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Abstract. In this paper we investigate the ways in which a fixed collec-
tion of valued constraints can be combined to express other valued con-
straints. We show that in some cases a large class of valued constraints,
of all possible arities, can be expressed by using valued constraints of a
fixed finite arity. We also show that some simple classes of valued con-
straints, including the set of all monotonic valued constraints with finite
cost values, cannot be expressed by a subset of any fixed finite arity, and
hence form an infinite hierarchy.

1 Introduction

Building a computational model of a combinatorial problem means capturing
the requirements and optimisation criteria of the problem using the resources
available in some given computational system. Modelling such problems using
constraints means expressing the requirements and optimisation criteria using
some combination of basic constraints provided by the system. In this paper we
investigate what kinds of relationships and functions can be expressed using a
given set of allowed constraint types.

The classical constraint satisfaction problem (CSP) model considers only the
feasibility of satisfying a collection of simultaneous requirements. Various ex-
tensions have been proposed to this model to allow it to deal with different
kinds of optimisation criteria or preferences between different feasible solutions.
Two very general extended frameworks that have been proposed are the semi-
ring CSP framework and the valued CSP (VCSP) framework [2]. The semi-ring
framework is slightly more general, but the VCSP framework is simpler, and
sufficiently powerful to describe many important classes of problems [6,18].

In this paper we work with the VCSP framework. In this framework every
constraint has an associated cost function which assigns a cost to every tuple of
values for the variables in the scope of the constraint. The set of cost functions
used in the description of the problem is called the valued constraint language.

As with all computing paradigms, it is desirable for many purposes to have
a small language which can be used to describe a large collection of problems.
Determining which problems can be expressed in a given language is therefore
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a central issue in assessing the flexibility and usefulness of a constraint system,
and it is this question that we investigate here.

We make use of a number of algebraic tools that have been developed for this
question [15], and for the related question of determining the complexity of a
constraint language [3,6]. By applying these tools to particular valued constraint
languages, we show that some simple constraint classes provide infinite hierar-
chies of greater and greater expressive power, whereas other classes collapse to
sets of cost functions of fixed arity which can express all the other cost functions
in the class.

The paper is organised as follows. In Section 2, we define the standard val-
ued constraint satisfaction problem and the notion of expressibility for valued
constraints. In Section 3, we describe some algebraic techniques that have been
developed for valued constraints in earlier papers and show how they can be used
to investigate expressibility. In Section 4, we present our results. We show that
some valued constraints of fixed arities can express constraints of all possible
arities whereas some other sets of valued constraints cannot be expressed by any
subset of fixed finite arity. Due to the page limit we only state our results, but
all proofs are given in the full version of this paper [7]. Finally in Section 5, we
summarise our results and suggest some important open questions.

2 Valued Constraints and Expressibility

In this section we define the valued constraint satisfaction problem and discuss
how the cost functions used to define valued constraints can be combined to ex-
press other valued constraints. More detailed discussion of the valued constraint
framework, and illustrative examples, can be found in [2,6].

Definition 1. A valuation structure, Ω, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator, ⊕, such that for all α, β, γ ∈
Ω, α ⊕ 0 = α and α ⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2. An instance of the valued constraint satisfaction problem,
VCSP, is a tuple P = 〈V, D, C, Ω〉 where:

– V is a finite set of variables;
– D is a finite set of possible values;
– Ω is a valuation structure representing possible costs;
– C is a set of valued constraints. Each element of C is a pair c = 〈σ, φ〉

where σ is a tuple of variables called the scope of c, and φ ∈ Γ is a mapping
from D|σ| to Ω, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V, D, C, Ω〉, an assignment for P
is a mapping s : V → D. The cost of an assignment s, denoted CostP(s), is
given by the aggregation of the costs for the restrictions of s onto each constraint
scope, that is,

CostP(s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C
φ(〈s(v1), s(v2), . . . , s(vm)〉).
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A solution to P is an assignment with minimal cost.

The complexity of finding an optimal solution to a valued constraint problem
will obviously depend on the forms of valued constraints which are allowed in
the problem [6]. In order to investigate different families of valued constraint
problems with different sets of allowed constraint types, we use the notion of a
valued constraint language, which is simply a set of possible cost functions
mapping Dk to Ω, for some fixed set D and some fixed valuation structure Ω.
The class of all VCSP instances where the cost functions of the valued constraints
are all contained in a valued constraint language Γ will be denoted VCSP(Γ ).

