
Journal of Artificial Intelligence Research 44 (2012) 455-490 Submitted 1/12; published 7/12

Tractable Triangles and Cross-Free Convexity
in Discrete Optimisation

Martin C. Cooper cooper@irit.fr
IRIT, University of Toulouse III
Toulouse, France

Stanislav Živný standa.zivny@cs.ox.ac.uk

Department of Computer Science, University of Oxford
Oxford, UK

Abstract

The minimisation problem of a sum of unary and pairwise functions of discrete variables
is a general NP-hard problem with wide applications such as computing MAP configurations
in Markov Random Fields (MRF), minimising Gibbs energy, or solving binary Valued
Constraint Satisfaction Problems (VCSPs).

We study the computational complexity of classes of discrete optimisation problems
given by allowing only certain types of costs in every triangle of variable-value assignments
to three distinct variables. We show that for several computational problems, the only non-
trivial tractable classes are the well known maximum matching problem and the recently
discovered joint-winner property. Our results, apart from giving complete classifications in
the studied cases, provide guidance in the search for hybrid tractable classes; that is, classes
of problems that are not captured by restrictions on the functions (such as submodularity)
or the structure of the problem graph (such as bounded treewidth).

Furthermore, we introduce a class of problems with convex cardinality functions on
cross-free sets of assignments. We prove that while imposing only one of the two conditions
renders the problem NP-hard, the conjunction of the two gives rise to a novel tractable class
satisfying the cross-free convexity property, which generalises the joint-winner property to
problems of unbounded arity.

1. Introduction

The topic of this paper is the following optimisation problem: given a set of discrete variables
and a set of functions, each depending on a subset of the variables, minimise the sum
of the functions over all variables. This fundamental research problem has been studied
within several different contexts of computer science and artificial intelligence under different
names: Min-Sum Problems (Werner, 2007), MAP inference in Markov Random Fields
(MRF) and Conditional Random Fields (CRF) (Lauritzen, 1996; Wainwright & Jordan,
2008), Gibbs energy minimisation (Geman & Geman, 1984), Valued Constraint Satisfaction
Problems (Dechter, 2003), or (for two-state variables) pseudo-Boolean optimisation (Boros
& Hammer, 2002).

We use the terminology of Valued Constraint Satisfaction Problems (VCSPs) (Schiex,
Fargier, & Verfaillie, 1995; Dechter, 2003). We start with a special case of VCSPs that deals
only with the feasibility (rather than optimisation) problem.

c©2012 AI Access Foundation. All rights reserved.

Cooper & Živný

A Constraint Satisfaction Problem (CSP) instance consists of a collection of variables
which must be assigned values subject to specified constraints (Montanari, 1974). Each
CSP instance has an underlying undirected graph, known as its constraint graph (or struc-
ture), whose vertices are the variables of the instance, and two vertices are adjacent if
corresponding variables are related by some constraint.

An important line of research on CSPs is to identify all tractable cases which are recog-
nisable in polynomial time. Most of this work has been focused on one of the two general
approaches: either identifying forms of constraint which are sufficiently restrictive to ensure
tractability no matter how they are combined (Bulatov, Krokhin, & Jeavons, 2005; Feder &
Vardi, 1998), or else identifying structural properties of constraint networks which ensure
tractability no matter what forms of constraint are imposed (Dechter & Pearl, 1988).

The first approach has led to identifying certain algebraic closure operations known as
polymorphisms (Jeavons, 1998) which are necessary for a set of constraint types to ensure
tractability. A set of constraint types with this property is called a tractable constraint
language. The second approach has been used to characterise all tractable cases of bounded-
arity CSPs (such as binary CSPs) (Dalmau, Kolaitis, & Vardi, 2002; Grohe, 2007) and
unbounded-arity CSPs (Marx, 2010).

In practice, constraint satisfaction problems usually do not possess a sufficiently re-
stricted structure or use a sufficiently restricted constraint language to fall into any of
these tractable classes. Nevertheless, they may still have properties which ensure they
can be solved efficiently, but these properties concern both the structure and the form of
the constraints. Such properties have sometimes been called hybrid reasons for tractabil-
ity (Dechter, 2003; Cohen, 2003; Cohen & Jeavons, 2006; Cooper, Jeavons, & Salamon,
2010; Cohen, Cooper, Green, & Marx, 2011).

CSPs capture only the feasibility aspects of a given problem. Since many computational
problems involve seeking a solution that optimises certain criteria, as well as satisfying cer-
tain restrictions, various general frameworks for optimisation problems have been studied
such as linear programming, mixed integer programming and others (Hooker, 2007). One
possibility is to extend CSPs to so-called soft constraint satisfaction problems, which allow
measures of desirability to be associated with different assignments to the variables (Dechter,
2003; Meseguer, Rossi, & Schiex, 2006). In an instance of a soft CSP, every constraint
is associated with a function (rather than a relation as in standard CSPs) which rep-
resents preferences among different partial assignments, and the goal is to find the best
assignment. Several very general soft CSP frameworks have been proposed in the litera-
ture (Schiex, Fargier, & Verfaillie, 1995; Bistarelli, Montanari, & Rossi, 1997). In this paper
we focus on one of the very general frameworks, the valued constraint satisfaction prob-
lem (VCSP) (Schiex, Fargier, & Verfaillie, 1995). VCSPs are powerful enough to include
many interesting optimisation problems (Rossi, van Beek, & Walsh, 2006; Cohen, Cooper,
Jeavons, & Krokhin, 2006) and, as pointed out at the beginning of this introduction, are
equivalent to other well studied optimisation problems studied in computer vision and other
fields of computer science and artificial intelligence.

An important line of research on VCSPs is to identify tractable cases which are recognis-
able in polynomial time. It is well known that structural reasons for tractability generalise
to the VCSP (Bertelé & Brioshi, 1972; Dechter, 2003). In the case of language restric-
tions, only a few conditions are known to guarantee tractability of a given set of valued

456

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

constraints (Cohen, Cooper, Jeavons, & Krokhin, 2006; Cohen, Cooper, & Jeavons, 2008;
Jonsson, Kuivinen, & Thapper, 2011; Kolmogorov, 2011; Kolmogorov & Živný, 2012).

1.1 Contributions

This paper is the full version of results described in two conference papers (Cooper & Živný,
2011a, 2011c).

1.1.1 Binary VCSPs

In the first part of the paper, we study hybrid tractability of binary VCSPs (i.e. optimisation
problems involving functions of at most two arguments) for various sets of possible costs
that correspond to CSPs, CSPs with soft unary constraints, Max-CSPs, finite-valued VCSPs
and general-valued VCSPs.

We focus on classes of instances defined by allowed combinations of binary costs in every
assignment to 3 different variables (called a triangle). Our motivation for this investigation
is that one such restriction, the so-called joint-winner property has recently been shown to
define a tractable class (Cooper & Živný, 2011b). For finite sets of possible costs (corre-
sponding to CSPs and Max-CSPs), there are only finitely many possibilities. For example,
in Max-CSPs there are only four possible multi-sets of costs, namely {0, 0, 0}, {0, 0, 1},
{0, 1, 1} and {1, 1, 1}. However, for infinite sets of possible costs (corresponding to finite-
valued CSPs and general-valued VCSPs) there are infinitely many combinations. Obviously,
we cannot consider them all, and hence we consider an equivalence relation based on the
total order on the valuation structure. For example, we consider the four equivalence classes
of multi-sets {α, β, γ} given by α = β = γ, α = β < γ, α = β > γ, α < β < γ.

For all sets of possible costs Ω we consider, we prove a dichotomy theorem, thus iden-
tifying all tractable cases with respect to the equivalence relation on the combinations of
costs. It turns out that there are only two non-trivial tractable cases: the well-known
maximum matching problem (Edmonds, 1965b), and the recently discovered joint-winner
property (Cooper & Živný, 2011b).

1.1.2 Non-binary VCSPs

In the second part of the paper, we introduce the cross-free convexity property (CFC), and
show that it gives rise to a novel tractable class of VCSPs. Informally speaking, the CFC
property is a conjunction of convex cost functions applied to a structured set of sets of
variable-value assignments. The CFC property generalises our recent results on VCSPs
satisfying the non-overlapping convexity property (Cooper & Živný, 2011b) by dropping
the assumption that the input functions are non-decreasing and allowing the assignment-
sets to be not only hierarchically nested (laminar) but also cross-free. (All terms will be
defined formally in Section 4.) Not only do we generalise the tractable class from the work
of Cooper & Živný (2011b), but our algorithm also has better running time compared to
the algorithm of Cooper & Živný (2011b). Moreover, we show that relaxing either one of
the cross-free or convexity assumptions leads to an NP-hard class.

A VCSP instance may be such that some subset of its constraints are cross-free convex.
Since our network is projection-safe (Lee & Leung, 2009), we can use it to establish soft
global arc consistency on this subset of constraints viewed as a single global constraint.

457

Cooper & Živný

We also show that, over Boolean domains, it is possible to determine in polynomial time
whether there exists some subset of the constraints such that the VCSP instance satisfies the
cross-free convexity property after renaming the variables in these constraints. To explore
this area even further, we study restrictions on overlaps of constraint scopes, and identify
another tractable class which is incomparable with the cross-free convexity property.

1.2 Organisation of the Paper

The rest of this paper is organised as follows. We start, in Section 2, by defining valuation
structures, valued constraint satisfaction problems, and basics of flow networks. Section 3
is devoted to the classification of binary VCSPs defined by triangles: In Section 3.1, we
present our results on CSPs, followed up with results on CSPs with soft unary constraints
in Section 3.2. In Section 3.3, we present our results on Max-CSPs, followed by the results
on finite-valued and general-valued VCSPs in Section 3.4 and in Section 3.5 respectively.
Section 4 is devoted to our results on non-binary VCSPs: In Section 4.1, we present an
algorithm for VCSPs satisfying the cross-free convexity property and analyze its running
time. Section 4.4 shows that neither cross-freeness nor convexity on its own is enough to
guarantee tractability. In Section 4.5, we extend the class of cross-free convex VCSPs over
Boolean domains using the notion of renamability. Section 4.6 explores a related notion
over sets of variables rather than sets of variable-value assignments. Finally, we conclude
in Section 5.

2. Preliminaries

In this section, we define valuation structures, valued constraint satisfaction problems, and
present the basics of flow networks.

2.1 Valuation Structures

A valuation structure, Ω, is a totally ordered set, with a minimum and a maximum element
(denoted 0 and ∞), together with a commutative, associative binary aggregation operator
(denoted ⊕), such that for all α, β, γ ∈ Ω, α ⊕ 0 = α, and α ⊕ γ ≥ β ⊕ γ whenever α ≥ β.
Members of Ω are called costs.

We shall denote by Q+ the set of all non-negative rational numbers. We define Q+ =
Q+∪{∞}. We consider the following subsets of the valuation structure Q+: {0,∞}, {0, 1},
Q+ and Q+, where in all cases the aggregation operation is the standard addition operation
on rationals +. Moreover, for all a ∈ Q+, we define a+∞ =∞+ a =∞.

2.2 Valued Constraint Satisfaction Problems

An instance of the Valued Constraint Satisfaction Problem (VCSP) (Schiex, Fargier, &
Verfaillie, 1995) is given by n variables v1, . . . , vn over finite domains D1, . . . , Dn of values
and a set of constraints C. Each constraint from C is a pair 〈s, g〉, where s is a list of
variables s = 〈vi1 , . . . , vim〉 called the constraint scope, and g is an m-ary cost function
g : Di1 × . . .×Dim → Ω. Any assignment of values from the domains to all the variables is
called a solution. The goal is to find an optimal solution; that is, a solution which minimises
the total cost given by the aggregation of the costs for its restrictions onto each constraint

458

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

scope:
min

v1∈D1,...,vn∈Dn

⊕
〈〈vi1

,...,vim 〉,g〉∈C

g(vi1 , . . . , vim) .

Depending on the set Ω of costs which may occur in instances, we get special cases of
the VCSP: Ω = {0,∞} corresponds to the Constraint Satisfaction Problem (CSP), {0, 1}
corresponds to the Maximum Constraint Satisfaction Problem (Max-CSP), Q+ corresponds
to the finite-valued VCSP, and finally Q+ corresponds to the general-valued VCSP.

If all the domains of all the variables are the same, we denote this common domain by
D. A CSP instance is called satisfiable if the cost of an optimal solution is zero (i.e. all
constraints are satisfied).

