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1 IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

2 Computing Laboratory, University of Oxford, OX1 3QD Oxford, UK
standa.zivny@comlab.ox.ac.uk

Abstract. The constraint satisfaction problem (CSP) is a central generic
problem in artificial intelligence. Considerable effort has been made in
identifying properties which ensure tractability in such problems. In this
paper we study hybrid tractability of soft constraint problems; that is,
properties which guarantee tractability of the given soft constraint prob-
lem, but properties which do not depend only on the underlying structure
of the instance (such as being tree-structured) or only on the types of
soft constraints in the instance (such as submodularity).

We firstly present two hybrid classes of soft constraint problems defined
by forbidden subgraphs in the structure of the instance. These classes
allow certain combinations of binary crisp constraints together with ar-
bitrary unary soft constraints.

We then introduce the joint-winner property, which allows us to de-
fine a novel hybrid tractable class of soft constraint problems with soft
binary and unary constraints. This class generalises the SoftAllDiff
constraint with arbitrary unary soft constraints. We show that the joint-
winner property is easily recognisable in polynomial time and present a
polynomial-time algorithm based on maximum-flows for the class of soft
constraint problems satisfying the joint-winner property. Moreover, we
show that if cost functions can only take on two distinct values then this
class is maximal.

1 Introduction

Background An instance of the constraint satisfaction problem (CSP) con-
sists of a collection of variables which must be assigned values subject to specified
constraints. Each CSP instance has an underlying undirected graph, known as
its constraint network, whose vertices are the variables of the instance, and two
vertices are adjacent if corresponding variables are related by some constraint.
Such a graph is also known as the structure of the instance.
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An important line of research on the CSP is to identify all tractable cases
which are recognisable in polynomial time. Most of this work has been focused
on one of the two general approaches: either identifying forms of constraint
which are sufficiently restrictive to ensure tractability no matter how they are
combined [4,15], or else identifying structural properties of constraint networks
which ensure tractability no matter what forms of constraint are imposed [13].

The first approach has led to identifying certain algebraic properties known
as polymorphisms [20] which are necessary for a set of constraint types to ensure
tractability. A set of constraint types with this property is called a tractable con-
straint language. The second approach has been used to characterise all tractable
cases of bounded-arity CSPs (such as binary CSPs): the only class of structures
which ensures tractability (subject to certain complexity theory assumptions)
are structures of bounded tree-width [17].

In practice, constraint satisfaction problems usually do not possess a suffi-
ciently restricted structure or use a sufficiently restricted constraint language to
fall into any of these tractable classes. Nevertheless, they may still have proper-
ties which ensure they can be solved efficiently, but these properties concern both
the structure and the form of the constraints. Such properties have sometimes
been called hybrid reasons for tractability [12,10,9,22,11].

Since in practice many constraint satisfaction problems are over-constrained,
and hence have no solution, soft constraint satisfaction problems have been stud-
ied [12]. In an instance of the soft CSP, every constraint is associated with a func-
tion (rather than a relation as in the CSP) which represents preferences among
different partial assignments, and the goal is to find the best assignment. Several
very general soft CSP frameworks have been proposed in the literature [30,2]. In
this paper we focus on one of the very general frameworks, the valued constraint
satisfaction problem (VCSP) [30].

Similarly to the CSP, an important line of research on the VCSP is to identify
tractable cases which are recognisable in polynomial time. Is is well known that
structural reasons for tractability generalise to the VCSP [12]. In the case of
language restrictions, only a few conditions are known to guarantee tractability
of a given set of valued constraints [8,7].

Up until now there have been very few results on hybrid tractability for
the VCSP. For instance, Kumar defines an interesting framework for hybrid
tractability for the Boolean weighted CSP [22]. However, to the best of our
knowledge, this framework has so far not provided any new hybrid classes. In
fact, all tractable classes presented in [22] are not hybrid and are already known.

