
The Complexity of
Valued Constraint Satisfaction

Peter Jeavons∗ Andrei Krokhin† Stanislav Živný‡

Abstract

We survey recent results on the broad family of problems that can be
cast as valued constraint satisfaction problems. We discuss general methods
for analysing the complexity of such problems, give examples of tractable
cases, and identify general features of the complexity landscape.

1 Introduction
Computational problems from many different areas involve finding an assignment
of values to a set of variables, where that assignment must satisfy some spec-
ified feasibility conditions and optimise some specified objective function. In
many such problems the objective function can be represented as a sum of func-
tions, each of which depends on some subset of the variables. Examples include:
Gibbs energy minimisation, Markov Random Fields (MRF), Conditional Ran-
dom Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism, Con-
straint Optimisation Problems (COP) and Valued Constraint Satisfaction Prob-
lems (VCSP) [6, 23, 68, 85, 87, 89].

We focus in this article on a generic framework for such problems that cap-
tures their general form. Bringing all such problems into a common framework
draws attention to common aspects that they all share, and allows a very general
algebraic approach for analysing their complexity to be developed. The primary
motivation for this line of research is to understand the general picture of complex-
ity within this general framework, rather than to develop specialised techniques
for specific applications. We will give an overview of this algebraic approach, and
the results that have been obtained by using it.

∗Department of Computer Science, University of Oxford, Peter.Jeavons@cs.ox.ac.uk
†School of Engineering and Computing Sciences, University of Durham, Andrei.Krokhin@

durham.ac.uk (Andrei Krokhin is supported by the UK EPSRC grant EP/H000666/1)
‡Department of Computer Science, University of Oxford, standa@cs.ox.ac.uk

(Stanislav Živný is supported by a Royal Society University Research Fellowship)

Peter.Jeavons@cs.ox.ac.uk
Andrei.Krokhin@durham.ac.uk
Andrei.Krokhin@durham.ac.uk
standa@cs.ox.ac.uk

The generic framework we use is the valued constraint satisfaction problem
(VCSP), defined formally as follows. Throughout the paper, let D be a fixed finite
set and let Q = Q∪ {∞} denote the set of rational numbers with (positive) infinity.

Definition 1. We denote the set of all functions φ : Dm → Q by Φ(m)
D and let

ΦD =
⋃

m≥1Φ
(m)
D . We will often call the functions in ΦD cost functions over D.

Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V is an
expression of the form φ(x) where x ∈ Vm and φ ∈ Φ(m)

D . The number m is called
the arity of the constraint, the function φ is called the constraint function, and the
tuple x the scope of the constraint.

We will call the elements of D labels (for variables), and say that the cost
functions in ΦD take values.

Definition 2. An instance of the valued constraint satisfaction problem (VCSP)
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and
an objective function Φ expressed as follows:

Φ(x1, . . . , xn) =

q∑
i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in Φ.

The goal is to find an assignment of labels to the variables (or labelling) that
minimises Φ.

Note that the value of the function Φ for any assignment of labels to the vari-
ables in V is given by the sum of the values taken by the constraints; this value
will sometimes be called the cost of the assignment. An infinite value for any
constraint indicates an infeasible assignment.

If the constraint functions in some VCSP instance are finite-valued, i.e., take
only finite values, then every assignment is feasible, and the problem is to identify
an assignment with minimum possible cost (i.e., we need to deal only with the
optimisation issue). On the other hand, if each constraint function in an instance
takes only two values: one finite value (possibly specific to the constraint) and∞,
then all feasible assignments are equally good, and so the only question is whether
any such assignment exists (i.e., we need to deal only with the feasibility issue).
If we have neither of the above cases then we need to deal with both feasibility
and optimisation.

In Section 2 we give examples to show that many standard combinatorial op-
timisation problems can be conveniently expressed in the VCSP framework. In
Section 3 we define certain algebraic properties of the constraints that can be used

to identify many tractable cases. Section 4 describes the basics of a recently de-
veloped general algebraic theory for analysing the complexity of different forms
of valued constraints. In Section 5 we use this algebraic theory to identify sev-
eral tractable and intractable cases, and in Section 6 we discuss approximation.
In Section 7 we discuss the oracle model for representing the objective function.
Finally, Section 8 gives a brief summary and identifies some open problems.

