The Power of Arc Consistency for CSPs
Defined by Partially-Ordered Forbidden Patterns

Martin C. Cooper
IRIT, University of Toulouse III, France
cooper@irit.fr

Stanislav Živný
Dept. of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
Characterising tractable fragments of the constraint satisfaction problem (CSP) is an important challenge in theoretical computer science and artificial intelligence. Forbidding patterns (generic sub-instances) provides a means of defining CSP frameworks which are neither exclusively language-based nor exclusively structure-based. It is known that the class of binary CSP instances in which the broken-triangle pattern (BTP) does not occur, a class which includes all tree-structured instances, are decided by arc consistency (AC), a ubiquitous reduction operation in constraint solvers. We provide a characterisation of simple partially-ordered forbidden patterns which have this AC-solvability property. It turns out that BTP is just one of five such AC-solvable patterns. The four other patterns allow us to exhibit new tractable classes.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]: Logic and constraint programming

Keywords arc consistency, constraint satisfaction problem, forbidden pattern, tractability

1. Introduction
The constraint satisfaction problem (CSP) provides a common framework for many theoretical problems in computer science as well as for many real-life applications. A CSP instance consists of a number of variables, a domain, and constraints imposed on the variables with the goal to determine whether the instance is satisfiable, that is, whether there is an assignment of domain values to all the variables in such a way that all the constraints are satisfied.

The general CSP is NP-complete and thus a major research direction is to identify restrictions on the CSP that render the problem tractable, that is, solvable in polynomial time.

A substantial body of work exists from the past two decades on applications of universal algebra in the computational complexity of and the applicability of algorithmic paradigms to CSPs. Moreover, a number of celebrated results have been obtained through this method; see (Barto 2014) for a recent survey. However, the algebraic approach to CSPs is only applicable to language-based CSPs, that is, classes of CSPs defined by the set of allowed constraint relations but with arbitrary interactions of the constraint scopes. For instance, the well-known 2-SAT problem is a class of language-based CSPs on the Boolean domain \{0, 1\} with all constraint relations being binary, that is, of arity at most two.

On the other side of the spectrum are structure-based CSPs, that is, classes of CSPs defined by the allowed interactions of the constraint scopes but with arbitrary constraint relations. Here the methods that have been successfully used to establish complete complexity classifications come from graph theory (Grohe 2007; Marx 2013).

The complexity of CSPs that are neither language-based nor structure-based, and thus are often called hybrid CSPs, is much less understood; see (Carbonnel and Cooper 2016) for a recent survey. One approach to hybrid CSPs that has been rather successful studies the classes of CSPs defined by forbidden patterns; that is, by forbidding certain generic subinstances. The focus of this paper is on such CSPs. We remark that we deal with binary CSPs but, unlike in most papers (on the algebraic approach to) language-based CSPs, the domain is not fixed and is part of the input.

An example of a pattern is given in Figure 1(a). This is the so-called broken triangle pattern (BTP) (Cooper et al. 2010b) (a formal definition is given in Section 2). BTP is an example of a tractable pattern, which means that any binary CSP instance in which BTP does not occur is solvable in polynomial time. The class of CSP instances defined by forbidding BTP includes, for instance, all tree-structured binary CSPs (Cooper et al. 2010b). There are several generalisations of BTP, for instance, to quantified CSPs (Gao et al. 2011), to existential patterns (Cohen et al. 2015a), to patterns on more variables (Cooper et al. 2014), and other classes (Naanaa 2013; Cooper et al. 2015b).

The framework of forbidden patterns is general enough to capture language-based CSPs in terms of their polymorphisms. For instance, the pattern in Figure 1(b) captures the notion of binary relations that are max-closed (Jeavons and Cooper 1995).

Surprisingly, there are essentially only two classes of algorithms (and their combinations) known for establishing tractability of CSPs. These are, firstly, a generalisation of Gaussian elimination (Bulatov and Dalmau 2006; Dalmau 2006), whose applicability for language-based CSPs is known (Idziak et al. 2010), and, secondly, problems solvable by local consistency methods, which originated in artificial intelligence; see references in (Rossi et al. 2006). The latter can be defined in many equivalent ways including pebble games, Datalog, treewidth, and proof complexity (Feder and Vardi 1998). Intuitively, a class of CSP instances is solvable by \(k\)-consistency if unsatisfiable instances can always be refuted while only keeping partial solutions of size \(k\) "in memory". For instance, the 2-SAT problem is solvable by local consistency methods.

For structure-based CSPs, the power of consistency methods is well understood: a class of structures can be solved by \(k\)-
consistency and only if the treewidth (modulo homomorphic equivalence) is at most k (Atserias et al. 2007). Consequently, consistency methods solve all tractable cases of structurally-restricted bounded-arity CSPs (Grohe 2007). For language-restricted CSPs, the power of consistency methods has only recently been characterised (Barto and Kozik 2014; Bulatov 2009).

Contributions

Our ultimate goal is to understand the power of local consistency methods for hybrid CSPs. On this quest, we focus in this article on the power of the first level of local consistency, known as arc consistency (AC), for classes of binary hybrid CSPs defined by forbidden (partially-ordered) patterns.

The class of CSPs defined by forbidding BTP from Figure 1(a) is in fact solvable by AC. But as it turns out, BTP is not the only pattern with this property.

As our main contribution, we give, in Theorem 12, a complete characterisation of so-called simple partially-ordered forbidden patterns which have this AC-solvability property. Here the partial orders are on variables and domain values. It turns out that BTP is just one of five such AC-solvable patterns. The four other patterns allow us to exhibit new tractable classes, one of which in particular we expect to lead to new applications since it defines a strict generalisation of binary max-closed constraints which have already found applications in computer vision (Cooper 1999) and temporal reasoning (Dechter et al. 1991). We also provide results on the associated meta problem of deciding whether a CSP instance falls into one of these new tractable classes.