Cost functions with range {0,∞} are called crisp. Cost functions which are not crisp
are called soft.

2.3 Binary Valued Constraint Satisfaction Problems

In Section 3 we will be interested in the special case of the VCSP when the bound on the
arity of all constraints is 2; these are known as binary VCSPs. Without loss of generality, we
can assume that any binary VCSP instance contains constraints of all possible scopes; that
is, n unary constraints and

(
n
2

)
binary constraints. We denote the cost function associated

with the unary constraint with the scope 〈vi〉 by ci and the cost function associated with the
binary constraint with the scope 〈vi, vj〉 by cij . The absence of any constraint on variable
vi (or between variables vi, vj) is modelled by a cost function ci (or cij , respectively) which
is uniformly zero. Using this notation, the goal is to find a solution which minimises the
total cost given by:

n⊕
i=1

ci(vi) ⊕
⊕

1≤i<j≤n

cij(vi, vj) .

Remark 2.1. We remark on terminological differences. VCSPs are studied under different
names such as Min-Sum, Gibbs energy minimisation, or Markov Random Fields; domain
values are sometimes called labels, whereas binary instances are called pairwise instances,
m-ary cost functions are called m-cliques, and solutions are called labellings.

2.4 Network Flows

Here we review some basics on flows in graphs. We refer the reader to standard text-
books (Ahuja, Magnanti, & Orlin, 2005; Schrijver, 2003) for more details. We present only
the notions and results needed for our purposes. In particular, we deal with integral flows
only. We denote by N the set of positive integers with zero. Let G = (V,A) be a directed
graph with vertex set V and arc set A. For each arc a ∈ A there is a demand/capacity func-
tion [d(a), c(a)] and a weight (or cost) function w(a), where d(a), c(a) ∈ N and w(a) ∈ Q.
Let s, t ∈ V . A function f : A → N is called an s − t flow (or just a flow) if for all
v ∈ V \ {s, t}, ∑

a=(u,v)∈A

f(a) =
∑

a=(v,u)∈A

f(a) (flow conservation).

459

Cooper & Živný

We say that a flow is feasible if d(a) ≤ f(a) ≤ c(a) for each a ∈ A. We define the value
of flow f as val(f) =

∑
a=(s,v)∈A f(a) −

∑
a=(v,s)∈A f(a). We define the cost of flow f as∑

a∈Aw(a)f(a). A minimum-cost flow is a feasible flow with minimum cost.
Algorithms for finding the minimum-cost flow of a given value are well known (Ahuja,

Magnanti, & Orlin, 2005; Schrijver, 2003). We consider a generalisation of the minimum-
cost flow problem. For each arc a ∈ A there is a convex weight function wa which associates
a cost wa(f(a)) to the flow f(a) along arc a. In particular, we consider the model in which
the weight functions wa (a ∈ A) are convex piecewise linear and given by the breakpoints
(which covers the case of convex functions over the integers). The cost of flow f is now
defined as

∑
a∈Awa(f(a)). The corresponding problem of finding a minimum-cost integral

flow is known as the minimum convex cost flow problem. In a network with n vertices and
m edges with capacities at most U , the minimum convex cost flow problem can be solved
in time O((m logU)SP (n,m)), where SP (n,m) is the time to compute a shortest directed
path in a network with n vertices and m edges (Minoux, 1984, 1986; Ahuja, Magnanti, &
Orlin, 2005).

3. Complexity Classification of Binary VCSPs Defined by Triangles

In a VCSP instance, we use the word triangle for any set of assignments {〈vi, a〉, 〈vj , b〉, 〈vk, c〉},
where vi, vj , vk are distinct variables and a ∈ Di, b ∈ Dj , c ∈ Dk are domain values. The
multi-set of costs in such a triangle is {cij(a, b), cik(a, c), cjk(b, c)}. A triple of costs will
always refer to a multi-set of binary costs in a triangle.

A triangle {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, where a ∈ Di, b ∈ Dj , c ∈ Dk, satisfies the joint-
winner property (JWP) if either all three cij(a, b), cik(a, c), cjk(b, c) are the same, or two
of them are equal and the third one is bigger. A VCSP instance satisfies the joint-winner
property if every triangle satisfies the joint-winner property.

Theorem 3.1. (Cooper & Živný, 2011b) The class of VCSP instances satisfying JWP is
tractable.

In our previous work (Cooper & Živný, 2011b), we also showed that the class defined by
the joint-winner property is maximal – allowing a single extra triple of costs that violates
the joint-winner property renders the class NP-hard.

Theorem 3.2. (Cooper & Živný, 2011b) Let α < β ≤ γ, where α ∈ Q+ and β, γ ∈ Q+,
be a multi-set of costs that do not satisfy the joint-winner property. The class of instances
where the costs in each triangle either satisfy the joint-winner property or are {α, β, γ} is
NP-hard, even for Boolean Max-CSPs, CSPs over size-3 domains or Boolean finite-valued
VCSPs.

In this section we consider a much broader question, whether allowing any fixed set S
of triples of costs in triangles, where S does not necessarily include all triples allowed by
the JWP, defines a tractable class of VCSP instances.

In the case of CSP, there are only four possible multi-sets of costs ({0, 0, 0}, {0, 0,∞},
{0,∞,∞}, {∞,∞,∞}) and it is possible to study all 16 subsets S of this set. But, given
an infinite set of possible costs, such as Q+ or Q+, there is an infinite number of sets S of
triples of costs. Obviously, we cannot consider all such sets. Therefore, we only consider

460

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

cases defined by the total order < on Ω, corresponding to a partition of the set of all possible
triples of costs into a small number of types of triples.

Let D denote the set of all possible cost types under consideration. Let Ω be a fixed
set of allowed costs. For any S ⊆ D, we denote by AΩ(S) (A for allowed) the set of binary
VCSP instances whose costs lie in Ω and where the triples of costs in all triangles belong
to S.

Our goal is to classify the complexity of AΩ(S) for every S ⊆ D. The problem AΩ(S)
is considered tractable if there is a polynomial-time algorithm to solve it and intractable if
it is NP-hard.

Proposition 3.3. Let Ω be an arbitrary set of costs and S a set of cost types.

1. If AΩ(S) is tractable and S′ ⊆ S, then AΩ(S′) is tractable.

2. If AΩ(S) is intractable and S′ ⊇ S, then AΩ(S′) is intractable.

Remark 3.4. We implicitly allow all unary cost functions. In fact, all our tractability
results work with unary cost functions, and our NP-hardness results do not require any
unary cost functions.

Remark 3.5. We consider problems with unbounded domains; that is, the domain sizes
are part of the input. However, all our NP-hardness results are obtained for problems with
a fixed domain size.1 In the case of CSPs, we need domains of size 3 to prove NP-hardness,
and in all other cases domains of size 2 are sufficient to prove NP-hardness. Since binary
CSPs are known to be tractable on Boolean domains, and any VCSP is trivially tractable
over domains of size 1, all our NP-hardness results are tight.

3.1 CSP

In this section, we will focus on the set of possible costs Ω = {0,∞}; that is, Constraint
Satisfaction Problems (CSPs). We consider the four following types of triples of costs:

Symbol Costs
< {0, 0,∞}
> {0,∞,∞}
0 {0, 0, 0}
∞ {∞,∞,∞}

The set of possible cost types is thus D = {<,>, 0,∞}. Indeed, these four cost types
correspond precisely to the four possible multi-sets of costs: {0, 0, 0}, {0, 0,∞}, {0,∞,∞}
and {∞,∞,∞}. The dichotomy presented in this section therefore represents a complete
characterisation of the complexity of CSPs defined by placing restrictions on triples of costs
in triangles.

As A{0,∞}(D) allows all binary CSPs, A{0,∞}(D) is intractable (Papadimitriou, 1994)
unless the domain is of size at most 2, in which case it is equivalent to 2-SAT, which is a
well-known tractable class (Schaefer, 1978).

1. In other words, the considered problems are not fixed-parameter tractable (Downey & Fellows, 1999) in
the domain size.

461

Cooper & Živný

∅

< > 0 ∞

<,> <, 0 <,∞ >, 0 >,∞ 0,∞

<,>, 0 <,>,∞ <, 0,∞ >, 0,∞

<,>, 0,∞

Figure 1: Complexity of CSPs A{0,∞}(S), S ⊆ {<,>, 0,∞}.

Proposition 3.6. A{0,∞}(D) is intractable unless |D| ≤ 2.

The joint-winner property for CSPs gives

Corollary 3.7 (of Theorem 3.1). A{0,∞}({<, 0,∞}) is tractable.

Proposition 3.8. A{0,∞}({>, 0,∞}) is tractable.

Proof. Since < is forbidden, if two binary costs in a triangle are zero then the third binary
cost must also be zero. In other words, if the assignment 〈v1, a1〉 is consistent with 〈vi, ai〉
for each i ∈ {2, . . . , n}, then for all i, j ∈ {1, . . . , n} such that i 6= j, 〈vi, ai〉 is consistent with
〈vj , aj〉. Thus Singleton Arc Consistency, which is a procedure enforcing Arc Consistency for
every variable-value pair (Rossi, van Beek, & Walsh, 2006), solves A{0,∞}({>, 0,∞}).

Proposition 3.9. A{0,∞}({<,>,∞}) is tractable.

Proof. This class is trivial: instances with at least three variables have no solution of finite
cost, since the triple of costs {0, 0, 0} is not allowed.

Proposition 3.10. A{0,∞}({<,>, 0}) is intractable unless |D| ≤ 2.

Proof. It is straightforward to encode the 3-Colouring problem as a binary CSP. The result
then follows from the fact that 3-Colouring is NP-hard for triangle-free graphs (i.e. graphs
that do not contain K3, the complete graph on 3 vertices, as a subgraph), which can be
derived from two results from the work of Lovász (1973). (Indeed, 3-Colouring is NP-hard
even for triangle-free graphs of degree at most 4; see Maffray & Preissmann, 1996.) The
triple of costs {∞,∞,∞} cannot occur in the CSP encoding of the colouring of a triangle-
free graph.

462

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Results from this section, together with Proposition 3.3, complete the complexity clas-
sification, as depicted in Figure 1: white nodes represent tractable cases and shaded nodes
represent intractable cases.

Theorem 3.11. For |D| ≥ 3, a class of binary CSP instances defined as A{0,∞}(S), where
S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

3.2 CSP with Soft Unary Constraints

A simple way to convert classical CSPs into an optimisation problem is to allow soft unary
constraints. This framework includes well-studied problems such as Max-Ones over Boolean
domains (Creignou, Khanna, & Sudan, 2001; Khanna, Sudan, Trevisan, & Williamson,
2001) and non-Boolean domains (Jonsson, Kuivinen, & Nordh, 2008), Max-Solution (Jon-
sson & Nordh, 2008), or Min-Cost-Hom (Takhanov, 2010).

It turns out that the dichotomy given in Theorem 3.11 remains valid even if soft unary
constraints are allowed. In this case, the intractable cases are now intractable even for
domains of size 2.

We use the notation AQ+

{0,∞}(S) to represent the set of VCSP instances with binary

costs from {0,∞}, unary costs from Q+ and whose triples of costs in triangles belong to
S. In other words, we now consider VCSPs with crisp binary constraints and soft unary
constraints.

Theorem 3.12. For |D| ≥ 2, a class of binary CSP instances defined as AQ+

{0,∞}(S), where
S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

Proof. For the tractability part of the theorem, it suffices to show tractability when S is
{<,>,∞}, {<, 0,∞} or {>, 0,∞}, the three maximal tractable sets in the case of CSP
shown in Figure 1.

The tractability of AQ+

{0,∞}({<, 0,∞}) is again a corollary of Theorem 3.1 since the joint-
winner property allows any unary soft constraints.

To solve AQ+

{0,∞}({>, 0,∞}) in polynomial time, we establish Singleton Arc Consistency
in the CSP instance corresponding to the binary constraints and then loop over all assign-
ments to the first variable. For each assignment a1 to variable v1, we can determine the
optimal global assignment which is an extension of 〈v1, a1〉 by simply choosing the assign-
ment ai for each variable vi with the least unary cost ci(ai) among those assignments 〈vi, ai〉
that are consistent with 〈v1, a1〉.

As in the proof of Proposition 3.9, any instance of AQ+

{0,∞}({<,>,∞}) is tractable, since
instances with at least three variables have no solution of finite cost.