Contributions In this paper we study hybrid tractability of the VCSP. As a
first step, we start with binary VCSPs. We will demonstrate two hybrid classes
defined by forbidding certain graphs as induced subgraphs in the structure of the
VCSP instance.3 However, these tractable classes are not entirely satisfactory
as a first step towards a general theory of hybrid tractable classes of VCSP
instances since the only soft constraints they allow are unary.
3 More precisely, in the micro-structure complement of the instance.
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As the main contribution of the paper, we introduce the joint-winner property
(JWP), which allows us to define a novel hybrid tractable class of VCSPs.

We now describe the joint-winner property. Let vi and vj be two variables,
and let cij(a, b) denote the cost of the assignment vi = a and vj = b given by
the valued constraint cij between the variables vi and vj . We denote by Di the
domain of variable vi. A VCSP instance satisfies the joint-winner property if
for every triple of distinct variables vi, vj , vk and all domain values a ∈ Di, b ∈
Dj , c ∈ Dk: cij(a, b) ≥ min(cik(a, c), cjk(b, c)) (see Figure 1).

The joint-winner property is preserved by all unary constraints and hence
conservative, and also easily recognisable in polynomial time. The polynomial-
time algorithm for solving instances satisfying JWP is based on maximum flows.

As the next example shows, the well-known hybrid tractable class Soft-
AllDiff satisfies the JWP property, thus showing that JWP defines a hybrid
tractable class.

a

vi

b

vj

c

vk

cij

cik

cjk

Fig. 1. The joint-winner property: cij(a, b) ≥ min(cik(a, c), cjk(b, c)).

Example 1. One of the most commonly used global constraints is the AllDif-
ferent constraint [28]. Petit et al. introduced a soft version of the AllDif-
ferent constraint, SoftAllDiff [27]. They proposed two types of costs to be
minimised: graph- and variable-based costs. The former counts the number of
equalities, whilst the latter counts the number of variables violating an AllD-
ifferent constraint. The algorithms for filtering these constraints, introduced
in the same paper, were then improved by van Hoeve et al. [33].

It is easy to check that the graph-based variant of the SoftAllDiff con-
straint satisfies the joint-winner property. In this case for every i and j, the
cost function cij is defined as cij(a, b) = 1 if a = b, and cij(a, b) = 0 oth-
erwise. Take any three variables vi, vj , vk and a ∈ Di, b ∈ Dj , c ∈ Dk. If
cij(a, b) = cjk(b, c) = cik(a, c) (which means that that the domain values a, b, c
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are all equal or all different), then the joint-winner property is satisfied trivially.
If only one of of the costs is 1, then the joint-winner property is satisfied as well.
Observe that due to the transitivity of equality it cannot happen that only one
of the costs is 0.

In order to code the variable-based SoftAllDiff constraint as a binary
VCSP P, we can create n variables v′i with domains Di×{1, 2}. The assignment
v′i = (a, 1) means that vi is the first variable of the original CSP to be assigned
the value a, whereas v′i = (a, 2) means that vi is assigned a but it is not the first
such variable. In P there is a crisp constraint which disallows v′i = v′j = (a, 1)
(for any value a ∈ Di ∩Dj) for each pair of variables i < j together with a soft
unary constraint ci(a, k) = k − 1 (for k = 1, 2) for each i ∈ {1, . . . , n}. Hence
at most one variable can be the first to be assigned a, and each assignment of
the value a to a variable (apart from the first) incurs a cost of 1. Again due to
the transitivity of equality, it cannot happen that only one of the binary costs
shown in the triangle of Figure 1 is zero, from which it follows immediately that
the joint-winner property is satisfied in P. We remark that the class defined by
JWP is strictly bigger than SoftAllDiff, and hence our generic algorithm is
not as efficient as tailor-made algorithms for SoftAllDiff.

When restricted to the standard CSP, the JWP property gives a set of disjoint
AllDifferent constraints on subdomains, which is a proper (although not very
surprising) generalisation of disjoint AllDifferent constraints.

