes of assignments. Both of these simplification steps, merging
variables and equating assignments, can be seen as techniques for eliminating
symmetries in the original problem formulation. We describe some sufficient
conditions under which these techniques provide a polynomial-time reduction to
a known tractable case, and hence identify new tractable classes of constraint
problems involving global constraints.

2 Global constraints and constraint problems

In order to be more precise about the way in which global constraints are rep-
resented, we will extend the standard definition of a constraint problem.

Definition 1 (Variables and assignments). Let V be a set of variables, each
with an associated set of domain elements. We denote the set of domain elements
(the domain) of a variable v by D(v). We extend this notation to arbitrary subsets
of variables, W , by setting D(W) =

⋃
v∈W

D(v).

An assignment of a set of variables V is a function θ : V → D(V) that maps
every v ∈ V to an element θ(v) ∈ D(v). We denote the restriction of θ to a set
of variables W ⊆ V by θ|W . We also allow the special assignment ⊥ of the empty
set of variables. In particular, for every assignment θ, we have θ|∅ = ⊥.

Global constraints have traditionally been defined, somewhat vaguely, as con-
straints without a fixed arity, possibly also with a compact representation of the
constraint relation. For example, in [23] a global constraint is defined as “a con-
straint that captures a relation between a non-fixed number of variables”.

Below, we offer a precise definition similar to the one in [5], where the authors
define global constraints for a domain D over a list of variables σ as being given
intensionally by a function D|σ| → {0, 1} computable in polynomial time. Our
definition differs from this one in that we separate the general algorithm of a
global constraint (which we call its type) from the specific description. This
separation allows us a better way of measuring the size of a global constraint,
which in turn helps us to establish new complexity results.

Definition 2 (Global constraints). A global constraint type is a parametrised
polynomial-time algorithm that determines the acceptability of an assignment of
a given set of variables.

Each global constraint type, e, has an associated set of descriptions, ∆(e).
Each description δ ∈ ∆(e) specifies appropriate parameter values for the algo-
rithm e. In particular, each δ ∈ ∆(e) specifies a set of variables, denoted by
vars(δ).

A global constraint e[δ], where δ ∈ ∆(e), is a function that maps assignments
of vars(δ) to the set {0, 1}. Each assignment that is allowed by e[δ] is mapped to
1, and each disallowed assignment is mapped to 0. The extension or constraint
relation of e[δ] is the set of assignments, θ, of vars(δ) such that e[δ](θ) = 1. We
also say that such assignments satisfy the constraint, while all other assignments
falsify it.

When we are only interested in describing the set of assignments that satisfy
a constraint, and not in the complexity of determining membership in this set,
we will sometimes abuse notation by writing θ ∈ e[δ] to mean e[δ](θ) = 1.

As can be seen from the definition above, a global constraint is not usually
explicitly represented by listing all the assignments that satisfy it. Instead, it is
represented by some description δ and some algorithm e that allows us to check
whether the constraint relation of e[δ] includes a given assignment. To stay within
the complexity class NP, this algorithm is required to run in polynomial time.
As the algorithms for many common global constraints are built into modern
constraint solvers, we measure the size of a global constraint’s representation by
the size of its description.

Example 2 (EGC). A very general global constraint type is the extended global
cardinality constraint type [26,29]. This form of global constraint is defined by
specifying for every domain element a a finite set of natural numbersK(a), called
the cardinality set of a. The constraint requires that the number of variables
which are assigned the value a is in the set K(a), for each possible domain
element a.

Using our notation, the description δ of an EGC global constraint specifies
a function Kδ : D(vars(δ)) → P(N) that maps each domain element to a set of
natural numbers. The algorithm for the EGC constraint then maps an assign-
ment θ to 1 if and only if, for every domain element a ∈ D(vars(δ)), we have
that |{v ∈ vars(δ) | θ(v) = a}| ∈ Kδ(a).

The cardinality constraint C2 from Example 1 can be expressed as an EGC
global constraint with description δ such that Kδ(1) = {1}, and Kδ(0) = {n−1}.

Example 3 (Clauses). We can view the disjunctive clauses used to define propo-
sitional satisfiability problems as a global constraint type in the following way.

The description δ of a clause is simply a list of the literals that it contains,
and vars(δ) is the corresponding set of variables. The algorithm for the clause
then maps any Boolean assignment θ of vars(δ) that satisfies the disjunction of
the literals specified by δ to 1, and all other assignments to 0.

