
On Planar Valued CSPsI

Peter Fullaa, Stanislav Živnýa,∗

aUniversity of Oxford, Oxford, UK

Abstract

We study the computational complexity of planar valued constraint satisfaction problems (VCSPs),
which require the incidence graph of the instance be planar. First, we show that intractable Boolean VCSPs
have to be self-complementary to be tractable in the planar setting, thus extending a corresponding result of
Dvořák and Kupec [ICALP’15] from CSPs to VCSPs. Second, we give a complete complexity classification
of conservative planar VCSPs on arbitrary finite domains. In this case planarity does not lead to any new
tractable cases and thus our classification is a sharpening of the classification of conservative VCSPs by
Kolmogorov and Živný [JACM’13].

Keywords: constraint satisfaction, planarity, multimorphisms, valued constraint satisfaction

1. Introduction

The valued constraint satisfaction problem (VCSP) is a far-reaching generalisation of many natural satis-
fiability, colouring, minimum-cost homomorphism, and min-cut problems [2, 3]. It is naturally parametrised
by its domain and a valued constraint language. A domain D is an arbitrary finite set. A valued constraint
language, or just a language, Γ is a (usually finite) set of weighted relations; each weighted relation γ ∈ Γ
is a function γ : Dar(γ) → Q, where ar(γ) ∈ N+ is the arity of γ and Q = Q ∪ {∞} is the set of extended
rationals.

An instance I = (V,D,C) of the VCSP on domain D is given by a finite set of n variables V =
{x1, . . . , xn} and an objective function C : Dn → Q expressed as a weighted sum of valued constraints
over V , i.e. C(x1, . . . , xn) =

∑q
i=1 wi · γi(xi), where γi is a weighted relation, wi ∈ Q≥0 is the weight and

xi ∈ V ar(γi) the scope of the ith valued constraint. (We note that we allow zero weights and for wi = 0 we
define wi · ∞ = ∞.) Given an instance I, the goal is to find an assignment s : V → D of domain labels to
the variables that minimises C. Given a language Γ, we denote by VCSP(Γ) the class of all instances I that
use only weighted relations from Γ in their objective function.

We now provide a few examples of languages on D = {0, 1}. If Γnae = {ρ} with ρ(x, y, z) = ∞ if
x = y = z and ρ(x, y, z) = 0 otherwise, then VCSP(Γnae) captures precisely the NAE-3-Sat (Not-All-Equal
3-Satisfiability) problem. To see this, observe that any instance of VCSP(Γnae) is equivalent to an instance
of NAE-3-Sat over the same variables, each constraint giving a ternary clause (weights are without effect
in this case). If Γcut = {γ} with γ(x, y) = 1 if x = y and γ(x, y) = 0 otherwise, then VCSP(Γcut) captures
precisely the weighted Min-UnCut problem. If Γis = {ρ, γ} with ρ(x, y) =∞ if x = y = 1 and ρ(x, y) = 0
otherwise, and γ(x) = 1−x, then VCSP(Γis) captures precisely the weighted Maximum Independent Set
problem. Minimisation of bounded-arity submodular functions (or equivalently, submodular pseudo-Boolean
polynomials of bounded degree) corresponds to VCSP(Γsub) for Γsub consisting of all weighted relations γ
that satisfy γ(min(x,y)) + γ(max(x,y)) ≤ γ(x) + γ(y), where min and max are applied componentwise.

IAn extended abstract of part of this work appeared in the Proceedings of the 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS), 2016 [1].

∗Corresponding Author
Email addresses: peter.fulla@cs.ox.ac.uk (Peter Fulla), standa.zivny@cs.ox.ac.uk (Stanislav Živný)

Preprint submitted to Elsevier March 14, 2017

We will be concerned with exact solvability of VCSPs. A language Γ is called tractable if VCSP(Γ′) can
be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called intractable if
VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance, Γsub is tractable [4] whereas Γnae, Γcut, Γis are
intractable [5].

1.1. Contribution

Languages on a two-element domain are called Boolean. The complexity of Boolean valued constraint
languages is well understood and eight tractable cases have been identified [4]. Suppose that a Boolean
language Γ is intractable. We are interested in restrictions that can be imposed on input instances of
VCSP(Γ) that make the problem tractable. A natural way is to restrict the incidence graph of the instance
(the precise definition is given in Section 2). In this paper we initiate the study of the planar variant of the
VCSP.

We denote by VCSPp(Γ) the class of instances I of VCSP(Γ) with planar incidence graph (with an
additional requirement that leads to a finer classification, as discussed in detail in Section 2). Language Γ is
called planarly-tractable if VCSPp(Γ′) can be solved (to optimality) in polynomial time for every finite subset
Γ′ ⊆ Γ, and it is called planarly-intractable if VCSPp(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance,
while Γnae, Γcut, and Γis are intractable, it is known that Γnae and Γcut are planarly-tractable [6, 7] whereas
Γis is planarly-intractable [8]. The problem of classifying all intractable languages as planarly-tractable and
planarly-intractable is challenging and open even for Boolean valued constraint languages.

A Boolean valued constraint language Γ is called self-complementary if every γ ∈ Γ satisfies γ(x) = γ(x)
for every x ∈ Dar(γ), where x = (1−x1, . . . , 1−xar(γ)) for x = (x1, . . . , xar(γ)). As our first contribution, we
show in Section 3 that intractable Boolean valued constraint languages that are not self-complementary are
planarly-intractable. We prove this by carefully constructing planar NP-hardness gadgets for any intractable
Boolean valued constraint language that is not self-complementary, relying on the fact that all tractable
Boolean valued constraint languages are known [4]. Our result subsumes the analogous result obtained
for {0,∞}-valued languages [9]. We remark that focusing on Boolean languages is natural as it avoids a
number of difficulties intrinsic to the planar setting. Let Γcol = {γ} with γ(x, y) = 0 if x 6= y and γ(x, y) =∞
otherwise. Then Γcol on domain D with |D| = 3 is planarly intractable (since VCSPp(Γcol) captures precisely
the 3-Colouring problem on planar graphs) [5] but is tractable on D with |D| = 4 for highly nontrivial
reasons, namely the Four Colour Theorem.

A valued constraint language Γ on D is called conservative if Γ contains all {0, 1}-valued unary weighted
relations. The complexity of conservative valued constraint languages is well understood: a complete com-
plexity classification has been obtained in [10], with a recent simplification of both the algorithmic and the
hardness part [11, 12]. As our second contribution, we give a complete complexity classification of conserva-
tive valued constraint languages on arbitrary finite domains with respect to planar-tractability. In particular,
we show that every intractable conservative valued constraint language is also planarly-intractable. Hence
there are no new tractable cases in the conservative planar setting. This may seem unsurprising but the
proof is not trivial. We remark that conservative (V)CSPs constitute a large and important fragment of
CSPs [13] and VCSPs [10]. In fact, in practice most (V)CSPs are conservative [14].

Note that for Boolean valued constraint languages that are conservative the claim follows immediately
from our first result: any intractable Boolean language containing both γ0(x) = x and γ1(x) = 1 − x
(guaranteed by the conservativity assumption) is not self-complementary, and thus is planarly-intractable.
This shows that Γ = Γcut∪{γ0, γ1} is intractable, a result originally obtained in [15] since VCSPp(Γ) captures
precisely the planar Min-UnCut problem with unary weights. (In fact, the same argument shows that both
Γcut ∪ {γ0} and Γcut ∪ {γ1} are planarly-intractable.)

As it is common in the world of CSPs, dealing with non-Boolean domains is considerably more difficult
than the case of Boolean domains. For valued constraint languages we have a Galois connection with certain
algebraic objects [16, 17] but no Galois connection is known for valued constraint languages in the planar
setting. Moreover, it is unclear how to use the recent relatively simple proof of the complexity classification
of conservative valued constraint languages [11] and make it work in the planar setting since the proof
depends on linear programming duality. (This is related to the lack of a Galois connection in the planar

2

setting. In particular, [11, Lemma 2], which relates (non-planar) expressibility and operator Opt, is proved
via LP duality, and it is unclear how to prove it in the planar setting.)

Our approach is to follow the original proof of the classification of conservative valued constraint lan-
guages [10]. In order to adapt the proof for the planar setting, we significantly simplify it and generalise
necessary parts. Details on proof differences as well as challenges that we needed to overcome to make
the proof work are outlined in Section 4. We believe that our proof techniques, and in particular the now
simplified and generalised technique from [10], will be useful in future work on planar (V)CSPs.

1.2. Related work

VCSPs with {0,∞}-valued weighted relations are just (ordinary) decision CSPs [18]. There has been a lot
of work on decision CSPs, see [19] for a recent survey. Most results have been obtained for CSPs parametrised
by a constraint language, see [20] for a recent survey. Some of the algebraic methods developed for CSPs [21]
have been extended to VCSPs [16, 22, 17, 23] and successfully used in classifying various fragments of
VCSPs [24, 25, 26, 27, 11]. However, it is unclear how to use algebraic methods for instance-restricted
classes of VCSPs (sometimes called hybrid [19]), even though there are some recent investigations in this
direction [28, 29].

Following [9], we define planar VCSPs by requiring the incidence graph be planar. We note that an
alternative option when structurally restricting classes of (V)CSPs is to consider the Gaifman graph, as was
done for CSPs [30], counting CSPs [31], special cases of VCSPs [32] and also in the setting of parametrised
counting [33]. However, we believe that the incidence graph is the more natural option for the planarity
requirement since restricting the Gaifman graph would exclude (V)CSPs with, for instance, any constraint
of arity at least 5.

Planar restrictions have been studied for Boolean (decision) CSPs [9, 34], for Boolean symmetric counting
CSPs with real [35] and complex [36] weights, and also for Boolean CSPs with respect to polynomial-time
approximation schemes [37, 38].

2. Preliminaries

2.1. Planar VCSPs

Let I be a VCSP instance with variables V and valued constraints S. The incidence graph of I is the
bipartite multigraph with vertex set S∪V and edges (γ, xi) for every γ(x1, . . . , xar(γ)) ∈ S and 1 ≤ i ≤ ar(γ).