Given that AC is the first level of local consistency methods and is implemented in all constraint solvers, an understanding of the power of AC is paramount. We note that focusing on classes of CSPs defined by forbidden patterns is very natural as AC cannot introduce forbidden patterns. While simple patterns do not cover all partially-ordered patterns it is a natural, interesting, and broad enough concept that covers BTP and four other novel and non-trivial tractable classes. We expect our results and techniques to be used in future work on the power of AC.

Related work

Computational complexity classifications have been obtained for binary CSPs defined by forbidden negative patterns (i.e., only pairwise incompatible assignments are specified) (Cohen et al. 2012) and for binary CSPs defined by patterns on 2 constraints (Cooper and Escamocher 2015). Moreover, generalisations of forbidden patterns have been studied in the context of variable and domain value elimination rules (Cohen et al. 2015a). Finally, the idea of forbidding patterns as topological minors has recently been investigated (Cohen et al. 2015b).

(Kolmogorov et al. 2015; Takhanov 2015) recently considered the possible extensions of the algebraic approach from the language to the hybrid setting.

The power of the valued version of AC (Cooper et al. 2010a) has been characterised (Kolmogorov et al. 2015b). Moreover, the valued version of AC is known to solve all tractable finite-valued language-based CSPs (Thapper and Živný).

The omitted (parts of the) proofs are given in the full version of this paper (Cooper and Živný 2016).

1 In some AI literature AC is the second level, the first being node consistency (Rossi et al. 2006). AC is also the first level for relational width (Bulatov 2006).

2 Preliminaries

2.1 CSPs and patterns

A pattern can be seen as a generalisation of the concept of a binary CSP instance that leaves the consistency of some assignments to pairs of variables undefined.

Definition 1 A pattern is a four-tuple $\langle X, D, A, \text{cpt} \rangle$ where:

- X is a finite set of variables;
- D is a finite set of values;
- $A \subseteq X \times D$ is the set of possible variable-value assignments called points; the domain of $x \in X$ is its non-empty set $D(x)$ of possible values: $D(x) = \{a \in D \mid \{x, a\} \in A\}$;
- cpt is a partial compatibility function from the set of unordered pairs of points $\{\{x, a\}, \{y, b\} \mid x \neq y\}$ to $\{\text{TRUE}, \text{FALSE}\}$. If $\text{cpt}(\{x, a\}, \{y, b\}) = \text{TRUE}$ (resp., FALSE) we say that $\{x, a\}$ and $\{y, b\}$ are compatible (resp., incompatible). For simplicity, we write $\text{cpt}(p, q)$ for $\text{cpt}(\{p, q\})$.

We will use a simple figurative drawing for patterns. Each variable will be drawn as an oval containing dots for each of its possible points. Pairs in the domain of the function cpt will be represented by lines between points: solid lines (called positive) for compatibility and dashed lines (called negative) for incompatibility.

Example 1 The pattern in Figure 9 is called LX. It consists of three variables, five points, six positive edges, and two negative edges.

We refine patterns to give a definition of a CSP instance. Definition 2 A binary CSP instance P is a pattern $\langle X, D, A, \text{cpt} \rangle$ where cpt is a total function, i.e. the domain of cpt is precisely $\{\{x, a\}, \{y, b\} \mid x \neq y, a \in D(x), b \in D(y)\}$.

- The relation $R_{x,y} \subseteq D(x) \times D(y)$ on $\langle x, y \rangle$ is $\{(a, b) \mid \text{cpt}(\{x, a\}, \{y, b\}) = \text{TRUE}\}$.
- A partial solution to P on $Y \subseteq X$ is a mapping $s : Y \rightarrow D$ where, for all $x \neq y \in Y$ we have $\langle s(x), s(y)\rangle \in R_{x,y}$.
- A solution to P is a partial solution on X.

For notational simplicity we have assumed that there is exactly one binary constraint between each pair of variables. In particular, this means that the absence of a constraint between variables x, y is modelled by a complete relation $R_{x,y} = D(x) \times D(y)$ allowing every possible pair of assignments to x and y. We say that there is a non-trivial constraint on variables x, y if $R_{x,y} \neq D(v) \times D(y)$.

We also use the simpler notation R_{x} for $R_{x,x}$.

The main focus of this paper is on ordered patterns, which additionally allow for variable and value orders.

Definition 3 An ordered pattern is a six-tuple $\langle X, D, A, \text{cpt}, <_{X}, <_{D} \rangle$ where:

- $\langle X, D, A, \text{cpt} \rangle$ is a pattern;
- $<_{X}$ is a (possibly partial) strict order on X; and
- $<_{D}$ is a (possibly partial) strict order on D.

A pattern $\langle X, D, A, \text{cpt} \rangle$ can be seen as an ordered pattern with empty variable and value orders, i.e. $\langle X, D, A, \text{cpt}, \emptyset, \emptyset \rangle$.

Throughout the paper when we say “pattern” we implicitly mean “ordered pattern” and use the word “unordered” to emphasise, if needed, that the pattern in question is not ordered.

We do not consider patterns with structure (such as equality or order) between elements in the domains of distinct variables.

Definition 4 A pattern $P = \langle X, D, A, \text{cpt}, <_{X}, <_{D} \rangle$ is called basic if (1) $D(x)$ and $D(y)$ do not intersect for distinct $x, y \in X$, (2) $<_{D}$ only contains pairs of elements (a, b) from the domain of the same variable, i.e., $a, b \in D(x)$ for some $x \in X$.
Example 2 The pattern in Figure 1(a) is known as the broken triangle pattern (BTP) (Cooper et al. 2010b). BTP consists of three variables, four points, three positive edges, two negative edges, \(<x = \{x < z, y < z\} \), and \(\delta = \emptyset \). Given a basic pattern, we can refer to a point \((x, a)\) in the pattern as simply when the variable is clear from the context or a figure. For instance, the point \((z, \gamma)\) in Figure 1(a) can be referred to as \(\gamma\).

