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Abstract

Backdoor sets represent clever reasoning shortcuts through
the search space for SAT and CSP. By instantiating the back-
door variables one reduces the given instance to several easy
instances that belong to a tractable class. The overall time
needed to solve the instance is exponential in the size of the
backdoor set, hence it is a challenging problem to find a small
backdoor set if one exists; over the last years this problem has
been subject of intensive research.

In this paper we extend the classical notion of a strong back-
door set by allowing that different instantiations of the back-
door variables result in instances that belong to different base
classes; the union of the base classes forms a heterogeneous
base class. Backdoor sets to heterogeneous base classes can be
much smaller than backdoor sets to homogeneous ones, hence
they are much more desirable but possibly harder to find.

We draw a detailed complexity landscape for the problem of
detecting strong backdoor sets into heterogeneous base classes
for SAT and CSP. We provide algorithms that establish fixed-
parameter tractability under natural parameterizations, and
we contrast the tractability results with hardness results that
pinpoint the theoretical limits.

Our results apply to the current state-of-the-art of tractable
classes of CSP and SAT that are definable by restricting the
constraint language.

Introduction

Backdoors are small sets of variables of a SAT or CSP in-
stance that represent “clever reasoning shortcuts” through
the search space. Backdoor sets were originally introduced
by Williams, Gomes, and Selman (2003a, |2003b) as a tool
for the analysis of decision heuristics in propositional satis-
fiability. Since then, backdoor sets have been widely used
in the areas of propositional satisfiability (Williams, Gomes
and Selman 2003a; Ruan, Kautz, and Horvitz 2004; |Dilk+
1na, Gomes, and Sabharwal 2007; |Samer and Szeider 2009b;
Kottler, Kaufmann, and Sinz 2008} [Dilkina, Gomes, and
Sabharwal 2009; |Gaspers and Szeider 2013), and also for
material discovery (LeBras et al. 2013)), abductive reason-
ing (Pfandler, Riimmele, and Szeider 2013)), answer set pro-
gramming (Fichte and Szeider 2013)), argumentation (Dvorak.
Ordyniak, and Szeider 2012)), and quantified Boolean formu-
las (Samer and Szeider 2009a). A backdoor set is defined
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with respect to some fixed base class for which the com-
putational problem under consideration is polynomial-time
tractable (alternatively, it can be defined with respect to a
polynomial-time subsolver). The size of the backdoor set
can be seen as a distance measure that indicates how far the
instance is from the target class. One distinguishes between
strong and weak backdoor sets; the latter applies only to
satisfiable instances, and in this paper we shall focus on the
former. Once a strong backdoor set of size k is identified, one
can decide the satisfiability of the instance by deciding the
satisfiability of at most d* “easy” instances that belong to the
tractable base class, where d denotes the size of the domain
for the variables; for SAT we have d = 2. Each of the easy
instances is obtained by one of the d* possible instantiations
of the k variables in the backdoor set. Hence, the satisfia-
bility check is fixed-parameter tractable for the combined
parameter backdoor size and domain size (k + d).

The fixed-parameter tractability of using the backdoor set
for deciding satisfiability triggers the question of whether
finding abackdoor set of size at most k is also fixed-parameter
tractable. In particular, for every base class C one can ask
whether the detection of a strong backdoor set into C of size
at most k is fixed-parameter tractable for parameter k (pos-
sibly in combination with restrictions on the input or other
parameters). A systematic study of the parameterized com-
plexity of backdoor set detection was initiated by Nishimura|
Ragde, and Szeider| (2004) for SAT, who showed that the
detection of strong backdoor sets into the classes HORN and
2CNF (of Horn formulas and 2CNF formulas, respectively)
is fixed-parameter tractable. Since then, the parameterized
complexity of backdoor set detection has become an active
research topic as outlined in a recent survey (Gaspers and
Szeider 2012)).

In this work, we provide two significant extensions to the
exciting research on fixed-parameter tractable backdoor set
detection. First, we extend the classical notion of a strong
backdoor set by allowing that different instantiations of back-
door variables result in instances that belong to different base
classes; the union of the base classes forms a heterogeneous
base class, in contrast to the usual homogeneous base classes.
Second, we extend the scope of backdoor set detection from
SAT to CSP, considering target classes that are defined by
tractable constraint languages in terms of closure properties
under polymorphisms.