Example 2. Suppose that n jobs must be assigned to d machines. Let li(m) be
the length of time required for machine m to complete job i. If machine m cannot
perform job i, then li(m) = ∞. We use variable vi to represent the machine to
which job i is assigned. The set of jobs (which we denote by Sm) assigned to the
same machine m are performed in series in increasing order of their length li(m).
The aim is to minimise T the sum, over all jobs, of their time until completion.
If jobs i and j are assigned to the same machine, and li(m) < lj(m), then job j
will have to wait during the execution of job i, contributing a time of li(m) to
the sum T . This means that

T =
d∑

m=1

(
∑
i∈Sm

li(m) +
∑

i, j ∈ Sm

i < j

min(li(m), lj(m)) )

In other words, optimal assignments of jobs to machines are given by solutions
to the binary VCSP with unary constraints ci(m) = li(m) (representing the
execution times of jobs) and binary constraints

cij(m,m′) =
{

min(li(m), lj(m)) if m = m′

0 otherwise

(representing the waiting times of jobs).
The joint-winner property cij(a, b) ≥ min(cik(a, c), cjk(b, c)) is trivially sat-

isfied in this VCSP instance if a, b, c are not all equal, since in this case one
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of cik(a, c), cjk(b, c) is zero. It is also satisfied when a = b = c = m since
min(li(m), lj(m)) ≥ min(min(li(m), lk(m)),min(lj(m), lk(m))).

This problem has been shown solvable in polynomial time in [19,3].

The rest of the paper is organised as follows. In Section 2, we define binary
constraint satisfaction problems (CSPs), valued constraint satisfaction problems
(VCSPs) and other necessary definitions needed throughout the paper. In Sec-
tion 3, we study binary VCSPs whose only soft constraints are unary. Using a
connection between these VCSPs and the maximum weighted independent set
problem in certain graph classes, we identify hybrid tractable classes of VCSPs.
In Section 4, we define the joint-winner property. In Section 5, we present a
polynomial-time algorithm for solving binary VCSPs satisfying the joint-winner
property. In Section 6, we present an important case in which this new tractable
class is maximal.

2 Preliminaries

In this paper we focus on binary valued constraint satisfaction problems. We
denote by Q+ the set of all non-negative rational numbers. We denote Q+ =
Q+∪{∞} with the standard addition operation extended so that for all a ∈ Q+,
a+∞ =∞. Members of Q+ are called costs.

A unary cost function over domain Di is a mapping ci : Di → Q+. A binary
cost function over domains Di and Dj is a mapping cij : Di ×Dj → Q+. For
notational convenience, throughout this paper we assume that there is a unique
valued constraint on any given scope. In particular, cij(a, b) = cji(b, a), since they
are simply two different ways of representing the unique cost of simultaneously
assigning 〈a, b〉 to variables 〈i, j〉. If the range of ci (cij respectively) lies entirely
within Q+, then ci (cij respectively) is called a finite-valued cost function.

If the range of ci (cij respectively) is {α,∞}, for some α ∈ Q+, then ci (cij
respectively) is called a crisp cost function. Note that crisp cost functions are
just relations; that is, subsets of Di (in the unary case) or Di×Dj (in the binary
case) corresponding to the set of finite-cost tuples. If ci (cij respectively) is not
a crisp cost function, it is called soft.

A binary VCSP instance [30] consists of a set of variables (denoted as vi,
where i ∈ {1, . . . , n}); for each variable vi a domain Di containing possible values
for variable vi; and a set of valued constraints. Each valued constraint is either of
the form 〈vi, ci〉, where vi is a variable and ci is a unary cost function (constraints
of this form are called unary constraints), or of the form 〈〈vi, vj〉, cij〉, where vi
and vj are variables, the pair 〈vi, vj〉 is called the scope of the constraint, and cij
is a binary cost function (constraints of this form are called binary constraints).
A constraint is called crisp if its associated cost function is crisp, and similarly
a constraint is called soft if its associated cost function is soft.
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A solution to a VCSP instance is an assignment of values from the domains
to the variables with the minimum total cost given by

n∑
i=1

ci(vi) +
∑

1≤i<j≤n

cij(vi, vj).

A VCSP instance with only crisp constraints is called a CSP instance. In the
CSP, the task of finding an optimal solution amounts to deciding whether there
is a solution with finite cost (all constraints are satisfied).