Example 3 The pattern in Figure 1(b) is the (binary) max-closed pattern (MC). The pattern MC consists of two variables, four points, two positive edges, one negative edge, \(s = \emptyset\), and \(\delta = (\beta < \alpha, \delta < \gamma)\). MC (Figure 1(b)) together with the extra structure \(\alpha > \gamma\) is an example of a pattern that is not basic.

For some of the proofs we will require patterns with additional structure, namely, the ability to enforce certain points to be distinct.

Definition 5 A pattern with a disequality structure is a seven-tuple \((X, D, A, \text{cpt}, <, <, <, \neq)\) where:

- \((X, D, A, \text{cpt}, <, <, \neq)\) is a pattern; and
- \(\neq \subseteq D \times D\) is a set of pairs of domain values that are distinct.

An example of such a pattern is given in Figure 12(b).

2.2 Pattern occurrence

Some points in a pattern are indistinguishable with respect to the rest of the pattern.

Definition 6 Two points \(a, b \in D(x)\) are mergeable in a pattern \((X, D, A, \text{cpt}, <, <, \neq)\) if there is no point \(p \in A\) for which \(\text{cpt}(\langle x, a \rangle, p), \text{cpt}(\langle x, b \rangle, p)\) are both defined and \(\text{cpt}(\langle x, a \rangle, p) \neq \text{cpt}(\langle x, b \rangle, p)\).

Definition 7 A pattern is called unmergeable if it does not contain any mergeable points.

Example 4 The points \(\gamma\) and \(\delta\) in BTP (Figure 1(a)) are not mergeable since they have different compatibility with, for instance, the point in variable \(z\). The pattern LX (Figure 9) is unmergeable.

Some points in a pattern (known as dangling points) are redundant in arc-consistent CSP instances and hence can be removed.

Definition 8 Let \(P = (X, D, A, \text{cpt}, <, <, \neq)\) be a pattern. A point \(p \in A\) is called dangling if it is not ordered by \(<D\) and if there is at most one point \(q \in A\) for which \(\text{cpt}(p, q)\) is defined, and furthermore (if defined) \(\text{cpt}(p, q) = \text{TRUE}\).

Example 5 The point \(\beta\) in the pattern MC (Figure 1(b)) is not dangling since it is ordered.

In order to use (the absence of) patterns for AC-solvability we need to define what we mean when we say that a pattern occurs in a CSP instance. We define the slightly more general notion of occurrence of a pattern in another pattern, thus extending the definitions for unordered patterns (Cooper and Escamocher 2015). Recall that a CSP instance corresponds to the special case of a pattern whose compatibility function is total. We first make the observation that dangling points in a pattern provide no useful information since we assume that all CSP instances are arc consistent, which explains why dangling points can be eliminated from patterns.

Definition 9 A pattern is simple if it is (i) basic, (ii) has no mergeable points, and (iii) has no dangling points.

From a given pattern it is possible to create an infinite number of equivalent patterns by adding dangling points or by duplicating points. By restricting our attention to simple patterns we avoid having to consider such patterns.

Definition 10 Let \(P' = (X', D', A', \text{cpt}', <', <', \neq)\) and \(P = (X, D, A, \text{cpt}, <, <, \neq)\) be two patterns. A homomorphism from \(P'\) to \(P\) is a mapping \(f : A' \rightarrow A\) which satisfies:

- If \(\text{cpt}(p, q)\) is defined, then \(\text{cpt}(f(p), f(q)) = \text{cpt}(p, q)\).
- The mapping \(f_{\text{var}} : X' \rightarrow X\), given by \(f_{\text{var}}(x') = x\) if \(x' = a\), a such that \(f(x', a') = (x, a)\), is well-defined and injective.
- If \(x' < y\) then \(f_{\text{var}}(x') < x < f_{\text{var}}(y')\).
- If \(a', b' \in D(x')\), \(a' < b'\), \(f(x', a') = (x, a)\) and \(f(x', b') = (x, b)\) then \(a < b\).

A consistent linear extension of a pattern \(P = (X, D, A, \text{cpt}, <, <, \neq)\) is a pattern \(P^1\) obtained from \(P\) by first identifying any number of pairs of points \(p, q\) which are both mergeable and incomparable (according to \(<D\)) and then extending the orders on the variables and the domain values to total orders.

Definition 11 A pattern \(P^1 = (X, D, A, \text{cpt}, <, <, \neq)\) occurs in a pattern \(P = (X, D, A, \text{cpt}, <, <, \neq)\) if for all consistent linear extensions \(P^1\) of \(P\), there is a homomorphism from \(P^1\) to \(P\).

We use the notation \(\text{CSP}_{\text{TP}}(P)\) to represent the set of binary CSP instances in which the pattern \(P\) does not occur.

This definition extends in a natural way to patterns with a disequality structure.

Remark 1 We can add \(a \neq b\) to a pattern, without changing its semantics, when \(a > b\) or \(a < b\) are unmergeable. Furthermore, all domain values \(a, b\) in an instance are distinct so there is an implicit \(a \neq b\).

Example 6 The pattern MC (Figure 1(b)) occurs in pattern EMC (Figure 3) but not in patterns BTP (Figure 1(a)) or BTX (Figure 7).

For a pattern \(P\), we denote by unordered\((P)\) the underlying unordered pattern, that is,

\[\text{unordered}(\langle X, D, A, \text{cpt}, <, <, \neq\rangle) = \langle X, D, A, \text{cpt}\rangle.\]

For instance, the pattern unordered\((\text{BTP})\) is the pattern from Figure 1(a) without the structure \(x, y < z\).