Sets S which are intractable for CSPs clearly remain intractable when soft unary con-
straints are allowed. However, we want to prove intractability even in the Boolean case;
that is, when |D| = 2.

The intractability of AQ+

{0,∞}({<,>, 0}) (and hence, by Proposition 3.3, of AQ+

{0,∞}({<,>
, 0,∞})) follows from the fact that the Independent Set problem (Garey & Johnson, 1979)
is intractable even on triangle free graphs. This follows from the standard trick (Poljak,
1974) of replacing every edge by P4, the path on 4 vertices (this operation is also known

463

Cooper & Živný

as 2-subdivision). In particular, a graph G with m edges has an independent set of size k
if and only if the 2-subdivision of G, denoted by G′, has an independent set of size k +m.
Note that G′ is triangle-free. Any instance G′ of the Independent Set problem on triangle-

free graphs can be encoded as an instance of AQ+

{0,∞}({<,>, 0}) over the {0, 1} domain in
the straightforward way: variables correspond to vertices; edge {i, j} yields cost function
cij(1, 1) =∞ and cij(x, y) = 0 for (x, y) 6= (1, 1); ci(0) = 1 and ci(1) = 0 for every i. Since

G′ is triangle-free, the constructed instance belongs to AQ+

{0,∞}({<,>, 0}).

3.3 Max-CSP

In this section, we will focus on the set of possible costs Ω = {0, 1}. It is well known that
the VCSP with costs in {0, 1} is polynomial-time equivalent to unweighted Max-CSP (no
repetition of constraints allowed) (Rossi, van Beek, & Walsh, 2006). The four types of
triples of costs we consider are:

Symbol Costs
< {0, 0, 1}
> {0, 1, 1}
0 {0, 0, 0}
1 {1, 1, 1}

The set of possible cost types is then D = {<,>, 0, 1}. Again, these four costs types
correspond precisely to the four possible multi-sets of costs: {0, 0, 0}, {0, 0, 1}, {0, 1, 1},
and {1, 1, 1}. As for the CSP, our dichotomy result for Max-CSP represents a complete
characterisation of the complexity of classes of instances defined by placing restrictions on
triples of costs in triangles.

∅

< > 0 1

<,> <, 0 <, 1 >, 0 >, 1 0, 1

<,>, 0 <,>, 1 <, 0, 1 >, 0, 1

<,>, 0, 1

Figure 2: Complexity of Max-CSPs A{0,1}(S), S ⊆ {<,>, 0, 1}.

As A{0,1}(D) allows all binary Max-CSPs, A{0,1}(D) is intractable (Garey & Johnson,
1979; Papadimitriou, 1994) unless the domain is of size 1.

464

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Proposition 3.13. A{0,1}(D) is intractable unless |D| ≤ 1.

The joint-winner property (Cooper & Živný, 2011b) for Max-CSPs gives

Corollary 3.14 (of Theorem 3.1). A{0,1}({<, 0, 1}) is tractable.

Proposition 3.15. A{0,1}({<,>}) is tractable.

Proof. We show that A{0,1}({<,>}) contains instances on at most 5 variables, thus showing
that A{0,1}({<,>}) is trivially tractable. Consider an instance of A{0,1}({<,>}) on 6 or
more variables. Choose 6 arbitrary variables v1, . . . , v6 and 6 domain values di ∈ Dvi ,
1 ≤ i ≤ 6. Every cost is either 0 or 1. It is well known (Goodman, 1959) and not difficult to
show2 that for every 2-colouring of edges of K6 (the complete graph on 6 vertices) there is a
monochromatic triangle. Therefore, there is a triangle with costs either {0, 0, 0} or {1, 1, 1}.
But this is a contradiction with the fact that only cost types < (i.e. {0, 0, 1}) and > (i.e.
{1, 1, 0}) are allowed.

Remark 3.16. Both AΩ({>}) and AΩ({<,>}) are tractable over any finite set of costs Ω
due to a similar Ramsey type of argument: given Ω = {0, 1, . . . ,K − 1}, there is nK ∈ N
such that for every complete graph G on n vertices, where n ≥ nK , and every colouring of
the edges of G with K colours, there is a monochromatic triangle in G. Hence there are
only finitely many instances, which can be stored in a look-up table. However, once the set
of costs is infinite (e.g. Q+), both classes become intractable, as shown in the next section.

Proposition 3.17. A{0,1}({>, 0, 1}) is intractable unless |D| ≤ 1.

Proof. Given an instance of the Max-2SAT problem, we show how to reduce it to a {0, 1}-
valued VCSP instance from A{0,1}({>, 0, 1}). The result then follows from the well-known
fact that Max-2SAT is NP-hard (Garey & Johnson, 1979; Papadimitriou, 1994). Recall
that an instance of Max-2SAT is given by a set of m clauses of length 2 over n variables
x1, . . . , xn and the goal is to find an assignment that maximises the number of clauses that
have at least one true literal.

In order to simplify notation, rather than constructing a VCSP instance from A{0,1}({>
, 0, 1}) with the goal to minimise the total cost, we construct an instance from A{0,1}({<
, 0, 1}) with the goal to maximise the total cost. This implies that the allowed sets of costs
in triangles are {0, 0, 1}, {0, 0, 0}, and {1, 1, 1}. Clearly, these two problems are polynomial-
time equivalent.

For each variable xi, we create a large number M of copies xj
i of xi with domain {0, 1},

1 ≤ i ≤ n and 1 ≤ j ≤M . For each variable xi, the new copies of xi are pairwise joined by an
equality-encouraging cost function h, where h(x, y) = 1 if x = y and h(x, y) = 0 otherwise.
By choosing M very large, we can assume from now on that all copies of xi will be assigned
the same value in all optimal solutions. We can effectively ignore the contribution of these

2. Take an arbitrary vertex v in K6 where every edge is coloured either blue or red. By the pigeonhole
principle, v is incident to at least 3 blue or at least 3 red edges. Without loss of generality, we consider
the former case. Let v1, v2 and v3 be the three vertices incident to three blue edges incident to v. If an
any of the edges {v1, v2}, {v1, v3}, {v2, v3} is blue, we have a blue triangle. If all three edges are red, we
have a red triangle.

465

Cooper & Živný

cost functions, which is K = n
(
M
2

)
, to the total cost. It is straightforward to check that all

triangles involving the new copies of the variables have the allowed costs.
For each clause (l1∨ l2), where l1 and l2 are literals, we create a variable zi with domain

{l1, l2}, 1 ≤ i ≤ m. For each literal l in the domain of zk: if l is a positive literal l = xi, we
introduce cost function g between zk and each copy xj

i of xi, where g(l, 1) = 1 and g(., .) = 0
otherwise; if l is a negative literal l = ¬xi, we introduce cost function g′ between zk and
each copy xj

i of xi, where g′(l, 0) = 1 and g′(., .) = 0 otherwise.
To make sure that the only sets of costs in all triangles are {0, 0, 1}, {0, 0, 0}, and

{1, 1, 1}, we also add cost functions f between the different clause variables zk and zk′

involving the same literal l, where f(l, l) = 1 and f(., .) = 0 otherwise. The contribution of
all the cost functions between zk and zk′ , 1 ≤ k 6= k′ ≤ m, is less than M and hence of no
importance for M very large.

Answering the question of whether the resulting VCSP instance has a solution with a
cost ≥ K+ pM is equivalent to determining whether the original Max-2SAT instance has a
solution satisfying at least p clauses. This is because each clause variable zk can only add
a score ≥M if we assign value l to zk for some literal l which is assigned true.

Proposition 3.18. Both A{0,1}({<,>, 0}) and A{0,1}({<,>, 1}) are intractable unless |D| ≤
1.

Proof. We present a reduction from Max-Cut, a well-known NP-hard problem (Garey &
Johnson, 1979), which is NP-hard even on triangle-free graphs (Lewis & Yannakakis, 1980).
An instance of Max-Cut can easily be modelled as a Boolean {0, 1}-valued VCSP instance:
every vertex of the graph is represented by a variable with the Boolean domain {0, 1}, and
every edge yields cost function f , where f(x, y) = 1 if x = y and f(x, y) = 0 if x 6= y.
Observe that since the original graph is triangle-free, there cannot be a triangle with costs
{1, 1, 1}. Therefore, the constructed instance belongs to A{0,1}({<,>, 0}).

For theA{0,1}({<,>, 1}) case, instead of minimising the total cost, we maximise the total
cost for instances from A{0,1}({<,>, 0}). Again, we model an instance of the Max-Cut
problem using Boolean variables, and every edge yields a cost function g, where g(x, y) = 0
if x = y and g(x, y) = 1 if x 6= y (where in this case the aim is to maximise the total cost).
The constructed instance belongs to A{0,1}({<,>, 0}). (In fact, in this case we do not need
the original graph to be triangle-free.)

Proposition 3.19. A{0,1}({>, 0}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 0}). The algorithm loops through all possible
assignments {〈v1, a1〉, 〈v2, a2〉} to the first two variables. Suppose that c12(a1, a2) = 1 (the
case c12(a1, a2) = 0 is similar). Observe that the possible variable-value assignments to other
variables {〈vi, b〉 |3 ≤ i ≤ n, b ∈ Di} can be uniquely split in two sets L and R such that: (1)
for every 〈vi, b〉 ∈ L, c1i(a1, b) = 1 and c2i(a2, b) = 0; for every 〈vi, b〉, 〈vj , c〉 ∈ L, cij(b, c) =
0; (2) for every 〈vi, b〉 ∈ R, c1i(a1, b) = 0 and c2i(a2, b) = 1; for every 〈vi, b〉, 〈vj , c〉 ∈ R,
cij(b, c) = 0; (3) for every 〈vi, b〉 ∈ L and 〈vj , c〉 ∈ R, cij(b, c) = 1. Ignoring unary cost
functions for a moment, to find an optimal assignment to the remaining n−2 variables, one
has to decide how many variables vi, 3 ≤ i ≤ n, will be assigned a value b ∈ Di such that
〈vi, b〉 ∈ L. The cost of a global assignment involving k variable-value assignments from L
is 1 + k + (n− 2− k) + k(n− 2− k) = n− 1 + k(n− 2− k). For some variables vi it could

466

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

happen that 〈vi, b〉 ∈ L for all b ∈ Di or 〈vi, c〉 ∈ R for all c ∈ Di. If this is the case, then
we choose an arbitrary value b for xi with minimum unary cost ci(b). This is an optimal
choice whatever the assignments to the variables xj (j ∈ {3, . . . , i− 1, i+ 1, . . . , n}).

Assuming that all such variables have been eliminated and now taking into account
unary cost functions, the function to minimise is given by the objective function (in which
we drop the constant term n− 1):

(
∑

xi)(n− 2−
∑

xi) +
∑

wL
i xi +

∑
wR

i (1− xi)

(each sum being over i ∈ {3, . . . , n}), where xi ∈ {0, 1} indicates whether vi is assigned a
value from R or L, wL

i = min{ci(b) : b ∈ Di∧〈vi, b〉 ∈ L}, and similarly wR
i = min{ci(c) : c ∈

Di∧〈vi, c〉 ∈ R}. The objective function is thus equal to k(n−2−k)+
∑
wL

i xi+
∑
wR

i (1−xi),
where, as above, k =

∑
xi is the number of assignments from L. This objective function

is minimised either when k = 0 or when k = n − 2. This follows from the fact that the
contribution of unary cost functions to the objective function is

∑
wL

i xi +
∑
wR

i (1 − xi)
which is at most n − 2 (since in Max-CSP all unary costs belong to {0, 1}). This is no
greater than the value of the quadratic term k(n−2−k) for all values of k in {1, . . . , n−3},
i.e. not equal to 0 or n− 2.

The optimal assignment which involves k = 0 (respectively k = n−2) assignments from
L is obtained by simply choosing each value ai (for i > 2) with minimum unary cost among
all assignments 〈vi, ai〉 ∈ R (respectively L).

In the case that c12(a1, a2) = 0, a similar argument shows that the quadratic term in
the objective function is now 2(n−2−k) +k(n−2−k) = (k+ 2)(n−2−k). This is always
minimised by setting k = n− 2 and again the sum of the unary costs is no greater than the
value of the quadratic term for other values of k 6= n − 2. The optimal assignment which
involves all k = n− 2 assignments from L is obtained by simply choosing each value ai (for
i > 2) with minimum unary cost among all assignments 〈vi, ai〉 ∈ L.