The microstructure of a binary CSP instance P is a graph where the set of
vertices corresponds to the set of possible assignments of values to variables: a
vertex 〈vi, a〉 represents the assignment of value a to variable vi [21]. The edges
of the microstructure connect all pairs of variable-value assignments that are al-
lowed by the constraints. (Note that if there is no explicit constraint between two
variables, then it is considered to be the complete constraint.) The microstruc-
ture of a binary VCSP instance is defined similarly, but both vertices and edges
of the graph are assigned costs. For CSPs, the microstructure complement is
the complement of the microstructure: its edges represent pairs of variable-value
assignments that are disallowed by the constraints. Hence for every variable vi,
the microstructure complement contains all edges of the form {〈vi, a〉, 〈vi, b〉} for
a 6= b ∈ Di as every variable can be assigned only one value.

A clique in a graph is a set of vertices which are pairwise adjacent. An
independent set in a graph is a set of vertices which are pairwise non-adjacent.
It is well known that solving a CSP instance P is equivalent to finding a clique of
size n in the microstructure of P, and to finding an independent set of size n in
the microstructure complement of P [21]. Therefore, tractability results on the
maximum independent set problem for various classes of graphs can be easily
used to obtain tractable CSP classes [10].

3 VCSPs with crisp binary constraints

In this section we restrict our attention to binary VCSP instances with crisp
binary constraints. There are no restrictions on unary constraints; hence both
crisp and soft unary constraints are allowed. First we show how tractability
results on the maximum weighted independent set in graphs can be used to
obtain tractable classes of VCSPs. Next we show that the recently discovered
hybrid CSP class defined by the broken-triangle property [11] is not extendible
to soft unary constraints.

Let G be a graph G = 〈V,E〉 with weights w : V → Q+ on the vertices of G.
The weight of an independent set S in G, denoted w(S), is the sum of weights of
the vertices in S: w(S) =

∑
v∈S w(v). It is easy to see that given a binary VCSP

instance P where only unary constraints can be soft, P can be solved by finding
a maximum weighted independent set in the microstructure complement of P
with weights given by w(〈vi, a〉) = Mn− ci(a), where M is strictly greater than
the maximum finite unary cost ci(a). Indeed, independent sets of weight strictly
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greater than Mn(n − 1) are in one-to-one correspondence with assignments to
n variables in P.

Two well-studied classes of graphs for which the maximum weighted indepen-
dent set problem (WIS) is known to be solvable in polynomial time are perfect
graphs and claw-free graphs.

A graph G is perfect if for every induced subgraph H of G, the chromatic
number (the smallest number of colours needed to colour vertices of H such that
adjacent vertices are coloured differently) of H is equal to the size of the largest
clique in H. The Strong Perfect Graph Theorem states that a graph G is perfect
if, and only if, G does not contain any cycle of odd length ≥ 5 (known as a
hole) nor any complement of a cycle of odd length ≥ 5 (known as an antihole)
as an induced subgraph [6]. It is known that WIS in perfect graphs is solvable in
polynomial time [18]. Moreover, perfect graphs can be recognised in polynomial
time [5].

A graph G is claw-free if it does not contain a claw as an induced subgraph,
where a claw is a complete bipartite graph K1,3 with 1 vertex in one group and
3 vertices in the other group. It is obvious that claw-free graphs are recognisable
in polynomial time. Extending Edmond’s algorithm for maximum matchings in
graphs [14], Minty designed an algorithm for the independent set problem in
claw-free graphs [24]. Minty’s algorithm was later corrected and extended to
the maximum weighted independent set problem in claw-free graphs [25]. The
combination of these results gives:

Theorem 1. The class of VCSP instances (with crisp binary and arbitrary
unary constraints) whose microstructure complement is either perfect or claw-
free is tractable.

The tractability of VCSPs with perfect microstructure (complement) and soft
unary constraints was also pointed out by Takhanov [32].

Next we show that the recently discovered hybrid class of tractable CSPs
defined by the broken-triangle property [11] is not extendible to VCSPs with
soft unary constraints. A binary CSP instance P satisfies the broken-triangle
property with respect to the variable ordering < if, and only if, for all triples
of variables vi, vj , vk such that i < j < k, if cij(u, v) < ∞, cik(u, a) < ∞ and
cjk(v, b) <∞, then either cik(u, b) <∞ or cjk(v, a) <∞. (In other words, every
“broken” triangle a − u − v − b can be closed.)