In any VCSP instance, the variables listed in the scope of each valued con-
straint are explicitly constrained, in the sense that each possible combination of
values for those variables is associated with a given cost. Moreover, if we choose
any subset of the variables, then their values are constrained implicitly in the
same way, due to the combined effect of the valued constraints. This motivates
the concept of expressibility for cost functions, which is defined as follows:

Definition 4. For any VCSP instance P = 〈V, D, C, Ω〉, and any list
l = 〈v1, . . . , vm〉 of variables of P, the projection of P onto l, denoted πl(P),
is the m-ary cost function defined as follows:

πl(P)(x1, . . . , xm) def= min
{s:V →D | 〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostP(s).

We say that a cost function φ is expressible over a valued constraint language
Γ if there exists an instance P ∈ VCSP(Γ ) and a list l of variables of P such
that πl(P) = φ. We call the pair 〈P , l〉 a gadget for expressing φ over Γ .

Note that any cost function expressible over Γ can be added to Γ without
changing the complexity of VCSP(Γ ).

In this paper we shall examine the expressibility of cost functions over three
particular valuation structures which can be used to model a wide variety of
problems [6]:

Definition 5. Let Ω be a valuation structure and let φ : Dm → Ω be a cost
function.

– If Ω = {0,∞}, then we call φ a crisp cost function.
– If Ω = Q+, the set of non-negative rational numbers with the standard ad-

dition operation, +, then we call φ a finite-valued cost function.
– If Ω = Q+, the set of non-negative rational numbers together with infinity,

with the standard addition operation (extended so that a+∞ = ∞, for every
a ∈ Q+), then we call φ a general cost function.

Note that with any relation R over D we can associate a crisp cost function φR

on D which maps tuples in R to 0 and tuples not in R to ∞. On the other hand,
with any m-ary cost function φ we can associate an m-ary crisp cost function
defined by:

Feas(φ)(x1, . . . , xm) def=
{∞ if φ(x1, . . . , xm) = ∞

0 if φ(x1, . . . , xm) < ∞.
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3 Expressive Power and Algebraic Properties

Adding a finite constant to any cost function does not alter the relative costs.
Hence, for any valued constraint language Γ with costs in Ω, we define the
expressive power of Γ , denoted 〈Γ 〉, to be the set of all cost functions φ such
that φ + c is expressible over Γ for some constant c ∈ Ω where c < ∞.

A number of algebraic techniques to determine the expressive power of a given
valued constraint language have been developed in earlier papers. To make use
of these techniques, we first need to define some key terms.

The i-th component of a tuple t will be denoted by t[i]. Note that any op-
eration on a set D can be extended to tuples over D in the following way. For
any function f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dm, define
f(t1, . . . , tk) ∈ Dm to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.
Definition 6 ([9]). Let R be an m-ary relation over a finite set D and let f be
a k-ary operation on D. Then f is a polymorphism of R if f(t1, . . . , tk) ∈ R
for all choices of t1, . . . , tk ∈ R.

A valued constraint language, Γ , which contains only crisp cost functions (=
relations) will be called a crisp constraint language. We will say that f is a
polymorphism of a crisp constraint language Γ if f is a polymorphism of every
relation in Γ . The set of all polymorphisms of Γ will be denoted Pol(Γ ).

It follows from the results of [13] that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms:

Theorem 7 ([13]). For any crisp constraint language Γ over a finite set

R ∈ 〈Γ 〉 ⇔ Pol(Γ ) ⊆ Pol({R}).
Hence, a crisp cost function φ is expressible over a crisp constraint language Γ
if and only if it has all the polymorphisms of Γ .

We can extend the idea of polymorphisms to arbitrary valued constraint lan-
guages by considering the corresponding feasibility relations:

Definition 8 ([3]). The feasibility polymorphisms of a valued constraint
language Γ are the polymorphisms of the corresponding crisp feasibility cost func-
tions, that is,

FPol(Γ ) def= Pol({Feas(φ) | φ ∈ Γ}).
However, to fully capture the expressive power of valued constraint languages it
is necessary to consider more general algebraic properties, such as the following:

Definition 9 ([4]). A list of functions, 〈f1, . . . , fk〉, where each fi is a function
from Dk to D, is called a k-ary multimorphism of a cost function φ : Dm → Ω
if, for all t1, . . . , tk ∈ Dm, we have

k∑

i=1

φ(ti) ≥
k∑

i=1

φ(fi(t1, . . . , tk)).
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The next result shows that the multimorphisms of a valued constraint language
are preserved by all the cost functions expressible over that language.

