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Abstract. We introduce tractable classes of VCSP instances based on
convex cost functions. Firstly, we show that the class of VCSP instances
satisfying the hierarchically nested convexity property is tractable. This
class generalises our recent results on VCSP instances satisfying the
non-overlapping convexity property by dropping the assumption that
the input functions are non-decreasing [3]. Not only do we generalise
the tractable class from [3], but also our algorithm has better running
time compared to the algorithm from [3]. We present several examples
of applications including soft hierarchical global cardinality constraints,
useful in rostering problems. We go on to show that, over Boolean do-
mains, it is possible to determine in polynomial time whether there exists
some subset of the constraints such that the VCSP satisfies the hierar-
chically nested convexity property after renaming the variables in these
constraints.

1 Preliminaries

VCSPs As usual, we denote by N the set of positive integers with zero, and by Q
set of all rational numbers. We denote Q = Q∪{∞} with the standard addition
operation extended so that for all α ∈ Q, α+∞ =∞.

In a VCSP (Valued Constraint Satisfaction Problem) the objective function
to be minimised is the sum of cost functions whose arguments are subsets of
arbitrary size of the variables v1, . . . , vn where the domain of vi is Di. For nota-
tional convenience, we interpret a solution x (i.e. an assignment to the variables
v1, . . . , vn) as the set of 〈variable,value〉 assignments {〈vi, xi〉 : i = 1, . . . , n}. The
range of all cost functions is Q.

Network flows Here we review some basics on flows in graphs. We refer the reader
to the standard textbook [1] for more details. We present only the notions and
results needed for our purposes. In particular, we deal with only integral flows.
Let G = (V,A) be a directed graph with vertex set V and arc set A. To each
arc a ∈ A we assign a demand/capacity function [d(a), c(a)] and a weight (or
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cost) function w(a), where d(a), c(a) ∈ N and w(a) ∈ Q. Let s, t ∈ V . A function
f : A→ N is called an s− t flow (or just a flow) if for all v ∈ V \ {s, t},∑

a=(u,v)∈A

f(a) =
∑

a=(v,u)∈A

f(a) (flow conservation).

We say that a flow is feasible if d(a) ≤ f(a) ≤ c(a) for each a ∈ A. We define the
value of flow f as val(f) =

∑
a=(s,v)∈A f(a) −

∑
a=(v,s)∈A f(a). We define the

cost of flow f as
∑

a∈A w(a)f(a). A minimum-cost flow is a feasible flow with
minimum cost.

Algorithms for finding the minimum-cost flow of a given value are well
known [1]. We consider a generalisation of the minimum-cost flow problem. To
each arc a ∈ A we assign a convex weight function wa. In particular, we consider
the model in which the weight functions wa (a ∈ A) are convex piecewise linear
and given by the breakpoints (which covers the case of convex functions over
the integers). We define the cost of flow f as

∑
a∈A wa(f(a)). The correspond-

ing problem of finding a minimum-cost integral flow is known as the minimum
convex cost flow problem. In a network with n vertices and m edges with ca-
pacities at most U , the minimum convex cost flow problem can be solved in
time O((m logU)SP (n,m)), where SP (n,m) is the time to compute a shortest
directed path in the network [1].

2 Hierarchically nested convex

A discrete function g : {0, . . . , s} → Q is called convex on the interval [l, u] if
g is finite-valued on the interval [l, u] and the derivative of g is non-decreasing
on [l, u], i.e. if g(m+ 2)− g(m+ 1) ≥ g(m+ 1)− g(m) for all m = l, . . . , u− 2.
For brevity, we will often say that g is convex if it is convex on some interval
[l, u] ⊆ [0, s] and infinite elsewhere (i.e. on [0, l − 1] ∪ [u+ 1, s]).

Two sets A1, A2 are said to be non-overlapping if they are either disjoint
or one is a subset of the other (i.e. A1 ∩ A2 = ∅, A1 ⊆ A2 or A2 ⊆ A1). Sets
A1, . . . , Ar are called hierarchically nested if for any 1 ≤ i, j ≤ r, Ai and Aj

are non-overlapping. If Ai is a set of 〈variable,value〉 assignments of a VCSP
instance P and x a solution to P, then we use the notation |x∩Ai| to represent
the number of 〈variable,value〉 assignments in the solution x which lie in Ai.