We are interested in VCSP instances with planar incidence graphs. Following [9], we additionally require
the order of edges around constraint vertices in the plane drawing of the incidence graph respect the order
of arguments of the corresponding constraint. Note that the variant without this additional restriction can
be easily modelled by replacing each weighted relation γ in a language by all weighted relations obtained
from γ by permuting the order of its inputs. Hence, this choice leads to a finer classification.

Following [9], rather than working with the incidence graph, we equivalently define the problem in terms
of a related plane graph where variables correspond to vertices and valued constraints to faces. We note
that our graphs are allowed to have loops, possibly several at a single vertex, and parallel edges.

For a connected plane graph G, we denote by F (G) the set of its faces. For any face f ∈ F (G), let b(f)
denote a closed walk bounding f , enumerated in the clockwise order around f .

Definition 1. A plane VCSP instance (I,G, φ) is given by a VCSP instance I with variables V and
objective function C with q valued constraints, a connected plane graph G over vertices V , and an injective
mapping φ : {1, . . . , q} → F (G) such that for every valued constraint γi(x1, x2, . . . , xar(γi)) it holds b(φ(i)) =
x1x2 . . . xar(γi)x1.

Example 2. Let V = {x1, x2, x3, x4} and C(x1, x2, x3, x4) = 2 · γ1(x1) + 0 · γ2(x2, x3, x1) + γ3(x3, x2) + 5
3 ·

γ4(x3, x4). The (non-planar drawing of the planar) incidence graph of this instance is depicted in Figure 1(a).
The plane graph of the instance from Definition 1 is depicted in Figure 1(b).

3

x1

x2

x3

x4

γ1

γ2

γ3

γ4

a)

x1

x2x3x4

γ1

γ2

γ3γ4

b)

Figure 1: Graphs from Example 2.

We note that the definition of a planar VCSP instance, in which case the graph G and mapping φ are
not given, is equivalent to Definition 1. This is because, as mentioned in [9], checking whether a VCSP
instance I has a planar representation, and if so then finding (I,G, φ), can be done in polynomial time [39].
For simplicity of presentation, we will assume that graph G and mapping φ are given.

We denote by VCSPp(Γ) the class of plane VCSP instances over the language Γ.

2.2. Planar Weighted Relational Clones

In this section, we define planar weighted relational clones, which are closures of valued constraint
languages that do not change the tractability of corresponding planar VCSPs.

We define relations as a special case of weighted relations (also called crisp) with range {0,∞}, where
value 0 is assigned to tuples that are elements of the relation in the conventional sense. For a weighted
relation γ : Dr → Q, we denote by Feas(γ) = {x ∈ Dr | γ(x) < ∞} the underlying feasibility relation,
and by Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤ γ(y) for every y ∈ Dr} the relation of minimal-value (or optimal)
tuples. We also write Feas(γ) = 0 · γ and see the Feas operator as scaling a weighted relation by zero, where
we define 0 · ∞ =∞.

An assignment s : V → D for a VCSP instance (V,D,C) with V = {x1, . . . , xn} is called feasible if
C(s(x1), . . . , s(xn)) <∞.

Definition 3. Let (I,G, φ) be a plane VCSP instance such that φ does not map any i to the outer face
fo of G, and let v = (v1, . . . , vr) be an r-tuple of variables from V such that b(fo) = vrvr−1 . . . v1vr. We
denote by πv(I) the r-ary weighted relation mapping any x ∈ Dr to the minimum objective value obtained
by feasible assignments s of I with s(v) = x, or ∞ if no such feasible assignment exists.

An r-ary weighted relation γ is planarly expressible from a valued constraint language Γ if there exists
a plane instance I over Γ and an r-tuple v of its variables such that πv(I) = γ.

Example 4. Let V = {x1, x3, x3, z}, D = {0, 1}, and C(x1, x3, x3, z) = γ(x1, z) + γ(x2, z) + γ(x3, z) be
a plane VCSP instance (I,G, φ) depicted in Figure 2, where γ is the binary “cut” weighted relation from
Section 1; i.e., γ(x, y) = 1 if x = y and γ(x, y) = 0 otherwise. Then ρ = π(x1,x2,x3)(I) is a ternary weighted
relation planarly expressible from {γ}, where ρ(x, y, z) = 0 if x = y = z and ρ(x, y, z) = 1 otherwise.

To see that planar expressibility is a proper restriction of (unrestricted) expressibility [4], consider re-
lations ρ= = {(0, 0), (1, 1)} and ρcross = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)} on domain D = {0, 1}.
Relation ρcross is expressible from the binary equality relation ρ=, because ρcross(x1, x2, x3, x4) = ρ=(x1, x3)+
ρ=(x2, x4). However, it is not planarly expressible. This can be proved unconditionally but here we give a
simpler argument assuming P 6= NP:

Relation ρ= can be included in any valued constraint language without affecting its complexity (see
Lemma 6 and Theorem 7 below). On the other hand, relation ρcross enables bypassing the planarity restric-
tion; languages from which ρcross is planarly expressible have the same complexity in the planar setting as

4

z

x1

x2x3

γ

γγ

Figure 2: Instance from Example 4.

in general [9]. Consequently, if ρcross is planarly expressible from ρ= then (say) the NAE-3-Sat problem on
general instances can be solved in polynomial time.

Definition 5. A planar weighted relational clone is a non-empty set of weighted relations over the same
domain that is closed under planar expressibility, scaling by non-negative rational constants, addition of
rational constants, and operator Opt. We will denote the smallest planar weighted relational clone containing
a valued constraint language Γ by wClonep(Γ).

An analogous notion of weighted relational clones closed under general (i.e. not necessarily planar)
expressibility [16, 17] has been used to study the complexity of VCSPs.

Lemma 6. For any domain D and language Γ on D, the binary equality relation ρ= on D belongs to
wClonep(Γ).

Proof. Relation ρ= is planarly expressible by a plane instance consisting of a single variable x with two
self-loops, and v = (x, x).

Theorem 7. For any valued constraint language Γ, Γ is planarly-tractable if, and only if, wClonep(Γ) is
planarly-tractable, and Γ is planarly-intractable if, and only if, wClonep(Γ) is planarly-intractable.

Proof. We show that VCSPp(wClonep(Γ)) is polynomial-time reducible to VCSPp(Γ). Given an instance I
over wClonep(Γ), we replace in it all weighted relations planarly expressible from Γ by their plane instances.
Scaling, which includes Feas, can be achieved by adjusting the weights of the valued constraints. Adding
a constant to a weighted relation affects the value of every feasible assignment by the same amount, and
therefore can be ignored.

Relation Opt(γ) can be simulated by scaling γ by a sufficiently large constant. Let W equal an upper
bound on the maximum objective value of a feasible assignment of I. Without loss of generality, we may
assume that no weighted relation of I assigns a negative value and that the smallest value assigned by γ is
0. Let d equal the second smallest value assigned by γ. We replace Opt(γ) with (W/d+ 1) · γ, so that any
assignment of I that would incur an infinite value from Opt(γ) has now objective value exceeding W .

We now define a few operations on weighted relations that will occur frequently throughout the paper.
As shown in the lemma below, these operations are planarly expressible.

Definition 8. Let γ be an r-ary weighted relation on D. A domain restriction of γ to D′ ⊆ D at coordinate
i is the r-ary weighted relation defined as γ′(x1, . . . , xr) = γ(x1, . . . , xr) if xi ∈ D′ and γ′(x1, . . . , xr) =
∞ otherwise. A pinning of γ to a ∈ D at coordinate i is the (r − 1)-ary weighted relation defined as
γ′(x1, . . . , xi−1, xi+1, . . . , xr) = γ(x1, . . . , xi−1, a, xi+1, . . . , xr). Finally, a minimisation of γ at coordinate i
is the (r − 1)-ary weighted relation defined as γ′(x1, . . . , xi−1, xi+1, . . . , xr) = minxi∈D γ(x1, . . . , xr).

5

A binary weighted relation γ is a join of two binary weighted relations γ1 and γ2 if it can be written as
γ(x, y) = minz∈D(γ1(u1, v1) + γ2(u2, v2)) where {u1, v1} = {x, z}, {u2, v2} = {y, z}.

Lemma 9. Let us denote by ρD′ the unary relation corresponding to a subdomain D′ ⊆ D (i.e. ρD′(x) = 0
if x ∈ D′ and ρD′(x) =∞ otherwise).

For any language Γ, wClonep(Γ) is closed under addition of unary weighted relations to weighted relations
of arbitrary arity, minimisation, and join. If ρD′ ∈ wClonep(Γ), it is closed under domain restriction to
D′ ⊆ D. If ρ{a} ∈ wClonep(Γ), it is closed under pinning to a ∈ D.

Proof. A unary weighted relation γ imposed on variable xi can be planarly expressed by adding a parallel
edge xi−xi+1 and a self-loop at xi hidden in the just formed face. Minimisation over xi can be achieved by
adding an edge in the outer face between vertices xi−1 and xi+1, thus hiding vertex xi. A join γ(x, y) can
be achieved by adding two edges between x and y to hide z from the outer face (similarly as in Figure 2).
Domain restriction is planarly expressible by imposing unary relation ρD′ on variable xi; pinning can be
expressed by domain restriction to {a} and subsequent minimisation at coordinate i.

Proving results for conservative languages in Section 4, we will need only a limited subset of wClonep(Γ)
which is defined as follows.

Definition 10. For any valued constraint language Γ on D, we define Γ∗ to be the smallest set containing
Γ, all unary weighted relations and the binary equality relation on D, and closed under operators Feas and
Opt, addition of unary weighted relations to weighted relations of arbitrary arity, minimisation, and join.

Set Γ∗ is also closed under domain restriction and pinning, as these operations can be achieved by adding
unary weighted relations and minimisation.

Note that for conservative languages we have Γ∗ ⊆ wClonep(Γ), as any unary weighted relation can be
obtained from the set of all {0, 1}-valued unary weighted relations by addition of unary weighted relations,
scaling, addition of constants, and operator Opt. By Theorem 7, Γ∗ has the same complexity as Γ.