Note that a clause forbids precisely one assignment to vars(δ) (the one that
falsifies all of the literals in the clause). Hence the extension of a clause contains
2|vars(δ)|−1 assignments, so the size of the constraint relation grows exponentially
with the number of variables, but the size of the constraint description grows
only linearly.

Example 4 (Table and negative constraints). A rather degenerate example of a
a global constraint type is the table constraint.

In this case the description δ is simply a list of assignments of some fixed set
of variables, vars(δ). The algorithm for a table constraint then decides, for any
assignment of vars(δ), whether it is included in δ. This can be done in a time
which is linear in the size of δ and so meets the polynomial time requirement.

Negative constraints are complementary to table constraints, in that they
are described by listing forbidden assignments. The algorithm for a negative
constraint e[δ] decides, for any assignment of vars(δ), whether whether it is not
included in δ. Observe that the clauses described in Example 3 are a special case
of the negative constraint type, as they have exactly one forbidden assignment.

We observe that any global constraint can be rewritten as a table or negative
constraint. However, this rewriting will, in general, incur an exponential increase
in the size of the description.

Definition 3 (CSP instance). An instance of the constraint satisfaction prob-
lem (CSP) is a pair 〈V,C〉 where V is a finite set of variables, and C is a set of
global constraints such that for every e[δ] ∈ C, vars(δ) ⊆ V . In a CSP instance,
we call vars(δ) the scope of the constraint e[δ].

A solution to a CSP instance 〈V,C〉 is an assignment θ of V which satisfies
every global constraint, i.e., for every e[δ] ∈ C we have θ|vars(δ) ∈ e[δ].

The general constraint satisfaction problem is clearly NP-complete, so in the
remainder of the paper we shall look for more restricted versions of the problem
that are tractable, that is, solvable in polynomial time.

3 Restricted classes of constraint problems

First, we are going to consider restrictions on the way that the constraints in
a given instance interact with each other, or, in other words, the way that
the constraint scopes overlap; such restrictions are known as structural restric-
tions [11,17,20].

Definition 4 (Hypergraph). A hypergraph 〈V,H〉 is a set of vertices V to-
gether with a set of hyperedges H ⊆ P(V).

Given a CSP instance P = 〈V,C〉, the hypergraph of P , denoted hyp(P), has
vertex set V together with a hyperedge vars(δ) for every e[δ] ∈ C.

One special class of hypergraphs that has received a great deal of attention
is the class of acyclic hypergraphs [3]. This notion is a generalisation of the idea

of tree-structure in a graph, and has been very important in the analysis of
relational databases. A hypergraph is said to be acyclic if repeatedly removing
all hyperedges contained in other hyperedges, and all vertices contained in only
a single hyperedge, eventually deletes all vertices [3].

Solving a CSP instance P whose constraints are represented extensionally
(i.e., as table constraints) is known to be tractable if the hypergraph of P ,
hyp(P), is acyclic [21]. Indeed, this has formed the basis for more general no-
tions of “bounded cyclicity” [21] or “bounded hypertree width” [18], which have
also been shown to imply tractability for problems with explicitly represented
constraint relations. However, this is no longer true if the constraints are global,
not even when we have a fixed, finite domain, as the following examples show.

Example 5. Any hypergraph containing only a single edge is clearly acyclic (and
therefore has hypertree width one [18]), but the class of CSP instances consisting
of a single EGC constraint over an unbounded domain is NP-complete [26].

Example 6. The NP-complete problem of 3-colourability [15] is to decide, given
a graph 〈V,E〉, whether the vertices V can be coloured with three colours such
that no two adjacent vertices have the same colour.

We may reduce this problem to a CSP with EGC constraints (cf. Example 2)
as follows: Let V be the set of variables for our CSP instance, each with domain
{r, g, b}. For every edge 〈v, w〉 ∈ E, we post an EGC constraint with scope
{v, w}, parametrised by the function K such that K(r) = K(g) = K(b) =
{0, 1}. Finally, we make the hypergraph of this CSP instance acyclic by adding
an EGC constraint with scope V parametrised by the function K ′ such that
K ′(r) = K ′(g) = K ′(b) = {0, . . . , |V |}. This reduction clearly takes polynomial
time, and the hypergraph of the resulting instance is acyclic.

These examples indicate that when dealing with implicitly represented con-
straints we cannot hope for tractability using structural restrictions alone. We
are therefore led to consider hybrid restrictions, which restrict both the nature
of the constraints and the structure at the same time.