The following three simple lemmas follow from the definitions.

Lemma 1 If \(P\) occurs in \(Q\) and \(Q\) occurs in \(R\), then \(P\) occurs in \(R\).

Lemma 2 If \(P\) occurs in \(Q\) and \(P\) does not occur in \(I\), then \(Q\) does not occur in \(I\), i.e., \(\text{CSP}_{\text{TP}}(P) \subseteq \text{CSP}_{\text{TP}}(Q)\).

Lemma 3 For any pattern \(P\), unordered\((P)\) occurs in \(P\).

2.3 AC solvability

Arc consistency (AC) is a fundamental concept for CSPs.

Definition 12 Let \(I = \langle X, D, A, \text{cpt}\rangle\) be a CSP instance. A point \(\langle x, a \rangle\) in \(A\) is called arc consistent if, for all variables \(y \neq x\) in \(X\) there is some point \(\langle y, b \rangle\) in A compatible with \(\langle x, a \rangle\).

The CSP instance \(\langle X, D, A, \text{cpt}\rangle\) is called arc consistent if \(A \neq \emptyset\) and every point in \(A\) is arc consistent.

Points that are not arc-consistent cannot be part of a solution so can safely be removed. There are optimal \(O(d^2)\) algorithms for establishing arc consistency which repeatedly remove such points (Bessi`ere et al. 2005), where \(d\) is the number of non-trivial constraints and \(d\) the maximum domain size. Algorithms establishing arc consistency are implemented in all constraint solvers.

AC is a decision procedure for a CSP instance if, after establishing arc consistency, non-empty domains for all variables guarantee the existence of a solution. (Note that a solution can then be found without backtrack by maintaining AC during search). AC is a decision procedure for a class of CSP instances if AC is a decision procedure for every instance from the class.
Definition 13 A pattern \(P \) is called AC-solvable if AC is a decision procedure for \(\text{CSP}_{\pi P}(P) \).

The following lemma is a straightforward consequence of the definitions.

Lemma 4 A pattern \(P \) is not AC-solvable if and only if there is an instance \(I \in \text{CSP}_{\pi P}(P) \) that is arc consistent and has no solution.

The following lemma follows directly from Lemmas 2 and 4.

Lemma 5 If \(P \) occurs in \(Q \) and \(P \) is not AC-solvable, then \(Q \) is not AC-solvable.

As our main result we will, in Theorem 12, characterise all simple patterns that are AC-solvable.

2.4 Pattern symmetry and equivalence

For an ordered pattern \(P \), we denote by \(\text{invDom}(P) \), \(\text{invVar}(P) \) the patterns obtained from \(P \) by inversing the domain order or the variable order, respectively.

Lemma 6 If \(P \) is not AC-solvable, then neither is \(\text{invDom}(P) \), \(\text{invVar}(P) \) or \(\text{invDom}(\text{invVar}(P)) \).

Proof: The claims follow from inversing the respective orders in the instance \(I \) of Lemma 4 proving that \(P \) is not AC-solvable.

Some patterns define the same classes of CSP instances.

Definition 14 Patterns \(P \) and \(P' \) are equivalent if \(\text{CSP}_{\pi P}(P) = \text{CSP}_{\pi P}(P') \).

Lemma 7 If \(P \) occurs in \(P' \) and \(P' \) occurs in \(P \), then \(P, P' \) are equivalent.

Example 7 Let \(LX^< \) be the pattern obtained from \(LX \) (Figure 9) by adding the partial variable order \(y < z \). Due to the symmetry of \(LX \), observe that \(LX \) and \(LX^< \) are equivalent.

3. New tractable classes solved by arc consistency

Our search for a characterisation of all simple patterns decided by arc consistency surprisingly uncovered four new tractable patterns, which we describe in this section. The first pattern we study is shown in Figure 3. It is a proper generalisation of the MC pattern (Figure 1(b)) since it has an extra variable and three extra edges.

Theorem 1 AC is a decision procedure for \(\text{CSP}_{\pi P}(EMC) \) where \(EMC \) is the pattern shown in Figure 3.

Proof: Since establishing arc consistency only eliminates domain elements, and hence cannot introduce the pattern, it suffices to show that every arc-consistent instance \(I = \langle X, D, A, \text{cpt} \rangle \in \text{CSP}_{\pi P}(EMC) \) has a solution. We give a constructive proof. Let
\[x_1 < \ldots < x_n \] be an ordering of \(X \) such that EMC does not occur in \(I \). Define an assignment \((a_1, \ldots, a_n)\) to \(\langle x_1, \ldots, x_n \rangle \) recursively as follows: \(a_1 = \max(D(x_1)) \) and, for \(i > 1 \),

\[
a_i = \min\{a_i' \mid 1 \leq j < i\},
\]

where \(a_i' = \max\{a \in D(x_i) \mid (a_j, a) \in R_{jk}\} \) \(i > 1 \). We denote by \(\text{pred}(i) \) a value of \(j < i \) such that \(a_i = a_{\text{pred}(i)} \).

For \(i > 1 \), we have \(a_i = a_1 \). Arc consistency guarantees that \(a_i \) exists and hence that \(a_i \) and \(\text{pred}(i) \) are well defined. We claim that \((a_1, \ldots, a_n)\) is a solution. Suppose, for a contradiction, that \((a_j, a_k) \not\in R_{jk}\) for some \(1 \leq j < k \leq n \). If there is more than one such pair \((j, k)\), then choose \(k \) to be minimal and then for this value of \(k \) choose \(j \) to be minimal.