Lemma 12 will be useful for proving results about both Boolean and conservative valued constraint
languages. Before its statement, we need to define 2-decomposable relations and introduce some notation.

Definition 11. Let ρ be an r-ary relation. For any i, j ∈ {1, . . . , r}, we will denote by Pri,j(ρ) the projection
of ρ on coordinates i and j, i.e. the binary relation defined as

(ai, aj) ∈ Pri,j(ρ) ⇐⇒ (∃x ∈ ρ) xi = ai ∧ xj = aj . (1)

Relation ρ is 2-decomposable if

x ∈ ρ ⇐⇒
∧

1≤i,j≤r

(xi, xj) ∈ Pri,j(ρ) . (2)

Note that all unary and binary relations are 2-decomposable.
For any r-tuple z, we denote its ith component by zi. Let I ⊆ {1, . . . , r} be a subset of coordinates, we

denote by zI the projection of z onto I. For any partition of coordinates I, J ⊆ {1, . . . , r}, we then write ·
for the inverse operation, i.e. zI · zJ = z.

Lemma 12. Let γ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of its coordinates. If
x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (3)

then there exist coordinates i ∈ I, j ∈ J and a binary weighted relation γi,j ∈ {γ}∗ such that (xi, xj), (yi, yj) ∈
Feas(γi,j) and

γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) + γi,j(yi, xj) . (4)

Moreover, if every relation in {γ}∗ is 2-decomposable, then xI · yJ ∈ Feas(γ) implies (xi, yj) ∈ Feas(γi,j)
and yI · xJ ∈ Feas(γ) implies (yi, xj) ∈ Feas(γi,j).

6

Proof. We prove the lemma by induction on the arity of γ. If |I| = 0, |J | = 0, or |I| = |J | = 1, the claim
holds trivially. Otherwise we may without loss of generality assume that |J | ≥ 2. Let k ∈ J be an arbitrary
coordinate and define J ′ = J \ {k}. We extend our notation · to I, J ′, {k} as a finer partition of {1, . . . , r},
and write for instance x as xI · xJ′ · xk.

We first consider the case when xI ·yJ′ · xk,yI ·xJ′ · yk 6∈ Feas(γ). We restrict the domain at coordinate
k to {xk, yk} and minimise over it to obtain an (r − 1)-ary weighted relation γ′ with coordinates partition
I, J ′. It holds γ′(xI · xJ′) ≤ γ(x), γ′(yI · yJ′) ≤ γ(y), γ′(xI · yJ′) = γ(xI · yJ), γ′(yI · xJ′) = γ(yI · xJ), and
the claim follows directly from the induction hypothesis for γ′.

We may now assume without loss of generality that yI · xJ′ · yk ∈ Feas(γ). If

γ(xI · xJ′ · xk) + γ(yI · xJ′ · yk) < γ(xI · xJ′ · yk) + γ(yI · xJ′ · xk) , (5)

we pin γ at every coordinate j′ ∈ J ′ to its respective label xj′ to obtain a weighted relation γ′ with
coordinates partition I, {k}. The claim then follows from the induction hypothesis for γ′. Note that xI ·yJ ∈
Feas(γ) implies (xi, yk) ∈ Pri,k(Feas(γ)) for all i ∈ I; together with (xj′ , yk) ∈ Prj′,k(Feas(γ)), (xi, xj′) ∈
Pri,j′(Feas(γ)) for all i ∈ I, j′ ∈ J ′ (as yI ·xJ′ · yk,x ∈ Feas(γ)) this implies xI ·xJ′ · yk ∈ Feas(γ) if Feas(γ)
is 2-decomposable.

If (5) does not hold, we have xI · xJ′ · yk ∈ Feas(γ), and therefore

γ(xI · xJ′ · yk) + γ(yI · yJ′ · yk) < γ(xI · yJ′ · yk) + γ(yI · xJ′ · yk) , (6)

otherwise the sum of negated (5) and (6) would contradict (3). We resolve this case analogously to the
previous one, this time pinning γ at coordinate k to yk.

2.3. Algebraic Properties

We apply a k-ary operation f : Dk → D to k r-tuples componentwise; that is, if x1 = (x1
1, . . . , x

1
r),x

2 =
(x2

1, . . . , x
2
r), . . . ,x

k = (xk1 , . . . , x
k
r), then

f(x1, . . . ,xk) = (f(x1
1, x

2
1, . . . , x

k
1), f(x1

2, x
2
2, . . . , x

k
2), . . . , f(x1

r, x
2
r, . . . , x

k
r)) .

The following notion is at the heart of the algebraic approach to decision CSPs [21].

Definition 13. Let γ be a weighted relation on D. A k-ary operation f : Dk → D is a polymorphism of γ
(and γ is invariant under or admits f) if, for every x1, . . . ,xk ∈ Feas(γ), we have f(x1, . . . ,xk) ∈ Feas(γ).
We say that f is a polymorphism of a language Γ if it is a polymorphism of every γ ∈ Γ. We denote by
Pol(Γ) the set of all polymorphisms of Γ.

A k-ary projection is an operation of the form π
(k)
i (x1, . . . , xk) = xi for some 1 ≤ i ≤ k. Projections are

(trivial) polymorphisms of all valued constraint languages.
The following notion, which involves a collection of k k-ary polymorphisms, played an important role in

the complexity classification of Boolean valued constraint languages [4].

Definition 14. Let γ be a weighted relation on D. A list 〈f1, . . . , fk〉 of k-ary polymorphisms of γ is a
k-ary multimorphism of γ (and γ admits 〈f1, . . . , fk〉) if, for every x1, . . . ,xk ∈ Feas(γ), we have

k∑
i=1

γ(fi(x
1, . . . ,xk)) ≤

k∑
i=1

γ(xi) . (7)

We say that 〈f1, . . . , fk〉 is a multimorphism of a language Γ if it is a multimorphism of every γ ∈ Γ.

It is known that weighted relational clones preserve polymorphisms and multimorphisms [16] and thus
planar weighted relational clones do as well.

Example 15. The class of submodular functions on D = {0, 1} [40] can be defined as the valued constraint
language Γsub that admits 〈min,max〉 as a multimorphism; that is, for every γ ∈ Γsub, we have γ(min(x,y))+
γ(max(x,y)) ≤ γ(x) + γ(y).

A ternary operation f : D3 → D is called a majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x
for all x, y ∈ D, and a minority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D.

7

3. Boolean Valued CSPs

In this section, we will consider only languages on a Boolean domain D = {0, 1}. Our first result is that
self-complementarity is necessary for planar-tractability of intractable Boolean languages.

Theorem 16. Let Γ be a Boolean valued constraint language that is intractable. If Γ is not self-complementary
then it is planarly-intractable.

We start with some notation for important operations on D. For any a ∈ D, ca is the constant unary
operation such that ca(x) = a for all x ∈ D. Operation ¬ is the unary negation, i.e. ¬(0) = 1 and ¬(1) = 0.
Binary operation min (max) is the minimum (maximum) operation with respect to the order 0 < 1. Ternary
operation Mn (Mj) is the unique minority (majority) operation on D.

Next we define some useful relations. For any a ∈ D, we denote by ρa the unary constant relation {(a)}.
Relation ρ 6= is the binary disequality relation, i.e. ρ 6= = {(0, 1), (1, 0)}. Ternary relation ρ1-in-3 corresponds to
the 1-in-3 Positive 3-Sat problem, i.e. ρ1-in-3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Weighted relations γ0, γ1, γ6=
are defined as soft-constraint variants of ρ0, ρ1, ρ6= assigning value 0 to allowed tuples and 1 to disallowed
tuples.

Note that Γ is self-complementary if, and only if, Γ admits multimorphism 〈¬〉. The proof of Theorem 16
is based on Lemmas 20–23 proved below.

We will need the following definition and an easy lemma.

Definition 17. Let γ be an r-ary weighted relation and i ∈ {1, . . . , r}. The =-restriction of γ at i is
the r-ary weighted relation γ′ such that γ′(x) = γ(x) if xi = xi+1 (where xr+1 = x1) and γ′(x) = ∞
otherwise. The 6=-restriction of γ at i is the r-ary weighted relation γ′ such that γ′(x) = γ(x) if xi 6= xi+1

and γ′(x) =∞ otherwise.
We will denote by ⊕ the addition modulo 2 operation on {0, 1} and its extension to tuples. Let 0r

(1r) be the zero (one) r-tuple. The negation of an r-tuple x is x = x ⊕ 1r. Let eri be the r-tuple with
a one at coordinate i and zeros elsewhere. The twist of γ at i is the r-ary weighted relation γ′ defined as
γ′(x) = γ(x⊕ eri).

In other words, a twist switches roles of labels 0 and 1 at a single coordinate.

Example 18. Let ρ be the ternary “not-all-equal” relation from Section 1; i.e., ρ(x, y, z) =∞ if x = y = z
and ρ(x, y, z) = 0 otherwise. The twist of ρ at the first coordinate is the ternary relation ρ′ defined by
ρ′(x, y, z) =∞ if x = 0 and y = z = 1, or x = 1 and y = z = 0; in all other cases ρ′(x, y, z) = 0.

Lemma 19. Let Γ be a valued constraint language and γ ∈ wClonep(Γ) a weighted relation. Then

• all =-restrictions of γ belong to wClonep(Γ),

• if ρ 6= ∈ wClonep(Γ), all 6=-restrictions and twists of γ belong to wClonep(Γ),

• if ρ0, ρ1 ∈ wClonep(Γ), all pinnings of γ belong to wClonep(Γ).

Proof. Both =-restriction and 6=-restriction are planarly expressible by adding a parallel edge between
vertices xi, xi+1 and imposing on them the binary equality or disequality relation respectively. To implement
a twist, we introduce a new variable x′i in the outer face, connect it with xi by two parallel edges, impose
the binary disequality relation on xi and x′i, and hide vertex xi by adding edges xi−1 − x′i and xi+1 − x′i.
Pinnings belong to wClonep(Γ) by Lemma 9.