Definition 1. Let P be a VCSP instance. Let A1, . . . , Ar be hierarchically nested
sets of 〈variable,value〉 assignments of P. Let si be the number of distinct vari-
ables occurring in the set of 〈variable,value〉 assignments Ai. Instance P satisfies
the hierarchically nested convexity property if the objective function of P can
be written as g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|) where each gi : [0, si]→ Q
(i = 1, . . . , r) is convex on an interval [li, ui] ⊆ [0, si] and gi(z) = ∞ for
z ∈ [0, li − 1] ∪ [ui + 1, si].

Theorem 1. Any VCSP instance P satisfying the hierarchically nested convex-
ity property can be solved in polynomial time.
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In our previous paper [3], we proved a special case of Theorem 1 where all
functions gi (i = 1, . . . , r) are non-decreasing. We give an algorithm to solve
VCSPs satisfying the hierarchically nested convexity property in Section 2.1
and a proof of polynomial-time complexity of this algorithm in Section 2.2.

Observe that the addition of any unary cost function cannot destroy the
hierarchically nested convexity property. This is because for each 〈variable,value〉
assignment 〈vj , a〉 we can add the singleton Ai = {〈vj , a〉} which is necessarily
either disjoint or a subset of any other set Ak (and furthermore the corresponding
function gi : {0, 1} → Q is trivially convex).

Example 1 (Value-based soft GCC). The Global Cardinality Constraint
(GCC), introduced by Régin [8], is a generalisation of the AllDifferent con-
straint. Given a set of n variables, the GCC specifies for each domain value d
a lower bound ld and an upper bound ud on the number of variables that are
assigned value d. The AllDifferent constraint is the special case of GCC with
ld = 0 and ud = 1 for every d. Soft versions of the GCC have been considered
by van Hoeve et al. [6].

The value-based soft GCC minimises the number of values below or above the
given bound. We show that the value-based soft GCC satisfies the hierarchically
nested convexity property.

For every domain value d ∈ D, let Ad = {〈vi, d〉 : i = 1, . . . , n}. Clearly,
A1, . . . , As are disjoint, where s = |D|. For every d, let

gd(m) =


ld −m if m < ld

0 if ld ≤ m ≤ ud

m− ud if m > ud

From the definition of gd, gd(m+ 1)−gd(m) for m = 0, . . . , n−1 is the sequence
−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1. Therefore, for every d, gd has a non-decreasing
derivative and hence is convex.

Example 2 (Nurse Rostering). In a nurse rostering problem, we have to assign
several nurses to each shift [2]. There may be strict lower and upper bounds
li, ui on the number of nurses assigned to shift i. For example, assigning zero
nurses to a shift is no doubt unacceptable. There is also a penalty if we assign
too few or too many nurses to the same shift. The cost function is not necessarily
symmetric. For example, being short-staffed is potentially dangerous (and hence
worse) than being over-staffed which just costs more money. The cost function
for shift i could, for example, be g(z) = li

z − 1 for 0 ≤ z < li, g(z) = 0 for
z ∈ [li, ui] and g(z) = z − ui for z > ui. It is easily verified that this function is
convex.

Example 3 (Hierarchically nested value-based soft GCC). Being able to nest
GCC constraints is useful in many staff assignment problems where there is a
hierarchy (e.g. senior manager-manager-personnel, foreman-worker, senior nurse-
nurse) [9]. We might want to impose soft convex constraints such as each day we
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prefer that there are between 10 and 15 people at work, of which at least 5 are
managers among whom there is exactly 1 senior manger, with convex penalties
if these constraints do not hold.

Suppose that the constraints of a VCSP instance consist of soft GCC con-
straints on pairwise non-overlapping sets of variables S1, . . . , St. Let Aid =
{〈x, d〉 : x ∈ Si}. Clearly, the sets of assignments Aid are hierarchically nested
and, as shown in Example 1, the cost functions corresponding to each GCC
constraint are convex.