Proposition 3.20. A{0,1}({>, 1}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 1}) without any unary constraints; i.e. all
constraints are binary. Observe that every variable-value assignment 〈vi, a〉, where a ∈ Di,
is included in zero-cost assignment-pairs involving at most one other variable; i.e. there
is at most one variable vj , such that cij(a, b) = 0 for some b ∈ Dj . In order to minimise
the total cost, we have to maximise the number of zero-cost assignment-pairs. In a global
assignment, no two zero-cost assignment-pairs can involve the same variable, which means
that this can be achieved by a reduction to the maximum matching problem, a problem
solvable in polynomial time (Edmonds, 1965b). We build a graph with vertices given by
the variables of I, and there is an edge {vi, vj} if and only if there is a ∈ Di and b ∈ Dj

such that cij(a, b) = 0.
To complete the proof, we show that unary constraints do not make the problem more

difficult to solve; it suffices to perform a preprocessing step before the reduction to maximum
matching. Let vi be an arbitrary variable of I. If ci(a) = 1 for all a ∈ Di, then we can
effectively ignore the unary cost function ci since it simply adds a cost of 1 to any solution.
Otherwise, we show that all a ∈ Di such that ci(a) = 1 can be ignored. Take an arbitrary
assignment s to all variables such that s(vi) = a, where ci(a) = 1. Now take any b ∈ Di

467

Cooper & Živný

such that ci(b) = 0. We claim that assignment s′ defined by s′(vi) = b and s′(vj) = s(vj)
for every j 6= i does not increase the total cost compared with s. Since the assignment
〈vi, a〉 can occur in at most one zero-cost assignment-pair, there are two cases to consider:
(1) if there is no 〈vj , c〉 with s(vj) = c such that cij(a, c) = 0, then the claim holds since
ci(a) = 1 and ci(b) = 0, so the overall cost can only decrease if we replace a by b; (2) if there
is exactly one j 6= i such that cij(a, c) = 0 and s(vj) = c, then again the cost of s′ cannot
increase because the possible increase of cost by 1 in assigning b to vi is compensated by the
unary cost function ci. Therefore, before using the reduction to maximum matching, we can
remove all a ∈ Di such that ci(a) = 1 and keep only those a ∈ Di such that ci(a) = 0.

Remark 3.21. In the proof of Proposition 3.20, we have shown that any instance from
A{0,1}({>, 1}) can be reduced to an instance of maximum matching in graphs (Edmonds,
1965b). We remark that conversely, given a graph G, the maximum matching problem in
G can be modelled as a VCSP instance I ′G from A{0,1}({>, 1}).

We order the vertices of G arbitrarily and call them 1, 2, . . . , n. The instance IG will have
n variables v1, . . . , vn, one for each vertex of G. Let {n1, . . . , nm} be the neighbours of vertex
i in G, where m is the degree of vertex i in G; that is, {j | {i, j} ∈ E(G)} = {n1, . . . , nm}.
We define Di = {0, n1, . . . , nm}.

Any edge {i, j} ∈ E(G), where i < j, yields cij(j, i) = 1, and all remaining costs are 0.
It follows from the definition of IG that (i) solutions to IG of maximum cost correspond to
maximum matchings in G; and (ii) IG ∈ A{0,1}({<, 0}). By swapping the costs 0 and 1, we
get an instance I ′G from A{0,1}({>, 1}), whose solutions correspond to matchings in G and
solutions of minimum cost correspond to maximum matchings in G.

Results from this section, together with Proposition 3.3, complete the complexity clas-
sification, as depicted in Figure 2: white nodes represent tractable cases and shaded nodes
represent intractable cases.

Theorem 3.22. For |D| ≥ 2, a class of binary unweighted Max-CSP instances defined
as A{0,1}(S), where S ⊆ {<,>, 0, 1}, is intractable if and only if either {<,>, 0} ⊆ S,
{<,>, 1} ⊆ S, or {>, 0, 1} ⊆ S.

3.4 Finite-Valued VCSP

In this section, we will focus on finite-valued VCSPs. In other words, we consider the set
of possible costs Ω = Q+. Since there are an infinite number of triples of costs, we consider
types of triples defined by the total order on Ω. We study three different ways of partitioning
the set of all triples of costs into distinct types.

3.4.1 Classification with respect to Order

The set of possible cost types is D = {4, <,>,=}, where these four types are defined in
the following table:

Symbol Costs Remark
4 {α, β, γ} α, β, γ ∈ Ω, α 6= β 6= γ 6= α
< {α, α, β} α, β ∈ Ω, α < β
> {α, α, β} α, β ∈ Ω, α > β
= {α, α, α} α ∈ Ω

468

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

∅

4 < > =

4, < 4, > 4,= <,> <,= >,=

4, <,> 4, <,= 4, >,= <,>,=

4, <,>,=

Figure 3: Complexity of finite-valued VCSPs AQ+(S), S ⊆ {4, <,>,=}.

As AQ+(D) allows all finite-valued VCSPs, it is intractable even over a Boolean do-
main (Cohen, Cooper, Jeavons, & Krokhin, 2006) as it includes the Max-SAT problem
for the exclusive or predicate (Papadimitriou & Yannakakis, 1991; Creignou, Khanna, &
Sudan, 2001).

Proposition 3.23. AQ+(D) is intractable unless |D| ≤ 1.

The joint-winner property (Cooper & Živný, 2011b) for finite-valued VCSPs gives

Corollary 3.24 (of Theorem 3.1). AQ+({<,=}) is tractable.

Proposition 3.25. AQ+({4}) is intractable unless |D| ≤ 1.

Proof. We show a reduction from Max-Cut, a well-known NP-hard problem (Garey &
Johnson, 1979). An instance of Max-Cut can be easily modelled as a Boolean finite-valued
VCSP instance: every vertex of the graph is represented by a variable with the Boolean
domain {0, 1}, and every edge yields cost function f , where f(x, y) = 1 if x = y and f(x, y) =
0 if x 6= y. However, the constructed instance does not belong to AQ+({4}). Nevertheless,
we can amend the VCSP instance by infinitesimal perturbations: all occurrences of the cost
0 are replaced by different numbers that are very close to 0, and all occurrences of the cost
1 are replaced by different numbers very close to 1. Now since all the costs are different,
clearly the instance belongs to AQ+({4}).

Proposition 3.26. AQ+({>}) is intractable unless |D| ≤ 1.

Proof. We prove this by a perturbation of the construction in the proof of Proposition 3.17,
which shows intractability of AQ+({>,=}). In order to simplify the proof, similarly to the
proof of Proposition 3.17, we prove that maximising the total cost in the class AQ+({<})
is NP-hard.

In the construction in the proof of Proposition 3.17 we add iε to each binary cost cij(a, b),
where i < j, if cij(a, b) was equal to 1. We assume that ε is very small (nε < 1). This simply

469

Cooper & Živný

ensures that each triple of costs {1, 1, 1} in a triangle of assignments is now perturbed to
become {1 + iε, 1 + iε, 1 + jε}.

In the reduction from Max-2SAT, for each literal l, let Cl be the set of all variable-
value assignments corresponding to l (in both the xj

i and the zk variables). Recall that all
binary costs for pairs of the assignments within Cl were 1 and all binary costs for pairs of
the assignments from distinct Cl, Cl′ were all 0 in the VCSP encoding of the Max-2SAT
instance. We place an arbitrary ordering on the literals l1 < l2 < · · · < lr. We then add
iε to each binary cost between two variable-value assignments whenever these assignments
correspond to literals li, lj with i < j. This simply ensures that each triple of costs {0, 0, 0}
in a triangle of assignments is now perturbed to become {0 + iε, 0 + iε, 0 + jε}.

The resulting VCSP instance is in AQ+({>}) and correctly codes the original Max-2SAT
instance for sufficiently small ε.

Results from this section, together with Proposition 3.3, complete the complexity clas-
sification, as depicted in Figure 3: white nodes represent tractable cases and shaded nodes
represent intractable cases.

Theorem 3.27. For |D| ≥ 2, a class of binary finite-valued VCSP instances defined as
AQ+(S), where S ⊆ {4, <,>,=}, is tractable if and only if S ⊆ {<,=}.

3.4.2 Classification with respect to Minimum Cost

The tractable classes A{0,1}({>, 1}), A{0,1}({>, 0}) and A{0,1}({<,>}) appear in Figure 2,
but do not appear as subclasses of the tractable classes AQ+(S) identified in Figure 3. This
is due to the fact that for the infinite set of possible costs Ω = Q+, Figure 3 covers only
a subset of the infinite number of possible restrictions on triples of costs in triangles. We
now consider triples of costs which allow us to find generalisations of these three tractable
classes to finite-valued VCSPs, by considering restrictions depending on the relationship of
costs with the minimum or maximum binary cost in an instance.

We start with the minimum cost. Without loss of generality we can assume that the
minimum binary cost of an instance is 0. We consider the following types of triples of costs:

Symbol Costs Remark
40 {α, β, 0} α, β ∈ Ω, α > β > 0
<0 {0, 0, α} α ∈ Ω, α > 0
>0 {α, α, 0} α ∈ Ω, α > 0
0 {0, 0, 0}

For simplicity of presentation, we do not consider the remaining type of triples of costs,
namely {α, β, γ} such that α, β, γ > 0. Since it is possible to transform any VCSP instance
into an equivalent instance with non-zero costs by adding a constant ε > 0 to all binary
costs, it is clear that allowing all such triples of costs would render the VCSP intractable.

The complexity of combinations of costs from {40, <0, >0, 0} are shown in Figure 4:
white nodes represent tractable cases and shaded nodes represent intractable cases.

Proposition 3.28. AQ+({>0, 0}) is tractable.

470

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

∅

40 <0 >0 0

40, <0 40, >0 40, 0 <0, >0 <0, 0 >0, 0

40, <0, >0 40, <0, 0 40, >0, 0 <0, >0, 0

40, <0, >0, 0

Figure 4: Complexity of finite-valued VCSPs AQ+(S), S ⊆ {40, <0, >0, 0}.

Proof. Observe that either all non-zero binary costs involve the same variable vk (i.e. cij = 0
for all i, j 6= k) or there is only one distinct cost α > 0 in the instance. (Otherwise, if there
are two distinct α 6= β non-zero costs α, β > 0 in the instance such that cij(a, b) = α and
ckl(c, d) = β for distinct i, j, k, l, then it is easy to verify that it is not possible to assign
costs to cik(a, c), cil(a, d), cjk(b, c), cjl(b, d) so that all triangles have cost types >0 or 0.)
This implies that AQ+({>0, 0}) is equivalent to A{0,1}({>, 0}) after the instantiation of at
most one variable.

Corollary 3.29 (of Theorem 3.1). AQ+({<0, 0}) is tractable.

Proposition 3.30. AQ+({40, <0, >0}) is tractable.

Proof. Analogously to the Ramsey type argument in the proof of Proposition 3.15, any
instance on more than 5 variables must contain either a triangle of zero costs or a triangle
of three non-zero costs and hence cannot belong to AQ+({40, <0, >0}).

Proposition 3.31. AQ+({<0, >0, 0}) is intractable unless |D| ≤ 1.

Proof. By reduction from Max-Cut on triangle-free graphs as in the proof of Proposi-
tion 3.18

Proposition 3.32. AQ+({40, 0}) is intractable unless |D| ≤ 1.

Proof. It has been shown that the VCSP remains intractable on bipartite graphs and
Boolean domains (Cooper & Živný, 2011b). Let I be such an instance with a partition
V1,V2 of the variables. Insignificantly small but distinct costs can be added to all binary
costs in I between variables i ∈ V1 and j ∈ V2 to ensure that all triangles are of type 40 or
0.

471

Cooper & Živný

Theorem 3.33. For |D| ≥ 2, a class of binary finite-valued VCSP instances defined as
AQ+(S), where S ⊆ {40, <0, >0, 0}, is tractable if and only if S ⊆ {<0, 0}, S ⊆ {>0, 0} or
S ⊆ {40, <0, >0}.

3.4.3 Classification with respect to Maximum Cost

Let M ∈ Q+ be any cost and consider the following types of triples of costs:

Symbol Costs Remark
4M {α, β,M} α, β ∈ Ω, α < β < M
<M {α, α,M} α ∈ Ω, α < M
>M {α,M,M} α ∈ Ω, α < M
M {M,M,M}

Again, we do not consider the remaining type of triples of costs, namely {α, β, γ} such
that α, β, γ < M , since allowing such triples of costs renders the VCSP intractable. If
{4M , <M , >M ,M} are the only allowed combinations of triples of costs, then M is clearly
the maximum binary cost in the instance.