Lemma 20. Let Γ be a valued constraint language that admits neither of the multimorphisms 〈c0〉, 〈c1〉.
Then ρ0, ρ1 ∈ wClonep(Γ) or ρ 6= ∈ wClonep(Γ).

Proof. If Γ does not admit 〈c0〉, it contains a weighted relation assigning to the zero tuple a value larger
than the optimum. Applying Opt, we have that wClonep(Γ) contains a relation that is not invariant under
c0. We denote by ρ such a relation of minimum arity and by r its arity. Relation ρ is non-empty, but 0r 6∈ ρ.
If r = 1, then ρ = ρ1 ∈ wClonep(Γ).

8

Otherwise, eri ∈ ρ for all i, because the minimisation of ρ over coordinate i produces a non-empty
relation invariant under c0 (by the choice of ρ) and hence containing 0r−1. If r ≥ 3, the =-restriction of ρ at
coordinate 2 followed by the minimisation results in an (r− 1)-ary relation ρ′ with er−1

1 ∈ ρ′ and 0r−1 6∈ ρ′,
which contradicts the choice of ρ. Therefore, r = 2. If (1, 1) ∈ ρ, we would again get a contradiction by
applying the =-restriction and minimisation at coordinate 1. Hence we have ρ = ρ 6= ∈ wClonep(Γ).

By the analogous argument for multimorphism 〈c1〉 we get ρ0 ∈ wClonep(Γ) or ρ 6= ∈ wClonep(Γ).

Lemma 21. Let Γ be a valued constraint language that admits neither of the multimorphisms 〈min,min〉,
〈max,max〉, 〈min,max〉. If ρ0, ρ1 ∈ wClonep(Γ), then ρ 6= ∈ wClonep(Γ).

Proof. If min 6∈ Pol(wClonep(Γ)), we choose a minimum-arity relation ρ′∨ ∈ wClonep(Γ) that is not invariant
under min; its arity r is at least 2. Let x,y ∈ ρ′∨ be r-tuples such that min(x,y) 6∈ ρ′∨. Tuples x,y differ
at every coordinate, otherwise we would obtain a contradiction with the choice of ρ′∨ by taking a pinning
instead. Therefore, min(x,y) = 0r 6∈ ρ′∨ and, by the same argument as in Lemma 20, we have eri ∈ ρ′∨ for
all i. But then r = 2, otherwise we could take as x,y tuples er2, e

r
3 which agree at the first coordinate, and

obtain a smaller counterexample by pinning. Hence we have ρ 6= ⊆ ρ′∨ ⊆ ρ 6= ∪ {(1, 1)}.
If min ∈ Pol(wClonep(Γ)), then we choose a minimum-arity weighted relation γ ∈ wClonep(Γ) that does

not admit multimorphism 〈min,min〉 and denote its arity by r. Let x,y ∈ Feas(γ) be r-tuples such that
γ(x) + γ(y) < 2 · γ(min(x,y)). Without loss of generality, we have γ(x) < γ(min(x,y)) and may assume
that y = min(x,y). Again, x and y must differ at every coordinate, which implies x = 1r,y = 0r. If r ≥ 2,
we would obtain a contradiction by applying the =-restriction and minimisation at coordinate 1. Hence,
r = 1 and by scaling and adding a constant to γ we get γ1 ∈ wClonep(Γ).

Analogously, if max 6∈ Pol(wClonep(Γ)), we get ρ′↑ ∈ wClonep(Γ) where ρ′↑ is a binary relation such that
ρ 6= ⊆ ρ′↑ ⊆ ρ 6= ∪ {(0, 0)}. Otherwise, γ0 ∈ wClonep(Γ). It holds

ρ 6=(x, y) = ρ′∨(x, y) + ρ′↑(x, y) (8)

= Opt (ρ′∨(x, y) + γ0(x) + γ0(y)) (9)

= Opt
(
ρ′↑(x, y) + γ1(x) + γ1(y)

)
, (10)

so ρ 6= can be constructed with a planar gadget if at least one of min, max is not a polymorphism of
wClonep(Γ).

Finally, consider the case when min,max ∈ Pol(wClonep(Γ)) and hence γ0, γ1 ∈ wClonep(Γ). Set
wClonep(Γ) is then a conservative language, so we have wClonep(Γ)∗ = wClonep(Γ). We choose a minimum-
arity weighted relation γ ∈ wClonep(Γ) that does not admit multimorphism 〈min,max〉 and denote its arity
by r. Let x,y ∈ Feas(γ) be tuples such that γ(x) + γ(y) < γ(min(x,y)) + γ(max(x,y)). Note that
min(x,y),max(x,y) ∈ Feas(γ). By the choice of γ, tuples x,y must differ at every coordinate, and hence
y = x, min(x,y) = 0r, max(x,y) = 1r. We partition coordinates {1, . . . , r} into I = {i | xi = 0} and
J = {j | xj = 1}. By Lemma 12, {γ}∗ ⊆ wClonep(Γ) contains a binary weighted relation that does not
admit multimorphism 〈min,max〉, and hence r = 2. It holds γ(0, 1) + γ(1, 0) < γ(0, 0) + γ(1, 1), where all
the values are finite. We may assume that γ(0, 0) + γ(1, 1)− γ(0, 1)− γ(1, 0) = 2 and γ(0, 0) = 1 (this can
be achieved by scaling and adding a constant). We define unary weighted relations µ1, µ2 ∈ wClonep(Γ) as
µ1(0) = µ2(0) = 0, µ1(1) = −γ(1, 0), µ2(1) = −γ(0, 1). By adding µ1 and µ2 to γ at the first and second
coordinate respectively we get γ 6=, and therefore ρ 6= = Opt(γ 6=) ∈ wClonep(Γ).

Lemma 22. Let Γ be a valued constraint language that does not admit multimorphism 〈¬〉. If ρ 6= ∈
wClonep(Γ), then ρ0, ρ1 ∈ wClonep(Γ).

Proof. We choose a minimum-arity weighted relation γ ∈ wClonep(Γ) that does not admit multimorphism
〈¬〉 and denote its arity by r. Let x ∈ Feas(γ) be an r-tuple such that γ(x) 6= γ(x). It must hold r = 1,
otherwise we would get a smaller counterexample by applying the =-restriction or 6=-restriction at the first
coordinate (depending on whether x1 = x2 or x1 6= x2) followed by minimisation. Hence, Opt(γ) = ρ0 or
Opt(γ) = ρ1. Say Opt(γ) = ρ0, the other case is analogous. Then the twist γ′(x) = γ(x ⊕ 1) of γ satisfies
Opt(γ′) = ρ1.

9

Lemma 23. Let Γ be a valued constraint language that admits neither of the multimorphisms 〈Mn,Mn,Mn〉,
〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. If ρ0, ρ1, ρ6= ∈ wClonep(Γ), then ρ1-in-3 ∈ wClonep(Γ).

Proof. If Mn 6∈ Pol(wClonep(Γ)), we choose a minimum-arity relation ρ ∈ wClonep(Γ) that is not invariant
under Mn. Its arity r must be at least 2; let us first assume r ≥ 3. For any triple of r-tuples from ρ that
agree at some coordinate, the r-tuple obtained by applying Mn to them also belongs to ρ (otherwise we
would get a contradiction with the choice of ρ by taking a pinning instead). Let x,y, z ∈ ρ be r-tuples
such that Mn(x,y, z) 6∈ ρ. Without loss of generality, we may assume that Mn(x,y, z) = 0r (this can be
achieved with twists). By the same argument as in Lemma 20, we have eri ∈ ρ for all i. Let w ∈ ρ be
a tuple with the minimum even number of ones (such a tuple exists as at least one of x,y, z contains an
even number of ones). If w 6= 1r, there are distinct coordinates i, j, k with wi = wj = 1, wk = 0. Because
w, eri , e

r
j agree at coordinate k, tuple Mn(w, eri , e

r
j) belongs to ρ. However, it has two fewer ones than

w, which is a contradiction. Hence, w = 1r and r ≥ 4. But then Mn(1r, er3, e
r
4) 6∈ ρ (as it contains an

even number of ones), and we obtain a smaller counterexample by taking the =-restriction of ρ at the first
coordinate followed by minimisation. Therefore, r = 2 and |ρ| = 3. Using twists, we can get from ρ relation
ρ↑ = {(0, 0), (0, 1), (1, 0)} ∈ wClonep(Γ).

If Mj 6∈ Pol(wClonep(Γ)), we choose a minimum-arity relation ρ′1-in-3 ∈ wClonep(Γ) that is not invariant
under Mj. Its arity r must be at least 3 since every unary and binary relation admits Mj as a polymorphism.
By the same argument as for Mn, we may assume 0r 6∈ ρ′1-in-3, and it can be shown that eri ∈ ρ′1-in-3 for
all i. If r ≥ 4, tuples er1, e

r
2, e

r
3 and Mj(er1, e

r
2, e

r
3) = 0r agree at coordinate 4; we then obtain a smaller

counterexample by pinning. Therefore, r = 3.
If neither of Mn,Mj is a polymorphism of wClonep(Γ), we have

ρ1-in-3(x, y, z) = ρ′1-in-3(x, y, z) + ρ↑(x, y) + ρ↑(y, z) + ρ↑(z, x) , (11)

which can be implemented in a planar way, and hence ρ1-in-3 ∈ wClonep(Γ). Otherwise, Γ is not a crisp lan-
guage (i.e. not a {0,∞}-valued language), because that would make it admit multimorphism 〈Mn,Mn,Mn〉
or 〈Mj,Mj,Mj〉. Let µ ∈ wClonep(Γ) be a minimum-arity non-crisp weighted relation and x,y ∈ Feas(µ)
tuples such that µ(x) 6= µ(y). Tuples x,y differ at every coordinate (otherwise we could obtain a smaller
counterexample by pinning), and hence y = x. Moreover, µ is unary, otherwise we could apply the =-
restriction or 6=-restriction at the first coordinate (depending on whether x1 = x2 or x1 6= x2) followed by
minimisation to obtain a smaller counterexample. If µ(0) < µ(1), we get γ0 ∈ wClonep(Γ) by scaling µ and
adding a constant, and γ1 ∈ wClonep(Γ) by twisting γ0; the case µ(0) > µ(1) is symmetric. It holds

ρ1-in-3(x, y, z) = Opt (ρ↑(x, y) + ρ↑(y, z) + ρ↑(z, x) + γ1(x) + γ1(y) + γ1(z)) (12)

= Opt (ρ′1-in-3(x, y, z) + γ0(x) + γ0(y) + γ0(z)) . (13)

Both can be implemented planarly, and therefore ρ1-in-3 ∈ wClonep(Γ) if exactly one of Mn,Mj is a poly-
morphism of wClonep(Γ).

