
On Minimal Weighted Clones?

Páidí Creed1 and Stanislav Živný2

1 Department of Computer Science, Royal Holloway, University of London, UK
2 University College, University of Oxford, UK
paidi@rhul.ac.uk standa.zivny@cs.ox.ac.uk

Abstract. The connection between the complexity of constraint lan-
guages and clone theory, discovered by Cohen and Jeavons in a series
of papers, has been a fruitful line of research on the complexity of
CSPs. In a recent result, Cohen et al. [14] have established a Galois
connection between the complexity of valued constraint languages and
so-called weighted clones. In this paper, we initiate the study of weighted
clones. Firstly, we prove an analogue of Rosenberg’s classification of min-
imal clones for weighted clones. Secondly, we show minimality of several
weighted clones whose support clone is generated by a single minimal
operation. Finally, we classify all Boolean weighted clones. This classi-
fication implies a complexity classification of Boolean valued constraint
languages obtained by Cohen et al. [13]

1 Introduction

The general constraint satisfaction problem (CSP) is NP-hard, and so is unlikely
to have a polynomial-time algorithm. However, there has been much success
in finding tractable fragments of the CSP by restricting the types of relation
allowed in the constraints. A set of allowed relations has been called a con-
straint language [20]. For some constraint languages the associated constraint
satisfaction problems with constraints chosen from that language are solvable in
polynomial-time, whilst for other constraint languages this class of problems is
NP-hard [21,20,19]; these are referred to as tractable languages and NP-hard lan-
guages, respectively. Dichotomy theorems, which classify each possible constraint
language as either tractable or NP-hard, have been established for constraint
languages over 2-element domains [27], 3-element domains [8], for conservative
constraint languages [10,3], and maximal constraint languages [6,7].

The general valued constraint satisfaction problem (VCSP) is also NP-hard,
but again we can try to identify tractable fragments by restricting the types of
allowed cost functions that can be used to define the valued constraints. A set of
allowed cost functions has been called a valued constraint language [13]. Much
less is known about the complexity of the optimisation problems associated with
different valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
? This research was supported by EPSRC grant EP/F01161X/1. Stanislav Živný is
supported by a Junior Research Fellowship at University College, Oxford.

has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [13]. This result generalises a number of earlier results
for particular optimisation problems such as Max-Sat [15] and Min-Ones [16].
Recently, the complete classification of conservative valued languages has been
obtained for finite-valued [22] and general-valued languages [23].

In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [21,20]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. The set of polymorphisms of a constraint
language forms a clone of operations and a tight (one to one) correspondence
has been shown to exist between clones and constraint languages (closed under
expressibility). In other words, we can study properties of constraint languages
by studying properties of clones. This algebraic approach has been laid out
in detail in [9] and has already proved fruitful in classifying the complexity
of constraint languages over finite domains of arbitrary size [19,9,2,4,1,5]. In
particular, by considering the set of minimal clones, it has been possible to
classify the complexity of all maximal constraint languages on a finite domain
D [6,7] (these are the constraint languages which can express all relations over
D if we add a single new type of constraint).

Recently, it has been shown that the complexity of valued constraint lan-
guages can be determined by studying properties known as weighted polymor-
phisms3 [11,14]. The set of weighted polymorphisms of any valued constraint
language form an object called a weighted clone and is has been shown that
there exists a tight (one to one) connection between weighted clones and valued
constraint languages (closed under expressibility) [14]. Previously, a special type
of weighted polymorphism, called a multimorphism, has been used to analyse the
complexity of certain valued constraint languages [13]. In particular, multimor-
phisms have been used to show that there are precisely eight maximal tractable
valued constraint languages over a 2-element domain with real-valued or infinite
costs, and each of these is characterised by having a particular form of multi-
morphism [13]. Furthermore, it was shown that many known maximal tractable
valued constraint languages over larger finite domains are precisely characterised
by a single multimorphism and that key NP-hard examples have (essentially) no
multimorphisms [13,12].

Contributions In this paper, we initiate the study of weighted clones. In partic-
ular, we focus on minimal weighted clones, which define maximal valued con-
straint languages. As the main contribution, we demonstrate that the theory
developed by Cohen et al. [14] can be used for answering non-trivial questions
concerning the complexity of valued constraint languages. We see this paper as
a first step towards using the theory of weighted clones in the study of the com-
plexity of valued constraint languages. We believe that the techniques from this
paper can be used for other problems as well.

3 In [11] these were called fractional polymorphisms.

On the technical side, we prove a Rosenberg-type classification for mini-
mal weighted clones. Furthermore, we prove minimality of several interesting
weighted clones, which correspond to well-studied maximal valued constraint
languages. Finally, for Boolean domains, we provide a complete classification
of weighted clones. This implies a complexity classification of Boolean valued
constraint languages.