∅

4M <M >M M

4M , <M 4M , >M 4M ,M <M , >M <M ,M >M ,M

4M , <M , >M 4M , <M ,M 4M , >M ,M <M , >M ,M

4M , <M , >M ,M

Figure 5: Complexity of finite-valued VCSPs AQ+(S), S ⊆ {4M , <M , >M ,M}.

The complexity of combinations of costs from {4M , <M , >M ,M} are depicted in Fig-
ure 5: white nodes represent tractable cases and shaded nodes represent intractable cases.

The most interesting case is AQ+({>M ,M}), which turns out to be tractable by a
reduction to maximum weighted matching and hence is a proper generalization of class
A{0,1}({>, 1}).

Proposition 3.34. AQ+({>M ,M}) is tractable.

Proof. The proof is similar to the proof of Proposition 3.20. Consider an instance I in
AQ+({>M ,M}), and let

αij = min{ci(u) + cij(u, v) + cj(v) | u ∈ Di, v ∈ Dj}

472

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

with the minimum being attained when u = aj
i and v = ai

j . We can assume, without
loss of generality, that the unary cost functions satisfy ∀i, ∃di ∈ Di such that ci(di) = 0
(by subtracting, if necessary, min ci(u) from the unary cost function ci). This implies that
αij ≤ cij(di, dj) ≤M .

Suppose that (bi, bj) 6= (aj
i , a

i
j) and cij(bi, bj) < M . Then we can replace (bi, bj) by

(aj
i , a

i
j) in any solution to produce a solution of no greater cost: this is because all other

binary costs involving bi or bj are necessarily maximal (i.e. equal to M). Therefore, setting
cij(bi, bj) = M does not change the cost of an optimal solution to the instance I. It follows
that we can assume that there is at most one non-maximal binary cost cij(a

j
i , a

i
j) in each

binary cost function cij .
Consider the weighted complete graph G with vertices 1, . . . , n and edge weights M−αij .

Let MG be a maximum weighted matching of G. Define a solution x = 〈x1, . . . , xn〉 to I by

xi =
{
aj

i if {i, j} ∈MG

di otherwise
.

This solution is well-defined since MG is a matching. The weight of MG is∑
{i,j}∈MG

(M − αij) =
(
n

2

)
M − cost(x).

On the other hand, consider any solution y to I. Let

E(y) = {{i, j} | yi = aj
i ∧ yj = ai

j ∧ αij < M}.

E(y) is a matching of G of weight∑
{i,j}∈E(y)

(M − αij) ≥
(
n

2

)
M − cost(y).

Since MG is a maximum weighted matching, we can deduce that cost(y) ≥ cost(x). Hence
x is an optimal solution.

Tractability follows from the tractability of the maximum weighted matching prob-
lem (Edmonds, 1965a).

Remark 3.35. We have seen in the proof of Proposition 3.34 that AQ+({>M ,M}) is
tractable via a reduction to the maximum weighted matching problem (Edmonds, 1965a).

Similarly to Remark 3.21, it is easy to show that, conversely, any instance of the maxi-
mum weighted matching problem can be modelled as a VCSP instance fromAQ+({>M ,M}).

Corollary 3.36 (of Theorem 3.1). AQ+({<M ,M}) is tractable.

Proposition 3.37. AQ+({4M , <M , >M}) is tractable.

Proof. Analogously to the proof of Proposition 3.30, instances contain at most 5 variables.

Proposition 3.38. AQ+({<M , >M ,M}) is intractable unless |D| ≤ 1.

473

Cooper & Živný

Proof. By reduction from Max-Cut as in the proof of Proposition 3.18

Proposition 3.39. AQ+({4M ,M}) is intractable unless |D| ≤ 1.

Proof. We will show intractability by reduction from VCSP on bipartite graphs and with
Boolean domains which is known to be NP-hard (Cooper & Živný, 2011b). It suffices to
replace all zero costs by M in the reduction from VCSP on bipartite graphs given in the
proof of Proposition 3.32 to produce an equivalent instance in AQ+({4M ,M}).

Theorem 3.40. For |D| ≥ 2, a class of binary finite-valued VCSP instances defined as
AQ+(S), where S ⊆ {4M , <M , >M ,M}, is tractable if and only if S ⊆ {<M ,M} or S ⊆
{>M ,M} or S ⊆ {4M , <M , >M}.

3.5 General-Valued VCSP

In this section, we focus on general-valued VCSPs. In other words, we consider the complete
valuation structure Q+ as the set of possible costs Ω. In fact, the complexity classifications
coincide with the classifications for finite-valued VCSPs obtained in Section 3.4.

Theorem 3.27 applies to Ω = Q+ as well. Indeed, the hard cases remain intractable when
we allow more triangles (involving infinite costs), and the only tractable case, AQ+({<,=}),
remains tractable: AQ+

({<,=}) is tractable by Theorem 3.1.

Theorem 3.41. For |D| ≥ 2, a class of binary general-valued VCSP instances defined as
AQ+

(S), where S ⊆ {4, <,>,=}, is tractable if and only if S ⊆ {<,=}.

Similarly with Theorem 3.33. Indeed, intractable cases remain intractable, and tractable
cases remain tractable.

Theorem 3.42. For |D| ≥ 2, a class of binary general-valued VCSP instances defined as
AQ+

(S), where S ⊆ {40, <0, >0, 0}, is tractable if and only if S ⊆ {<0, 0}, S ⊆ {>0, 0} or
S ⊆ {40, <0, >0}.

Similarly with Theorem 3.40. Indeed, intractable cases remain intractable, and tractable
cases remain tractable. (The class AQ+

({>M ,M}) becomes trivially tractable if M = ∞
as there is no solution of finite cost in instances with more than two variables.)

Theorem 3.43. For |D| ≥ 2, a class of binary general-valued VCSP instances defined
as AQ+

(S), where S ⊆ {4M , <M , >M ,M}, is tractable if and only if S ⊆ {<M ,M} or
S ⊆ {>M ,M} or S ⊆ {4M , <M , >M}.

4. Cross-Free and Convex VCSPs

In Section 3, we studied the computational complexity of several classes of binary VCSPs.
In all considered cases, the joint-winner property (JWP) was either the only one or one of
only a few tractable cases.

In this section, we will generalise JWP to the cross-free convexity property (CFC). This
property defines a novel tractable class for which we describe an efficient algorithm. In
Section 4.4, we show that the neither of the two conditions in the definition of the CFC

474

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

property can be dropped without rendering the problem NP-hard. Moreover, in Section 4.5,
we present an extension of the CFC over Boolean domains. Section 4.6 is devoted to a related
idea of overlaps studied previously only for SAT and Max-SAT.

4.1 Definition and Examples of Cross-Free and Convex VCSPs

A function g : {0, . . . , s} → Q+ is called convex on the interval [l, u] if g is finite-valued on
the interval [l, u] and the derivative of g is non-decreasing on [l, u], i.e. g(m+2)−g(m+1) ≥
g(m+ 1)− g(m) for all m = l, . . . , u− 2. For brevity, we will often say that g is convex if it
is convex on some interval [l, u] ⊆ [0, s] and infinite elsewhere (i.e. on [0, l − 1] ∪ [u+ 1, s]).

Two sets A1, A2 ⊆ A are said to be nested if they are either disjoint or one is a subset
of the other (i.e. A1 ∩A2 = ∅, A1 ⊆ A2 or A2 ⊆ A1). If A1 and A2 are not nested, then we
say that they overlap. We say that A1 and A2 incompletely overlap if A1 and A2 overlap
and A1 ∪A2 6= A.

Sets A1, . . . , Ar are called laminar (Schrijver, 2003) (or hierarchically nested ; see Cooper
& Živný, 2011a) if for any 1 ≤ i, j ≤ r, Ai and Aj are nested. Sets A1, . . . , Ar ⊆ A are
called cross-free if for every 1 ≤ i, j ≤ r, either Ai ⊆ Aj , or Ai ⊇ Aj , or Ai ∩ Aj = ∅, or
Ai∪Aj = A (Schrijver, 2003). It is clear that if sets A1, . . . , Ar are laminar, then A1, . . . , Ar

are also cross-free.
For notational convenience, we interpret a solution x (i.e. an assignment to the variables

v1, . . . , vn) to a VCSP instance as the set of 〈variable,value〉 assignments {〈vi, xi〉 | xi ∈
Di ∧ i = 1, . . . , n}.

If Ai is a set of 〈variable,value〉 assignments of a VCSP instance P and x a solution to
P, then we use the notation |x∩Ai| to represent the number of 〈variable,value〉 assignments
in the solution x which lie in Ai.

Definition 4.1 (Laminar/Cross-free convexity). Let P be a VCSP instance. Let A1, . . . , Ar

be laminar (cross-free) sets of 〈variable,value〉 assignments of P. Let si be the number
of distinct variables occurring in the set of 〈variable,value〉 assignments Ai. Instance P
satisfies the laminar-free (cross-free) convexity property if the objective function of P is
g(x) = g1(|x ∩A1|) + . . .+ gr(|x ∩Ar|) where each gi : [0, si]→ Q+ (i = 1, . . . , r) is convex
on an interval [li, ui] ⊆ [0, si] and gi(z) =∞ for z ∈ [0, li − 1] ∪ [ui + 1, si].

We remark that the functions gi in Definition 4.1 are not the cost functions associated
with the constraints.

It follows from the definition that the laminar convexity property implies the cross-free
convexity property.

Remark 4.2. Observe that the addition of any unary cost function cannot destroy the lam-
inar or cross-free convexity property. This is because for each 〈variable,value〉 assignment
〈vj , a〉 we can add the singleton Ai = {〈vj , a〉} which is necessarily either disjoint from or a
subset of any other set Ak (and furthermore the corresponding function gi : {0, 1} → Q+ is
trivially convex).

We now give a very special case of the cross-free convexity property, where all sets are
disjoint and thus trivially cross-free.

475

Cooper & Živný

Example 4.3 (Value-based soft GCC). The Global Cardinality Constraint (GCC),
introduced by Régin (1996), is a generalisation of the AllDifferent constraint (Régin,
1994). Given a set of n variables, the GCC specifies for each domain value d a lower
bound ld and an upper bound ud on the number of variables that are assigned value d. The
AllDifferent constraint is the special case of GCC with ld = 0 and ud = 1 for every d.
Soft versions of the GCC have been considered by van Hoeve, Pesant, & Rousseau (2006).

The value-based soft GCC minimises the number of values below or above the given
bound. We show that the value-based soft GCC satisfies the cross-free convexity property.

For every domain value d ∈ D, let Ad = {〈vi, d〉 : i = 1, . . . , n}. Clearly, A1, . . . , As are
disjoint, where s = |D|. For every d, let

gd(m) =

ld −m if m < ld

0 if ld ≤ m ≤ ud

m− ud if m > ud

It follows readily from the definition of gd that the sequence gd(m + 1) − gd(m), for m =
0, . . . , n − 1, is the sequence −1, . . . ,−1, 0, . . . , 0, 1, . . . , 1. Therefore, for every d, gd has a
non-decreasing derivative and hence is convex.

Example 4.4 (Nested value-based soft GCC). Being able to nest GCC constraints is useful
in many staff assignment problems where there is a hierarchy (e.g. senior manager-manager-
personnel, foreman-worker, or senior nurse-nurse) (Zanarini & Pesant, 2007). We might
want to impose soft global cardinality constraints such as each day we prefer that there
are between 10 and 15 people at work, of which at least 5 are managers among whom
there is exactly 1 senior manger, with convex penalties as described in Example 4.3 if these
constraints do not hold.

Suppose that the constraints of a VCSP instance consist of soft GCC constraints on
pairwise nested sets of variables S1, . . . , St. Let Aid = {〈x, d〉 : x ∈ Si}. Clearly, the
sets of assignments Aid are cross-free and, as shown in Example 4.3, the cost functions
corresponding to each soft GCC constraint are convex.

The main result of this section is the following theorem:

Theorem 4.5. Any VCSP instance P satisfying the cross-free convexity property can be
solved in polynomial time.

Firstly, we present an algorithm to solve VCSPs satisfying the laminar convexity prop-
erty, followed by a reduction from the cross-free case to the laminar case. Secondly, we give
a proof of polynomial-time complexity of this algorithm.