Finally, we consider the case when both Mn,Mj ∈ Pol(wClonep(Γ)). Let γ ∈ wClonep(Γ) be an r-ary
weighted relation of the minimum arity for which Inequality (7) does not hold as equality for multimorphism
〈Mj,Mj,Mn〉. Let x,y, z ∈ Feas(γ) be r-tuples that violate the equality. They do not agree at any coordinate
(otherwise we could obtain a smaller counterexample by pinning), and hence Mj(x,y, z) and Mn(x,y, z)
differ everywhere. Without loss of generality, we may assume that Mj(x,y, z) = 0r and Mn(x,y, z) = 1r

(this can be achieved with twists) and z 6= 0r. Note that 0r,1r ∈ Feas(γ) because Mj,Mn are polymorphisms
of γ. Tuples x,y,0r agree at all coordinates i where zi = 1, and hence they satisfy (7) as equality, i.e.

γ(x) + γ(y) + γ(0r) = 2 · γ(Mj(x,y,0r)) + γ(Mn(x,y,0r)) = 2 · γ(0r) + γ(z) . (14)

Because γ(x)+γ(y)+γ(z) 6= 2·γ(0r)+γ(1r), this implies γ(z)+γ(z) 6= γ(0r)+γ(1r). We are going to apply
Lemma 12 for this disequality. Language wClonep(Γ) is conservative (as it contains both γ0, γ1), and hence
wClonep(Γ)∗ = wClonep(Γ). It admits a majority polymorphism, therefore every relation in wClonep(Γ)
is 2-decomposable [41]. We partition coordinates {1, . . . , r} into I = {i | zi = 0} and J = {j | zj = 1}.

10

By Lemma 12, there is a binary weighted relation γ′ ∈ {γ}∗ ⊆ wClonep(Γ) with Feas(γ′) = D2 and
γ′(0, 1) + γ′(1, 0) 6= γ′(0, 0) + γ′(1, 1). We may assume that γ′(0, 1) + γ′(1, 0) < γ′(0, 0) + γ′(1, 1), otherwise
we apply a twist. As in the proof of Lemma 21, weighted relation γ 6= can be obtained from γ′. Then we
planarly construct ρ1-in-3 ∈ wClonep(Γ) as

ρ1-in-3(x, y, z) = Opt (γ 6=(x, y) + γ 6=(y, z) + γ 6=(z, x) + γ0(x) + γ0(y) + γ0(z)) . (15)

Proof (of Theorem 16). Since Γ is intractable we know, by [4, Theorem 7.1], that Γ admits neither of the
multimorphisms 〈c0〉, 〈c1〉, 〈min,min〉, 〈max,max〉, 〈min,max〉, 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉.
By assumption, Γ is not self-complementary and hence does not admit the 〈¬〉 multimorphism.

By Lemmas 20, 21, and 22, we have ρ0, ρ1, ρ6= ∈ wClonep(Γ) and hence by Lemma 23 ρ1-in-3 ∈
wClonep(Γ). Planar 1-in-3 Positive 3-Sat problem is NP-complete [42], and therefore Γ is planarly-
intractable by Theorem 7.

4. Conservative Valued CSPs

A valued constraint language Γ is called conservative if Γ includes all {0, 1}-valued unary weighted
relations. As our second result, we prove that planarity does not add any tractable cases for conservative
valued constraint languages.

Theorem 24. Let Γ be an intractable conservative valued constraint language. Then Γ is planarly-intractable.

Consequently, we obtain a complexity classification of all conservative valued constraint languages in
the planar setting, thus sharpening the classification of conservative valued constraint languages [10, 11].
As mentioned in Section 1, for Boolean domains Theorem 24 follows from Theorem 16. Thus, the only
tractable Boolean conservative languages in the planar setting are given by the multimorphisms 〈min,max〉
and 〈Mj,Mj,Mn〉 [4].

We now define certain special types of multimorphisms.
A k-ary operation f : Dk → D if called conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk} for every x1, . . . , xk ∈

D. A multimorphism 〈f1, . . . , fk〉 is called conservative if applying 〈f1, . . . , fk〉 to (x1, . . . , xk) returns a
permutation of (x1, . . . , xk).

Definition 25. A binary multimorphism 〈f, g〉 of Γ is called a symmetric tournament pair (STP) if it is
conservative and both f and g are commutative operations.

It was shown in [43] that languages admitting an STP multimorphism are tractable.

Definition 26. A ternary multimorphism 〈f, g, h〉 is called an MJN if f and g are (possibly equal) majority
operations and h is a minority operation.

It was shown in [10] that languages admitting an MJN multimorphism are tractable.

Theorem 27 ([10]). Let Γ be a conservative valued constraint language on D. Then either Γ admits a
conservative binary multimorphism 〈f, g〉 and a conservative ternary multimorphism 〈f ′, g′, h′〉 and there is
a family M of 2-element subsets of D, such that

• for every {a, b} ∈M , 〈f, g〉 restricted to {a, b} is a symmetric tournament pair, and

• for every {a, b} 6∈M , 〈f ′, g′, h′〉 restricted to {a, b} is an MJN multimorphism,

in which case Γ is tractable, or else Γ is intractable.

11

The idea of the proof of Theorem 27 is as follows: given a conservative valued constraint language Γ,
we define a certain graph GΓ whose vertices are pairs of different labels from D and an edge (a, b) − (c, d)
is present if there is a binary weighted relation γ ∈ wClone(Γ) that is “non-submodular with respect to the
order a < b and c < d”. The edges of GΓ are then classified as soft and hard. It is shown that a soft self-loop
implies intractability of Γ. Otherwise, the vertices of GΓ are partitioned into M ∪M , where M denotes
the set of loopless vertices and M denotes the rest (i.e. vertices with hard loops). It is then shown that
GΓ restricted to M is bipartite, which is in turn used to construct a binary multimorphism and a ternary
multimorphism of Γ such that the binary multimorphism is an STP on M and the ternary multimorphism
is an MJN on M . (Proving that the constructed objects are multimorphisms of Γ is the most technical part
of the proof.) Any such language is then tractable via an involved algorithm from [10] that relies on [43], or
by an LP relaxation [11].

Our approach is to follow the above-described proof and adapt it to the planar setting. We remark that
similar graphs to GΓ have been important in other studies of (V)CSPs. In particular, in the classification of
conservative CSPs [13] and in the classification of Minimum Cost Homomorphism problems [44]. In [13], the
graph has labels as vertices and three types of edges depending on three types of polymorphisms. In [44],
the graph has, as in our case, pairs of labels as vertices but the edges of the graph are defined, informally,
via a min/max polymorphism rather than a 〈min,max〉 multimorphism. Also, edges in [44] are not classified
as soft or hard.

It is natural to replace wClone(Γ) by wClonep(Γ) in the definition of GΓ. But this simple change does
not immediately yield the desired result. There are two main obstacles. First, the proof of Theorem 27
from [10] heavily relies on [44], which guarantees, unless in an NP-hard case, the existence of a majority
polymorphism and hence that the language is 2-decomposable. Second, some of the gadgets (and in particular
the “i-expansion” from [10, Section 6.4]) are not necessarily planar. In more detail, [44] builds a similar
graph to ours (as described above) and argues that, unless in an NP-hard case, this graph is bipartite (part
of our GΓ will also be bipartite). This property is then used in [44] to argue about the existence of a majority
polymorphism. However, this is proved in [44] using clones and depends on the Galois connection between
clones and relational co-clones; such a connection is not known for planar expressibility!

To avoid these obstacles, we modify, significantly simplify, and generalise the proof so that it works in
the planar setting. The key changes are the following. (i) We define our graph based on a language closure
Γ∗, which is a subset of the planar weighted relational clone of a conservative language. (ii) We do not
rely on Takhanov’s result on the existence of a majority polymorphism [44] but instead prove directly that
(the closure of) Γ is 2-decomposable. (iii) We define different STP and MJN multimorphisms that allow us
to simplify the proof that these are indeed multimorphisms of Γ. In particular, we will prove modularity
of weighted relations on M and show that the ternary MJN multimorphism satisfies Inequality (7) with
equality, thus obtaining a better structural understanding of tractable languages. The main simplification
is that we define MJN as close to projection operations as possible, and in particular not depending on the
STP multimorphism as in [10].

We remark that it is not clear how to derive non-trivial properties of graph GΓ used in our proofs from
the related graph defined in [10] apart from the obvious fact that our graph is a subgraph of the graph
from [10]. We believe that with more work one can derive that the two graphs are in fact the same using
techniques and proofs from this paper, but have not done so since our goal was to obtain a complexity
classification.

The rest of this section is devoted to proving Theorem 24.

Definition 28. Let Γ be a conservative language. We define an undirected graph GΓ on vertices (a, b) for
all a, b ∈ D, a 6= b. For any vertex v = (a, b), we will denote by v vertex (b, a). Graph GΓ is allowed to
have self-loops. It contains edge (a1, b1) − (a2, b2) if there is a binary weighted relation γ ∈ Γ∗ such that
(a1, b2), (b1, a2) ∈ Feas(γ) and

γ(a1, b2) + γ(b1, a2) < γ(a1, a2) + γ(b1, b2) . (16)

If there exists such a weighted relation γ with at least one of (a1, a2), (b1, b2) belonging to Feas(γ), we will
call the edge soft, otherwise the edge is hard. We denote by M and M the set of vertices with and without

12

self-loops respectively.