Paper organisation The rest of the paper is organised as follows. In Section 2,
we define valued constraint satisfaction problems (VCSPs), the notion of ex-
pressibility, weighted operations and weighted clones. In Section 3 we prove an
analogue of Rosenberg’s Classification Theorem [26] for weighted clones, which
establishes certain properties minimal weighted clones must satisfy. Then, in Sec-
tion 4 we give several examples of minimal weighted clones. Finally, in Section 5
we show how the results of the preceding sections can be used to obtain the
Boolean classification of [13]. Although this paper does not identify any novel
tractable valued constraint languages, we believe the tools described herein will
prove invaluable in future efforts to identify the tractable cases of the VCSP.

2 Preliminaries

2.1 VCSP

We will use [k] to denote the set {1, . . . , k} for any positive integer k. We shall
denote by Q+ the set of all non-negative rational numbers. We define Q+ =
Q+∪{∞} with the standard addition operation extended so that for all a ∈ Q+,
a+∞ =∞. Members of Q+ are called costs. Throughout the paper, we denote
by D any fixed finite set, called a domain, consisting of values.

A function φ from Dr to Q+ will be called a cost function on D of arity r.
If the range of φ lies entirely within Q+, then φ is called a finite-valued cost
function. If the range of φ is {0,∞}, then φ is called a crisp cost function. A
language is a set of cost functions with the same domain D. Language Γ is called
finite-valued (crisp) if all cost functions in Γ are finite-valued (crisp). A language
Γ is Boolean if |D| = 2.

Definition 1. An instance of the valued constraint satisfaction problem,
(VCSP), is a 3-tuple P = 〈V,D,C〉 where V is a finite set of variables; D is
a set of possible values; C is a multi-set of constraints. Each element of C
is a pair c = 〈σ, φ〉 where σ is a tuple of variables called the scope of c, and
φ : D|σ| → Q+ is a |σ|-ary cost function on D. An assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP (s), is given
by the sum of the costs for the restrictions of s onto each constraint scope, that
is,

CostP (s) def=
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

We define VCSP(Γ) to be the set of all VCSP instances in which all cost functions
belong to Γ . A valued constraint language Γ is called tractable if, for every finite
subset Γf ⊆ Γ , there exists an algorithm solving any instance P ∈ VCSP(Γf) in
polynomial time. Conversely, Γ is called NP-hard if there is some finite subset
Γf ⊆ Γ for which VCSP(Γf) is NP-hard.

2.2 Weighted Relational Clones

We denote by ΦD the set of cost functions on D taking values in Q+ and by
Φ(r)
D the r-ary cost functions in ΦD. Any cost function φ : Dr → Q+ has

an associated cost function which takes only the values 0 and ∞, known as its
feasibility relation, denoted Feas(φ), which is defined as Feas(φ)(x1, . . . , xr) =
0 if φ(x1, . . . , xr) <∞, and Feas(φ)(x1, . . . , xr) =∞ otherwise.

We say φ, φ′ ∈ ΦD are cost-equivalent, denoted by φ ∼ φ′, if there exist
α, β ∈ Q+ with α > 0 such that φ = αφ′ + β. We denote by Γ∼ the smallest set
of cost functions containing Γ which is closed under cost-equivalence.

We now define a closure operator on cost functions, which adds to a set of
cost functions all other cost functions which can be obtained from that set by
minimising over a subset of variables:

Definition 2. For any VCSP instance P = 〈V,D,C〉, and any list L = 〈v1, . . . , vr〉
of variables of P, the projection of P onto L, denoted πL(P), is the r-ary cost
function defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ) and a list L of variables of P such
that πL(P) = φ. We define Express(Γ) to be the expressive power of Γ ; that
is, the set of all cost functions expressible over Γ .

Note that the list of variables L may contain repeated entries, and we define the
minimum over an empty set of costs to be ∞.

Example 1. Let P be the VCSP instance with a single variable v and no con-
straints, and let L = 〈v, v〉. Then, by Definition 2,

πL(P)(x, y) =
{

0 if x = y
∞ otherwise .

Hence for any valued constraint language Γ , over any set D, Express(Γ) contains
this binary cost function, which will be called the equality cost function.

Definition 3. We say a set Γ ⊆ ΦD is a weighted relational clone if it con-
tains the equality cost function and is closed under cost-equivalence and feasibil-
ity, rearrangement of arguments, addition of cost functions, and expressibility.
For each Γ ⊆ ΦD we define wRelClone(Γ) to be the smallest weighted relational
clone containing Γ .

It is known that for any Γ ⊆ ΦD, Express(Γ∪Feas(Γ))∼ = wRelClone(Γ) [14].
Moreover, it follows from [11] that Γ is tractable if and only if wRelClone(Γ)
is tractable. Hence, the search for tractable valued constraint languages corre-
sponds to a search for suitable weighted relational clones.