Heterogeneous Base Classes Consider the follow-
ing SAT instance F,, = {C,Di,...,D,} where C =
(xV—-a1 V- -V-a,)and D; = (-xz V b; V ¢;). It is easy to
see that any strong backdoor set into HORN needs to contain
at least one of the variables b; or ¢; from each clause D;,
hence such a backdoor set must be of size {2(n); on the other
hand, any strong backdoor set into 2CNF must contain at
least (n — 2) variables from the clause C’; hence such a back-
door must be of size at Q2(n) as well. However, F, [z = false]
is Horn, and F,,[x = true] is a 2CNF, hence the singleton
{z} constitutes a strong backdoor set into the “heterogeneous”
base class HORN U 2CNF. This example shows that by con-
sidering heterogeneous base classes we can access structural
properties of instances that are not accessible by backdoor
sets into homogeneous base classes. Identifying a base class
with a class of instances that are solvable by a polynomial-
time subsolver, one can consider a heterogeneous base class
as a “portfolio subsolver,” where for each instance the best
suitable subsolver from the portfolio is chosen.

A natural question at this point is whether the fixed-
parameter tractability results for the detection of strong back-
door sets into individual base classes HORN and 2CNF
can be extended to the more powerful heterogeneous base
class HORN U 2CNF. Our first main result (Theorem|[I]) an-
swers this question affirmatively. The same clearly holds
by taking the class of anti-Horn formulas instead of Horn.
However, somewhat surprisingly, we get W[2]-hardness (i.e.,
fixed-parameter intractability) for other combinations of base
classes (Theorem [2). If we also bound the clause length by
the parameter, we obtain fixed-parameter tractability in all
considered cases (Theorem 3)).

CSP Backdoor Sets The identification of tractable
classes of CSP instances has been subject of extensive studies.
A prominent line of research, initiated by [Schaefer| (1978))
in his seminal paper on Boolean CSP, is to identify tractable
classes by restricting the relations that may appear in con-
straints to a prescribed set, a constraint language. Today,
many constraint languages have been identified that give
rise to tractable classes of CSPs (Pearson and Jeavons 1997
Bulatov and Dalmau 2006); typically such languages are
defined in terms of certain closure properties, which en-
sure that the relations are closed under pointwise applica-
tion of certain polymorphisms of the domain. For instance,
consider a CSP instance whose relations are closed under
a constant function f(z) = d for some d € D (such a
function is a polymorphism). Then note that every relation
is either empty or forced to contain the tuple (d,d,...,d).
Thus, given a particular instance, we may either declare it
unsatisfiable (if it contains a constraint over the empty re-
lation), or satisfy it trivially by setting every variable to d.
Further examples of polymorphisms for which closure prop-
erties yield tractable CSP are min, max, majority, affine, and
Mal’cev polymorphisms (Jeavons, Cohen, and Gyssens 1997;
Bulatov and Dalmau 2006).

We study the problem of finding strong backdoor sets into
tractable classes of CSP instances defined by certain poly-
morphisms. Our main result for CSP backdoors (Theorem
establishes fixed-parameter tractability for a wide range of

such base classes. In particular, we show that the detection
of strong backdoor sets is fixed-parameter tractable for the
combined parameter backdoor size, domain size, and the max-
imum arity of constraints. In fact, this result entails heteroge-
neous base classes, as different instantiations of the backdoor
variables can lead to reduced instances that are closed under
different polymorphisms (even polymorphisms of different
type). We complement our main result with hardness results
that show that we loose fixed-parameter tractability when we
omit either domain size or the maximum arity of constraints
from the parameter (Theorems [5|and [6). Hence Theorem []is
tight in a certain sense.

Preliminaries

SAT A literal is a propositional variable x or a negated
variable —x. We also use the notation z = z! and -z = 2°.
A clause is a finite set of literals that does not contain a
complementary pair  and —z. A propositional formula in
conjunctive normal form, or CNF formula for short, is a set
of clauses. For a clause C' we write var(C) = {z : z € C
or =z € C'}, and for a CNF formula F we write var(F) =
Ucep var(C).

For a set X of propositional variables we denote by 2% the
set of all mappings 7 : X — {0, 1}, the truth assignments
on X. We denote by X the set of literals corresponding to
the negated variables of X. For 7 € 2% we let true(r) =
{27@® . 2 € X} and false(r) = {z'7®) : 2 € X} be
the sets of literals set by 7 to 1 and 0, respectively. Given a
CNF formula F and a truth assignment 7 € 2% we define
Flr] = {C\ false(r) : C € F, C Ntrue(r) = 0}. If
7 € 217} and € = 7(z), we simply write F[z = ] instead of
FIr].