Definition 5 (Constraint catalogue). A constraint catalogue is a set of
global constraints. A CSP instance 〈V,C〉 is said to be over a constraint cat-
alogue C if for every e[δ] ∈ C we have e[δ] ∈ C.

Previous work on the complexity of constraint problems has restricted the
extensions of the constraints to a specified set of relations, known as a constraint
language [7]. This is an appropriate form of restriction when all constraints
are given explicitly, as table constraints. However, here we work with global
constraints where the relations are often implicit, and this can significantly alter
the complexity of the corresponding problem classes, as we will illustrate below.
Hence we allow a more general form of restriction on the constraints by specifying
a constraint catalogue containing all allowed constraints.

Definition 6 (Restricted CSP class). Let C be a constraint catalogue, and
let H be a class of hypergraphs. We define CSP(H, C) to be the class of CSP
instances over C whose hypergraphs are in H.

Using Definition 6, we will restate an earlier structural tractability result,
which will form the basis for our results in Section 5.

Definition 7 (Treewidth). A tree decomposition of a hypergraph 〈V,H〉 is a
pair 〈T, λ〉 where T is a tree and λ is a labelling function from nodes of T to
subsets of V , such that

1. for every v ∈ V , there exists a node t of T such that v ∈ λ(t),
2. for every hyperedge h ∈ E, there exists a node t of T such that h ⊆ λ(t), and
3. for every v ∈ V , the set of nodes {t | v ∈ λ(t)} induces a connected subtree

of T .

The width of a tree decomposition is max({|λ(t)| − 1 | t node of T}). The
treewidth tw(G) of a hypergraph G is the minimum width over all its tree de-
compositions.

Let H be a class of hypergraphs, and define tw(H) to be the maximum treewidth
over the hypergraphs in H. If tw(H) is unbounded we write tw(H) = ∞; other-
wise tw(H) <∞.

We can now restate using the language of global constraints the following
result, from Dalmau et al. [12], which builds on several earlier results [13,14].

Theorem 1 ([12]). Let C be a constraint catalogue and H a class of hyper-
graphs. CSP(H, C) is tractable if tw(H) <∞.

Observe that the family of constraint problems described in Example 1 is not
covered by the above result, because the treewidth of the associated hypergraphs
is unbounded.

4 Cooperating constraint catalogues

Whenever constraint scopes overlap, we may ask whether the possible assign-
ments to the variables in the overlap are essentially different. It may be that
some assignments extend to precisely the same satisfying assignments in each of
the overlapping constraints. If so, we may as well identify such assignments.

Definition 8 (Disjoint union of assignments). Let θ1 and θ2 be two as-
signments of disjoint sets of variables V1 and V2, respectively. The disjoint
union of θ1 and θ2, denoted θ1 ⊕ θ2, is the assignment of V1 ∪ V2 such that
(θ1 ⊕ θ2)(v) = θ1(v) for all v ∈ V1, and (θ1 ⊕ θ2)(v) = θ2(v) for all v ∈ V2.

Definition 9 (Projection). Let Θ be a set of assignments of a set of variables
V . The projection of Θ onto a set of variables X ⊆ V is the set of assignments
πX(Θ) = {θ|X | θ ∈ Θ}.

Note that when Θ = ∅ we have πX(Θ) = ∅ for any set X, but when X = ∅
and Θ 6= ∅, we have πX(Θ) = {⊥}.

Definition 10 (Assignment extension). Let e[δ] be a global constraint, and
X ⊆ vars(δ). For every assignment µ of X, let ext(µ, e[δ]) = πvars(δ)−X({θ ∈
e[δ] | θ|X = µ}).

In other words, for any assignment µ of X, the set ext(µ, e[δ]) is the set of
assignments of vars(δ) − X that extend µ to a satisfying assignment for e[δ];
i.e., those assignments θ for which µ⊕ θ ∈ e[δ].

Definition 11 (Extension equivalence). Let e[δ] be a global constraint, and
X ⊆ vars(δ). We say that two assignments θ1, θ2 to X are extension equivalent
on X with respect to e[δ] if ext(θ1, e[δ]) = ext(θ2, e[δ]). We denote this equivalence
relation by equiv[e[δ], X]; that is, equiv[e[δ], X](θ1, θ2) holds if and only if θ1 and
θ2 are extension equivalent on X with respect to e[δ].

In other words, two assignments to some subset of the variables of a constraint
e[δ] are extension equivalent if every assignment to the rest of the variables
combines with both of them to give either two assignments that satisfy e[δ], or
two that falsify it.