4.2 Algorithm for Laminar Convex VCSPs

We call the sets Ai (i = 1, . . . , r) assignment-sets. We assume that the assignment-sets
Ai are distinct, since if Ai = Aj then these two sets can be merged by replacing the two
functions gi,gj by their sum (which is necessarily also convex). Without loss of generality, we
can assume that the assignment-set consisting of all variable-value assignments is present,
and the corresponding function is the constant zero function. (If the corresponding function

476

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

gi is not the constant zero function, then we just add the constant term gi(n) to the objective
function.) This will be useful in the construction described below. We say that assignment-
set Ak is the father of assignment-set Ai if it is the minimal assignment-set which properly
contains Ai, i.e. Ai ⊂ Ak and @Aj such that Ai ⊂ Aj ⊂ Ak. It follows from the definition
of laminarity that Ak is unique and hence that the father relation defines a tree. Moreover,
again from the definition of laminarity, for every variable vi of P and every a ∈ Di, there is
a unique minimal assignment-set containing 〈vi, a〉.

We construct a directed graph GP whose minimum-cost integral flows of value n are in
one-to-one correspondence with the solutions to P. GP has the following nodes:

1. the source node s;

2. a variable node vi (i = 1, . . . , n) for each variable of P;

3. an assignment node 〈vi, d〉 (d ∈ Di, i = 1, . . . , n) for each possible variable-value
assignment in P;

4. an assignment-set node Ai (i = 1, . . . , r) for each assignment-set in P;

5. the sink node t, which we identify with the assignment-set consisting of all variable-
value assignments.

GP has the following arcs:

1. a = (s, vi) for each variable vi of P; the demand and capacity are given by d(a) =
c(a) = 1 (this forces a flow of exactly 1 through each variable node vi); the weight
function is given by w(a) = 0;

2. a = (vi, 〈vi, d〉) for all variables vi and for each d ∈ Di; d(a) = 0; c(a) = 1; w(a) = 0;

3. a = (〈vi, d〉, Aj) for all variables vi and for each d ∈ Di, where Aj is the minimal
assignment-set containing 〈vi, d〉; d(a) = 0; c(a) = 1; w(a) = 0;

4. for each assignment-set Ai with father Aj , there is an arc a from Ai to Aj with weight
function gi, demand d(a) = li and capacity c(a) = ui.

Clearly, GP can be constructed from P in polynomial time. We now prove that
minimum-cost flows f of value n in GP are in one-to-one correspondence with solutions
to P and, furthermore, that the cost of f is equal to the cost in P of the corresponding
solution.

All feasible flows have value n since all n arcs (s, vi) leaving the source have both
demand and capacity equal to 1. Flows in GP necessarily correspond to the assignment
of a unique value xi to each variable vi since the flow of 1 through node vi must traverse
a node 〈vi, xi〉 for some unique xi ∈ Di. It remains to show that for every assignment
x = {〈v1, x1〉, . . . , 〈vn, xn〉} which is feasible (i.e. whose cost in P is finite), there is a
corresponding minimum-cost feasible flow f in GP of cost g(x) = g1(|x∩A1|)+ . . .+gr(|x∩
Ar|).

For each arc a that is incoming to or outgoing from 〈vi, d〉 in GP , let f(a) = 1 if
d = xi and 0 otherwise. By construction, each assignment-set node Ai in GP has exactly

477

Cooper & Živný

one outgoing arc to its father assignment-set. The flow fa in arc a from Ai to its father
assignment-set Aj is uniquely determined by the assignment of values to variables in the
solution x. Trivially, this is therefore a minimum-cost flow corresponding to the assignment
x. The cost of flow f is clearly

∑
i gi(|x ∩ Ai|) which corresponds precisely to the cost of

the assignment x.
Having proved the correspondence between the cost of solutions to P and the cost of

minimum-cost flows, it follows that the algorithm, which for given P constructs GP and
finds a minimum-cost flow, is correct.

Example 4.6. Let P be a VCSP instance with 4 variables v1, v2, v3, v4, D1 = D2 = D3 =
D4 = {0, 1}, and the assignment-sets Ai, 1 ≤ i ≤ 8 given in Figure 6. The cost functions
gi, 1 ≤ i ≤ 8 are arbitrary convex functions.

The network GP corresponding to instance P is shown in Figure 7: demands and ca-
pacities are in square brackets for the corresponding layer of the graph, and weights of
arcs without numbers are 0. The only non-zero weight functions are on arcs between
assignment-sets; those arcs have the corresponding cost functions gi, 1 ≤ i ≤ 7. Set
A8 is identified with the sink t. Minimum-cost feasible flows in GP correspond to as-
signments to P modulo the addition of the constant g8(4) (since there are 4 variables
and A8 consists of all variable-value assignments). The bold red edges represent flow
f corresponding to the assignment v1 = v2 = 1 and v3 = v4 = 0 with the total cost
g1(1) + g2(0) + g3(2) + g4(1) + g5(0) + g6(1) + g7(3). Finding a minimum-cost flow in GP is
equivalent to finding an optimal solution to P.

4.3 From Laminar VCSPs to Cross-Free VCSPs

An alternative way of expressing the definition of cross-freeness is that for every 1 ≤ i, j ≤ r,
one of Ai ∩ (A \Aj), (A \Ai)∩Aj , Ai ∩Aj , (A \Ai)∩ (A \Aj) is empty. It follows directly
that if A1, . . . , Ar are cross-free then so are A1, . . . , Ar, (A \Ai) for any 1 ≤ i ≤ r.

We now show how to reduce any VCSP instance with the cross-free convexity property
to an instance satisfying the laminar convexity property.

First we show that without loss of generality, we can assume that every Ai satisfies
|Ai| ≤ b|A|/2c, 1 ≤ i ≤ r. Let Ai be arbitrary such that |Ai| > b|A|/2c. As pointed
out above, without loss of generality there is Aj , 1 ≤ j ≤ r, such that Aj = A \ Ai. (If
there is no such Aj among A1, . . . , Ar, we can add Aj with the corresponding convex cost
function being the constant zero cost function. This would only double the number of
assignment-sets.)

Let hi be defined by hi(y) = gi(n − y) and let g′j = gj + hi. Clearly g′j is convex, and
furthermore

g′j(|Aj ∩ x|) = gj(|Aj ∩ x|) + hi(|Aj ∩ x|)
= gj(|Aj ∩ x|) + gi(n− |Aj ∩ x|)
= gj(|Aj ∩ x|) + gi(|A ∩ x| − |Aj ∩ x|)
= gj(|Aj ∩ x|) + gi(|Ai ∩ x|).

So we can eliminate the set Ai and its cost function gi by replacing gi, gj by a single cost
function g′j .

478

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

〈v1, 0〉 〈v3, 0〉

A1

〈v3, 1〉 〈v2, 0〉

A2

A6

A7

〈v2, 1〉 〈v4, 0〉

A3

〈v1, 1〉

A4

〈v4, 1〉

A5

A8

Figure 6: Laminar sets of assignments from instance P of Example 4.6.

s

v1

v2

v3

v4

〈v1, 0〉

〈v1, 1〉

〈v2, 0〉

〈v2, 1〉

〈v3, 0〉

〈v3, 1〉

〈v4, 0〉

〈v4, 1〉

A1

A2

A3

A4

A5

A6

A7

t

[1, 1] [0, 1] [0, 1] [li, ui] [li, ui]

g1

g2
g3

g4

g6

g7

g5

Figure 7: Network GP corresponding to the VCSP P of Example 4.6.

479

Cooper & Živný

Since all sets are at most half of the size of A, if Ai ∪Aj = A for some 1 ≤ i, j ≤ r, then
necessarily Aj = A \Ai. However, in this case, using the same argument as above, for each
such pair of complementary sets Ai and Aj , we can eliminate Ai and its cost function gi by
replacing gi, gj by a single cost function g′j . Consequently, the resulting sets A1, . . . , Ar are
laminar.

Complexity Let P be a VCSP instance with n variables, each with a domain of size
at most d, and r laminar assignment-sets Ai. The maximum number of distinct non-
overlapping sets Ai is 2nd− 1 since the sets of assignments Ai form a tree with at most nd
leaves (corresponding to single 〈variable,value〉 assignments) and in which all non-leaf nodes
have at least two sons. Thus r = O(nd). The network GP has n′ = O(n+ nd+ r) = O(nd)
vertices and arcs. GP can be built in O((nd)2) time in a top-down manner, by adding
assignment-sets in inverse order of size (which ensures that an assignment-set is always
inserted after its father) and using a table T [〈v, a〉]=smallest assignment-set (in the tree
being built) containing 〈v, a〉.

In a network with n′ vertices and m′ arcs with capacities at most U , the minimum convex
cost flow problem can be solved in time O((m′ logU)SP (n′,m′)), where SP (n′,m′) is the
time to compute a shortest directed path in a network with n′ vertices and m′ edges (Ahuja,
Magnanti, & Orlin, 2005). Using Fibonacci heaps (Fredman & Tarjan, 1987), SP (n′,m′) =
O(m′ + n′ log n′) = O(nd log(nd)), since the number of vertices n′ and arcs m′ are both
O(nd). The maximum capacity U in the network GP is at most n. Hence an optimal
solution to a cross-free convex VCSP can be determined in O((nd log n)(nd log(nd))) =
O((nd)2(log n)(log n+ log d)) time.

Remark 4.7. In our previous work (Cooper & Živný, 2011b), we proved a special case
of Theorem 4.5 where all functions gi, 1 ≤ i ≤ r, are non-decreasing and assignment sets
are laminar. (Previously, the laminar convexity property for non-decreasing functions gi,
1 ≤ i ≤ r, was called the non-overlapping convexity property; also, assignment-sets were
called assignment-cliques; see Cooper & Živný, 2011b.)

The presented algorithm is similar to the algorithm of Cooper & Živný (2011b) based
on finding a minimum-cost flow in a network. The main difference is that we require only
a single arc between any pair of nodes and the corresponding cost function gi is now an
arbitrary convex function (which is not necessarily non-decreasing). The running time of
our algorithm is thus better than the running time of the algorithm from our previous
work (Cooper & Živný, 2011b), which is O(n3d2). The improvement is mostly due to the
fact that the new construction involves only O(nd) arcs as opposed to O((nd)2) arcs in the
previous work (Cooper & Živný, 2011b). Moreover, our algorithm solves a strictly bigger
class of problems compared to the previous result (Cooper & Živný, 2011b). Overall, we
solve more and faster!

Remark 4.8. We remark that since our construction is projection-safe (Lee & Leung,
2009), it can be used for Soft Global Arc Consistency for cross-free convex constraints.

Remark 4.9. For a VCSP instance P with the objective function of the form g(x) =∑r
i=1 gi(|x∩Ai|), it follows from the definitions that we can test in polynomial time whether

or not P satisfies the cross-free convexity property; that is, whether gi are convex and Ai are

480

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

cross-free, for 1 ≤ i ≤ r. In fact, the described algorithm requires that the assignment-sets
Ai and the functions gi be given explicitly.

In the conference version of this work (Cooper & Živný, 2011a), we mentioned the
recognition problem as an open problem. In fact, this problem is easily shown intractable.
Given an arbitrary VCSP instance P, there always exists a cross-free convex instance P ′
whose optimal solution coincides with a fixed optimal solution to P. Therefore, finding P ′
is impossible in polynomial time unless P=NP as otherwise an arbitrary VCSP instance P
could be solved in polynomial time using Theorem 4.5.

4.4 Maximality of Cross-Free Convexity

This section shows that relaxing either convexity or cross-freeness (in fact, laminarity) in
Definition 4.1 leads to intractability.

Theorem 4.10. The class of VCSP instances whose objective function is of the form g(x) =
g1(|x∩A1|)+ . . .+gr(|x∩Ar|) where the functions gi are convex, but the sets of assignments
Ai may overlap, is NP-hard, even if |Ai| ≤ 2 for all i ∈ {1, . . . , r} and all variables are
Boolean.

Proof. It suffices to demonstrate a polynomial-time reduction from the well-known NP-hard
problem Max-2SAT (Garey & Johnson, 1979). Any Max-2SAT clause l1 ∨ l2 (where l1, l2
are literals) is equivalent to the convex cost function g(|x ∩ {l1, l2}|) where g(0) = 1 and
g(1) = g(2) = 0. It is therefore possible to code any instance of Max-2SAT using convex
cost functions (on possibly overlapping sets of assignments).