A CNF formula F' is satisfiable if there is some 7 €
2VAL(F) with F[r] = (), otherwise F is unsatisfiable.

CSP Let D be a set and n and n’ be natural numbers. An
n-ary relation on D is a subset of D™. For a tuple { € D",
we denote by t[i], the i-th entry of ¢, where 1 < ¢ < n. For

two tuples ¢ € D™ and t' € D™, we denote by ¢ o ¢/, the
concatenation of ¢ and ¢'.

A constraint satisfaction problem (CSP) I is a triple
(V,D,C), where V is a finite set of variables over a finite
set (domain) D, and C is a set of constraints. A constraint
¢ € C consists of a scope, denoted by V' (c), which is an
ordered list of a subset of V, and a relation, denoted by R(c),
which is a |V (¢)|-ary relation on D. To simplify notation, we
sometimes treat ordered lists without repetitions, such as the
scope of a constraint, like sets. For a variable v € V(c) and a
tuple ¢ € R(c), we denote by ¢[v], the i-th entry of ¢, where
1 is the position of v in V(¢). Fora CSP I = (V, D, C) we
sometimes denote by V' (I), D(I), C(I), and §(I), its set of
variables V, its domain D, its set of constraints C, and the
maximum arity of any constraint of I, respectively.

Let V/ C Vand 7 : V' — D. For a constraint ¢ € C,
we denote by ¢[7], the constraint whose scope is V' (¢) \ V'
and whose relation contains all |V (c[7])|-ary tuples ¢ such
that there is a |V (c)|-ary tuple ¢’ € R(c) with ¢[v] = ¢'[v] for
every v € V(c[r]) and t'[v] = 7(v) for every v € V'. We
denote by I[7] the CSP instance with variables V'\ V', domain



D, and constraints C[7], where C|[7] contains a constraint
c[r] for every c € C.

A solution to a CSP instance [ is a mapping 7 : V' — D
such that (7[v1],...,T[vjy(e)]) € R(c) forevery c € C with
V(C) = <IU1, s aIU|V(C)\>'

Backdoors Backdoors are defined relative to some
fixed class C of instances of the problem under consideration
(i.e., SAT or CSP). One usually assumes that the problem is
tractable for instances from C, as well as that the recognition
of C is tractable.

In the context of SAT, we define a strong C-backdoor
set of a CNF formula F' to be a set B of variables such
that F'[7] € C for each 7 € 2B. If we know a strong C-
backdoor set of F', we can decide the satisfiability of F' by
checking the satisfiability of 2F “easy” formulas F[r] that
belong to C. Thus SAT decision is fixed-parameter tractable
in the size k of the backdoor. Similarly, in the context of
CSP, we define a strong C-backdoor set of a CSP instance
I = (V,D,C) as a set B of variables such that I[7] € C
for every 7 : B — D. We also call a strong C-backdoor a
strong backdoor set into C. If we know a strong C-backdoor
set of I of size k, we can reduce the satisfiability of I to
the satisfiability of d* CSP instances in C where d = |D]|.
Thus deciding the satisfiability of a CSP instance is fixed-
parameter tractable in the combined parameter d + k.

The challenging problem is—for SAT and for CSP—to
find a strong C-backdoor set of size at most & if one exists.

For each class C of SAT or CSP instances, we define the
following problem.

STRONG C-BACKDOOR DETECTION

Input: A SAT or CSP instance I and a nonnegative integer
k.

Question: Does I have a strong C-backdoor set of size at
most k?

Parameterized Complexity We provide basic defini-
tions of parameterized complexity; for an in-depth treatment
we refer to the recent monograph (Downey and Fellows
2013)). A problem is parameterized if each problem instance
is associated with a nonnegative integer k, the parameter. A
parameterized problem is fixed-parameter tractable (or FPT,
for short) if there is an algorithm, A, a constant ¢, and a
computable function f, such that A solves instances of in-
put size n and parameter k in time f(k)n¢. Fixed-parameter
tractability extends the conventional notion of polynomial-
time tractability, the latter being the special case where f is a
polynomial. The so-called Weft-hierarchy W[1] C W[2] C

. contains classes of parameterized decision problems that
are presumed to be larger than FPT. It is believed that prob-
lems that are hard for any of the classes in the Weft-hierarchy
are not fixed-parameter tractable. The classes are closed under
Jpt-reductions that are fixed-parameter tractable many-one
reductions, which map an instance x with parameter k of
one problem to a decision-equivalent instance z’ with pa-
rameter k' of another problem, where k' < f(k) for some
computable function f.