Example 7. Consider the special case of extension equivalence with respect to a
clause (cf. Example 3).

Given any clause e[δ], and any non-empty set of variables X ⊆ vars(δ), any
assignment toX will either satisfy one of the corresponding literals specified by δ,
or else falsify all of them. If it satisfies at least one of them, then any extension
will satisfy the clause, so all such assignments are extension equivalent. If it
falsifies all of them, then an extension will satisfy the clauses if and only if it
satifies one of the other literals. Hence the equivalence relation equiv[e[δ], X] has
precisely 2 equivalence classes, one containing the single assignment that falsifies
all the literals corresponding to X, and one containing all other assignments.

For a set S of global constraints, we will write iv(S) for the set of variables
common to all of their scopes, that is, iv(S) =

⋂
e[δ]∈S

vars(δ).

Definition 12 (Join). For any set S of global constraints, we define the join
of S, denoted join(S), to be a global constraint e′[δ′] with vars(δ′) =

⋃
e[δ]∈S

vars(δ)

such that for any assignment θ to vars(δ′), we have θ ∈ e′[δ′] if and only if for
every e[δ] ∈ S we have θ|vars(δ) ∈ e[δ].

The join of a set of global constraints may have no simple compact descrip-
tion, and computing its extension may be computationally expensive. However,
we introduce this construct simply in order to describe the combined effect of a
set of global constraints in terms of a single constraint.

Example 8. Let V = {v1, . . . , vn}, for some n ≥ 3, be a set of variables with
D(vi) = {a, b, c}, and let S = {e1[δ1], e2[δ2]} be a set of two global constraints
as defined below:

– e1[δ1] is a table constraint with vars(δ1) = {v1, . . . , vn−1} which enforces
equality, i.e., δ1 = {θa, θb, θc}, where for each x ∈ D(V) and v ∈ vars(δ1),
θx(v) = x.

– e2[δ2] is a negative constraint with vars(δ2) = {v2, . . . , vn} which enforces a
not-all-equal condition, i.e., δ2 = {θa, θb, θc}, where for each x ∈ D(V) and
v ∈ vars(δ2), θx(v) = x.

We will use substitution notation to write assignments explicitly; thus, an
assignment of {v, w} that assigns a to both variables is written {v/a, w/a}.

We have that iv(S) = {v2, . . . , vn−1}. The equivalence classes of assignments
to iv(S) under equiv[join(S), iv(S)] are {{v2/a, . . . , vn−1/a}}, {{v2/b, . . . , vn−1/b}},
and {{v2/c, . . . , vn−1/c}}, each containing the single assignment shown, as well
as (for n > 3) a final class containing all other assignments, for which we can
choose an arbitrary representative assignment, θ0, such as {v2/a, v3/b, . . . , vn−1/b}.

Each assignment in the first 3 classes has just 2 possible extensions that
satisfy join(S), since the value assigned to v1 must equal the value assigned to
v2, . . . , vn−1, and the value assigned to vn must be different. The assignment θ0
has no extensions, since ext(θ0, e1[δ1]) = ∅.

Hence the number of equivalence classes in equiv[join(S), iv(S)] is at most 4,
even though the total number of possible assignments of iv(S) is 3n−2

Definition 13 (Cooperating constraint catalogue). We say that a con-
straint catalogue C is a cooperating catalogue if for any finite set of global con-
straints S ⊆ C, we can compute a set of assignments of the variables iv(S) con-
taining at least one representative of each equivalence class of equiv[join(S), iv(S)]
in polynomial time in the size of iv(S) and the total size of the constraints in S.

Note that this definition requires two things. First, that the number of equiv-
alence classes in the equivalence relation equiv[join(S), iv(S)] is bounded by some
fixed polynomial in the size of iv(S) and the size of the constraints in S. Sec-
ondly, that a suitable set of representatives for these equivalence classes can be
computed efficiently from the constraints.

Example 9. Consider a constraint catalogue consisting entirely of clauses (of
arbitrary arity). It was shown in Example 7 that for any clause e[δ] and any
non-empty X ⊆ vars(δ) the equivalence relation equiv[e[δ], X] has precisely 2
equivalence classes.

If we consider some finite set, S, of clauses, then a similar argument shows
that the equivalence relation equiv[join(S), iv(S)] has at most |S| + 1 classes.
These are given by the single assignments of the variables in iv(S) that falsify
the literals corresponding to the variables of iv(S) in each clause (there are at
most |S| of these — they may not all be distinct) together with at most one
further equivalence class containing all other assignments (which must satisfy at
least one literal in each clause of S).