Theorem 10 ([6]). If F is a multimorphism of a valued constraint language
Γ , then F is a multimorphism of 〈Γ 〉.
Hence, to show that a cost function φ is not expressible over a valued constraint
language Γ it is sufficient to identify some multimorphism of Γ which is not a
multimorphism of φ.

It is currently an open question whether the set of multimorphisms of a val-
ued constraint language completely characterizes the expressive power of that
language. However, it was shown in [3] that the expressive power of a valued
constraint language can be characterised by generalising the notion of multimor-
phism a little, to a property called a fractional polymorphism, which is essentially
a multimorphism where each component function has an associated weight value.

Definition 11 ([3]). A k-ary weighted function F on a set D is a set of
the form {〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a non-negative rational number
such that

∑n
i=1 ri = k and each fi is a distinct function from Dk to D.

For any m-ary cost function φ, we say that a k-ary weighted function F is a
k-ary fractional polymorphism of φ if, for all t1, . . . , tk ∈ Dm,

k∑

i=1

φ(ti) ≥
n∑

i=1

riφ(fi(t1, . . . , tk)).

For any valued constraint language Γ , we will say that F is a fractional poly-
morphism of Γ if F is a fractional polymorphism of every cost function in Γ .
The set of all fractional polymorphisms of Γ will be denoted fPol(Γ ).

It was shown in [3] that the feasibility polymorphisms and fractional poly-
morphisms of a valued constraint language effectively determine its expressive
power.

Theorem 12 ([3]).
Let Γ be a valued constraint language with costs in Q+ such that, for all φ ∈ Γ ,

and all c ∈ Q+, cφ ∈ Γ and Feas(φ) ∈ Γ .

φ ∈ 〈Γ 〉 ⇔ FPol(Γ ) ⊆ FPol({φ}) ∧ fPol(Γ ) ⊆ fPol({φ}).

4 Results

In this section we present our results. We consider the expressive power of crisp,
finite-valued and general constraint languages. We consider the languages con-
taining all cost functions up to some fixed arity over some fixed domain, and
we also consider an important subset of these cost functions defined for totally
ordered domains, the so-called max-closed relations, which are defined below.

The function Max denotes the standard binary function which returns the
larger of its two arguments.
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Definition 13. A cost function φ is max-closed if 〈Max,Max〉 ∈ Mul({φ}).
Definition 14. For every d ≥ 2 we define the following:

– Rd,m (Fd,m, Gd,m respectively) denotes the set of all crisp (finite-valued,
general respectively) cost functions over a domain of size d of arity at most
m, and Rd = ∪m≥0Rd,m, Fd = ∪m≥0Fd,m, and Gd = ∪m≥0Gd,m;

– Rmax
d,m (Fmax

d,m , Gmax
d,m respectively) denotes the set of all crisp (finite-valued,

general respectively) max-closed cost functions over an ordered domain of
size d of arity at most m, and Rmax

d = ∪m≥0Rmax
d,m , Fmax

d = ∪m≥0Fmax
d,m , and

Gmax
d = ∪m≥0Gmax

d,m .

Theorem 15. For all f ≥ 2 and d ≥ 3,

1. 〈R2,1〉 � 〈R2,2〉 � 〈R2,3〉 = R2; 〈Rd,1〉 � 〈Rd,2〉 = Rd.
2. 〈Rmax

2,1 〉 � 〈Rmax
2,2 〉 � 〈Rmax

2,3 〉 = Rmax
2 ; 〈Rmax

d,1 〉 � 〈Rmax
d,2 〉 = Rmax

d .
3. 〈Fmax

f,1 〉 � 〈Fmax
f,2 〉 � 〈Fmax

f,3 〉 � 〈Fmax
f,4 〉 · · ·

4. 〈Gmax
2,1 〉 � 〈Gmax

2,2 〉 � 〈Gmax
2,3 〉 = Gmax

2 ; 〈Gmax
d,1 〉 � 〈Gmax

d,2 〉 = Gmax
d .