For instance, the following problem is well-known to be
W[2]-complete (Downey and Fellows 2013).

HITTING SET Parameter: k
Input: A set system F over a family U/, and a positive
integer k

Question: Is there a subset of the universe, X C U, with
|X| < k such that every set S € F contains at least one
element from X?

Backdoor Detection for SAT

Schaefer’s base classes (Schaefer 1978) give rise to classes
of CNF formulas defined in terms of syntactical properties of
clauses. A clause is

Horn if it contains at most one positive literal,
Anti-Horn if it contains at most one negative literal,
2CNF if it contains at most two literals,

0-valid if it contains at least one negative literal, and
1-valid if it contains at least one positive literal.

A CNF formula is Horn, Anti-Horn, etc. if it contains only
Horn, Anti-Horn, etc. clauses. We denote the respective
classes of CNF formulas by HORN, HORN ™, 2CNF, 0-VAL,
and 1-VAL.

STRONG C-BACKDOOR DETECTION is polynomial for
0-VAL and 1-VAL, and FPT for the remaining Schaefer
classes (Nishimura, Ragde, and Szeider 2004; Gaspers and
Szeider 2012). These FPT algorithms are based on constant-
size obstruction sets. For a clause ¢, we say that a set
X of variables is a C-obstruction for ¢ if {(X U X) N
c} ¢ Cand {(X U X)nec)\ {l}} € C for all literals
I € c¢. A HORN-obstruction contains two variables occur-
ring positively in the clause, a HORN™-obstruction con-
tains two variables occurring negatively in the clause, and
a 2CNF-obstruction contains three variables occurring posi-
tively or negatively in the clause. It is well-known that, for
C € {HORN,HORN™,2CNF}, every strong C-backdoor
set contains a variable from each C-obstruction for each
clause in the formula (Nishimura, Ragde, and Szeider 2004;
Gaspers and Szeider 2012). Our next algorithm also uses
these obstruction sets, but the heterogeneity of the base class
makes it significantly more challenging to design FPT algo-
rithms. Nevertheless, we obtain FPT algorithms for the base
classes HORN U 2CNF and HORN™ U 2CNF.

Theorem 1. STRONG HORN U 2CNF-BACKDOOR DETEC-
TION and STRONG HORN™ U 2CNF-BACKDOOR DETEC-
TION are fixed-parameter tractable for parameter k.

Proof. We describe the algorithm M for the base class
HORN U 2CNF. The case HORN™ U 2CNF is symmetric.
Algorithm M is a recursive search tree algorithm, which is
executed with parameters (F, k, €), where € is initialized
to {HORN, 2CNF}. It returns the set of all (inclusion-wise)
minimal C-backdoor sets of size at most k, where C = | J €.

If there exists a class C’ € € such that F' € C’, then return
{0} since the only minimal C’-backdoor set is the empty set.

Otherwise, if £ = 0, then return () since F" has no backdoor
set of size at most 0.

Otherwise, if F' has a clause c such that there exists no
C' € € with {c¢} € C’, then let X be a set of at most 3
variables such that for each C’ € €, the set X contains a
C’-obstruction for ¢. Only 3 variables are necessary since



a 2CNF-obstruction can be chosen that is a superset of a
HORN-obstruction. Observe that each strong C’-backdoor set
contains a variable from X. This is because for every set of
variables avoiding X, there exists an assignment that does not
satisfy the clause ¢, and for this assignment, c still contains a
C’-obstruction for all C" € €. The algorithm computes the set
R which is the union of the sets { {z}Ur,Ur—, : |ryUr_,| <
k—1,r, e M(Flz =1],k—1,C),r_, € M(F[z = 0],k —
1, Qi)} over all z € X and it obtains R* by minimalizing
R, i.e., by removing sets from R that are proper supersets
of other sets in R. It returns R*. This recursion explores
all possibilities for the strong C’-backdoor sets to contain a
variable from X . For one such variable x € X, every strong
C’-backdoor set for F' containing x is obtained by taking the
union of {x}, a strong C’-backdoor set for F[z = 1], and a
strong C’-backdoor set for F[x = 0].