Hence the total number of equivalence classes in the equivalence relation
equiv[join(S), iv(S)] increases at most linearly with the number of clauses in S,
and a representative for each class can be easily obtained from the descriptions of

these clauses, by projecting the falsifying assignments down to the set of common
variables, iv(S), and adding at most one more, arbitrary, assignment.

By same argument, if we consider some finite set, S, of table constraints,
then the equivalence relation equiv[join(S), iv(S)] has at most one class for each
assignment allowed by each table constraint in S, together with at most one
further class containing all other assignments.

In general, arbitrary EGC constraints (cf. Example 2) do not form a cooper-
ating catalogue. However, we will show that if we bound the size of the variable
domains, then the resulting EGC constraints do form a cooperating catalogue.

Definition 14 (Counting function). Let X be a set of variables with domain
D =

⋃
x∈X D(x). A counting function for X is any function K : D → N such

that
∑
a∈DK(a) = |X|.

Every assignment θ to X defines a corresponding counting function Kθ given
by Kθ(a) = |{x ∈ X | θ(x) = a}| for every a ∈ D.

It is easy to verify that no EGC constraint can distinguish two assignments
with the same counting function; for any EGC constraint, either both assign-
ments satisfy it, or they both falsify it. It follows that two assignments with
the same counting function are extension equivalent with respect to EGC con-
straints.

Definition 15 (Counting constraints). A global constraint e[δ] is called a
counting constraint if, for any two assignments θ1, θ2 of vars(δ) which have the
same counting function, either θ1, θ2 ∈ e[δ] or θ1, θ2 6∈ e[δ].

EGC constraints are not the only constraint type with this property. Con-
straints that require the sum (or the product) of the values of all variables in
their scope to take a particular value, and constraints that require the minimum
(or maximum) value of the variables in their scope to take a certain value, are
also counting constraints.

Another example is given by the NValue constraint type, which requires that
the number of distinct domain values taken by an assignment is a member of a
specified set of acceptable numbers.

Example 10 (NValue constraint type [4,6]). In an NValue constraint, e[δ], the
description δ specifies a finite set of natural numbers Lδ ⊂ N. The algorithm e
maps an assignment θ to 1 if |{θ(v) | v ∈ vars(δ)}| ∈ Lδ.

The reason for introducing counting functions is the following key property,
previously noted by Bulatov and Marx [8].

Property 1. The number of possible counting functions for a set of variables X
is at most

(|X|+|D|−1
|D|−1

)
= O(|X||D|), where D =

⋃
x∈X D(x).

Proof. If every variable x ∈ X has D as its set of domain elements, that is,
D(x) = D, then every counting function corresponds to a distinct way of parti-
tioning |X| variables into at most |D| boxes. There are

(|X|+|D|−1
|D|−1

)
ways of doing

so [27, Section 2.3.3]. On the other hand, if there are variables x ∈ X such that
D(x) ⊂ D, then that disallows some counting functions.

Theorem 2. Any constraint catalogue that contains only counting constraints
with bounded domain size, table constraints, and negative constraints, is a coop-
erating catalogue.

Proof. Let C be a constraint catalogue containing only global constraints of the
specified types, and let S ⊆ C be a finite subset of C. Partition S into two
subsets: SC , containing only counting constraints and S± containing only table
and negative constraints.

Let K be a set containing assignments of iv(S), such that for every counting
function K for iv(S), there is some assignment θK ∈ K with Kθ = K. By
Property 1, the number of counting functions for iv(S) is bounded by O(|iv(S)|d),
where d is the bound on the domain size for the counting constraints in C. Hence
such a set K can be computed in polynomial time in the size of iv(S).

For each constraint in S± we have that the description is a list of assignments
(these are the allowed assignments for the table constraints and the forbidden
assignments for the negative constraints, see Example 4).

As we described in Example 9, for each table constraint e[δ] ∈ S, we can
obtain a representative for each equivalence class of equiv[e[δ], iv(S)] by taking
the projection onto iv(S) of each allowed assignment, which we can denote by
πiv(S)(δ), together with at most one further, arbitrary, assignment, θ0, that is not
in this set. This set of assignments contains at least one representative for each
equivalence class of equiv[e[δ], iv(S)] (and possibly more than one representative
for some of these classes).