2.3 Weighted Clones

First we recall some basic terminology from clone theory [18]. A function f :
Dk → D is called a k-ary operation on D. We denote by OD the set of all
finitary operations on D and by O(k)

D the k-ary operations in OD. The k-ary
projections on D, defined for i = 1, . . . , k, are the operations e(k)

i (a1, . . . , ak) =
ai. (We drop the superscript (k) if it is clear from the context.) Let f ∈ O(k)

D and
g1, . . . , gk ∈ O(l)

D . The superposition of f and g1, . . . , gk is the l-ary operation
f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)).

A set F ⊆ OD is called a clone of operations if it contains all the projections
on D and is closed under superposition.

For each F ⊆ OD we define Clone(F) to be the smallest clone containing
F . For any clone C, we use C(k) to denote the k-ary terms in C. We say a
clone C is minimal if any non-trivial operation in C generates C, i.e. for all
f ∈ C other than the projections, we have C = Clone({f}). An operation f in a
minimal clone C is called minimal if f has smallest arity among the non-trivial
operations in C.

It has been shown [21] that crisp constraint languages are in one to one
correspondence with clones. Recently, Cohen et al. [14] have shown that a similar
correspondence exists between valued constraint languages and objects called
weighted clones. We will now briefly describe their results.

Definition 4. We define a k-ary weighted operation on a set D to be a func-
tion ω : O(k)

D → Q such that ω(f) < 0 only if f is a projection and∑
f∈dom(ω)

ω(f) = 0 .

The domain of ω, denoted dom(ω), is the subset of O(k)
D on which ω is defined.

We denote by ar(ω) = k the arity of ω.

We denote by WD the finitary weighted operations on D and by W(k)
D the k-ary

weighted operations in WD.

Definition 5. Let C be a clone of operations on D. We define the k-ary zero
weighted operation supported by C to be the k-ary weighted operation which
satisfies ω(f) = 0 for all f ∈ C(k).

Definition 6. Let C be a clone of operations on D. A weighted clone sup-
ported by C is a set of weighted operations that contains all zero-weighted op-
erations whose domains are subsets of C and is closed under:

proper translation Given a k-ary weighted operation ω : C(k) → Q and t =
〈g1, . . . , gk〉, where g1, . . . , gk ∈ C(`), we define the translation of ω by
g1, . . . , gk, denoted as ω[g1, . . . , gk] or simply ω[t], to be the function ω′ :
C(`) → Q satisfying

ω′(f ′) =
∑

f∈C(k):f ′=f [g1,...,gk]

ω(f) ,

for each f ′ ∈ C(`). A translation is called a proper translation if ω′ is a
weighted operation.

addition Given a pair of k-ary weighted operations ω1, ω2 : C(k) → Q, we define
the addition ω1 + ω2 to be the weighted operation ω′ satisfying

ω′(f) = ω1(f) + ω2(f) ,

for each f ∈ C(k).
scaling Let ω be a k-ary weighted operation supported by C and let α > 0. We

define the α-scaling of ω, αω, to be the weighted operation ω′ satisfying

ω′(f) = αω(f) ,

for each f ∈ C(k).

Example 2. Let ω be the 4-ary weighted operation on D given by

ω(f) =
{
−1 if f is a projection
+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)} ,

and let
〈g1, g2, g3, g4〉 =

〈
e

(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉
.

Then, by Definition 6, the translation of ω by 〈g1, g2, g2, g3〉 is:

ω[g1, g2, g3, g4](f) =

−1 if f is a projection
+1 if f ∈ {max(x1, x2, x3),min(x1, x2),min(x3,max(x1, x2))}
0 if f = max(x1, x2)

.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 4 and hence is a
weighted operation. Hence the translation is proper.

For each W ⊆WD we define wClone(W) to be the smallest weighted clone con-
tainingW . In particular, we write wClone(ω) for the smallest weighted clone con-
taining weighted operation ω. Note that the support of wClone(W) is the clone
generated by the domains of the elements of W ; i.e. the support of wClone(W)
is given by Clone(∪ω∈W dom(ω)). The following is a direct consequence of the
definition of weighted clones.

Proposition 1. Let ω be a weighted operation supported by a clone C. Then
every k-ary element of wClone(ω) can be obtained as a weighted sum of transla-
tions of ω by tuples of terms from C(k).

Proposition 1 can be used to decide whether µ ∈ wClone(ω), where µ ∈ W(`)
D

and ω ∈ W(k)
D are weighted operations. We define the translation matrix of

ω to be the matrix Aω whose columns correspond to the translations of ω by
g1, . . . , gk where g1, . . . , gk ∈ C(`). By Proposition 1, µ ∈ wClone(ω) if and only
if we can find a non-negative solution to the system of equations Aωx = µ.