Otherwise, we have that |€| = 2, each clause in F' belongs
to aclass C’ € €, and for each class C’ € € there is at least
one clause that belongs to this class and not the other. Let
¢ = {u,v} € F be a 2CNF clause that is not HORN. The
algorithm computes the set R which is the union of the sets
{{z}ur,Ureg : JrpUry| < k—1,r, € M(Flz = 1], k—
1,¢),7, € M(F[z = 0],k —1,¢)} over all 2 € c and the
set M(F, k, {2CNF}), and it obtains R* by minimalizing
R. It returns R*. The correctness of this branching follows
because strong C-backdoor sets that contain neither « nor v
are strong 2CNF-backdoor sets.

The number of leaves of the search tree is upper bounded
by O(6%). The number of backdoor sets computed at each
leaf is upper bounded by the quadratic recurrence defined by
N(k) =3-(N(k—1))?for k > 0and N(0) = 1, which
solves to 32" ~1. Therefore, the running time of the algorithm
is 202" 01

The previous algorithm crucially depends on the fact that
2CNF clauses have bounded length. However, for combina-
tions of base classes such as HORN U HORN ™, we obtain
intractability results. Even more surprisingly, if we combine
the very simple base classes 0-VAL and 1-VAL, we obtain a
base class for which strong backdoor detection is intractable.

Theorem 2. For every C € {HORN,O0-VAL} and C' €
{HORN™, 1-VAL}, the problem STRONG C U C’-BACK-
DOOR DETECTION is W[2]-hard.

Proof. We give a parameterized reduction from the
W{2]-complete HITTING SET problem. Given an instance
(F,U, k) for HITTING SET, construct a formula F" as follows.
The variables of F' are Y U {vg : S € F} U {wy}. For each
set S € F, there is one clause cg = S U {vg}. There is also
one clause ¢y = {—u : v € U} U {vy}. This completes the
description of the reduction.

We claim that F has a hitting set of size at most & if and
only if the formula F has a strong C U C’-backdoor set of
size at most k. Suppose X C U, | X| < k, is a hitting set. To
show that X is also a strong C U C’-backdoor set, consider
any assignment 7 € 2% If 7(x) = 0 for some x € X, then
7 satisfies the clause ¢, Thus, F'[7] € C’ since each clause
in F[7] contains no negative literal and at least one positive
literal. If 7(«) = 1 for all € X, then all clauses cg, S € F,
are satisfied by 7 since X is a hitting set. The only remaining
clause is HORN and 0-VAL since it has no positive literal and

at least one negative literal. For the other direction, suppose
that X is a strong CUC’-backdoor set of size at most k. Obtain
X' from X by replacing each vg € X by some variable from
S, and if vy € X, by replacing v, by an arbitrary variable
from . The set X" is also a strong C UC’-backdoor set of size
at most k. Therefore, the assignment 7 € 2% with 7(z) = 1
for all z € X’ must satisfy all clauses cg, S € F. Thus, X’
is a hitting set for F of size at most k.

It is crucial for these hardness proofs that clauses have
unbounded length. Indeed, if clause-lengths are bounded or
if we add the maximum clause length to the parameter, then
strong backdoor detection becomes FPT for any combination
of Schaefer classes.

Theorem 3. Let C be a base class consisting of the union
of some of the classes HORN, HORN™, 2CNF, 0-VAL,
1-VAL. Then, STRONG C-BACKDOOR DETECTION is fixed-
parameter tractable for the combined parameter k + T,
where 1 is the maximum clause length of the input formula.
The proof of the above theorem resembles the proof of
Theorem |1|and is omitted due to space constraints.

We close this section by noting that backdoor sets with
empty clause detection, as proposed by (Dilkina, Gomes, and
Sabharwal 2007) can be considered as backdoor sets into the
heterogenous base class obtained by the union of a homoge-
neous base class C and the class of all formulas that contain
the empty clause. The detection of strong backdoor sets with
empty clause detection is not fixed-parameter tractable for
many natural base classes, including Horn and 2CNF (Szeider|
2008).

Base Classes via Closure Properties

In this section we provide a very general framework that
will give raise to a wide range of heterogeneous base
classes for CSP.