Similarly, for each negative constraint e[δ] ∈ S, we can obtain a representative
for each equivalence class of equiv[e[δ], iv(S)], by taking the projection onto iv(S)
of each forbidden assignment, which we can again denote by πiv(S)(δ), together
with at most one further, arbitrary, assignment, θ0, that is not in this set.

Now consider the set of assignments A = K∪{θ0}∪
⋃

e[δ]∈S±
πiv(S)(δ), where θ0

is an arbitrary assignment of iv(S) which does not occur in πiv(S)(δ) for any e[δ] ∈
S (if such an assignment exists). We claim that this set of assignments contains
at least one representative for each equivalence class of equiv[join(S), iv(S)] (and
possibly more than one for some classes).

To establish this claim we will show that any assignment θ of iv(S) that is
not in A must be extension equivalent to some member of A. Let θ be an assign-
ment of iv(S) that is not in A (if such an assignment exists). If S± contains any
positive constraints, then θ has an empty set of extensions to these constraints,
and hence is extension equivalent to θ0. Otherwise, any extension of θ will sat-
isfy all negative constraints in S±, so the extensions of θ that satisfy join(S)

are completely determined by the counting function Kθ. In this case θ will be
extension equivalent to some element of K.

Moreover, the set of assignments A can be computed from S in polynomial
time in the the size of iv(S) and the total size of the descriptions of the constraints
in S±. Therefore, C is a cooperating catalogue as described in Definition 13.

Example 11. By Theorem 2, the constraints in Example 1 form a cooperating
catalogue.

5 Polynomial-time reductions

In this section, we will show that, for any constraint problem over a cooperating
catalogue, a set of variables that all occur in exactly the same set of constraint
scopes can be replaced by a single new variable with an appropriate domain, to
give a polynomial-time reduction to a smaller problem.

Definition 16 (Dual of a hypergraph). Let G = 〈V,H〉 be a hypergraph. The
dual G∗ of G is a hypergraph with vertex set H and a hyperedge {h ∈ H | v ∈ h}
for every v ∈ V . For a class H of hypergraphs, let H∗ = {G∗ | G ∈ H}.

Example 12. Consider the hypergraphG in Figure 1. The dual,G∗, of this hyper-
graph has vertex set {C1, C2, C3, C4, C5} and five hyperedges {C1, C2}, {C1, C3},
{C2, C4}, {C3, C4} and {C4, C5}. This transformation is illustrated in Figure 2.

.

.

.

C1C2 C3

C4

.

.

.

.

.

.

C5

C1

C2
C3

C4

C5

G G*

Fig. 2. G and G∗ from Example 12

Note that the dual of the dual of a hypergraph is not necessarily the original
hypergraph, since we do not allow multiple identical hyperedges.

Example 13. Consider the dual hypergraph G∗ defined in Example 12. Taking
the dual of this hypergraph yields G∗∗, with vertex set {h1, . . . , h5} (correspond-
ing to the 5 hyperedges in G∗) and 5 distinct hyperedges, as shown in Figure 3.

C1C2 C3

C4
C5

C1

C2
C3

C4

C5

G* G**

Fig. 3. G∗ and G∗∗ from Example 13

In the example above, taking the dual of a hypergraph twice had the effect of
merging precisely those sets of variables that occur in the same set of hyperedges.
It is easy to verify that this is true in general: Taking the dual twice equates
precisely those variables that occur in the same set of hyperedges.

Lemma 1. For any hypergraph G, the hypergraph G∗∗ has precisely one vertex
corresponding to each maximal subset of vertices of G that occur in the same set
of hyperedges.

Next, we combine the idea of the dual with the usual notion of treewidth to
create a new measure of width.

Definition 17 (twDD). Let G be a hypergraph. The treewidth of the dual of
the dual (twDD) of G is twDD(G) = tw(G∗∗).

For a class of hypergraphs H, we define twDD(H) = tw(H∗∗).

Example 14. Consider the class H of hypergraphs of the family of problems
described in Example 1. Whatever the value of n, the dual hypergraph, G∗
is the same, as shown in Figure 2. Hence for all problems in this family the
hypergraph G∗∗ is as shown in Figure 3, and can be shown to have treewidth 3.
Hence twDD(H) = 3.

When replacing a set of variables in a CSP instance with a single variable,
we will use the following definition.

Definition 18 (Quotient of a CSP instance). Let P = 〈V,C〉 be a CSP
instance and X ⊆ V be a non-empty subset of variables that all occur in the
scopes of the same set S of constraints. The quotient of P with respect to X,
denoted PX , is defined as follows.