2.1 Algorithm

Our algorithm is similar to the algorithm presented in [3] based on finding a
minimum-cost flow in a network. We use a similar network, with the difference
that we only require a single arc between any pair of nodes and the corresponding
cost function gi is now an arbitrary convex function (which is not necessarily
non-decreasing). Somewhat surprisingly, this small generalisation allows us to
solve many more problems, as we have demonstrated in Section 2 since all these
examples involve cost functions gi which are not monotone non-decreasing.

We call the sets Ai (i = 1, . . . , r) assignment-sets. We assume that the
assignment-sets Ai are distinct, since if Ai = Aj then these two sets can be
merged by replacing the two functions gi,gj by their sum (which is necessarily
also convex). Note that the assignment-set consisting of all variable-value as-
signments, if present in P, can be ignored since it is just a constant. We say
that assignment-set Ak is the father of assignment-set Ai if it is the minimal
assignment-set which properly contains Ai, i.e. Ai ⊂ Ak and @Aj such that
Ai ⊂ Aj ⊂ Ak. It follows from the definition of hierarchically nested convexity
that Ak is unique and hence that the father relation defines a tree. Moreover,
again from the definition of hierarchically nested convexity, for every variable
vi of P and every a ∈ Di, there is a unique minimal assignment-set containing
〈vi, a〉. Indeed, we can assume without loss of generality that this is precisely
{〈vi, a〉}.

We construct a directed graph GP whose minimum-cost integral flows of
value n are in one-to-one correspondence with the solutions to P. GP has the
following nodes:

1. the source node s;
2. a variable node vi (i = 1, . . . , n) for each variable of P;
3. an assignment node 〈vi, d〉 (d ∈ Di, i = 1, . . . , n) for each possible variable-

value assignment in P;
4. an assignment-set node Ai (i = 1, . . . , r) for each assignment-set in P;
5. the sink node t.

GP has the following arcs:

1. a = (s, vi) for each variable vi of P; d(a) = c(a) = 1 (this forces a flow of
exactly 1 through each variable node vi); w(a) = 0;
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2. a = (vi, 〈vi, d〉) for all variables vi and for each d ∈ Di; d(a) = 0; c(a) = 1;
w(a) = 0;

3. a = (〈vi, d〉, Aj) for all variables vi and for each d ∈ Di, where Aj is the
minimal assignment-set containing 〈vi, d〉; d(a) = 0; c(a) = 1; w(a) = 0;

4. for each assignment-set Ai with father Aj , there is an arc a from Ai to Aj

with cost function gi, demand d(a) = li and capacity c(a) = ui.

Clearly, GP can be constructed from P in polynomial time. We now prove
that minimum-cost flows f of value n in GP are in one-to-one correspondence
with assignments in P and, furthermore, that the cost of f is equal to the cost
in P of the corresponding assignment.

All feasible flows have value n since all n arcs (s, vi) leaving the source have
both demand and capacity equal to 1. Flows in GP necessarily correspond to the
assignment of a unique value xi to each variable vi since the flow of 1 through
node vi must traverse a node 〈vi, xi〉 for some unique xi ∈ Di. It remains to
show that for every assignment x = {〈v1, x1〉, . . . , 〈vn, xn〉} which is feasible (i.e.
whose cost in P is finite), there is a corresponding minimum-cost feasible flow f
in GP of cost g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|).

For each arc a which is incoming to or outgoing from 〈vi, d〉 in GP , let
f(a) = 1 if d = xi and 0 otherwise. By construction, each assignment-set node
Ai in GP only has outgoing arcs to its father assignment-set. The flow fa in
arc a from Ai to its father assignment-set Aj is uniquely determined by the
assignment of values to variables in the solution x. Trivially this is therefore
a minimum-cost flow corresponding to the assignment x. The cost of flow f is
clearly

∑
i gi(|x∩Ai|) which corresponds precisely to the cost of the assignment

x.
We remark that since our construction is projection-safe [7], it can be used

for Soft Global Arc Consistency for hierarchically nested convex constraints.