The following lemma gives a useful alternative characterisation of an edge in GΓ.

Lemma 29. Graph GΓ contains edge (a1, b1) − (a2, b2) if, and only if, binary relation {(a1, b2), (b1, a2)}
belongs to Γ∗. The edge is soft if, and only if, at least one of binary relations {(a1, a2), (a1, b2), (b1, a2)},
{(b1, b2), (a1, b2), (b1, a2)} belongs to Γ∗.

Proof. Both if implications follow directly from the definition of GΓ; we need to prove the only if part. Let
γ be a weighted relation establishing edge (a1, b1)− (a2, b2) such that Feas(γ) ⊆ {a1, b1}×{a2, b2} (this can
be always achieved by domain restriction). Note that we may add to γ any unary finite-valued weighted
relation without invalidating (16). We choose any λ ∈ Q such that λ < γ(b1, b2) and γ(a1, b2) + γ(b1, a2)−
λ < γ(a1, a2). Note that such λ exists due to (16). We define unary weighted relations γ1, γ2 such that
γ1(a1) = λ − γ(a1, b2), γ2(a2) = λ − γ(b1, a2), and γ1(x) = γ2(x) = 0 otherwise. Now consider binary
weighted relation γ′ defined as γ′(x, y) = γ(x, y) + γ1(x) + γ2(y). We have γ′(a1, b2) = γ′(b1, a2) = λ and
λ < γ′(a1, a2), γ′(b1, b2), so then Opt(γ′) = {(a1, b2), (b1, a2)} ∈ Γ∗.

If the edge is soft and (a1, a2), (b1, b2) ∈ Feas(γ), we proceed as above with λ = γ(b1, b2), so that
Opt(γ′) = {(b1, b2), (a1, b2), (b1, a2)} ∈ Γ∗. Otherwise we simply take Feas(γ) ∈ Γ∗.

We show that the absence of soft self-loops is a necessary condition for planar tractability.

Theorem 30. If GΓ has a soft self-loop, language Γ is planarly-intractable.

Proof. Let (a, b) be a vertex of GΓ with a soft self-loop. Without loss of generality, we have that ρ =
{(a, a), (a, b), (b, a)} ∈ Γ∗ by Lemma 29. We denote by γa, γb the unary weighted relations defined as
γa(a) = γb(b) = 0, γa(b) = γb(a) = 1, and γa(x) = γb(x) = ∞ for x 6∈ {a, b}. Set Γ′ = {ρ, γa, γb} ⊆ Γ∗ can
be viewed as a conservative language over a Boolean domain {a, b}. By [4, Theorem 7.1], Γ′ is intractable (in
particular, Γ′ does not fall into either of the two tractable cases for Boolean conservative valued constraint
languages [4] corresponding to the 〈min,max〉 and 〈Mj,Mj,Mn〉 multimorphisms). Observe that Γ′ is not
self-complementary since neither of its weighted relations is self-complementary. By Theorem 16, Γ′ is
planarly-intractable and thus, by Theorem 7, so is Γ.

It remains to show that this condition is also sufficient.

Theorem 31. If GΓ has no soft self-loop, then Γ admits a binary multimorphism 〈u,t〉 that is an STP on
M , and a ternary multimorphism 〈Mj1,Mj2,Mn3〉 that is an MJN on M .

In order to prove Theorem 31, we now introduce several lemmas. From now on we will assume that GΓ

has no soft self-loop.

Lemma 32. For any vertex v, graph GΓ contains edge v − v. There is no edge between M and M , no odd
cycle in M , and no soft edge in M .

Proof. As the binary equality relation belongs to Γ∗, we have edge v − v for all vertices v.
Consider any sequence of vertices v1, v2, v3, v4 such that there is an edge between every two consecutive

ones, and denote vi = (ai, bi). By Lemma 29, there exist binary relations ρi = {(ai, bi+1), (bi, ai+1)} ∈ Γ∗ for
i ∈ {1, 2, 3}. Their join equals {(a1, b4), (b1, a4)} ∈ Γ∗, and hence GΓ contains edge v1 − v4. If any of edges
v1−v2, v2−v3, v3−v4 is soft, we can replace the corresponding relation ρi with {(ai, ai+1), (ai, bi+1), (bi, ai+1)}
or {(bi, bi+1), (ai, bi+1), (bi, ai+1)} to show that v1 − v4 is also soft.

Suppose that there is an edge between s ∈ M and t ∈ M . Then we have edges s − t, t − t, t − s, and
hence also self-loop s− s, which is a contradiction.

If there is an odd cycle in M , let us choose a shortest one and denote its vertices v1, . . . , vk (k ≥ 3). We
have a sequence of adjacent vertices vk, v1, v2, v3, and hence v3 and vk are also adjacent. But that means
there is a shorter odd cycle (or a self-loop) v3, . . . , vk; a contradiction.

Finally, suppose that s, t ∈M and edge s− t is soft. Then we have edges s− t, t− t, t− s, and hence a
soft self-loop at s, which is a contradiction.

13

Lemma 33. Every relation in Γ∗ is 2-decomposable.

Proof. Let ρ ∈ Γ∗ be an r-ary relation. By definition, x ∈ ρ implies
∧

1≤i,j≤r(xi, xj) ∈ Pri,j(ρ). We prove the
converse implication by induction on r. If r ≤ 2, relation ρ is trivially 2-decomposable. Let r = 3. Suppose
for the sake of contradiction that (x1, x2, x3) 6∈ ρ even though (y1, x2, x3), (x1, y2, x3), (x1, x2, y3) ∈ ρ for
some y1, y2, y3 ∈ D. Let ρ1 ∈ Γ∗ be the binary relation obtained from ρ by pinning it at the first coordinate
to label x1; we have (x2, y3), (y2, x3) ∈ ρ1, (x2, x3) 6∈ ρ1, and thus graph GΓ contains edge (x2, y2)− (x3, y3).
Analogously, the graph contains edges (x3, y3)− (x1, y1) and (x1, y1)− (x2, y2). This is an odd cycle, so it
must hold (x1, y1), (x2, y2), (x3, y3) ∈M . Let γ be a unary weighted relation with γ(x1) = 0, γ(y1) = 1 and
γ(z) =∞ for all z ∈ D \ {x1, y1}. By adding γ to ρ at the first coordinate and then minimising over it we
show that edge (x2, y2)− (x3, y3) is soft, which is a contradiction.

It remains to prove the lemma for r ≥ 4. Let ρ1 ∈ Γ∗ be the relation obtained from ρ by minimisation over
the first coordinate. Relation ρ1 is 2-decomposable by the induction hypothesis, so (x2, . . . , xr) ∈ ρ1, and
hence (y1, x2, . . . , xr) ∈ ρ for some y1 ∈ D. Analogously, we have (x1, y2, x3, . . . , xr), (x1, x2, y3, x4, . . . , xr) ∈
ρ for some y2, y3 ∈ D. Pinning ρ at every coordinate k ≥ 4 to its respective label xk gives a ternary 2-
decomposable relation ρ′ such that (xi, xj) ∈ Pri,j(ρ

′) for all i, j ∈ {1, 2, 3}. Therefore, (x1, x2, x3) ∈ ρ′ and
x ∈ ρ.

The following lemma involves an extension of the definition of an edge in GΓ to non-binary weighted
relations.

Lemma 34. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of its coordinates.
If x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (17)

then graph GΓ contains edge (xi, yi)− (yj , xj) for some i ∈ I, j ∈ J . If at least one of xI ·yJ ,yI ·xJ belongs
to Feas(γ), the edge is soft.

Proof. By Lemma 12, there are coordinates i ∈ I, j ∈ J and a binary weighted relation γi,j ∈ Γ∗ such that
(xi, xj), (yi, yj) ∈ Feas(γi,j) and γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) + γi,j(yi, xj), so graph GΓ contains
edge (xi, yi)− (yj , xj). If xI · yJ or yI · xJ belongs to Feas(γ), then (xi, yj) or (yi, xj) belongs to Feas(γi,j)
(as {γ}∗ is 2-decomposable by Lemma 33), and hence the edge is soft.

Lemma 35. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of its coordinates.
If x,y,xI · yJ ,yI · xJ ∈ Feas(γ) and, for all i ∈ I, (xi, yi) ∈M , then

γ(x) + γ(y) = γ(xI · yJ) + γ(yI · xJ) . (18)

Proof. Suppose for the sake of contradiction that the equality does not hold. Without loss of generality,
we may assume that γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ). By Lemma 34, graph GΓ contains a soft edge
incident to (xi, yi) for some i ∈ I, which contradicts Lemma 32.

Graph GΓ does not have any odd cycle on vertices M . Therefore, there is a partition of M into two
independent sets M1,M2. (In fact, it can be shown that every connected component of GΓ restricted to
M is a complete bipartite graph but we do not need this fact here.) Note that (a, b) ∈ M1 if, and only if,
(b, a) ∈M2, as every vertex v ∈M is adjacent to v. We define multimorphism 〈u,t〉 as follows:

〈u,t〉(x, y) =

(x, y) if (x, y) ∈M1, (19a)

(y, x) if (x, y) ∈M2, (19b)

(x, y) otherwise. (19c)

By definition, 〈u,t〉 is commutative on M .

Theorem 36. 〈u,t〉 is a multimorphism of Γ.

14

Proof. Let γ ∈ Γ be an r-ary weighted relation and x,y ∈ Feas(γ). Suppose for the sake of contradiction
that (7) does not hold. We partition set {1, . . . , r} into I and J : Set J consists of all coordinates j such
that case (19b) applies to (xj , yj); set I covers the other two cases. For any i ∈ I, either xi = yi or
(xi, yi) ∈M1∪M . For any j ∈ J , (xj , yj) ∈M2 and hence (yj , xj) ∈M1. 〈u,t〉 maps x,y to xI ·yJ ,yI ·xJ ,
so we have γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ). By Lemma 34, graph GΓ contains edge (xi, yi)− (yj , xj)
for some i ∈ I, j ∈ J , which contradicts Lemma 32.