We prove our claim that \((a_1, \ldots, a_n)\) is a solution to \(I \) by induction on \(n \). The claim trivially holds for \(n = 1 \) as \(a_1 = D(x_1) \). It remains to show that if the claim holds for instances of size less than \(n \) then it holds for instances of size \(n \).

Let \(m_0 = k \) and \(m_1 = \text{pred}(m_{n-1}) \) for \(r \geq 1 \) if \(m_{n-1} > 1 \). Let \(t \) be such that \(m_t = 1 \). By definition of \(\text{pred} \), we have

\[1 = m_1 = m_{t-1} < \ldots < m_1 < m_0 = k \]

which implies that this series is finite and hence that \(t \) is well-defined.

We distinguish two cases: (1) \(j > m_1 \) and (2) \(j < m_1 \). Since \((a_j, a_k) \not\in R_{jk}\) and \((a_{m_1}, a_k) \in R_{jk}\) we know that \(j \neq m_1 \).

Case (1) \(j > m_1 \):

Define \(b_0 = a_1 \). By definition of \(a_k \), we know that \(a_k \leq a_j \). Since \((a_j, a_k) \not\in R_{jk}\) and \((a_j, a_k') \in R_{jk}\), we have \(b_0 = a_1 > a_k \).

By our choice of \(j \) to be minimal, and since \(j > m_1 \) we know that \((a_{m_1}, a_k) \in R_{mk} \) for \(r = 1, \ldots, t \). Indeed, by minimality of \(k \), we already had \((a_{m_1}, a_m) \) to be minimal for \(1 \leq s \leq r \leq t \). Thus, since \(k = m_0 \), we have

\[
(a_{m_1}, a_{m_0}) \in R_{m_1, m_0} \quad \text{for} \quad 0 \leq s \leq r \leq t.
\]

By arc consistency, \(\exists b_1 \in D(x_{m_1}) \) such that \((b_1, b_0) \in R_{m_1, k} \).

We have \((a_{m_1}, a_j) \in R_{m_1, j} \) by minimality of \(k \) and since \(m_1, j < k \). Since \(m_1 = \text{pred}(k) \) and hence \(a_k = a_1 \), we have \((a_{m_1}, a_k) \in R_{mk} \) and \((a_{m_1}, b_0) \not\in R_{mk} \) by the maximality of \(a_1 \). We thus have the situation illustrated in Figure 4 for \(k = 1 \). Since the pattern EMC does not occur in \(I \), we must have \(b_0 > a_1 \).

For \(1 \leq r \leq t \), let \(H_r \) be the following hypothesis:

\[H_r: \exists s(r) \in \{0, \ldots, r-1\}, \exists p(r) < k, \exists b_r \in D(x_{m_0}), \] \(b_r > a_m \) such that we have the situation shown in Figure 5.

We have just shown that \(H_1 \) holds (with \(s(1) = 0 \) and \(p(1) = j \)).

We now show, for \(1 \leq r < t \), that \(H_1 \wedge \ldots \wedge H_r \Rightarrow H_{r+1} \).

We know that \((a_{m_{r-1}}, a_{m_0}) \in R_{m_{r-1}, m_0} \) and \((a_{m_{r-1}}, b_r) \not\in R_{m_{r-1}, m_0} \), since \(m_{r-1} = \text{pred}(m_r) \) and by maximality of \(a_{m_{r-1}} \) in Equation (1). Let \(q \in \{0, \ldots, r\} \) be minimal such that \((a_q, b_q) \not\in R_{m_0, m_0+1} \) and by minimality of \(a_q \) we have \((a_q, a_m) \in R_{m_0, m_0+1} \) in Equation (1). Let \(q \in \{0, \ldots, r\} \) be minimal such that \((a_q, a_m) \in R_{m_0, m_0+1} \). We distinguish two cases: (a) \(q = 0 \) and (b) \(q > 0 \).

If \(q = 0 \), then we have \((a_{m_{r-1}}, a_k) \in R_{m_0+1, k} \) from Equation (2), since \(k = m_0 \). Since \(a_{m_{r-1}} \) and \(b_r \) do not differ by more than \(m_0 \), and by minimality of \(k \), we have \((a_{m_{r-1}}, b_r) \in R_{m_0+1, m_0} \) from Equation (2), and that \((a_{m_{r-1}}, b_r) \not\in R_{m_0+1, m_0+1} \) by definition of \(q \). We know that \((b_0, b_1(q)) \in R_{m_0(m_0+1)} \) and \((a_q, b(q)) \not\in R_{m_0+1, m_0} \) from Figure 4. By arc consistency, \(\exists b_q \in D(x_{m_0+1}) \) such that \((b_q, b_0) \in R_{m_0+1, m_0} \). We then have the situation illustrated in Figure 6.

As above, from the absence of pattern EMC, we can deduce that \(b_{r+1} > a_{m_{r+1}} \). We thus have \(H_{r+1} \) (with \(s(r+1) = q \) and \(p(r+1) = q \)).

Case (2) \(j < m_1 \): Consider the subproblem \(I' \) of \(I \) on the subset of variables \(\{x_1, x_2, \ldots, x_{m_1-1}\} \cup \{x_k\} \). Since \(x_{m_1} \) does not belong to the set of variables of \(I' \), this instance has size strictly less than \(n \), and hence by our inductive hypothesis has a solution. The values of \(a_i \) may differ between \(I \) and \(I' \). However, we can see from its definition given in Equation (1), that the value of \(a_i \) depends uniquely on the subproblem on previous variables \(\{x_1, \ldots, x_{i-1}\} \). Showing the dependence on the instance by a superscript, we thus have \(a_i' = a_i \) (\(i = 1, \ldots, m_1 - 1 \)) although \(a_k' \) may (and, in fact, does) differ from \(a_k \). By our inductive hypothesis, \((a_1, \ldots, a_{m_1-1}, a_k') \) is a solution to \(I' \). Setting \(b_0 = a_k' \), it follows that \((a_0, b_0) \in R_{k} \) for \(1 \leq i < m_1 \). In particular, since \(j < m_1 \), we have \((a_j, b_0) \in R_{jk} \). Now \(a_k' = b_0 \), since \(I' \) is a subinstance of \(I \) (and so, from Equation (1), \(a_k' \) is the minimum of a superset over which \(a_k' \) is a minimum). Thus \(a_k = a_k' = b_0 \), since \((a_j, b_0) \not\in R_{jk} \) and \((a_j, a_k) \not\in R_{jk} \).
We conclude this section with a pattern which is essentially different from the patterns EMC, BTX, and BTI, since it includes two negative edges that meet but has no domain or variable order, and whose tractability was previously unknown (Escamocher 2014).