The proof of Theorem 15 can be found in the full version of this paper [7], and
we just give a brief sketch here. As any relation can be expressed as a proposi-
tional formula, the collapse described in Statement (1) follows from the standard
Sat to 3-Sat reduction. The collapse of max-closed relations in Statement (2)
is proved by adapting the SAT to 3-SAT reduction. However, this gives only
a weaker result, Rmax

d = 〈Rmax
d,3 〉. To show that any max-closed relation over a

non-Boolean domain can be expressed by using only binary max-closed relations,
we characterise the polymorphisms of Rmax

d and prove that Rmax
d,2 does not have

any extra polymorphisms. The separation result in Statement (3) is obtained
by finding explicit multimorphisms for the finite-valued max-closed cost func-
tions of each different arity. Finally, the collapse result in Statement (4) follows
from a precise characterisation of the feasibility polymorphisms and fractional
polymorphisms of Gmax

d obtained using the Min-Cut Max-Flow theorem.

5 Conclusions and Open Problems

We have investigated the expressive power of valued constraints in general and
max-closed valued constraints in particular.

In the case of relations, we built on previously known results about the ex-
pressibility of an arbitrary relation in terms of binary or ternary relations. We
were able to prove in a similar way that an arbitrary max-closed relation can be
expressed using binary or ternary max-closed relations. The results about the
collapse of the set of all relations and all max-closed relations contrast sharply
with the case of finite-valued max-closed cost functions, where we showed an infi-
nite hierarchy. This shows that the VCSP is not just a minor generalisation of the
CSP – finite-valued max-closed cost functions behave very differently from crisp
max-closed cost functions with respect to expressive power. Finally, we showed
the collapse of general max-closed cost functions by investigating their feasibility
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polymorphisms and fractional polymorphisms. This shows that allowing infinite
costs in max-closed cost functions increases their expressive power substantially,
and in fact allows them to express more finite-valued cost functions.

We remark that all of our results about max-closed cost functions obviously
have equivalent versions for min-closed cost functions, that is, those which have
the multimorphism 〈Min,Min〉. In the Boolean crisp case these are precisely the
relations that can be expressed by a conjunction of Horn clauses.

One of the reasons why understanding the expressive power of valued con-
straints is important is for the investigation of submodular functions. A cost
function φ is called submodular if it has the multimorphism 〈Min,Max〉. The
standard problem of submodular function minimisation corresponds to solving
a VCSP with submodular cost functions over the Boolean domain [5].

Submodular function minimisation (SFM) is a central problem in discrete
optimisation, with links to many different areas [10,16]. Although it has been
known for a long time that the ellipsoid algorithm can be used to solve SFM in
polynomial time, this algorithm is not efficient in practice. Relatively recently,
several new strongly polynomial combinatorial algorithms have been discovered
for SFM [10,11,12]. Unfortunately, the time complexity of the fastest published
algorithm for SFM is roughly of an order of O(n7) where n is the total number
of variables [11].

However, for certain special cases of SFM, more efficient algorithms are known
to exist. For example, the (weighted) Min-Cut problem is a special case of SFM
that can be solved in cubic time [10]. Moreover, it is known that SFM over a
Boolean domain can be solved in O(n3) time when the submodular function
f satisfies various extra conditions [1,8,17]. In particular, in the case of non-
Boolean domains, a cubic-time algorithm exists for SFM when f can be expressed
as a sum of binary submodular functions [5].

These observations naturally raise the following question: What is the most
general class of submodular functions that can be minimised in cubic time (or
better)? One way to tackle this question is to investigate the expressive power of
particular submodular functions which are known to be solvable in cubic time.
Any fixed set of functions which can be expressed using such functions will have
the same complexity [3].

One intriguing result is already known for submodular relations. In the case
of relations, having 〈Min,Max〉 as a multimorphism implies having both Min
and Max as polymorphisms. The ternary Median operation can be obtained
by composing the operations Max and Min, so all submodular relations have
the Median operation as a polymorphism. It follows that submodular relations
are binary decomposable [14], and hence all submodular relations are expressible
using binary submodular relations.

For finite-valued and general submodular cost functions it is an important
open question whether they can be expressed using submodular cost functions
of some fixed arity. If they can, then this raises the possibility of designing new,
more efficient, algorithms for submodular function minimisation.
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