The following definition corresponds to the “µ function” from [10, Section 6].

Definition 37. For any a, b, c ∈ D, we say that ab|c holds if a, b, c are all different labels and there exist
(s, t) ∈M such that binary relation {(a, s), (b, s), (c, t)} belongs to Γ∗.

The intuition is that if ab|c holds, then any minority operation on M must map any permutation of
{a, b, c} to c in order to be a polymorphism of Γ.

Lemma 38. For any a, b, c ∈ D, at most one of ab|c, ca|b, bc|a holds. If ab|c, then (a, c), (b, c) ∈M .

Proof. Suppose that both ca|b and bc|a hold. Then there are (s1, t1), (s2, t2) ∈ M and binary relations
ρ1, ρ2 ∈ Γ∗ such that ρ1 = {(c, s1), (a, s1), (b, t1)}, ρ2 = {(b, s2), (c, s2), (a, t2)}. We construct their join ρ as
ρ(x, y) = minz∈D(ρ1(z, x) + ρ2(z, y)). We have ρ ∈ Γ∗ and ρ = {(s1, s2), (s1, t2), (t1, s2)}, which implies a
soft edge in M and hence a contradiction.

If ab|c, then there are (s, t) ∈ M such that {(a, s), (b, s), (c, t)} ∈ Γ∗. By restricting this relation at the
first coordinate to labels {a, c} we get edge (a, c)− (t, s) and thus (a, c) ∈M ; analogously by restricting to
{b, c} we get (b, c) ∈M .

We define multimorphism 〈Mj1,Mj2,Mn3〉 as follows:

〈Mj1,Mj2,Mn3〉(x, y, z) =

(x, y, z) if x = y ∧ (y, z) ∈M or xy|z, (20a)

(z, x, y) if z = x ∧ (x, y) ∈M or zx|y, (20b)

(y, z, x) if y = z ∧ (z, x) ∈M or yz|x, (20c)

(x, y, z) otherwise. (20d)

Note that the operations of 〈Mj1,Mj2,Mn3〉 are majorities and a minority on M . Also note that in the
subcase x = y ∧ (y, z) ∈ M of case (20a), the output has to be (x, y, z) for 〈Mj1,Mj2,Mn3〉 to be an MJN
multimorphism of Γ on M (and similarly for the first subcase of case (20b) and case (20c)). It is the other
cases where there is some freedom and where we differ from [10].

Theorem 39. 〈Mj1,Mj2,Mn3〉 is a multimorphism of Γ.

We will actually prove that (7) in Definition 14 holds with equality.

Proof. Suppose for the sake of contradiction this is not true for some r-ary weighted relation γ ∈ Γ∗ and
x,y, z ∈ Feas(γ); we choose γ so that it has the minimum arity among such counterexamples. We denote
the r-tuples to which 〈Mj1,Mj2,Mn3〉 maps (x,y, z) by (f ,g,h).

First we show that case (20b) does not occur. Let I be the set of coordinates i such that case (20b)
applies to (xi, yi, zi) and let J cover the remaining cases. Suppose that I is non-empty, and note that
fI = zI ,gI = xI ,hI = yI . For every i ∈ I, it holds (xi, yi), (zi, yi) ∈ M (directly or by Lemma 38), and
either zi = xi or zixi|yi.

We claim that {xi, yi, zi} × {xj , yj , zj} ⊆ Pri,j(Feas(γ)) for all i ∈ I, j ∈ J . Note that we already have
(xi, xj), (yi, yj), (zi, zj) ∈ Pri,j(Feas(γ)). It holds

(xi, yj) ∈ Pri,j(Feas(γ)) ⇐⇒ (yi, xj) ∈ Pri,j(Feas(γ)) , (21)

(zi, yj) ∈ Pri,j(Feas(γ)) ⇐⇒ (yi, zj) ∈ Pri,j(Feas(γ)) , (22)

otherwise there would be a soft edge in M (i.e. soft edge (xi, yi)− (yj , xj) and (zi, yi)− (yj , zj) respectively).

15

If (xi, yj), (zi, yj) 6∈ Pri,j(Feas(γ)), then there are edges (xi, yi) − (yj , xj), (zi, yi) − (yj , zj), and hence
(xj , yj), (zj , yj) ∈ M . Because case (20b) does not apply at coordinate j, it holds zj 6= xj , and there-
fore labels xj , yj , zj are all distinct. But then (xi, zj) 6∈ Pri,j(Feas(γ)), as otherwise we would have that
{(xi, zj), (xi, xj), (yi, yj)} ∈ Γ∗ (obtained by domain restriction of Pri,j(Feas(γ))), and thus zjxj |yj would
hold. Analogously, we have (zi, xj) 6∈ Pri,j(Feas(γ)). This implies zi 6= xi, and hence zixi|yi holds. By
domain restriction of Pri,j(Feas(γ)) we obtain bijection relation {(xi, xj), (yi, yj), (zi, zj)} ∈ Γ∗; joining it
with a binary relation showing that zixi|yi gives us zjxj |yj , which is a contradiction.

If (xi, yj) ∈ Pri,j(Feas(γ)) and (zi, yj) 6∈ Pri,j(Feas(γ)), then we have zi 6= xi, zixi|yi, and (zj , yj) ∈ M .
It must also hold (xi, zj) 6∈ Pri,j(Feas(γ)), otherwise there would be a soft edge incident to vertex (zj , yj).
But then we have {(xi, yj), (yi, yj), (zi, zj)} ∈ Γ∗, which implies xiyi|zi and contradicts Lemma 38. The case
when (xi, yj) 6∈ Pri,j(Feas(γ)) and (zi, yj) ∈ Pri,j(Feas(γ)) can be ruled out by an analogous argument.

Therefore, we have (xi, yj), (zi, yj) ∈ Pri,j(Feas(γ)). It must also hold (xi, zj), (zi, xj) ∈ Pri,j(Feas(γ)),
otherwise there would be a soft edge in M (incident to vertex (xi, yi) and (zi, yi) respectively). Hence, we
have shown that {xi, yi, zi} × {xj , yj , zj} ⊆ Pri,j(Feas(γ)).

Because Feas(γ) is 2-decomposable by Lemma 33, we have uI · vJ ∈ Feas(γ) for any u,v ∈ {x,y, z}. It
must hold

γ(yI · xJ) + γ(yI · yJ) + γ(yI · zJ) = γ(yI · fJ) + γ(yI · gJ) + γ(yI · hJ) , (23)

otherwise we would obtain a smaller counterexample by pinning γ at every coordinate i ∈ I to its respective
label yi. This gives yI · fJ ,yI · gJ ,yI ·hJ ∈ Feas(γ); by an analogous argument we get uI · vJ ∈ Feas(γ) for
any u ∈ {x,y, z} and v ∈ {f ,g,h}. By Lemma 35, it holds

γ(xI · xJ) + γ(yI · gJ) = γ(xI · gJ) + γ(yI · xJ) , (24)

γ(zI · zJ) + γ(yI · fJ) = γ(zI · fJ) + γ(yI · zJ) . (25)

By adding (23), (24), and (25) we get

γ(xI · xJ) + γ(yI · yJ) + γ(zI · zJ) = γ(zI · fJ) + γ(xI · gJ) + γ(yI · hJ) , (26)

and hence (7) holds as equality (note that fI = zI ,gI = xI ,hI = yI). This is a contradiction; therefore case
(20b) does not apply at any coordinate.

Suppose that case (20c) applies at some coordinate i. 〈Mj1,Mj2,Mn3〉 maps (y,x, z) to (g, f ,h), which
gives us another smallest counterexample to the theorem. However, at coordinate i is now applied case (20b),
which was proved impossible.

Finally, we have that only cases (20a) and (20d) may occur in a smallest counterexample. But then
〈Mj1,Mj2,Mn3〉 maps (x,y, z) to (x,y, z), and hence the stated equality holds.

5. Conclusions

We have studied the computational complexity of planar VCSPs. For conservative valued constraint
languages on arbitrary finite domains, we have given a complete complexity classification. For valued
constraint language on Boolean domains, we have given a necessary condition for tractability. The obvious
open problem is to give a complexity classification of Boolean valued constraint languages, following a
classification of crisp Boolean constraint languages [9, 34]. Another line of work is to consider larger domains
in the non-conservative setting. As discussed in Section 1, this might be difficult given the Four Colour
Theorem. Finally, planar restrictions correspond to forbidding K5 and K3,3 as minors. A possible avenue
of research is to consider other forbidden minors in the incidence graph of the VCSP instance.

Acknowledgments

The authors were supported by a Royal Society Research Grant. The work was partly done while the
authors were visiting the Simons Institute for the Theory of Computing at UC Berkeley. Stanislav Živný

16

was supported by a Royal Society University Research Fellowship. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714532). The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be made of
the information contained therein.

[1] P. Fulla, S. Živný, On Planar Valued CSPs, in: Proceedings of the 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS’16), 2016, pp. 39:1–39:14. doi:http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.
39.
URL http://zivny.cz/publications/fz16mfcs-preprint.pdf

[2] P. Hell, J. Nešetřil, Colouring, constraint satisfaction, and complexity, Computer Science Review 2 (3) (2008) 143–163.
doi:10.1016/j.cosrev.2008.10.003.

[3] A. Krokhin, S. Živný, The complexity of valued CSPs, in: A. Krokhin, S. Živný(Eds.), Complexity and approximability
of Constraint Satisfaction Problems, Vol. 7 of Dagstuhl Follow-Ups, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017, pp. 233–266. doi:10.4230/DFU.Vol7.15301.233.
URL http://zivny.cz/publications/kz17survey.pdf

[4] D. A. Cohen, M. C. Cooper, P. G. Jeavons, A. A. Krokhin, The Complexity of Soft Constraint Satisfaction, Artificial
Intelligence 170 (11) (2006) 983–1016. doi:10.1016/j.artint.2006.04.002.

[5] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman,
1979.