Definition 7. Let φ ∈ Φ(r)
D and let ω ∈ W(k)

D . We say that ω is a weighted
polymorphism of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) < ∞ for
i = 1, . . . , k, we have ∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (1)

If ω is a weighted polymorphism of φ we say φ is improved by ω.

Note that, because a∞ = ∞ for any value a ∈ Q+ (in particular, 0∞ = ∞), if
inequality (1) holds we must have φ(f(x1, . . . , xk)) < ∞, for all f ∈ dom(ω),
i.e., each f ∈ dom(ω) is a polymorphism of φ [14].

Example 3. Consider the class of submodular set functions [24]. These are pre-
cisely the cost functions on {0, 1} satisfying

φ(min(x1, x2)) + φ(max(x1, x2))− φ(x)− φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of cost
functions on {0, 1} with the 2-ary weighted polymorphism

ω(f) =
{
−1 if f ∈ {e(2)

1 , e(2)
2 }

+1 if f ∈ {min(x1, x2),max(x1, x2)}
.

This shows that weighted polymorphisms capture an important class of sub-
modular functions, which have been studied within various contexts in computer
science [29].

3 Weighted Rosenberg

Rosenberg’s Classification Theorem [26], given below, gives certain conditions
that minimal clones must satisfy. This has been a major tool in the efforts to
identify all tractable maximal constraint languages [6,7] and, furthermore, in
efforts to classify all tractable constraint languages [8,10].

For a unary operation we define f1 = f and f i(x) = f(f i−1(x)). A unary op-
eration f is a retraction if f2(x) = f(x) for all x ∈ D, and a cyclic permutation
of prime order if fp(x) = x for some prime p and all x ∈ D.

An operation f is idempotent if f(x, . . . , x) = x for all x ∈ D. A k-
ary, k ≥ 3, operation f is a semiprojection if there is 1 ≤ i ≤ k such that
f(x1, . . . , xk) = e(k)

i = xi for all x1, . . . , xk ∈ D such that x1, . . . , xk are not
pairwise distinct. A ternary operation f is a majority operation (denoted by

Mjrty) if f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D. A ternary oper-
ation f is a minority operation (denoted by Mnrty) if f(x, x, y) = f(x, y, x) =
f(y, x, x) = y for all x, y ∈ D. A ternary operation f is a Pixley operation if
f(y, y, x) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D (up to permutations of
inputs). We say a k-ary operation f is sharp if f is not a projection but the op-
eration obtained by equating any two inputs in f is a projection. The following
lemma shows that the only sharp operations of arity k ≥ 4 are semiprojections.

Lemma 1 (Świerczkowski’s Lemma [30]). Given an operation of arity ≥ 4,
if every operation arising from the identification of two variables is a projection,
then these projections coincide.

Świerczkowski’s Lemma can be used to prove Rosenberg’s Classification Theo-
rem [26], stated below.

Theorem 1 (Rosenberg). If C is a minimal clone on D, then C must contain
an operation f satisfying one of the following conditions:

1. f is a retraction or a cyclic permutation of prime order.
2. f is binary and idempotent.
3. f is a ternary minority operation of the form f(x, y, z) = x − y + z, where

addition is over some elementary 2-group4.
4. f is a ternary majority operation.
5. f is a n-ary semiprojection, n ≥ 3.

In this section, we define minimal weighted clones, and give some necessary
conditions for a weighted operation to generate a minimal weighted clone. These
results can be viewed as an analogue to Rosenberg’s Classification Theorem for
weighted clones.

Definition 8. Let W be a weighted clone. We say W is minimal if every non-
zero ω ∈W generates W , i.e., for all non-zero ω ∈W , W = wClone(ω).

For a minimal weighted clone W , we say ω ∈ W is a minimal weighted
operation if ω has smallest arity amongst non-zero elements ofW and ω assigns
weight −1 to each projection.

The following lemma shows that every minimal weighted clone is generated
by a minimal weighted operation.

Lemma 2. Let ω be a non-zero weighted operation. There exists some ω′ ∈
wClone(ω) of equal arity which assigns weight −1 to each projection.

Proof. Suppose ω a is non-zero weighted operation of arity k. Let Cycle(k) de-
note the set of cyclic permutations of [k]. For each permutation σ ∈ Cycle(k),
let tσ =

〈
e(k)
σ(1), . . . , e

(k)
σ(k)

〉
. Then, the weighted operation

∑
σ∈Cycle(k) ω[tσ] as-

signs equal weight to each projection. Thus, by a suitable scaling we can obtain
a k-ary weighted operation ω′ ∈ wClone(ω) satisfying ω′(e(k)

i) = −1 for each
i ∈ [k]. ut
4 An elementary 2-group is an Abelian group of order 2, i.e. for every element x of the
group, x + x = 0

We will use the following shorthand for candidate minimal weighted operations
(weighted operations which assign weight −1 to each projection):

{(ω(f), f) : ω(f) > 0} .