Let 〈G, k〉 be an instance of the decision version of the maximum independent
set problem which consists in deciding whether there is an independent set of size
at least k in graph G. This problem is known to be NP-complete [16]. We now
transform this instance into a binary VCSP instance with soft unary constraints
that satisfies the broken-triangle property.

Every vertex of G is represented by a Boolean variable vi where Di = {0, 1}.
We impose the constraint 〈〈vi, vj〉, {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}〉 if the vertices corre-
sponding to vi and vj are adjacent in G. Now the assignments satisfying all con-
straints are in one-to-one correspondence with independent sets I in G, where
vertex i ∈ I if and only if vi = 1. We also impose the soft unary constraints
〈vi, ci〉, where ci(x) = 1 − x. The unary constraints ensure that the goal is to
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minimise the number of variables assigned value 0, which is the same as max-
imising the number of variables assigned value 1. Therefore, the constructed
VCSP instance is equivalent to the given maximum independent set problem. It
remains to show that the resulting VCSP instance satisfies the broken-triangle
property with respect to some ordering. In fact, we show that it is satisfied
with respect to any ordering. Take any three variables vi, vj , vk. If either of the
pairs of variables 〈vi, vk〉, 〈vj , vk〉 are not constrained, then the broken-triangle
property is trivially satisfied. Assume therefore that these two constraints are
present. The situation is illustrated in Figure 2. It can be checked easily that
the broken-triangle property is indeed satisfied whether the constraint on 〈vi, vj〉
is {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} (as shown in Figure 2) or the complete constraint. This
gives us the following result:

Theorem 2. Assuming P 6=NP, the broken-triangle property cannot be extended
to a tractable class including soft unary constraints.

0

1

vi

0

1

vj

0 1

vk

Fig. 2. VCSP encoding maximum independent set.

4 Joint-winner property

In this section we define the joint-winner property (see Figure 1), which is the
key concept in this paper. We also study basic properties of VCSPs satisfying the
joint-winner property as these will be important in designing a polynomial-time
algorithm in Section 5.

Definition 1 (Joint-winner property). A triple of variables 〈vi, vj , vk〉 sat-
isfies the joint-winner property (JWP) if cij(a, b) ≥ min(cik(a, c), cjk(b, c)) for
all domain values a ∈ Di, b ∈ Dj , c ∈ Dk.

A binary VCSP instance satisfies the joint-winner property if every triple of
distinct variables of the instance satisfies the joint-winner property.

8



The joint-winner property places no restrictions on the unary soft constraints
ci. Note that the JWP on a CSP instance amounts to forbidding the multiset of
binary costs {α,∞,∞} (for α <∞) in any triangle formed by three assignments
to distinct variables. Since this combination can never occur on triples of vari-
ables 〈vi, vj , vk〉 constrained by the three binary constraints vi 6= vj 6= vk 6= vi,
the class of CSPs satisfying the joint-winner property generalises the AllDif-
ferent constraint with arbitrary soft unary constraints.

The next lemma explains the reason for the name of the joint-winner prop-
erty: in every triangle there is no unique smallest cost.

Lemma 1. A VCSP instance satisfies the joint-winner property if and only if,
for all triples of distinct variables 〈vi, vj , vk〉 and for all a ∈ Di, b ∈ Dj, c ∈ Dk,
two of the costs cij(a, b), cik(a, c), cjk(b, c) are equal and less than or equal to the
third.

Proof. Assume that the joint-winner property is satisfied on the triples of vari-
ables 〈vi, vj , vk〉, 〈vj , vk, vi〉 and 〈vk, vi, vj〉, and write α = cij(a, b), β = cik(a, c)
and γ = cjk(b, c). Without loss of generality, let α = min(α, β, γ). From α ≥
min(β, γ), we can deduce that α = min(β, γ) and hence that two of α, β, γ are
equal and less than or equal to the third.