Theorem 4.11. The class of VCSP instances whose objective function is of the form g(x) =
g1(|x ∩ A1|) + . . . + gr(|x ∩ Ar|) where the sets of assignments Ai are laminar, but the
functions gi are not necessarily convex, is NP-hard even if |Ai| ≤ 3 for all i ∈ {1, . . . , r}
and all variables are Boolean.

Proof. We give a polynomial-time reduction from the well-known NP-complete problem
3SAT (Garey & Johnson, 1979). Let I3SAT be an instance of 3SAT with m clauses.
The constraint AllEqual(l1, l2, l3) (where l1, l2, l3 are literals) is equivalent to the (non-
convex) cost function g(|x ∩ {l1, l2, l3}|) where g(0) = g(3) = 0 and g(1) = g(2) = ∞.
For each variable v in I3SAT , we use the following gadget Gv based on non-overlapping
AllEqual constraints to produce multiple copies v1, . . . , vm of the variable v and multiple
copies w1, . . . , wm of its negation v: Gv consists of the constraints AllEqual(ui, vi, yi)
(i ∈ {1, . . . ,m}), AllEqual(yi, wi, ui+1) (i ∈ {1, . . . ,m−1}), and AllEqual(ym, wm, u1),
where the variables ui, yi occur only in the gadget Gv. It is easy to verify that Gv imposes
v1 = . . . = vm = w1 = . . . = wm. Furthermore, the variables vi, wi occur only negatively in
Gv. We now replace the ith clause of I3SAT by a clause in which each positive variable v
is replaced by its ith copy vi and each negative variable v is replaced by the ith copy wi of
v. This produces a laminar VCSP instance which is equivalent to I3SAT (but whose cost
functions are not all convex).

Note that the NP-hardness reduction in the proof of Theorem 4.11 requires assignment-
sets of size up to 3. This leaves open the complexity of laminar (and cross-free) non-convex
VCSPs where all assignment-sets are of size at most 2.

481

Cooper & Živný

The following result shows that the complexity of cross-free non-convex VCSPs with
assignment-sets of size 2 and domains of size d is polynomial-time equivalent to cross-free
non-convex VCSPs with assignment-sets of size 2 and domains of size at most 3.

Proposition 4.12. Cross-free VCSPs with assignment-sets of size at most 2 and domains
of size d > 3 are polynomial-time equivalent to cross-free VCSPs with assignment-sets of
size at most 2 and domains of size at most 3.

Proof. First we observe that for VCSPs with assignment-sets of size at most 2, laminarity
and cross-freeness are almost identical. The extra condition in the definition of cross-freeness
(for A1, A2 ⊆ A, A1 ∩ A2 6= ∅ ⇒ A1 ∪ A2 = A) is irrelevant for instances with more than
3 variable-value assignments. Hence we only need to prove the equivalence for laminar
VCSPs.

Let v` be such that D` = {a1, . . . , ak}, where k > 3. We replace v` by k variables
v`,1, . . . , v`,k with respective domains D`,1 = {1, a1}, D`,i = {0, 1, ai} for i = 2, . . . , k − 1,
and D`,k = {0, ak}. (Here we assume, without loss of generality, that 0 and 1 are different
from ai, i = 1, . . . , k.) Moreover, we introduce k−1 new assignment-sets {〈v`,i, 1〉, 〈v`,i+1, 0〉}
for i = 1, . . . , k − 1 with the associated convex function g defined as g(1) = 0 and g(0) =
g(2) = ∞. Finally, in any assignment-set involving the variable-value assignment 〈v`, ai〉
(for some i ∈ {1, . . . , k}), this assignment is replaced by 〈v`,i, ai〉.

The function g applied to the assignment-sets {〈v`,i, 1〉, 〈v`,i+1, 0〉} ensures that the only
possible finite-cost assignments to variables v`,1, . . . , v`,k are of the form 1, . . . , 1, ai, 0, . . . , 0.
Since exactly one of the variables v`,1, . . . , v`,k is assigned a value from D`, there is a one-to-
one correspondence between optimal solutions to the transformed instance and the original
instance.

The tractability of cross-free non-convex VCSPs with assignment-sets of size 2 over
domains of size 3 (or larger, by Proposition 4.12) is left as an open problem.

The case of cross-free assignment-sets of size at most 2 over Boolean domains is shown
tractable in Theorem 4.21 in Section 4.6.

4.5 Renamable Boolean Cross-Free Convex VCSPs

In this section we extend the class of cross-free convex VCSPs to allow renaming of certain
variables in the case of Boolean domains. In this section we will consider only Boolean
VCSPs.

We begin by illustrating the notion of renaming by means of an example. First, we
require some notation. Cost function AtMostr(A) returns 0 if x contains at most r as-
signments from the set of assignments A, and AtMostr(A) returns 1 otherwise. Similarly,
cost function AtLeastr(A) returns 0 if x contains at least r assignments from the set of
assignments A, and AtLeastr(A) returns 1 otherwise. Note that cost functions AtLeast1

and AtMostr, where r = |A| − 1, are both convex on [0, |A|].

Example 4.13. Let P be a Max-SAT instance given in CNF form by the following clauses:

(a ∨ b ∨ c), (c ∨ d), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).

482

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Clearly, a clause with literals A can be written as AtLeast1(A) in the VCSP encoding of
this instance. Notice that, in this example, the first two clauses are overlapping. However,
we can replace the second clause by the equivalent constraint AtMost1({¬c,¬d}). This
gives us an equivalent problem with the following constraints:

(a ∨ b ∨ c), AtMost1({¬c,¬d}), (¬c ∨ ¬d ∨ e), (¬a ∨ ¬e).

Now P is expressed as an instance satisfying the cross-free convexity property on the cross-
free sets of assignments {a, b, c}, {¬c,¬d}, {¬c,¬d, e}, {¬a,¬e}.

Example 4.13 leads to the following definitions:

Definition 4.14. Given a valued constraint in the form of the cost function g(|x ∩ A|),
where A is a set of Boolean assignments (i.e. literals) of size m, we define the renaming of
this valued constraint, on the set of Boolean assignments Ā = {¬` | ` ∈ A}, as the valued
constraint g′(|x ∩ Ā|) = g(m− |x ∩ Ā|) = g(|x ∩A|).

The function g′(z) = g(m− z) is clearly convex if and only if g is convex.

Definition 4.15. A Boolean VCSP instance P with the objective function g1(|x ∩ A1|) +
. . .+ gr(|x ∩Ar|) is renamable cross-free convex if there is a subset of the constraints of P
whose renaming results in an equivalent VCSP instance P ′ which is cross-free convex.

Theorem 4.16. The class of renamable cross-free convex VCSPs is recognisable and solv-
able in polynomial time.

Proof. We show that recognition is polynomial-time by a simple reduction to 2-SAT, a
well-known problem solvable in polynomial time (Garey & Johnson, 1979). Let P be a
Boolean VCSP instance with r constraints such that the ith constraint (i = 1, . . . , r) is
gi(|x ∩ Ai|) for a convex function gi. For each constraint in P, there is a Boolean variable
reni indicating whether or not the ith constraint is renamed. For each pair of distinct
i, j ∈ {1, . . . , r}, we add clauses of length 2 as follows:

1. if Ai and Aj incompletely overlap then add constraint reni ⇔ ¬renj (since we must
rename just one of the two constraints);

2. if Āi and Aj incompletely overlap then add constraint reni ⇔ renj (to avoid intro-
ducing an overlap by a renaming).

It is easy to see that solutions to the constructed 2-SAT instance correspond to valid
renamings of P which give rise to an equivalent VCSP instance satisfying the cross-free
convexity property. Tractability of solving the resulting renamed instance follows directly
from Theorem 4.5.

4.6 Knuth-Nested VCSPs

In order to relate our work to previous work, in this section we present a different class
of tractable VCSPs which considers sets of variables (rather than sets of assignments) and
allows overlaps of size 1. We show that a known tractable class can be extended from
Max-SAT to VCSPs. We then apply this result to show that in a very special case the
assumption of convexity in cross-free convex VCSPs can be dropped.

483

Cooper & Živný

Definition 4.17. Given a VCSP instance P with variables V = {v1, . . . , vn} and constraints
with scopes C = {C1, . . . , Cm}, we define the incidence graph of P as IP = (V (IP), E(IP)),
where V (IP) = V ∪ C and E(IP) = {{vi, Cj} | vi ∈ Cj}.

Definition 4.18. A VCSP instance P is called Knuth-nested if the variables of P can
be linearly ordered v1, . . . , vn such that IP together with the edges {{vi, vi+1} | 1 ≤ i ≤
n} ∪ {vn, v1} allows a planar drawing so that the circle v1, . . . , vn, v1 bounds the outer face.
P is called Knuth-co-nested if the constraint scopes of P can be linearly ordered C1, . . . , Cm

such that IP together with the edges {{Ci, Ci+1} | 1 ≤ i ≤ m} ∪ {Cm, C1} allows a planar
drawing so that the circle C1, . . . , Cm, C1 bounds the outer face.

Knuth described a linear-time algorithm for solving Knuth-nested SAT instances (Knuth,
1990). Kratochv́ıl and Křivánek generalised Knuth’s result and provided a linear-time al-
gorithm for recognising and solving Knuth-nested and Knuth-co-nested SAT/Max-SAT
instances (Kratochv́ıl & Křivánek, 1993). Henderson in his Master’s thesis showed several
different proofs of these results, including a proof that Knuth-nested and Knuth-co-nested
SAT/Max-SAT instances have treewidth at most three (Biedl & Henderson, 2004; Hender-
son, 2005), and hence are solvable in polynomial time via a standard dynamic programming
approach.

Theorem 4.19. The class of Knuth-nested and Knuth-co-nested VCSP instances with con-
straints of bounded arity is recognisable and solvable in polynomial time.

Proof. Recognition can be reduced, via a simple reduction from the work of Kratochv́ıl and
Křivánek (1993), to the planarity testing problem (Hopcroft & Tarjan, 1974).

Following Henderson’s argument (2005, p. 21), it is easy to show that if P is Knuth-
nested or Knuth-co-nested, then the incidence graph IP of P has treewidth at most 3. A
VCSP with domains of size at most d, constraints of arity at most k and incidence graph
IP is clearly equivalent to a binary VCSP with constraint graph IP in which domains are
of size at most dk. The result then follows from the fact that any VCSP instance with a
constraint graph of bounded treewidth is solvable in polynomial time (Bertelé & Brioshi,
1972).

Note that the class of Knuth-nested (Knuth-co-nested) VCSP instances (in fact, even
SAT instances) cannot be generalised as it follows from the work of Lichtenstein (1982) that
the satisfiability of the conjunction of two Knuth-nested formulas is NP-complete.

We now show that the class of Knuth-nested/Knuth-co-nested instances from this section
is incomparable with the class of cross-free convex instances defined in Section 4.1 even in
the special case of Boolean formulas. Moreover, we also show that the class of Knuth-
nested/Knuth-co-nested instances is incomparable with the class of renamable Boolean
cross-free convex instances defined in Section 4.5.

Example 4.20. The SAT instance I = (x ∨ y) ∧ (y ∨ z) ∧ (¬y ∨ w) is Knuth-nested and
Knuth-co-nested, but neither cross-free nor renamable cross-free.

The following SAT instance is neither Knuth-nested nor Knuth-co-nested, but is cross-
free (in fact laminar): (x ∨ y ∨ z) ∧ (¬x ∨ u ∨ v) ∧ (¬y ∨ ¬u ∨ w) ∧ (¬z ∨ ¬v ∨ ¬w).

484

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

We now turn our attention to cross-free VCSPs with possibly non-convex cost functions
and assignment-sets of size at most 2. We show that the tractability of Boolean VCSP
instances, i.e. instances over 2-element domains, follows from Theorem 4.19. Recall that the
case of convex cost functions is tractable from Theorem 4.5, but that, from Theorem 4.11,
the case of non-convex cost functions is intractable for assignments sets of size 3.

Theorem 4.21. Any cross-free Boolean VCSP instance with assignment-sets of size at
most 2 is solvable in polynomial time.

Proof. As mentioned in the proof of Proposition 4.12, first observe that for VCSPs with
assignment-sets of size 2 (or any fixed size for that matter) laminarity and cross-freeness
are almost identical. The extra condition in the definition of cross-freenes (for A1, A2 ⊆ A,
A1 ∩ A2 6= ∅ ⇒ A1 ∪ A2 = A) is irrelevant for instances with more than 3 variable-value
assignments. Hence we only need to prove tractability for laminar Boolean VCSPs with
assignment-sets of size at most 2.