We can now give our classification theorem for minimal weighted opera-
tions. The format, and indeed the proof, follow directly from Rosenberg [26],
see also [17]. Our result is slightly weaker, because we cannot rule out the pos-
sibility of sharp, but non-minimal, operations occurring with negative weight in
a minimal weighted operation.

Theorem 2. The set of operations assigned positive weight by a minimal weighted
operation is one of the following four types:

1. A set of unary operations.
2. A set of binary idempotent operations.
3. A set consisting of sharp ternary operations, i.e. majority operations, mi-

nority operations, Pixley operations and semiprojections.
4. A set of k-ary semiprojections (k > 3).

Proof. Suppose ω is a minimal weighted operation of arity at least two. Then,
every f with ω(f) > 0 must be idempotent since otherwise translating by
〈e1, . . . , e1〉 would yield a non-zero unary weighted operation µ. If wClone(µ) =
wClone(ω), then since ω has bigger arity than µ we get a contradiction with ω
being a minimal weighted operation; if wClone(µ) 6= wClone(ω), then wClone(ω)
is not a minimal weighted clone.

Next, suppose that ω is a ternary minimal weighted operation. We can-
not have any f with ω(f) > 0 for which identifying two variables gives a
non-projection operation, since otherwise ω would generate a minimal binary
weighted operation. There are precisely 8 types of sharp ternary operations,
given in Table 1. The first and last correspond to majority and minority respec-

Input 1 2 3 4 5 6 7 8
(x,x,y) x x x x y y y y
(x,y,x) x x y y x x y y
(y,x,x) x y x y x y x y

Table 1. Sharp ternary operations

tively. The second, third and fifth correspond to semiprojections, and the other
three correspond to Pixley operations.

Finally, suppose ω is a minimal weighted operation of arity 4 or greater.
Every f with ω(f) > 0 must become a projection when we identify any two
variables. Thus, by the Świerczkowski Lemma (Lemma 1) each such f must be
a semiprojection. ut

4 Simple Weighted Clones

In classical clone theory, every minimal clone is generated by a single opera-
tion. Rosenberg’s classification of minimal operations [26] gives unary opera-
tions (retractions and cyclic permutations of prime orders), binary idempotent
operations, majority operations, minority operations, and semiprojections.

Definition 9. For any k-ary operation f we define the canonical weighted
operation of f , ωf , to be {(k, f)}.

In other words, ωf assigns weight k to f , and weight −1 to each projection.
In the rest of this section we prove that for some minimal operations f , the

canonical weighted operation ωf is a minimal weighted operation. In particular,
we prove this for retractions, certain binary operations, majority operations, and
minority operations.

Theorem 3. If f is a retraction, then ωf is a minimal weighted operation.

Proof. Let f be a minimal unary operation which is a retraction; i.e. f(f(x)) =
f(x) for all x ∈ D. Let ωf be the canonical weighted operation of f . Since f
is a retraction, it is the only non-trivial operation in Clone(f). Hence, given
any µ ∈ wClone(k)(ωf), translating by

〈
e(k)
1 , . . . , e(k)

k

〉
and applying a suitable

scaling yields ωf . ut

Theorem 4. If f is a binary operation, then ωf is minimal whenever f is a
semilattice operation or a conservative commutative operation.

Proof. Whenever f is a conservative commutative operation or a semilattice
operation, we have that f is the only non-trivial binary operation in Clone(f).
Thus, given any µ ∈ Clone(k)(ωf) we can find some tuple of binary projections
t satisfying g[t] = f(x1, x2), for some g with µ(g) > 0. That is, µ′ = µ[t] is a
binary weighted operation with µ′(f) > 0. Finally, since f is commutative, the
weighted operation obtained from µ′ by Lemma 2 must be equal to ωf . ut

Theorem 5. If f is a majority operation, then ωf is a minimal weighted oper-
ation.

Proof. It is well known that any ternary operation generated by f is a majority
operation since f is a majority operation. (This can be proved by induction on
the number of occurrences of f .) We want to show that ωf is minimal; that is,
given µ ∈ wClone(ωf), we need to show that ωf ∈ wClone(µ).

Let µ be a k-ary weighted operation from wClone(ωf) such that µ(g) > 0
for some non-projection g, where g ∈ Clone(k)(f). From the argument above,
there exists some k-tuple of ternary projections, t, such that g[t] is a majority
operation. Let µ′ = µ[t]. If µ′ = cωf for some c > 0 then we are done. Otherwise,
by Lemma 2, there is ternary µ′ ∈ wClone(µ) such that µ′ assigns weight -1 to
projections and positive weight to some (possibly different) majority operations
g1, . . . , gk ∈ Clone(3)(f).