On the other hand, if two of α, β, γ are equal and less than or equal to the
third, then min(β, γ) = min(α, β, γ) ≤ α and the JWP is satisfied. ut

Lemma 2. Let P be a binary VCSP instance. Then, for a fixed α, the edges of
the microstructure of P corresponding to binary costs of at least α, together with
the corresponding vertices, form non-intersecting cliques.

Proof. For a contradiction let us assume that the edges of the microstructure
of P corresponding to binary costs of at least α do not form non-intersecting
cliques. This means that there are three vertices 〈vi, a〉, 〈vj , b〉, 〈vk, c〉 of the mi-
crostructure such that cij(a, b) ≥ α, cik(a, c) ≥ α, and cjk(b, c) < α. But this is
in contradiction with Lemma 1. ut

Lemma 3. Let P be a binary VCSP instance. Let Cα be a clique in the mi-
crostructure of P corresponding to binary costs of at least α, and Cβ a clique
in the microstructure of P corresponding to binary costs of at least β. If Cα
intersects Cβ and α ≤ β, then Cα ⊇ Cβ.

Proof. Suppose that Cα and Cβ intersect and α ≤ β. If α = β, the claim is
satisfied trivially by Lemma 2, so we can suppose that α < β. For a contradiction,
assume that Cα 6⊇ Cβ . By our assumptions, ∃〈vi, a〉 ∈ Cα ∩ Cβ and ∃〈vj , b〉 ∈
Cβ \Cα. Since Cβ is a clique, we must have cij(a, b) ≥ β > α. Thus, by Lemma
2, the edge {〈vj , b〉, 〈vi, a〉} is part of a clique C ′α of edges of cost at least α
(but not Cα since 〈vj , b〉 6∈ Cα). But then Cα and C ′α intersect at 〈vi, a〉 which
contradicts Lemma 2. ut
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5 Algorithm

In this section we present a polynomial-time algorithm for solving binary VCSPs
satisfying the joint-winner property. The algorithm is an extension of a reduction
to the standard max-flow/min-cut problem that has been used for flow-based soft
global constraints [29,33,23].

First we review some basics on flows in graphs (see [1] for more details). Let
G = (V,A) be a directed graph with vertex set V and arc set A. To each arc
a ∈ A we assign a demand/capacity function [d(a), c(a)] and a weight function
w(a). Let s, t ∈ V . A function f : A→ Q is called an s− t flow (or a flow) if

– f(a) ≥ 0 for all a ∈ A;
– for all v ∈ V \{s, t},

∑
a=(u,v)∈A f(a) =

∑
a=(v,u)∈A f(a) (flow conservation).

We say that a flow is feasible if d(a) ≤ f(a) ≤ c(a) for each a ∈ A. We define the
value of flow f as val(f) =

∑
a=(s,v)∈A f(a) −

∑
a=(v,s)∈A f(a). We define the

cost of flow f as
∑
a∈A w(a)f(a). A minimum-cost flow is a feasible flow with

minimum cost.
Algorithms for finding the minimum-cost flow of a given value are described

in [31, Chapter 12] and [1]. Given a network G with integer demand and capacity
functions, the successive shortest path algorithm [31], can be used to find a
feasible s− t flow with value α and minimum cost in time O(α · SP ), where SP
is the time to compute a shortest directed path in G.

Given a VCSP P satisfying the JWP, we construct a directed graph GP
whose minimum-cost integral flows of value n are in one-to-one correspondence
with the solutions to P. Apart from the source node s, GP has three types of
node:

1. a variable node vi (i = 1, . . . , n) for each variable of P;
2. an assignment node 〈vi, a〉 (a ∈ Di, i = 1, . . . , n) for each possible variable-

value assignment in P;
3. a clique node Cα for each clique of edges in the microstructure of P corre-

sponding to binary costs of at least α. (The subscript α is equal to the min-
imum cost of edges in the clique and, where necessary, we use Cα, C ′α, . . . to
denote the distinct non-intersecting cliques corresponding to the same value
of α.)

In GP there is an arc (s, vi) for each variable vi of P. For all variables vi and for
each a ∈ Di, there is an arc (vi, 〈vi, a〉) and also an arc from 〈vi, a〉 to the clique
Cα containing 〈vi, a〉 such that α is maximal (Cα is unique by Lemma 3).