Theorem 4 AC is a decision procedure for CSP\(\Pi_{\nu}(LX)\) where LX is the pattern shown in Figure 9.

Proof: Since establishing arc consistency only eliminates domain elements, and hence cannot introduce the pattern, we only need to show that every arc-consistent instance \(I \in CSP_{\Pi_{\nu}}(LX)\) has a solution. In fact we will show a stronger result by proving that the hypothesis \(H_n\), below, holds for all \(n \geq 1\).

\(H_n:\) for all arc-consistent instances \(I = (X, D, A, \text{cpt}) \in CSP_{\Pi_{\nu}}(LX)\) with \(|X| = n\), \(\forall x_i \in X, \forall a \in D(x_i), I\) has a solution \(s\) such that \(s(x_i) = a\).

Trivially, \(H_1\) holds. Suppose that \(H_{n-1}\) holds where \(n > 1\). We will show that this implies \(H_n\), which will complete the proof by induction.

Consider an arc-consistent instance \(I = (X, D, A, \text{cpt})\) from CSP\(\Pi_{\nu}(LX)\) with \(X = \{x_1, \ldots, x_n\}\) and let \(a \in D(x_i)\). Let \(I_{n-1}\) denote the subproblem of \(I\) on variables \(X \setminus \{x_i\}\). For any solution \(s\) of \(I_{n-1}\), we denote by \(CV((x_i, a, s)\) the set of variables in \(X \setminus \{x_i\}\) on which \(s\) is compatible with the unary assignment \((x_i, a)\), i.e.

\[CV((x_i, a, s) = \{x_j \in X \setminus \{x_i\} | (a, s(x_j)) \in R_{ij}\}\]

Consider two distinct solutions \(s, s'\) to \(I_{n-1}\). If we have \(x_i \in CV((x_i, a, s) \setminus CV((x_i, a, s')) \text{ and } x_i \notin CV((x_i, a, s') \setminus CV((x_i, a, s)), \text{ then the pattern } LX \text{ occurs in } I \text{ under the mapping } x \mapsto x_i, y \mapsto x_j, z \mapsto x_k, a \mapsto s(x_j), b \mapsto s'(x_j), c \mapsto s'(x_k), \delta \mapsto s(x_k), \epsilon \mapsto a \text{ (see Figure 9). Since } LX \text{ does not occur in } I, \text{ we can deduce that the sets } CV((x_i, a, s), as s varies over all solutions to } I_{n-1}, \text{ form a nested family of sets. Let } s_0 \text{ be a solution to } I_{n-1} \text{ such that } CV((x_i, a, s_0) \text{ is maximal for inclusion. Consider any } x_j \in X \setminus \{x_i\}. By arc consistency, } 3b \in D(x_j) \text{ such that } (a, b) \in R_{ij}. \text{ By our inductive hypothesis } H_{n-1}, \text{ there is a solution } s \text{ to } I_{n-1} \text{ such that } s(x_j) = b. \text{ Since } (a, s(x_j)) = (a, b) \in R_{ij}, \text{ we have } x_j \in CV((x_i, a, s). By maximality of } s_0, \text{ this implies } x_j \in CV((x_i, a, s_0), i.e. } (a, s_0(x_j)) \in R_{ij}. \text{ Since this is true for any } x_j \in X \setminus \{x_i\}, \text{ we can deduce that } s_0 \text{ can be extended to a solution to } I \text{ (which assigns } a \text{ to } x_i) \text{ by simply adding the assignment } (x_i, a) \text{ to } s_0. \]

4. Recognition problem for unknown orders

For an unordered pattern \(P\) of size \(k\), checking for (the non-occurrence of) \(P\) in a CSP instance \(I\) is solvable in time \(O(|I|^k)\) by simple exhaustive search. Consequently, checking for (the non-occurrence of) unordered patterns of constant size is solvable in
polynomial time. However, the situation is less obvious for ordered patterns since we have to test all possible orderings of I.

The following result was shown in (Cooper et al. 2010b).

Theorem 5 Given a binary CSP instance I with a fixed total order on the domain, there is a polynomial-time algorithm to find a total variable ordering such that BTP does not occur in I (or to determine that no such ordering exists).

We show that the same result holds for the other three ordered patterns studied in this paper, namely BTI, BTX, and EMC.

Theorem 6 Given a binary CSP instance I with a fixed total order on the domain and a pattern $P \in \{BTI, BTX, EMC\}$, there is a polynomial-time algorithm to find a total variable ordering such that P does not occur in I (or to determine that no such ordering exists).