Translating µ′ by 〈xj , xj , f〉, for j ∈ [3], gives the weighted operation 2ωj,f ,
where

ωj,f (g) =

−1 g = ej
+1 g = f

0 otherwise
. (2)

Since ωf = ω1,f + ω2,f + ω3,f , we have proved that ωf ∈ wClone(µ). ut

Theorem 6. If f is a minimal minority operation, then ωf is a minimal weighted
operation.

Proof. Recall that a minority operation f : D3 → D is minimal if and only
if f(x, y, z) = x − y + z, where addition is taken over an elementary 2-group
〈D,+〉. An elementary 2-group 〈D,+〉 satisfies 2x = 0 for all x ∈ D. Thus, we
can conclude that f is the only ternary operation in Clone(f). Now, given any
µ ∈ wClone(k)(ωf), we can find some k-tuple of ternary projections t such that
µ[t](f) > 0. Then, using Lemma 2, we can obtain a ternary weighted operation
µ′ ∈ wClone(µ) which satisfies µ′(ei) = 1 for i = 1, 2, 3. Since f is the only
ternary operation in Clone(f) then, necessarily, µ′ = ωf . ut

Due to space constraints, we only state the following result:

Proposition 2. Let f be the ternary semiprojection on D = {0, 1, 2} which
returns 0 on every input with all values distinct, and the value of the first input
otherwise. The weighted clone wClone(ωf) is not minimal.

Proposition 2 tells us that not all minimal operations have canonical mini-
mal weighted operations. It is known that the constraint languages preserved by
semiprojections are not tractable, so the weighted clones supported by semipro-
jection clones are of less interest to us.

An operation f is tractable if the set of cost functions invariant under f ,
denote by Inv(f), is a tractable valued constraint language; see [14] for more de-
tails. Having proved minimality of weighted clones corresponding to well-known
tractable operations, we finish this section with a conjecture.

Conjecture 1. If f is a minimal tractable operation, then ωf is a minimal weighted
operation.

5 Boolean Classification

In this section, we consider minimal weighted clones on Boolean domain D =
{0, 1}. Since there are no semiprojections on a Boolean domain, we only need
to consider the first three cases of Theorem 2. Moreover, for the third case, we
need only consider weighted operations assigning negative weight to Mnrty and
Mjrty. Post [25] has classified the minimal clones on a Boolean domain.

Theorem 7. Every minimal clone on a Boolean domain is generated by one of
the following operations:

1. f0(x) = 0
2. f1(x) = 1
3. f(x) = 1− x
4. min(x1, x2) returns the minimum of the two arguments
5. max(x1, x2) returns the maximum of the two arguments
6. Mnrty(x1, x2, x3) returns the minority of the three arguments
7. Mjrty(x1, x2, x3) returns the majority of the three arguments

First, we show that the canonical weighted operations corresponding to the
minimal operations given in Theorem 7 are minimal.

Theorem 8. For each minimal Boolean operation f , the weighted operation ωf
is minimal.

Proof. Let f(x) = 1−x. Notice that f2(x) = x; that is, f is a cyclic permutation
of order 2. Therefore, the only non-trivial unary operation in Clone(f) is f .
Moreover, for any k > 1, the only non-trivial operations in Clone(k)(f) are
of the form g(x) = 1 − xi for some i ∈ [k]. Translating an operation of this
form by the k-tuple of unary projections will yield f . Thus, given any non-zero
µ ∈ wClone(k)(ωf), we can translate by the k-tuple of unary projections and
apply a suitable scaling to obtain ωf . Hence, wf is minimal. All other cases
follow from Theorems 3, 4, 5, and 6. ut

Next, we show that there are precisely two other minimal weighted operations
on a Boolean domain.

Theorem 9. On a Boolean domain, there are precisely two minimal weighted
operations other than the 7 canonical weighted operations arising from the min-
imal operations. These are the binary weighted operations {(1,min), (1,max)}
and {(1,Mnrty), (2,Mjrty)}.

Proof. We first consider the binary case. Every binary minimal operation other
than ωmin and ωmax must be of the form ωa = {(a,min), (2− a,max)} (0 < a <
2). We will show that ωa is minimal if and only if a = 1.

First, suppose a = 1. Let ω = ω1. It is easy to check that the only non-
zero translation is ω[e1, e2]. Thus, by Proposition 1, every non-zero weighted
operation in wClone(2)(ω) is equal to cω, for some c > 0.

There is precisely one sharp operation of arity ≥ 3 in Clone(min,max): the
majority operation Mjrty. Since {(3,Mjrty)} /∈ wClone(ω) (we can check this
using Proposition 1), it follows that any non-zero µ ∈ wClone(k)(ω) must assign
weight to an operation of the form min(xi, xj) or max(xi, xj), or a non-sharp
operation of arity k, for any k > 2. We can translate any such µ by a k-tuple
of binary projections to obtain some non-zero µ′ ∈ wClone(2)(µ). Since µ′ must
necessarily be contained in wClone(ω), and since every binary weighted operation
in wClone(ω) is equal to cω, for some constant c > 0, it follows that ω ∈
wClone(µ). Hence, ω is minimal.