– The variables of PX are given by V X = (V − X) ∪ {vX}, where vX is
a fresh variable, and the domain of vX is the set of equivalence classes of
equiv[join(S), X].

– The constraints of PX are unchanged, except that each constraint e[δ] ∈ S is
replaced by a new constraint eX [δX], where vars(δX) = (vars(δ)−X)∪{vX}.
For any assignment θ of vars(δX), we define eX [δX](θ) to be 1 if and only
if θ|vars(δ)−X ⊕ µ ∈ e[δ], where µ is a representative of the equivalence class
θ(vX).

We note that, by Definition 11, the value of eX [δX] specified in Definition 18
is well-defined, that is, it does not depend on the specific representative chosen
for the equivalence class θ(vX), since each representative has the same set of
possible extensions.

Lemma 2. Let P = 〈V,C〉 be a CSP instance and X ⊆ V be a non-empty
subset of variables that all occur in the scopes of the same set of constraints.
The instance PX has a solution if and only if P has a solution.

Proof (Sketch). Let P = 〈V,C〉 and X be given, and let S ⊆ C be the set of
constraints e[δ] such that X ⊆ vars(δ).

Construct the instance PX as specified in Definition 18. Any solution to P
can be converted into a corresponding solution for PX , and vice versa. This
conversion process just involves replacing the part of the solution assignment
that gives values to the variables in the set X with an assignment that gives a
suitable value to the new variable vX .

Theorem 3. Any CSP instance P can be converted to an instance P ′ with
hyp(P ′) = hyp(P)∗∗, such that P ′ has a solution if and only if P does. Moreover,
if P is over a cooperating catalogue, this conversion can be done in polynomial
time.

Proof. Let P = 〈V,C〉 be a CSP instance. For each variable v ∈ V we define
S(v) = {e[δ] ∈ C | v ∈ vars(δ)} We then partition the vertices of P into subsets
X1, . . . , Xk, where each Xi is a maximal subset of variables v that share the
same value for S(v).

We initially set P0 = P . Then, for each Xi in turn, we set Pi = (Pi−1)X .
Finally we set P ′ = Pk. By Lemma 1, hyp(P ′) = hyp(P)∗∗, and by Lemma 2, P ′
has a solution if and only if P has a solution.

Finally, if P is over a cooperating catalogue, then by Definition 13, we can
compute the domains of each new variable introduced in polynomial time in the
size of each Xi and the total size of the constraints. Hence we can compute P ′
in polynomial time.

Using Theorem 3, we can immediately get a new tractable CSP class by
extending Theorem 1.

Theorem 4. Let C be a constraint catalogue and H a class of hypergraphs.
CSP(H, C) is tractable if C is a cooperating catalogue and twDD(H) <∞.

Proof. Let C be a cooperating catalogue, H a class of hypergraphs such that
twDD(H) < ∞, and P ∈ CSP(H, C). Reduce P to a CSP instance P ′ using

Theorem 3. By Definition 17, since hyp(P ′) = hyp(P)∗∗, tw(hyp(P ′)) < ∞,
which means that P ′ satisfies the conditions of Theorem 1, and hence can be
solved in polynomial time.

Recall the family of constraint problems described in Example 1 at the start
of this paper. Since the constraints in this problem form a cooperating catalogue
(Example 11), and all instances have bounded twDD (Example 14), this family
of problems is tractable by Theorem 4.

6 Summary and future work

We have identified a novel tractable class of constraint problems with global
constraints. In fact, our results generalize several previously studied classes of
problems [12]. Moreover, this is the first representation-independent tractability
result for constraint problems with global constraints.

Our new class is defined by restricting both the nature of the constraints
and the way that they interact. As demonstrated in Example 5, instances with
a single global constraint may already be NP-complete [26], so we cannot hope
to achieve tractability by structural restrictions alone. In other words, notions
such as bounded degree of cyclicity [21] or bounded hypertree width [18] are not
sufficient to ensure tractability in the framework of global constraints, where the
arity of individual constraints is unbounded. This led us to introduce the notion
of a cooperating constraint catalogue, which is sufficiently restricted to ensure
that an individual constraint is always tractable.

However, this restriction on the nature of the constraints is still not enough
to ensure tractability on any structure: Example 6 demonstrates that not all
structures are tractable even with a cooperating constraint catalogue. In fact, a
family of problems with acyclic structure (hypertree width one) over a cooper-
ating constraint catalogue can still be NP-complete. This led us to investigate
restrictions on the structure that are sufficient to ensure tractability for all in-
stances over a cooperating catalogue. In particular, we have shown that it is
sufficient to ensure that the dual of the dual of the hypergraph of the instance
has bounded treewidth.