Given a k-ary relation R over some domain D and a func-
tion ¢ : D™ — D, we say that R is closed under ¢, if
for all collections of n tuples ¢4, ...,t, from R, the tuple
(11, s ta[1]), -, Gt K], . £a[K])) belongs 10 R.
The function ¢ is also said to be a polymorphism of R. We
denote by Pol(R) the set of all polymorphisms ¢ such that R
is closed under ¢.

Let I = (V, D, C) be a CSP instance and ¢ € C. We write
Pol(c) for the set Pol(R(c)) and we write Pol(I) for the set
(.cc Pol(c). We say that I is closed under a polymorphism

¢ if ¢ € Pol(I).

e A polymorphism ¢ : D — D is constant if there is a
d € D such that for every d’ € D, it holds that ¢(d’) = d;

e A polymorphism ¢ : D" — D is idempotent if for every
d € D itholds that ¢(d, . ..,d) = d;

e A polymorphism ¢ : D? — D is a min/max polymor-
phism if there is an ordering of the elements of D such that
for every d,d’ € D, it holds that ¢(d,d’) = ¢(d’,d) =
min{d,d'} or ¢(d,d") = ¢(d’',d) = max{d, d'}, respec-
tively;

e A polymorphism ¢ : D? — D is a majority polymor-
phism if for every d,d’ € D it holds that ¢(d,d,d') =
o(d, d',d) = (d',d, d) = d;



e A polymorphism ¢ : D® — D is an affine (or minor-
ity) polymorphism if for every d,d’ € D it holds that
o(d,d,d") = o¢(d,d',d) = ¢(d',d,d) = d';

e A polymorphism ¢ : D3 — D is a Mal’cev polymor-
phism if for every d,d’ € D it holds that ¢(d,d,d’) =
o(d',d,d)=d'.

We say a polymorphism ¢ is tractable if every CSP in-
stance closed under ¢ can be solved in polynomial time. It
is known that every constant, min/max, majority, affine, and
Mal’cev polymorphism is tractable (Jeavons, Cohen, and
Gyssens 1997; Bulatov and Dalmau 2006). We denote by
VAL, MIN, MAX, MAJ, AFF, and MAL the class of CSP
instances I for which Pol(I) contains a constant, a min, a
max, a majority, an affine, or a Mal’cev polymorphism, re-
spectively.

Let P(¢) a predicate for polymorphisms ¢. We call P(¢) a
nice polymorphism property if the following conditions hold.

e There is a constant cp such that for all finite domains D,
all polymorphisms ¢ over D with property P are of arity
at most cp.

e Given a polymorphism ¢, one can check in polynomial
time whether P(¢) holds,

e Every polymorphism with property P is tractable.

Every nice polymorphism property P gives rise to a natural
base class Cp consisting of all CSP-instances I such that
Pol(I) contains some polymorphism ¢ with P(¢). Thus VAL,
MIN, MAX, MAJ, AFF, and MAL are the classes Cp for P €
{constant, min, max, majority, affine, Mal’cev}, respectively.

In terms of the above definitions we can state the results
of Jeavons, Cohen, and Gyssens| (1997) and [Bulatov and
Dalmaul (2006)) as follows.

Proposition 1. Constant, min, max, majority, affine, and
Mal’cev are nice polymorphism properties.

In the next sections we will study the problems STRONG
Cp-BACKDOOR DETECTION for nice polymorphism proper-
ties IP.

Tractability of Backdoor Detection for CSP

In this section we will show that STRONG Cp-BACKDOOR
DETECTION parameterized by the size of the backdoor set,
the size of the domain, and the maximum arity of the CSP
instance are fixed-parameter tractable for any nice property P.

Theorem 4. Let P be a nice polymorphism property. Then
STRONG Cp-BACKDOOR DETECTION is fixed-parameter
tractable for the combined parameter size of the backdoor
set, size of the domain, and the maximum arity of the given
CSP instance.

Proof. Let P be a nice property, and let (I, k) with [ =
(V, D, C) be an instance of STRONG Cp-BACKDOOR DE-
TECTION. Let P be the set of all polymorphisms on D that
have property P. Then, P can be constructed in fpt-time with
respect to the size of the domain , because there are at most
|D|IPI”" ¢p-ary polymorphisms on D and for each of them
we can test in polynomial time, |D|O(6W’), whether it satisfies
property IP. The algorithm uses a depth-bounded search tree
approach to find a strong Cp-backdoor set of size at most k.