2.2 Complexity

Let P be a VCSP instance with n variables, each with a domain of size at most
d, and r assignment-sets Ai. The maximum number of distinct non-overlapping
sets Ai is 2nd − 1 since the sets of assignments Ai form a tree with at most
nd leaves (corresponding to single 〈variable,value〉 assignments) and in which all
non-leaf nodes have at least two sons. Thus r = O(nd). The network GP has
n′ = O(n+nd+ r) = O(nd) vertices and arcs. GP can be built in O((nd)2) time
in a top-down manner, by adding assignment-sets in inverse order of size (which
ensures that an assignment-set is always inserted after its father) and using a
table T [〈v, a〉]=smallest assignment set (in the tree being built) containing 〈v, a〉.

In a network with n′ vertices and m′ arcs with capacities at most U , the min-
imum convex cost flow problem can be solved in time O((m logU)SP (n′,m′)),
where SP (n′,m′) is the time to compute a shortest directed path in the net-
work with n′ vertices and m′ edges [1]. Using Fibonacci heaps [4], SP (n′,m′) =
O(m′+n′ log n′) = O(nd log(nd)), since the number of vertices n′ and arcs m′ are
both O(nd). The maximum capacity U in the network GP is at most n. Hence
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an optimal solution to a hierarchically nested convex VCSP can be determined
in O((nd log n)(nd log(nd))) = O((nd)2(log n)(log n+ log d)) time.

The running time of our algorithm is better than the running time of the
algorithm from [3], which is O(n3d2). The improvement is mostly due to the
fact that the new construction involves only O(nd) arcs as opposed to O((nd)2)
arcs in [3]. Moreover, our algorithm solves a bigger class of problems compared
to [3]. Overall, we solve more and faster!

3 Renamable Boolean hierarchically nested convex VCSP

In this section we extend the class of hierarchically nested convex VCSPs to
allow renaming of certain variables in the case of Boolean domains.

We begin by illustrating the notion of renaming by means of an example.
First, we require some notation.

Cost function AtMostr(A) returns 0 if x contains at most r assignments
from the set of assignments A, and AtMostr(A) returns 1 otherwise. Similarly,
cost function AtLeastr(A) returns 0 if x contains at least r assignments from
the set of assignments A, and AtLeastr(A) returns 1 otherwise. Note that cost
functions AtLeast1 and AtMostr, where r = |A| − 1, are both convex on
[0, |A|]. In the remainder of this section we will consider only Boolean VCSPs.

Example 4. Let P be a Max-SAT instance given in CNF form by the following
clauses:

(a ∨ b ∨ c), (c ∨ d), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).
Clearly, a clause with literals A can be written as AtLeast1(A). Notice that,
in this example, the first two clauses are overlapping. However, we can replace
the second clause by the equivalent constraint AtMost1({¬c,¬d}). This gives
us an equivalent problem with the following constraints:

(a ∨ b ∨ c), AtMost1({¬c,¬d}), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).

Now P is expressed as an instance satisfying the hierarchically nested convex-
ity property on the hierarchically nested sets of assignments {a, b, c}, {¬c,¬d},
{¬c,¬d, e}, {¬a,¬e}.

Example 4 leads to the following definitions:

Definition 2. Given a valued constraint in the form of the cost function g(|x∩
A|), where A is a set of Boolean assignments (i.e. literals) of size m, we define the
renaming of this valued constraint, on the set of Boolean assignments denoted by
rename(A) = Ā, as the valued constraint g′(|x∩Ā|) = g(m−|x∩Ā|) = g(|x∩A|),
where Ā = {¬x | x ∈ A}.

The function g′(z) = g(m− z) is clearly convex if and only if g is convex.

Definition 3. A Boolean VCSP instance P with the objective function g1(|x ∩
A1|) + . . . + gr(|x ∩ Ar|) is renamable hierarchically nested convex if there is
a subset of the constraints of P whose renaming results in an equivalent VCSP
instance P ′ which is hierarchically nested convex.
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Theorem 2. The class of renamable hierarchically nested convex VCSPs is
recognisable and solvable in polynomial time.