We say that clique Cβ is the father of clique Cα if it is the minimal clique
which properly contains Cα, i.e. Cα ⊂ Cβ (and hence α > β) and @Cγ such
that Cα ⊂ Cγ ⊂ Cβ (Cβ is unique by Lemma 3). In GP , for each clique Cα
with father Cβ , there is a bundle of arcs from Cα to Cβ consisting of r arcs ei
(i = 1, . . . , r), where r is the number of vertices in the clique Cα. The weight of
arc ei from Cα to Cβ is w(ei) = i(α − β). (If α = ∞ then there is a single arc
of weight 0; the arcs of weight ∞ can simply be omitted.) We identify the sink
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node t with the clique C0 consisting of all edges in the microstructure (since all
binary costs are at least 0).

Each arc has demand 0 and capacity 1 except for arcs (s, vi) which have both
demand 1 and capacity 1 (this forces a flow of exactly 1 through each variable
node vi). Weights of all arcs are 0 except for arcs going from a clique node to its
father clique node, as described above, and arcs from a variable node vi to an
assignment node 〈vi, a〉 which have a weight of ci(a).

We show below that integral flows in the constructed network are in one-to-
one correspondence with assignments in P, but first we give an example.

Example 3. We show the general construction on a simple example. Let P be
a VCSP instance with variables v1, v2, v3 and D1 = D2 = {a, b}, D3 = {a}.
The microstructure of P is shown in Figure 3. Missing edges have cost 0. There
are two cliques corresponding to cost at least 1: C1 = {〈v1, a〉, 〈v2, a〉, 〈v3, a〉}
and C ′1 = {〈v1, b〉, 〈v2, b〉}; and one clique corresponding to cost at least 2:
C2 = {〈v1, a〉, 〈v2, a〉} (see Figure 3). The network corresponding to instance
P is shown in Figure 4: demands and capacities are in square brackets, and
weights of arcs without numbers are 0. The bold edges represent flow f corre-
sponding to the assignment v1 = v2 = v3 = a with total cost 4, which is the
same as the cost of f .

We now prove that integral flows f in GP are in one-to-one correspondence
with assignments in the VCSP P and, furthermore, that the cost of f is equal
to the cost in P of the corresponding assignment.

All feasible flows have value n since all n arcs (s, vi) leaving the source have
both demand and capacity equal to 1. Integral flows in GP necessarily correspond
to the assignment of a unique value ai to each variable vi since the flow of
1 through node vi must traverse a node 〈vi, ai〉 for some unique ai ∈ Di. It
remains to show that for every assignment 〈a1, . . . , an〉 to 〈v1, . . . , vn〉 which is
feasible (i.e. whose cost in P is finite), there is a corresponding minimum-cost
integral feasible flow f in GP of cost

∑
i ci(ai) +

∑
i<j cij(ai, aj).

For each arc a which is incoming to or outgoing from 〈vi, u〉 in GP , let
f(a) = 1 if u = ai and 0 otherwise. We denote the number of assignments 〈vi, ai〉
in clique Cα by N(Cα) = |{〈vi, ai〉 ∈ Cα : 1 ≤ i ≤ n}|. By construction, each
clique node Cα in GP only has outgoing arcs to its father clique. For the outgoing
arc a of weight i from Cα to its father clique, let f(a) = 1 if N(Cα) > i and 0
otherwise. This simply means that the outgoing arcs (each of capacity 1) from
Cα are used in increasing order of their weight, one per assignment 〈vi, ai〉 ∈ Cα.
This is clearly a minimum-cost flow corresponding to the assignment 〈a1, . . . , an〉.

Let cf(Cα) denote the cost β of the father clique Cβ of Cα. The cost of flow
f is given by

n∑
i=1

ci(ai) +
∑
Cα

N(Cα)−1∑
i=1

i(α− cf(Cα))

=
n∑
i=1

ci(ai) +
∑
Cα

(N(Cα)− 1)N(Cα)
2

(α− cf(Cα))
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Fig. 3. Microstructure of P described in Example 3.
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Fig. 4. Network GP corresponding to the VCSP P of Example 3.
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This corresponds precisely to the cost of the assignment 〈a1, . . . , an〉 in P, since
in a clique Cα with father clique Cβ , each of the (N(Cα) − 1)N(Cα)/2 binary
constraints contributes a cost of α − β over and above the cost of β for each of
the edges in Cβ .