An intriguing open question is whether there are other restrictions on the
nature of the constraints or the structure of the instances that are sufficient
to ensure tractability in the framework of global constraints. Very little work
has been done on this question, apart from the pioneering work of Bulatov and
Marx [8], which considered only a single global cardinality constraint, along
with arbitrary table constraints, and of Chen and Dalmau [9] on two specific
succinct representations. Almost all other previous work on tractable classes has
considered only table constraints. This may be one reason why such work has
had little practical impact on the design of constraint solvers, which rely heavily
on the use of in-built special-purpose global constraints.

We see this paper as a first step in the development of a more robust and
applicable theory of tractability for global constraints.

References

1. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon,
A., Thorstensen, E.: Optimization methods for the partner units problem. In:
Proc. CPAIOR’11. LNCS, vol. 6697, pp. 4–19. Springer (2011)

2. Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E.: Structural
decomposition methods and what they are good for. In: Schwentick, T., Dürr, C.
(eds.) Proc. STACS’11. LIPIcs, vol. 9, pp. 12–28 (2011)

3. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal of the ACM 30, 479–513 (July 1983)

4. Beldiceanu, N.: Pruning for the minimum constraint family and for the number of
distinct values constraint family. In: Proc. CP’01. LNCS, vol. 2239, pp. 211–224.
Springer (2001)

5. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of reasoning with
global constraints. Constraints 12(2), 239–259 (2007)

6. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decom-
position of the NValue constraint. In: Proc. CP’10. LNCS, vol. 6308, pp. 114–128.
Springer (2010)

7. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

8. Bulatov, A.A., Marx, D.: The complexity of global cardinality constraints. Logical
Methods in Computer Science 6(4:4), 1–27 (2010)

9. Chen, H., Grohe, M.: Constraint satisfaction with succinctly specified relations.
Journal of Computer and System Sciences 76(8), 847–860 (2010)

10. Cohen, D.A., Green, M.J., Houghton, C.: Constraint representations and structural
tractability. In: Proc. CP’09. LNCS, vol. 5732, pp. 289–303. Springer (2009)

11. Cohen, D.A., Jeavons, P., Gyssens, M.: A unified theory of structural tractability
for constraint satisfaction problems. Journal of Computer and System Sciences
74(5), 721–743 (2008)

12. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Proc. CP’02. LNCS, vol. 2470, pp. 223–254.
Springer (2002)

13. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38(3), 353–366 (1989)

14. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
In: Proc. AAAI, pp. 4–9. AAAI Press / The MIT Press (1990)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

16. Gent, I.P., Jefferson, C., Miguel, I.: MINION: A fast, scalable constraint solver. In:
Proc. ECAI’06, pp. 98–102. IOS Press (2006)

17. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence 124(2), 243–282 (2000)

18. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)

19. Green, M.J., Jefferson, C.: Structural tractability of propagated constraints. In:
Proc. CP’08. LNCS, vol. 5202, pp. 372–386. Springer (2008)

20. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM 54(1), 1–24 (2007)

21. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)

22. Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized
datacenters. In: Proc. CP’11. LNCS, vol. 6876, pp. 27–41. Springer (2011)

23. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelli-
gence, vol. 2, chap. 6, pp. 169–208. Elsevier (2006)

24. Kutz, M., Elbassioni, K., Katriel, I., Mahajan, M.: Simultaneous matchings: Hard-
ness and approximation. Journal of Computer and System Sciences 74(5), 884–897
(August 2008)

25. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In: Proc. STOC’10, pp. 735–744. ACM (2010)

26. Quimper, C.G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms
for the global cardinality constraint. In: Proc. CP’04. LNCS, vol. 3258, pp. 542–556.
Springer (2004)

27. Rosen, K.H., Michaels, J.G., Gross, J.L., Grossman, J.W., Shier, D.R. (eds.): Hand-
book of Discrete and Combinatorial Mathematics. Discrete Mathematics and Its
Applications, CRC Press (2000)

28. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Program-
ming. Elsevier (2006)

29. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality con-
straint. Constraints 16(1), 1–24 (2011)

30. Wallace, M.: Practical applications of constraint programming. Constraints 1, 139–
168 (September 1996)

31. Wallace, M., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic
programming. ICL Systems Journal 12(1), 137–158 (May 1997)

	Tractable Combinations of Global Constraints