Now, suppose a < 1 (the other case is symmetric). Consider the weighted
operations µi = ωa + a

1−aωa[ei,min] (i = 1, 2), which by Proposition 1 are

contained in wClone(ωa). Since min(x,min(x, y)) = min(x, y), we have that min
is assigned weight a− 1 in ωa[ei,min], and hence 0 in µi. To be precise, µi is the
weighted operation which assigns weight a−1 to ei, −1 to eī (̄i ∈ {1, 2}\{i}), and
2−a to max. Thus, by adding µ1 and µ2 and applying a suitable scaling, we can
obtain the weighted operation {(2,max)}. Since {(2,max)} generates a minimal
clone which does not contain ωa, we can conclude that ωa is not minimal.

We now move on to the ternary case. Suppose ω is a ternary weighted op-
eration and ω /∈ wClone(ωf) for f ∈ {Mnrty,Mjrty}. From Theorem 2 and the
fact that there are no Boolean semiprojections, ω can only assign positive weight
to Mjrty, Mnrty and the three Boolean Pixley operations f1, f2 and f3 (corre-
sponding to the fourth, sixth and seventh columns of Table 1). We first show
that we can restrict our attention to weighted operations assigning weight 0 to
all Pixley operations.

Let ω be a ternary weighted operation which assigns positive weight to
some Pixley operations. Composing 〈f1, f2, f3〉 with the tuples of projections
〈e2, e3, e1〉 and 〈e3, e1, e2〉 yields 〈f2, f3, f1〉 and 〈f3, f1, f2〉 respectively. Thus,
the weighted operation 1

3ω + 1
3ω[e2, e3, e1] + 1

3ω[e3, e1, e2] assigns equal weight
to each Pixley operation. Hence, from here on we assume we are working with
a weighted operation ω which assigns equal weight to each Pixley operation, as
well as assigning weight −1 to each projection (see Lemma 2).

Suppose each Pixley operation is assigned weight a < 1 by ω, so at least one of
Mjrty and Mnrty is assigned positive weight. We observe that fi(f1, f2, f3) = ei
for each i = 1, 2, 3. Moreover, Mjrty(f1, f2, f3) = Mnrty and Mnrty(f1, f2, f3) =
Mjrty. Thus, the weighted operation ω + aω[f1, f2, f3] is non-zero and assigns
weight 0 to each Pixley operation.

Next, suppose each Pixley operation is assigned weight 1 by ω. Let µ1 =
ω[e1, e2, f1]. Since f1(e1, e2, f1) = Mjrty, f2(e1, e2, f1) = e1 and f3(e1, e2, f1) =
e2, we have that µ1 assigns weight −1 to f1, +1 to Mjrty, and is 0 everywhere
else. For i = 2, 3, we can obtain µi, which assigns weight −1 to fi and +1
to Mjrty, by a similar translation. Then the weighted operation obtained as
ω + µ1 + µ2 + µ3 will be equal to {(3,Mjrty)}.

Thus, the weighted clone generated by any minimal ternary weighted oper-
ation will contain a non-zero ternary weighted operation assigning weight 0 to
all Pixley operations. Hence, when searching for minimal ternary weighted op-
erations other than ωMnrty and ωMjrty, we can restrict our attention to weighted
operations of the form ωa = {(a,Mnrty), (3 − a,Mjrty)} (0 < a < 3). We will
now show that ωa is minimal if and only if a = 1.

Let ω = ω1. Using Proposition 1, we can check that every ternary weighted
operation in wClone(ω) which assigns positive weight to Mnrty and Mjrty only
is of the form cω for some c > 0. Since there are no semi-projections, we can
translate any non-zero µ ∈ wClone(k)(ω) by a k-tuple of ternary projections to
obtain ternary non-zero µ′ ∈ wClone(ω). We have shown that we can obtain
some non-zero µ′′ ∈ wClone(µ′) which assigns positive weight to Mnrty and
Mjrty only. Since µ′′ must be in wClone(ω), it follows that µ′′ = cω, for some
c > 0, so we can obtain ω by scaling. Hence, ω is a minimal weighted operation.