We construct a search tree 7', for which every node is
labeled by a set B of at most k variables of V. Additionally,
every leaf node has a second label, which is either YES or
No. T is defined inductively as follows. The root of 7' is
labeled by the empty set. Furthermore, if ¢ is a node of 7T,
whose first label is B, then the children of ¢ in T" are obtained
as follows. If for every assignment 7 : B — D there is a
polymorphism ¢ € P such that I[7] is closed under ¢, then
B is a strong P-backdoor set of size at most k, and hence ¢
becomes a leaf node, whose second label is YES. Otherwise,
i.e., if there is an assignment 7 : B — D such that I[r] is
not closed under any polymorphism ¢ € P, we consider two
cases: (1) | B| = k, then t becomes a leaf node, whose second
label is NO, and (2) |B| < k, then for every polymorphism
¢ € P and every variable v in the scope of some constraint
¢ € C[r] that is not closed under ¢, ¢ has a child whose first
label is B U {v}.

If T has a leaf node, whose second label is YES, then the
algorithm returns the first label of that leaf node. Otherwise
the algorithm return NO. This completes the description of
the algorithm.

We now show the correctness of the algorithm. First, sup-
pose the search tree 7" built by the algorithm has a leaf node ¢
whose second label is YES. Here, the algorithm returns the
first label, say B of ¢. By definition, we obtain that |B| < k
and for every assignment 7 : B — D, it holds that I[7] is
closed under some polymorphism in P, as required.

Now consider the case where the algorithm returns NO.
We need to show that there is no set B of at most k variables
of I such that Pol(I[7]) N P # {) for every assignment 7 of
the variables of B. Assume, for the sake of contradiction that
such a set B exists.

Observe that if 7" has a leaf node ¢ whose first label is a
set B’ with B’ C B, then the second label of ¢ must be YES.
This is because, either |B’| < k in which case the second
label of ¢ must be YES, or |B’| = k in which case B’ = B
and by the definition of B it follows that the second label of
t must be YES.

It hence remains to show that 7" has a leaf node whose
first label is a set B’ with B’ C B. This will complete the
proof about the correctness of the algorithm. We will show
a slightly stronger statement, namely, that for every natural
number /¢, either T" has a leaf whose first label is contained
in B or T has an inner node of distance exactly ¢ from the
root whose first label is contained in B. We show the latter
by induction on /.

The claim obviously holds for £ = 0. So assume that T’
contains a node ¢ at distance ¢ from the root of 7' whose
first label, say B’, is a subset of B. If ¢ is a leaf node of T,
then the claim is shown. Otherwise, there is an assignment
7 : B’ — D such that I[r] is not closed under any polymor-
phism from P. Let 7* : B — D be any assignment of the
variables in B that agrees with 7 on the variables in B’ and
let ¢ € P be such that I[7*] is closed under ¢. Because B is
a strong P-backdoor set, the polymorphism ¢ clearly exists.
By definition of the search tree T, ¢ has a child ¢’ for every
variable v in the scope of some constraint ¢ € C[7] that is
not closed under ¢. We claim that V' (c) N B # () and hence ¢
has a child, whose first label is a subset of B, as required.



Indeed, suppose not. Then ¢ € C[7*] a contradiction to our
assumption that I[7*] is closed under ¢. This concludes our
proof concerning the correctness of the algorithm.

The running time of the algorithm is obtained as fol-

lows. Let T' be a search tree obtained by the algorithm.
Then the running time of the depth-bounded search tree
algorithm is O(|V(T)|) times the maximum time that is
spend on any node of 7. Since the number of children
of any node of T is bounded by |P|d(I) (recall that §(I)
denotes the maximum arity of any constraint of I) and
the longest path from the root of 7' to some leaf of T is
bounded by k+1, we obtain that [V (T)| < O((|P|6(1))* ).
Furthermore, the time required for any node ¢ of T is at
most O(|D|"comp_rest(I, 7) |C(I]7])||P|check_poly(c, ¢)),
where comp_rest(/,7) is the time required to compute
I[r] for some assignment 7 of at most k variables and
check_poly(c, ¢) is the time required to check whether a
constraint ¢ of I[7] preserves the polymorphism ¢ € P. Ob-
serve that comp_rest(/, 7) and |C(I[7])| are polynomial in
the input size. The same holds for check _poly(c, ¢), because
¢ is a cp-ary polymorphism. Now, the total running time
required by the algorithm is the time required to compute
the set P plus the time required to compute 7'. Putting ev-
erything together, we obtain O((|P|5(I))**!|D|FnCM)) =
O((|D"P"* 5(1)|D|)**+1nOM), as the total running time of
the algorithm, where n denotes the input size of the CSP
instance. This shows that STRONG Cp-BACKDOOR DETEC-
TION is fixed-parameter tractable parameterized by &, 6(I),
and |D|.
Corollary 1. Let C be a base class consisting of the union of
some of the classes MIN, MAX, MAIJ, AFF, and MAL. Then
STRONG C-BACKDOOR DETECTION is fixed-parameter
tractable for the combined parameter size of the backdoor
set, size of the domain, and the maximum arity of the given
CSP instance.