[6] B. M. E. Moret, Planar NAE3SAT is in P, SIGACT News 19 (2) (1988) 51–54.
[7] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM Journal on Computing 4 (3) (1975)

221–225. doi:10.1137/0204019.
[8] M. R. Garey, D. S. Johnson, The rectilinear steiner tree problem in NP complete, SIAM Journal of Applied Mathematics

32 (1977) 826–834.
[9] Z. Dvořák, M. Kupec, On Planar Boolean CSP, in: Proceedings of the 42nd International Colloquium on Automata,

Languages and Programming (ICALP’15), Vol. 9134 of Lecture Notes in Computer Science, Springer, 2015, pp. 432–443.
[10] V. Kolmogorov, S. Živný, The complexity of conservative valued CSPs, Journal of the ACM 60 (2), article No. 10.

doi:10.1145/2450142.2450146.
URL http://zivny.cz/publications/kz13jacm-preprint.pdf

[11] J. Thapper, S. Živný, Sherali-Adams relaxations for valued CSPs, in: Proceedings of the 42nd International Colloquium
on Automata, Languages and Programming (ICALP’15), Vol. 9134 of Lecture Notes in Computer Science, Springer, 2015,
pp. 1058–1069. doi:10.1007/978-3-662-47672-7_86.
URL http://zivny.cz/publications/tz15icalp-preprint.pdf

[12] J. Thapper, S. Živný, The power of Sherali-Adams relaxations for general-valued CSPs, SIAM Journal on ComputingTo
appear, arXiv:1606.02577.

[13] A. A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Transactions on Computational Logic
12 (4), article 24. doi:10.1145/1970398.1970400.

[14] F. Rossi, P. van Beek, T. Walsh (Eds.), The Handbook of Constraint Programming, Elsevier, 2006.
[15] F. Barahona, On the computational complexity of ising spin glass models, Journal of Physics A: Mathematical and General

15 (10) (1982) 3241–3253. doi:10.1088/0305-4470/15/10/028.
[16] D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, S. Živný, An algebraic theory of complexity for discrete optimisation,

SIAM Journal on Computing 42 (5) (2013) 915–1939. doi:10.1137/130906398.
URL http://zivny.cz/publications/cccjz13sicomp-preprint.pdf

[17] P. Fulla, S. Živný, A Galois Connection for Valued Constraint Languages of Infinite Size, ACM Transactions on Compu-
tation Theory 8 (3), article No. 9. doi:10.1145/2898438.
URL http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf

[18] T. Feder, M. Y. Vardi, The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study
through Datalog and Group Theory, SIAM Journal on Computing 28 (1) (1998) 57–104. doi:10.1137/S0097539794266766.

[19] C. Carbonnel, M. C. Cooper, Tractability in constraint satisfaction problems: a survey, Constraints 21 (2) (2016) 115–144.
doi:10.1007/s10601-015-9198-6.

[20] L. Barto, Constraint satisfaction problem and universal algebra, ACM SIGLOG News 1 (2) (2014) 14–24. doi:10.1145/

2677161.2677165.
[21] A. Bulatov, A. Krokhin, P. Jeavons, Classifying the Complexity of Constraints using Finite Algebras, SIAM Journal on

Computing 34 (3) (2005) 720–742. doi:10.1137/S0097539700376676.
[22] J. Thapper, S. Živný, Necessary Conditions on Tractability of Valued Constraint Languages, SIAM Journal on Discrete

Mathematics 29 (4) (2015) 2361–2384. doi:10.1137/140990346.
URL http://zivny.cz/publications/tz15sidma-preprint.pdf

[23] M. Kozik, J. Ochremiak, Algebraic properties of valued constraint satisfaction problem, in: Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP’15), Vol. 9134 of Lecture Notes in Computer
Science, Springer, 2015, pp. 846–858. doi:10.1007/978-3-662-47672-7_69.

[24] A. Huber, A. Krokhin, R. Powell, Skew bisubmodularity and valued CSPs, SIAM Journal on Computing 43 (3) (2014)
1064–1084. doi:10.1137/120893549.

[25] V. Kolmogorov, J. Thapper, S. Živný, The power of linear programming for general-valued CSPs, SIAM Journal on
Computing 44 (1) (2015) 1–36. doi:10.1137/130945648.

17

http://zivny.cz/publications/fz16mfcs-preprint.pdf
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.39
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.39
http://zivny.cz/publications/fz16mfcs-preprint.pdf
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://zivny.cz/publications/kz17survey.pdf
http://dx.doi.org/10.4230/DFU.Vol7.15301.233
http://zivny.cz/publications/kz17survey.pdf
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://dx.doi.org/10.1137/0204019
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://dx.doi.org/10.1145/2450142.2450146
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://zivny.cz/publications/tz15icalp-preprint.pdf
http://dx.doi.org/10.1007/978-3-662-47672-7_86
http://zivny.cz/publications/tz15icalp-preprint.pdf
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1088/0305-4470/15/10/028
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://dx.doi.org/10.1137/130906398
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://dx.doi.org/10.1145/2898438
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1007/s10601-015-9198-6
http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1137/S0097539700376676
http://zivny.cz/publications/tz15sidma-preprint.pdf
http://dx.doi.org/10.1137/140990346
http://zivny.cz/publications/tz15sidma-preprint.pdf
http://dx.doi.org/10.1007/978-3-662-47672-7_69
http://dx.doi.org/10.1137/120893549
http://dx.doi.org/10.1137/130945648

[26] J. Thapper, S. Živný, The complexity of finite-valued CSPs, Journal of the ACM 63 (4), article No. 37. doi:10.1145/

2974019.
[27] V. Kolmogorov, A. A. Krokhin, M. Roĺınek, The complexity of general-valued CSPs, in: Proceedings of the 56th Annual

IEEE Symposium on Foundations of Computer Science (FOCS’15), IEEE Computer Society, 2015, pp. 1246–1258.
[28] V. Kolmogorov, M. Roĺınek, R. Takhanov, Effectiveness of structural restrictions for hybrid CSPs, in: Proceedings of the

26th International Symposium on Algorithms and Computation (ISAAC’15), Vol. 9472 of Lecture Notes in Computer
Science, Springer, 2015, pp. 566–577. doi:10.1007/978-3-662-48971-0_48.

[29] R. Takhanov, Hybrid (V)CSPs and algebraic reductions, Tech. rep., arXiv:1506.06540 (June 2015).
URL http://arxiv.org/abs/1506.06540

[30] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, Journal of
the ACM 54 (1) (2007) 1–24. doi:10.1145/1206035.1206036.

[31] V. Dalmau, P. Jonsson, The complexity of counting homomorphisms seen from the other side, Theoretical Computer
Science 329 (1-3) (2004) 315–323. doi:10.1016/j.tcs.2004.08.008.

[32] T. Färnqvist, P. Jonsson, Bounded tree-width and csp-related problems, in: Proceedings of the 18th International Sym-
posium on Algorithms and Computation (ISAAC), Vol. 4835 of Lecture Notes in Computer Science, Springer, 2007, pp.
632–643. doi:10.1007/978-3-540-77120-3_55.

[33] K. Meeks, The challenges of unbounded treewidth in parameterised subgraph counting problems, Discrete Applied Math-
ematics 198 (2016) 170–194. doi:10.1016/j.dam.2015.06.019.

[34] A. Kazda, V. Kolmogorov, M. Roĺınek, Even delta-matroids and the complexity of planar Boolean CSPs, in: Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), 2017, pp. 307–326.

[35] J. Cai, P. Lu, M. Xia, Holographic algorithms with matchgates capture precisely tractable planar #CSP, in: Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10), IEEE Computer Society, 2010, pp.
427–436.

[36] H. Guo, T. Williams, The complexity of planar Boolean #CSP with complex weights, in: Proceedings of the 40th
International Colloquium on Automata, Languages and Programming (ICALP’13), Vol. 7965 of Lecture Notes in Computer
Science, Springer, 2013, pp. 516–527.

[37] S. Khanna, R. Motwani, Towards a syntactic characterization of PTAS, in: Proceedings of the 28th Annual ACM Sym-
posium on the Theory of Computing (STOC’96), 1996, pp. 329–337. doi:10.1145/237814.237979.

[38] N. Creignou, S. Khanna, M. Sudan, Complexity Classification of Boolean Constraint Satisfaction Problems, Vol. 7 of
SIAM Monographs on Discrete Mathematics and Applications, SIAM, 2001.

[39] J. E. Hopcroft, R. E. Tarjan, Efficient planarity testing, Journal of the ACM 21 (4) (1974) 549–568. doi:10.1145/321850.
321852.

[40] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Vol. 24 of Algorithms and Combinatorics, Springer,
2003.

[41] P. Jeavons, D. Cohen, M. C. Cooper, Constraints, Consistency and Closure, Artificial Intelligence 101 (1–2) (1998) 251–265.
doi:10.1016/S0004-3702(98)00022-8.

[42] W. Mulzer, G. Rote, Minimum-weight Triangulation is NP-hard, Journal of the ACM 55 (2) (1998) 11:1–11:29. doi:

10.1145/1346330.1346336.
[43] D. A. Cohen, M. C. Cooper, P. G. Jeavons, Generalising submodularity and Horn clauses: Tractable optimization problems

defined by tournament pair multimorphisms, Theoretical Computer Science 401 (1-3) (2008) 36–51. doi:10.1016/j.tcs.

2008.03.015.
[44] R. Takhanov, A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem, in: Proceedings of the

27th International Symposium on Theoretical Aspects of Computer Science (STACS’10), 2010, pp. 657–668. doi:10.

4230/LIPIcs.STACS.2010.2493.

18

http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1007/978-3-662-48971-0_48
http://arxiv.org/abs/1506.06540
http://arxiv.org/abs/1506.06540
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1007/978-3-540-77120-3_55
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1145/237814.237979
http://dx.doi.org/10.1145/321850.321852
http://dx.doi.org/10.1145/321850.321852
http://dx.doi.org/10.1016/S0004-3702(98)00022-8
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493

	Introduction
	Contribution
	Related work

	Preliminaries
	Planar VCSPs
	Planar Weighted Relational Clones
	Algebraic Properties

	Boolean Valued CSPs
	Conservative Valued CSPs
	Conclusions