We show that any Boolean VCSP with laminar assignment-sets of size at most 2 is
Knuth-nested. Tractability then follows from Theorem 4.19.

Take an arbitrary variable, for instance v1. We will show that there is an order < of
variables satisfying the requirements of the Knuth-nested property. Since |D1| = 2, there
are at most two assignment-sets, say Ai and Aj , containing (different) assignments to v1.
Now since all assignment-sets are of size at most two, there is at most one more assignment
in Ai, say an assignment to variable vk. We define v1 < vk. Similarly, there is at most one
more assignment in Aj , say an assignment to variable vl, and we define vl < v1. Continuing
the same reasoning for variables vl and vk, we can get another variable smaller (in the order
< we are building) than vl and another variable bigger than vk. This has to stop eventually:
either there are no more variables, or some assignment-set is of size 1, or some variable has
domain of size 1, or the last considered assignment-set contains assignments to the smallest
and the biggest variables (in the order <). It is easy to observe that in all cases we have a
planar drawing as required in Definition 4.18. If there are some variables left, we continue
in the same way.

Next we show that cross-free VCSPs over 3-element domains with assignments sets of
size at most 2 may be neither Knuth-nested nor Knuth-co-nested.

Example 4.22. Take four variables x, y, z, w with the domain {0, 1, 2}, and sets A1 =
{〈x, 0〉, 〈y, 0〉}, A2 = {〈y, 1〉, 〈z, 0〉}, A3 = {〈x, 1〉, 〈z, 1〉}, A4 = {〈y, 2〉, 〈w, 0〉}. This instance
is cross-free (in fact laminar), but is neither Knuth-nested nor Knuth-co-nested.

5. Conclusions

We have studied hybrid reasons for tractability for optimisation problems that can be cast as
Valued Constraint Satisfaction Problems (VCSPs), or equivalently Markov Random Fields
(MRFs) or Min-Sum problems. These are reasons for tractability that do not follow from
the restriction on the functions (such as submodularity) or from the restriction on the
structure of the instance (such as bounded treewidth).

Firstly, we have studied binary VCSPs (also known as pairwise MRFs). In the CSP
and Max-CSP case, we have obtained a complete dichotomy concerning the tractability

485

Cooper & Živný

of problems defined by placing restrictions on the possible combinations of binary costs
in triangles of variable-value assignments. In the case of finite-valued and general-valued
VCSP, we have obtained complete dichotomies with respect to equivalence classes which
naturally follow from the total order on the valuation structure. We have shown that the
joint-winner property and maximum (weighted) matching are the only non-trivial tractable
classes.

Secondly, we have studied non-binary VCSPs. We have presented a novel class of op-
timisation problems that can be solved efficiently using flow techniques. The new class
is defined as problems with convex functions over a cross-free family of variable-value as-
signments. We have shown that neither of the two conditions on its own is sufficient for
tractability. Moreover, over Boolean domains, we have managed to extend the new class
using the idea of renamability.

We have left open one special case, namely the tractability of cross-free non-convex
VCSPs with assignment-sets of size at most 2 and domains of size at most 3. (Assignment-
sets of size 3 make the problem intractable even for Boolean domains, and assignment-sets
of size 2 over Boolean domains have been shown tractable.)

Acknowledgments

Martin Cooper is supported by ANR Projects ANR-10-BLAN 0210 and 0214. Stanislav
Živný is supported by a Junior Research Fellowship at University College, Oxford.

References

Ahuja, R., Magnanti, T., & Orlin, J. (2005). Network Flows: Theory, Algorithms, and
Applications. Prentice Hall/Pearson.

Bertelé, U., & Brioshi, F. (1972). Nonserial dynamic programming. Academic Press.

Biedl, T., & Henderson, P. (2004). Nested SAT Graphs have Treewidth Three. Tech. rep.
CS-2004-70, University of Waterloo.

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based Constraint Satisfaction
and Optimisation. Journal of the ACM, 44 (2), 201–236.

Boros, E., & Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied Math-
ematics, 123 (1-3), 155–225.

Bulatov, A., Krokhin, A., & Jeavons, P. (2005). Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34 (3), 720–742.

Cohen, D., & Jeavons, P. (2006). The complexity of constraint languages. In Rossi, F., van
Beek, P., & Walsh, T. (Eds.), The Handbook of Constraint Programming. Elsevier.

Cohen, D. A. (2003). A New Class of Binary CSPs for which Arc-Constistency Is a Decision
Procedure. In Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming (CP’03), Vol. 2833 of Lecture Notes in Computer
Science, pp. 807–811. Springer.

Cohen, D. A., Cooper, M. C., Green, M., & Marx, D. (2011). On guaranteeing polynomially-
bounded search tree size. In Proceedings of the 17th International Conference on

486

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Principles and Practice of Constraint Programming (CP’11), Vol. 6876 of Lecture
Notes in Computer Science, pp. 160–171. Springer.

Cohen, D. A., Cooper, M. C., & Jeavons, P. G. (2008). Generalising submodularity and Horn
clauses: Tractable optimization problems defined by tournament pair multimorphisms.
Theoretical Computer Science, 401 (1-3), 36–51.

Cohen, D. A., Cooper, M. C., Jeavons, P. G., & Krokhin, A. A. (2006). The Complexity of
Soft Constraint Satisfaction. Artificial Intelligence, 170 (11), 983–1016.

Cooper, M. C., Jeavons, P. G., & Salamon, A. Z. (2010). Generalizing constraint satisfaction
on trees: Hybrid tractability and variable elimination. Artificial Intelligence, 174 (9–
10), 570–584.

Cooper, M. C., & Živný, S. (2011a). Hierarchically nested convex VCSP. In Proceedings
of the 17th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’11), Vol. 6876 of Lecture Notes in Computer Science, pp. 187–194.
Springer.

Cooper, M. C., & Živný, S. (2011b). Hybrid tractability of valued constraint problems.
Artificial Intelligence, 175 (9-10), 1555–1569.

Cooper, M. C., & Živný, S. (2011c). Tractable triangles. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’11),
Vol. 6876 of Lecture Notes in Computer Science, pp. 195–209. Springer.

Creignou, N., Khanna, S., & Sudan, M. (2001). Complexity Classification of Boolean Con-
straint Satisfaction Problems, Vol. 7 of SIAM Monographs on Discrete Mathematics
and Applications. SIAM.

Dalmau, V., Kolaitis, P. G., & Vardi, M. Y. (2002). Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In Proceedings of the 8th International Con-
ference on Principles and Practice of Constraint Programming (CP’02), Vol. 2470 of
Lecture Notes in Computer Science, pp. 310–326. Springer.

Dechter, R., & Pearl, J. (1988). Network-based Heuristics for Constraint Satisfaction Prob-
lems. Artificial Intelligence, 34 (1), 1–38.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Downey, R., & Fellows, M. (1999). Parametrized Complexity. Springer.

Edmonds, J. (1965a). Maximum Matching and a Polyhedron with 0, 1 Vertices. Journal of
Research National Bureau of Standards, 69 B, 125–130.

Edmonds, J. (1965b). Paths, trees, and flowers. Canadian Journal of Mathematics, 17,
449–467.

Feder, T., & Vardi, M. Y. (1998). The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing, 28 (1), 57–104.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34 (3), 596–615.

487

Cooper & Živný

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6 (6), 7210–741.

Goodman, A. W. (1959). On Sets of Acquaintances and Strangers at any Party. The
American Mathematical Monthly, 66 (9), 778–783.

Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54 (1), 1–24.

Henderson, P. (2005). Planar Graphs and Partial k-Trees. Master’s thesis, University of
Waterloo.

Hooker, J. (2007). Integrated Method for Optimization. Springer.

Hopcroft, J. E., & Tarjan, R. E. (1974). Efficient planarity testing. Journal of the ACM,
21 (4), 549–568.

Jeavons, P. G. (1998). On the Algebraic Structure of Combinatorial Problems. Theoretical
Computer Science, 200 (1-2), 185–204.

Jonsson, P., Kuivinen, F., & Nordh, G. (2008). MAX ONES Generalized to Larger Domains.
SIAM Journal on Computing, 38 (1), 329–365.

Jonsson, P., Kuivinen, F., & Thapper, J. (2011). Min CSP on Four Elements: Moving
Beyond Submodularity. In Proceedings of the 17th International Conference on Prin-
ciples and Practice of Constraint Programming (CP’11), Vol. 6876 of Lecture Notes
in Computer Science, pp. 438–453. Springer.

Jonsson, P., & Nordh, G. (2008). Introduction to the maximum solution Problem. In
Complexity of Constraints, Vol. 5250 of Lecture Notes in Computer Science, pp. 255–
282. Springer.

Khanna, S., Sudan, M., Trevisan, L., & Williamson, D. (2001). The approximability of
constraint satisfaction problems. SIAM Journal on Computing, 30 (6), 1863–1920.

Knuth, D. E. (1990). Nested satisfiability. Acta Informatica, 28 (1), 1–6.

Kolmogorov, V. (2011). Submodularity on a tree: Unifying l]-convex and bisubmodular
functions. In Proceedings of the 36th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS’11), Vol. 6907 of Lecture Notes in Computer
Science, pp. 400–411. Springer.

Kolmogorov, V., & Živný, S. (2012). The complexity of conservative valued CSPs. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’12), pp. 750–759. SIAM. Full version available on arXiv:1110.2809.

Kratochv́ıl, J., & Křivánek, M. (1993). Satisfiability of co-nsted formulas. Acta Informatica,
30 (4), 397–403.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

488

Tractable Triangles and Cross-Free Convexity in Discrete Optimisation

Lee, J. H.-M., & Leung, K. L. (2009). Towards efficient consistency enforcement for global
constraints in weighted constraint satisfaction. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI’09), pp. 559–565.

Lewis, J. M., & Yannakakis, M. (1980). The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer System Sciences, 20 (2), 219–230.

Lichtenstein, D. (1982). Planar formulae and their uses. SIAM Journal on Computing,
11 (2), 329–343.

Lovász, L. (1973). Coverings and colorings of hypergraphs. In Proceedings of the 4th
Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 3–12.

Maffray, F., & Preissmann, M. (1996). On the NP-completeness of the k-colorability problem
for triangle-free graphs. Discrete Mathematics, 162 (1-3), 313–317.

Marx, D. (2010). Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC’10), pp. 735–744.

Meseguer, P., Rossi, F., & Schiex, T. (2006). Soft constraints. In Rossi, F., van Beek, P.,
& Walsh, T. (Eds.), The Handbook of Constraint Programming. Elsevier.

Minoux, M. (1984). A polynomial algorithm for minimum quadratic cost flow problems.
European Journal of Operational Research, 18, 377–387.

Minoux, M. (1986). Solving integer minimum cost flows with separable convex cost objective
polynomially. Mathematic Programming Studies, 26, 237–239.

Montanari, U. (1974). Networks of Constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7, 95–132.

Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.

Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, Approximation, and Com-
plexity Classes. Journal of Computer and System Sciences, 43 (3), 425–440.

Poljak, S. (1974). A note on stable sets and colorings of graphs. Commentationes Mathe-
maticae Universitatis Carolinae, 15 (2), 307–309.

Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings
of the 12th National Conference on AI (AAAI’94), Vol. 1, pp. 362–367.

Régin, J.-C. (1996). Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of the 13th National Conference on AI (AAAI’96), Vol. 1, pp. 209–215.

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). The Handbook of Constraint Program-
ming. Elsevier.

Schaefer, T. J. (1978). The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pp. 216–226. ACM.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI’95), pp. 631–637.

Schrijver, A. (2003). Combinatorial Optimization: Polyhedra and Efficiency, Vol. 24 of
Algorithms and Combinatorics. Springer.

489

Cooper & Živný

Takhanov, R. (2010). A Dichotomy Theorem for the General Minimum Cost Homomor-
phism Problem. In Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS’10), pp. 657–668.

van Hoeve, W. J., Pesant, G., & Rousseau, L.-M. (2006). On global warming: Flow-based
soft global constraints. Journal of Heuristics, 12 (4-5), 347–373.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1 (1-2), 1–305.

Werner, T. (2007). A Linear Programming Approach to Max-Sum Problem: A Review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (7), 1165–1179.

Zanarini, A., & Pesant, G. (2007). Generalizations of the global cardinality constraint for hi-
erarchical resources. In Proceedings of the 4th International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR’07), Vol. 4510 of Lecture Notes in Computer Science, pp.
361–375. Springer.

490