Proof: We give a proof only for BTX as the same idea works for the other two patterns as well. Given a binary CSP instance I with n variables x_1, \ldots, x_n, we define an associated CSP instance I_I that has a solution precisely when there exists a suitable variable ordering for I. To construct I_I, let O_1, \ldots, O_n be variables taking values in $\{1, \ldots, n\}$ representing positions in the ordering. We impose the ternary constraint $O_i > \max(O_j, O_k)$ for all triples of variables x_i, x_j, x_k in I such that the BTX pattern occurs for some $\alpha, \beta, \gamma, \delta \in D(x_i)$ with $\alpha > \beta, \epsilon \in D(x_j)$, and $\gamma, \delta \in D(x_k)$ when the variables are ordered $x_i < x_j, x_k$. The instance I_I has a solution precisely if there is an ordering of the variables x_1, \ldots, x_n of I for which BTX does not occur. Note that if the solution obtained represents a partial order (i.e. if O_i and O_j are assigned the same value for some $i \neq j$), then it can be extended to a total order which still satisfies all the constraints by arbitrarily choosing the order of those O_i's that are assigned the same value. This reduction is polynomial in the size of I. We now show that all constraints in I_I are ternary max-closed and thus I_I can be solved in polynomial time (Jeavons and Cooper 1995). Let (p_1, q_1, r_1) and (p_2, q_2, r_2) satisfy any constraint in I_I. Then $p_1 > \max(q_1, r_1)$ and $p_2 > \max(q_2, r_2)$, and thus $\max(p_1, p_2) > \max(\max(q_1, r_1), \max(q_2, r_2)) = \max(\max(q_1, q_2), \max(r_1, r_2))$. Consequently, $\max(p_1, p_2), \max(q_1, q_2), \max(r_1, r_2)$ also satisfies the constraint. We can deduce that all constraints in I_I are max-closed.

Using the same technique, we can also show the following.

Theorem 7 Given a binary CSP instance I with a fixed total variable order and a pattern $P \in \{BTI, BTX\}$, there is a polynomial-time algorithm to find a total domain ordering such that P does not occur in I (or determine that no such ordering exists).

It is known that determining a domain order for which MC does not occur is NP-hard (Green and Cohen 2008). Not surprisingly, for EMC when the domain order is not known, detection becomes NP-hard. For the case of BTX and BTI, if neither the domain nor variable order is known, finding orders for which the pattern does not occur is again NP-hard.

Theorem 8 For the pattern EMC, even for a fixed total variable order of an arc-consistent binary CSP instance I, it is NP-hard to find a total domain ordering of I such that the pattern does not occur in I. For patterns BTX and BTI, it is NP-hard to find total variable and domain orderings of an arc-consistent binary CSP instance I such that the pattern does not occur in I.

5. Characterisation of patterns solved by AC

5.1 Instances not solved by arc consistency

We first give a set of instances, each of which is arc consistent and has no solution. If for any of these instances I, we have $I \in CSP_{\neg AC}(P)$, then this constitutes a proof by Lemma 4, that pattern P is not solved by arc consistency. For simplicity of presentation, in each of the following instances, we suppose the variable order π is not solved by arc consistency. For simplicity of presentation, we show that the same result holds for the other three ordered patterns studied in this paper, namely BTI, BTX, and EMC.

Theorem 8 For the pattern EMC, even for a fixed total variable order of an arc-consistent binary CSP instance I, it is NP-hard to find a total domain ordering of I such that the pattern does not occur in I. For patterns BTX and BTI, it is NP-hard to find total variable and domain orderings of an arc-consistent binary CSP instance I such that the pattern does not occur in I.

5. Characterisation of patterns solved by AC

5.1 Instances not solved by arc consistency

We first give a set of instances, each of which is arc consistent and has no solution. If for any of these instances I, we have $I \in CSP_{\neg AC}(P)$, then this constitutes a proof by Lemma 4, that pattern P is not solved by arc consistency. For simplicity of presentation, in each of the following instances, we suppose the variable order π is not solved by arc consistency. For simplicity of presentation, we show that the same result holds for the other three ordered patterns studied in this paper, namely BTI, BTX, and EMC.

Theorem 8 For the pattern EMC, even for a fixed total variable order of an arc-consistent binary CSP instance I, it is NP-hard to find a total domain ordering of I such that the pattern does not occur in I. For patterns BTX and BTI, it is NP-hard to find total variable and domain orderings of an arc-consistent binary CSP instance I such that the pattern does not occur in I.
5.2 Characterising AC-solvable unordered patterns

In this subsection, we consider only patterns \(P \) that have no associated structure (i.e. with \(<_X = <_D = \emptyset \)). We prove the following characterisation of unstructured AC-solvable patterns.

Theorem 9 If \(P \) is an simple unordered pattern, then \(P \) is AC-solvable if and only if \(P \) occurs in the pattern unordered(BTP).

Proof sketch: Let \(P \) be an simple unordered pattern. By exhaustive search we can deduce that either (1) \(P \) occurs in LX or unordered(BTP), or (2) at least one of the following patterns occurs in \(P \): Figure 12(a), (b), (d), (n), (p), (q), (s). In case (1), by Lemma 1, Lemma 2, Lemma 3, Theorem 4 and the fact that BTP is known to be AC-solvable (Cooper et al. 2010b), it follows that \(P \) is AC-solvable. In case (2), since all patterns in Figure 12 are not AC-solvable, by Lemma 5, \(P \) is not AC-solvable.

5.3 Characterising AC-solvable variable-ordered patterns

In this subsection we consider simple patterns \(P \) which have no domain order, but do have a partial order on the variables. We first require the following lemma.

Lemma 8 If \(P^< \) is a pattern whose only structure is a partial order on its variables and \(P^< = \text{unordered}(P^<) \), then

1. \(P^< \) is simple if and only if \(P^< \) is simple.
2. \(P^< \) is AC-solvable only if \(P^< \) is AC-solvable.

Proof: The property of being simple is independent of any variable order, hence \(P^< \) is simple if and only if \(P^< \) is simple. By Lemma 3, \(P^< \) occurs in \(P^< \). The fact that \(P^< \) is AC-solvable only if \(P^< \) is AC-solvable then follows from Lemma 5.