Suppose a < 1. Let µi = ωa+ a
1−aωa[ei, ei,Mnrty] (i ∈ {1, 2, 3}). It is easy to

check that µi(ei) = −1+a, µi(ej) = −1 (j 6= i), µi(Mjrty) = 3−a, and µi(f) = 0
everywhere else. Then, as in the binary case, we can obtain {(3,Mjrty)} by
adding µ1, µ2, and µ3 and applying a suitable scaling. Similarly, if a > 1 we
can show {(3,Mnrty)} ∈ wClone(ωa). In both cases, we have found non-zero
µ ∈ wClone(ωa) such that ωa /∈ wClone(µ), so ωa cannot be minimal. ut

We remark that the proof of maximality of ω〈min,max〉 in Theorem 9 actu-
ally proves a stronger result: minimality of ω〈min,max〉 over arbitrary distributive
lattices with min and max being the lattice meet and join operations.

6 Conclusions

We have studied minimal weighted clones using the algebraic theory for valued
constraint languages developed by Cohen et al. [14]. Thus we have shown that
the general theory from [14] can be used to answer interesting questions on the
complexity of valued constraint languages.

We have shown an analogue of Rosenberg’s classification of minimal clones
for weighted clones. Furthermore, we have shown minimality of several weighted
clones whose support clone is generated by a single minimal operation. On the
other hand, we have demonstrated that this is not true in general: there are
minimal operations which give rise to non-minimal weighted clones. We have
conjectured that minimal tractable operations give rise to minimal weighted
clones. Finally, we have classified all Boolean weighted clones. Consequently, we
have been able to determine all maximal Boolean valued constraint languages,
using proofs based on the algebraic characterisation of [11,14]. This has been
originally proved in [13] using gadgets.

We believe that the techniques presented in this paper will be useful in iden-
tifying new tractable valued constraint languages and proving maximality of
valued constraint languages.

References

1. Barto, L., Kozik, M., Maróti, M., Niven, T.: CSP dichotomy for special triads.
Proceedings of the American Mathematical Society 137(9), 2921–2934 (2009)

2. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no
sources and no sinks SIAM Journal on Computing 38(5), 1782–1802 (2009)

3. Barto, L.: The dichotomy for conservative constraint satisfaction problems revis-
ited. In: Proc. of LICS’11 (2011)

4. Barto, L., Kozik, M.: Constraint Satisfaction Problems of Bounded Width. In:
Proc. of FOCS’09 461–471 (2009)

5. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.:
Varieties with few subalgebras of powers. Trans. of AMS 362(3), 1445–1473 (2010)

6. Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint lan-
guages. In: Proc. of STOC’01 667–674 (2001)

7. Bulatov, A.: A Graph of a Relational Structure and Constraint Satisfaction Prob-
lems. In: Proc. of LICS’04 448–457 (2004)

8. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM 53(1), 66–120 (2006)

9. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

10. Bulatov, A.A.: Tractable Conservative Constraint Satisfaction Problems. In: Proc.
of LICS’03 321–330 (2003)

11. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An Algebraic Characterisation of Com-
plexity for Valued Constraints. In: Proc. of CP’06, pp 107–121 (2006)

12. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn
clauses: Tractable optimization problems defined by tournament pair multimor-
phisms. Theoretical Computer Science 401(1-3), 36–51 (2008)

13. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft
Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)

14. Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for
valued constraints: Establishing a Galois connection. Proc. of MFCS’11 (2011).

15. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability prob-
lems. Journal of Computer and System Sciences 51(3), 511–522 (1995)

16. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems, SIAM Monographs on Discrete Mathematics and
Applications, vol. 7. SIAM (2001)

17. Csákány, B.: Minimal clones – a minicourse. Algebra Universalis 54(1), 73–89
(2005)

18. Denecke, K., Wismath, S.: Universal Algebra and Applications in Theoretical Com-
puter Science. Chapman and Hall/CRC Press (2002)

19. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing 28(1), 57–104 (1998)

20. Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical
Computer Science 200(1-2), 185–204 (1998)

21. Jeavons, P., Cohen, D., Gyssens, M.: Closure Properties of Constraints. Journal of
the ACM 44(4), 527–548 (1997)

22. Kolmogorov, V., Živný, S.: The complexity of conservative finite-valued CSPs.
Technical repport arXiv:1008.1555 (August 2010)

23. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. Submitted
for publication (2011)

24. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. (1988)
25. Post, E.: The two-valued iterative systems of mathematical logic, Annals of Math-

ematical Studies, vol. 5. Princeton University Press (1941)
26. Rosenberg, I.: Minimal Clones I: the five types. In: Lectures in Universal Algebra

(Proc. Conf. Szeged 1983). Colloq. Math. Soc. Janos Bolyai, vol. 43, pp. 405–427.
North-Holland (1986)

27. Schaefer, T.: The Complexity of Satisfiability Problems. In: Proc. of STOC’78
216–226 (1978)

28. Schrijver, A.: Theory of linear and integer programming. (1986)
29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. (2003)
30. Świerczkowski, S.: Algebras which are independently generated by every n ele-

ments. Fundamenta Mathematicae 49, 93–104 (1960),

	On Minimal Weighted Clones