Theorem 3. VCSPs satisfying the joint-winner property are recognisable and
solvable in polynomial time.

Proof. From Definition 1, recognition can be achieved in O(n3d3) time, where
d = max1≤i≤n |Di| is the size of the largest domain.

To solve a VCSP satisfying the JWP, we create a vertex for each of the cliques
corresponding to binary costs of at least α. There are at most |Di|×|Dj | different
costs in the cost function cij . Hence in total there are at most O(n2d2) different
cliques. So our network has O(n2d2 +nd+n+ 2) = O(n2d2) vertices. The result
follows from the fact that a polynomial-time algorithm exists for determining a
minimum-cost maximum flow in a network. In particular, using the successive
shortest path algorithm, the running time is O(n ·SP ), where SP is the time to
compute a shortest directed path in the network [31,1]. Using Fibonacci heaps,
this is O(n(n4d4 + n2d2 log(n2d2))) = O(n5d4). ut

6 Maximality

Tractable classes defined by structural or language restrictions are often shown
to be maximal. That is, any extension of the class is NP-hard. We consider that
a hybrid tractable class defined by a set of possible combinations of costs within
a subproblem is maximal if extending it to include any other single combination
of costs renders the problem NP-hard. In particular, since JWP is defined on
3-variable subproblems, we call an instance 3-maximal if extending it to include
any other single combination of costs on 3 variables renders the problem NP-
hard. The existence of a larger tractable class subsuming JWP and defined by
a rule on k-variable subproblems (for k > 3) is an interesting open question.

In this section we show a special case for which the joint-winner property
is 3-maximal, namely when all binary cost functions take on only two possible
costs α < β.

Theorem 4. If all costs belong to {α, β} (for some fixed distinct costs α < β),
then the joint-winner property defines a 3-maximal tractable class provided d > 2
or (d ≥ 2) ∧ (β <∞), where d is the maximum domain size.

Proof. To prove 3-maximality we have to show the NP-hardness of the set of
instances defined by the fact that in each triangle the triple of costs either
satisfies the joint-winner property or is just one other fixed combination. Since
all costs belong to {α, β} where α < β, from Definition 1, the only situation
forbidden by the JWP is that there are 3 variables vi, vj , vk and domain values
a ∈ Di, b ∈ Dj , c ∈ Dk such that cij(a, b) = α and cik(a, c) = cjk(b, c) = β.
Hence extending the JWP means allowing all combinations of costs from {α, β}
in all triangles.
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If β =∞, allowing all combinations of costs means that our instance allows
all binary relations (corresponding to the set of finite-cost tuples) and hence we
can encode any binary CSP. This is NP-complete if d > 2.

If β <∞, allowing all combinations of costs in {α, β} is equivalent to the set
of instances of MAX-CSP in which no two constraints can have the same scope.
The NP-hardness of this latter problem for d ≥ 2 follows from the following
reduction from MAX-CSP [26]. A polynomial reduction of an instance I of MAX-
CSP into an equivalent instance I ′ in which no two constraints have the same
scope can be achieved by replacing each variable vi in I by M variables vji
(j = 1, . . . ,M) in I ′ constrained by a clique of equality constraints, where M is
greater than the total number of constraints in I. In the optimal solution to I ′,
variables vji (j = 1, . . . ,M) are necessarily assigned the same value (otherwise a
cost of at least M would be incurred). ut

7 Conclusions

We consider the tractable class of VCSPs defined by the joint-winner property
(JWP) as a necessary first step towards a general theory of tractability of opti-
misation problems which will eventually cover structural, language and hybrid
reasons for tractability.

The JWP is interesting in its own right since it is a proper extension to known
tractable classes (such as VCSPs consisting of arbitrary unary constraints and
non-intersecting SoftAllDiff constraints of arbitrary arity).
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