Recall pattern \(LX^< \) from Example 7 that is obtained from the pattern \(LX \) (Figure 9) by adding the partial variable order \(y < z \).

Lemma 8 allows us to give the following characterisation of variable-ordered AC-solvable patterns.

Theorem 10 If \(P \) is a simple pattern whose only structure is a partial order on its variables, then \(P \) is AC-solvable if and only if \(P \) occurs in the pattern \(LX^< \), the pattern BTP\(^\text{vo} \) (Figure 2) or the pattern invVar(BTP\(^\text{vo} \)).

Proof sketch: By Lemma 8 and Theorem 9, we only need to consider patterns occurring in LX or unordered(BTP) to which we add a partial order on the variables. Let \(P \) be such a pattern. By exhaustive search we can show that either (1) \(P \) occurs in \(LX^< \), BTP\(^\text{vo} \) or invVar(BTP\(^\text{vo} \)), or (2) at least one of the patterns in Figure 12(e), (f) occurs in \(P \). In case (1), \(P \) is AC-solvable, since \(LX^< \) and BTP\(^\text{vo} \) are equivalent to the AC-solvable patterns LX and BTP, respectively. In case (2), \(P \) is not AC-solvable, by Lemma 5, since the patterns in Figure 12 are not AC-solvable.

5.4 Characterising AC-solvable domain-ordered patterns

In this subsection we consider simple patterns \(P \) with a partial order on domains but no ordering on the variables.

Let EMC\(^- \) be the no-variable-order version of the pattern EMC depicted in Figure 3.

We prove the following characterisation of domain-ordered AC-solvable patterns.

Theorem 11 If \(P \) is an simple pattern whose only structure is a partial order on its domains, then \(P \) is AC-solvable if and only if \(P \) occurs in the pattern \(LX \) (Figure 9), or the pattern EMC\(^- \), or the pattern invDom(EMC\(^- \)).

Proof sketch: As in the proofs of Theorem 9 and 10, we only need to consider patterns on at most three variables, with at most two points per variable and at most two negative edges. Let \(P \) be such a pattern. By exhaustive search, we can deduce that either (1) \(P \) occurs in \(LX \), EMC\(^- \) or invDom(EMC\(^- \)), or (2) at least one of the patterns Figure 12(a), (b), (h), (i), (m), (n), (o), (p), (r), (s) (or its domain-inversed version) occurs in \(P \).

In case (1), by Lemmas 1, 2, 3 and Theorems 1 and 4, it follows that \(P \) is AC-solvable. In case (2), by Lemma 5, \(P \) is not AC-solvable, since no pattern in Figure 12 is AC-solvable.

5.5 Characterising AC-solvable ordered patterns

In this subsection we consider the most general case of simple patterns \(P \) which have a partial domain order and a partial variable order. We prove the following characterisation of AC-solvable patterns with partial orders on domains and variables.
Figure 12. Patterns which do not occur in (a) I_{K4}; (b) I_4; (c) $I_{S^{SAT}}^{2\Delta}$; (d),(e),(f) I_5; (g),(h),(i) $I_{S^{SAT}}^6$; (j),(k),(l),(m) $I_{K4}^{S^{SAT}}$; (n),(o),(p),(q),(r),(s) $I_{3^{COL}}$.
Theorem 12 If P is an simple pattern with a partial order on its domains and/or variables, then P is AC-solvable if and only if P occurs in one of the patterns L^x, EMC (Figure 3), BTP^{do}, BTP^{do} (Figure 2), BTX (Figure 7) or BTI (Figure 8) (or versions of these patterns with inverted domain-order and/or variable-order).

Proof sketch: Let P be a pattern on at most three variables, with at most two points per variable and at most two negative edges. By exhaustive search we can deduce that either (1) P occurs in one of the patterns L^x, EMC, BTP^{do}, BTP^{do}, BTX or BTI (or versions of these patterns with inverted domain-order and/or variable-order), or (2) at least one of the patterns in Figure 12(c), (e), (f), (j), (k), (l), (or versions of these patterns with inverted domain-order and/or variable-order) occurs in P.

In case (1), by Lemmas 1, 2 and 3, P is AC-solvable, since L^x, EMC, BTP^{do}, BTP^{do}, BTX and BTI are all AC-solvable patterns. In case (2), by Lemma 5, P is not AC-solvable, since none of the patterns in Figure 12 are AC-solvable.

6. Conclusion

We have identified 4 new tractable classes of binary CSPs. Moreover, we have given a characterisation of all simple partially-ordered patterns decided by AC. We finish with open problems.

For future work, we plan to study the wider class of unmergeable ordered patterns in which two points a, b may be non-mergeable simply because there is an order $a < b$ on them. In the present paper, a, b are mergeable unless they have different compatibilities with a third point c.

Is there a way of combining EMC, BTX and BTI, since to find a solution after establishing arc consistency we use basically the same algorithm? Any such generalisation will not be a simple forbidden pattern by Theorem 12, but there is possibly some other way of combining these patterns.

Are there interesting generalisations of these patterns to constraints of arbitrary arity, valued constraints, infinite domains or QCSP? BTX has been generalised to constraints of arbitrary arity (Cooper et al. 2014) as well as to QCSPs (Gao et al. 2011). Max-closed constraints have been generalised to VCSPs (Cohen et al. 2006). Infinite domains is an interesting avenue of future research because simple temporal constraints are binary max-closed (Dechter et al. 1991).

We have studied classes of CSP instances with totally ordered domains. However, the framework of forbidden patterns captures language-based CSPs with partially-ordered domains, such as CSPs with a semi-lattice polymorphism. In the future, we plan to investigate CSP instances with partially-ordered domains.

References