Proof. We show that recognition is polynomial-time by a simple reduction to 2-
SAT, a well-known problem solvable in polynomial time [5]. Let P be a Boolean
VCSP instance with r constraints such that the ith constraint (i = 1, . . . , r) is
gi(|x∩Ai|) for a convex function gi. For each constraint in P, there is a Boolean
variable reni indicating whether or not the ith constraint is renamed. For each
pair of distinct i, j ∈ {1, . . . , r}, we add clauses of length 2 as follows:

1. if Ai and Aj overlap then add constraint reni ⇔ ¬renj (since we must
rename just one of the two constraints);

2. if rename(Ai) and Aj overlap then add constraint reni ⇔ renj (to avoid
introducing an overlap by a renaming).

It is easy to see that solutions to the constructed 2-SAT instance correspond to
valid renamings of P which give rise to an equivalent VCSP instance satisfying
the hierarchically nested convexity property. Tractability of solving the resulting
instance follows directly from Theorem 1. ut

4 Maximality of hierarchically nested convex

This section shows that relaxing either convexity or hierarchical nestedness leads
to intractability.

Proposition 1. The class of VCSP instances whose objective function is of the
form g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|) where the functions gi are convex,
but the sets of assignments Ai may overlap, is NP-hard, even if |Ai| ≤ 2 for all
i ∈ {1, . . . , r} and all variables are Boolean.

Proof. It suffices to demonstrate a polynomial-time reduction from the well-
known NP-hard problem Max-2SAT [5]. We have seen in Section 3 that any
Max-2SAT clause l1∨l2 (where l1, l2 are literals) is equivalent to the {0, 1}-valued
convex cost function AtLeast1(|x∩{l1, l2}|). It is therefore possible to code any
instance of Max-2SAT using convex cost functions (on possibly overlapping sets
of assignments). ut

Proposition 2. The class of VCSP instances whose objective function is of the
form g(x) = g1(|x∩A1|)+ . . .+gr(|x∩Ar|) where the sets of assignments Ai are
hierarchically nested, but the functions gi are not necessarily convex, is NP-hard
even if |Ai| ≤ 3 for all i ∈ {1, . . . , r} and all variables are Boolean.

Proof. We give a polynomial-time reduction from the well-known NP-complete
problem 3SAT [5]. Let I3SAT be an instance of 3SAT with m clauses. The con-
straint AllEqual(l1, l2, l3) (where l1, l2, l3 are literals) is equivalent to the (non-
convex) cost function g(|x ∩ {l1, l2, l3}|) where g(0) = g(3) = 0 and g(1) =
g(2) = ∞. For each variable v in I3SAT , we use the following gadget Gv based
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on non-overlapping AllEqual constraints to produce multiple copies v1, . . . , vm

of the variable v and multiple copies w1, . . . , wm of its negation v: Gv consists of
the constraints AllEqual(ui, vi, yi) (i ∈ {1, . . . ,m}), AllEqual(yi, wi, ui+1)
(i ∈ {1, . . . ,m−1}), and AllEqual(ym, wm, u1), where the variables ui, yi only
occur in the gadget Gv. It is easy to verify that Gv imposes v1 = . . . = vm =
w1 = . . . = wm. Furthermore, the variables vi, wi only occur negatively in Gv.
We now replace the ith clause of I3SAT by a clause in which each positive vari-
able v is replaced by its ith copy vi and each negative variable v is replaced by
the ith copy wi of v. This produces a hierarchically nested VCSP instance which
is equivalent to I3SAT (but whose cost functions are not all convex). ut

5 Conclusions

The complexity of the recognition problem for hierarchically nested convex
VCSPs is an open problem if the functions gi are not explicitly given. The com-
plexity of hierarchically nested non-convex VCSPs where all assignment-sets are
of size at most 2 is open as well. (Note that the NP-hardness reduction in the
proof of Proposition 2 requires assignment-sets of size up to three.)
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