Recently, Bessiere et al.| (2013) presented a different ap-
proach to CSP backdoors. However, it can be shown that the
backdoor sets that arise from their approach are less general
than strong backdoor sets, i.e., every partition backdoor set
of a CSP instance is also a strong backdoor set, moreover,
there are classes of CSPs for which strong backdoor sets are
of size 1, but the size of a smallest partition backdoor set
grows with the number of variables of the CSP instance.

Hardness of Backdoor Detection for CSP

In this section we show our parameterized hardness re-
sults for STRONG Cp-BACKDOOR DETECTION. In partic-
ular, we show that STRONG Cp-BACKDOOR DETECTION
is W[2]-hard parameterized by the size of the backdoor set
even for CSP instances of Boolean domain and for CSP in-
stances with arity two. We start by showing hardness for CSP
instances over the Boolean domain.

Let ¢ : D™ — D be an n-ary polymorphism over D
and r a natural number. We say a sequence of r-ary tu-
ples {t1,...,t,) is an obstruction for ¢ if ¢(t1,...,t,) ¢
{t1,...,tn}. We say that a polymorphism is obstructable
if it has an obstruction. Observe that all tractable polymor-
phisms are also obstructable because every CSP instance is

closed under any polymorphism that is not obstructable. For a
sequence S of tuples, we denote by D(S), the set of pairwise
distinct tuples in S. We call an obstruction (¢1, ..., t,) of ¢
minimal if |D((t1, ..., t,))| is minimal over all obstructions
of ¢. For a polymorphism ¢, we denote by O(¢) a minimal
obstruction of ¢ and by r(¢) the arity of the tuples in the
minimal obstruction O(¢).

Theorem 5. Let P be a nice polymorphism property such
that all polymorphisms ¢ with P(¢p) are idempotent. Then,
STRONG Cp-BACKDOOR DETECTION is W([2]-hard parame-
terized by the size of the backdoor set, even for CSP instances
over the Boolean domain.

Due to space constraints we omit the proof of the theorem.
Since all min, max, majority, affine and Mal’cev polymor-
phisms can be defined via nice properties and are idempotent,
we obtain the following corollary.

Corollary 2. For every C € {MIN, MAX, MAJ, AFF,
MALY}, STRONG C-BACKDOOR DETECTION is W[2]-hard
parameterized by the size of the backdoor set, even for CSP
instances over the Boolean domain.

In the following we show that hardness also holds if we
drop the restriction on the domain of the CSP instance but
instead consider only CSP instances of arity 2.

Theorem 6. For every C € {MIN, MAX, MAJ, AFF,
MALY}, STRONG C-BACKDOOR DETECTION is W[2]-hard
even for CSP instances with arity 2.

The proof of the above theorem is inspired by the proof
of (Bessiere et al. 2013|, Theorem 6) and is omitted due to
space constraints.

Summary

We have introduced heterogeneous base classes and have
shown that strong backdoor sets into such classes can be
considerably smaller than strong backdoor sets into homo-
geneous base classes; nevertheless, the detection of strong
backdoor sets into homogeneous base classes is still fixed-
parameter tractable in many natural cases. Hence our results
push the tractability boundary considerably further. Our the-
oretical evaluation entails hardness results that establish the
limits for tractability.

So far we have focused on strong backdoor sets; we leave
a rigorous study of weak backdoor sets into heterogeneous
base classes for future investigations. It would be interesting
to extend our line of research to the study of backdoor sets
into heterogeneous base classes composed of homogeneous
classes defined by global properties, in contrast to the Shaefer
classes of SAT, and polymorphism-based classes for CSP.
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