2 Problems and frameworks captured by the VCSP
In this section we will give examples of specific problems and previously studied
frameworks that can be expressed as VCSPs with restricted forms of constraints.

Definition 3. Any set Γ ⊆ ΦD is called a valued constraint language over D, or
simply a language. We will denote by VCSP(Γ) the class of all VCSP instances
in which the constraint functions are all contained in Γ.

Valued constraint languages may be infinite, but it will be convenient to fol-
low [11, 17] and define the complexity of a valued constraint language in terms of
its finite subsets. We assume throughout that P,NP.

Definition 4. A valued constraint language Γ is called tractable if VCSP(Γ′) can
be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ

is called intractable if VCSP(Γ) is NP-hard for some finite Γ′ ⊆ Γ.

One advantage of defining tractability in terms of finite subsets is that the
tractability of a valued constraint language is independent of whether the cost
functions are represented explicitly (say, via full tables of values, or via tables for
the finite-valued parts) or implicitly (via oracles).

Example 5 (NAE-SAT). Let D = {0, 1} and let Γnae be the language that contains
just the single ternary cost function φnae : D3 → Q defined by

φnae(x, y, z) def
=

∞ if x = y = z
0 otherwise

.

The problem VCSP(Γnae) is exactly the Not-All-Equal Satisfiability problem, also
known as the 3-Uniform Hypergraph 2-Colourability problem. This problem is
NP-hard [33], so Γnae is intractable.

Example 6 (Max-k-Cut). Let Γxor be the language that contains just the single
binary cost function φxor : D2 → Q defined by

φxor(x, y) def
=

1 if x = y
0 if x , y

.

The problem VCSP(Γxor) corresponds to the problem of minimising the number
of monochrome edges in a k-colouring (where k = |D|) of the graph G formed
by the scopes of the constraints. This problem is known as the Maximum k-Cut
problem (or simply Max-Cut when |D| = 2), and is NP-hard [33].

Hence, for any choice of D, the language Γxor is intractable.

Example 7 (Potts model). Let ΓPotts be the language that contains all unary cost
functions and the single binary cost function φPotts: D2 → Q defined by

φPotts(x, y) def
=

{
0 if x = y
1 if x , y .

The problem VCSP(ΓPotts) corresponds to finding the minimum energy state of
the Potts model from statistical mechanics (with external field) [72]. This model
is also used as the basis for a standard Markov Random Field approach to a wide
variety of problems in machine vision [6]. For |D| = 2, the function φPotts is
submodular (see Example 18) and we will show that this implies that ΓPotts is
tractable. For |D| > 2, ΓPotts is intractable as it includes, as a special case, the
multiway cut problem, which is NP-hard [27].

Example 8 ((s, t)-Min-Cut). Let G = (V, E) be a directed weighted graph such
that for every (u, v) ∈ E there is a weight w(u, v) ∈ Q≥0 and let s, t ∈ V be
distinguished source and target nodes. Recall that an (s, t)-cut C is a subset of
vertices V such that s ∈ C but t < C. The weight, or the size, of an (s, t)-cut C
is defined as

∑
(u,v)∈E,u∈C,v<C w(u, v). The (s, t)-Min-Cut problem consists in finding

a minimum-weight (s, t)-cut in G. We can formulate the search for a minimum-
weight (s, t)-cut in G as a VCSP instance as follows.

Let D = {0, 1}. For any label d ∈ D and cost c ∈ Q, we define

ηc
d(x) def

=

0 if x = d
c if x , d

.

For any weight w ∈ Q≥0, we define

φw
cut(x, y) def

=

w if x = 0 and y = 1
0 otherwise

.

We denote by Γcut the set {η∞0 , η
∞
1 } ∪ {φ

w
cut | w ∈ Q≥0}. A minimum-weight

(s, t)-cut in a graph G with set of nodes V = {x1, . . . , xn} corresponds to the set of
variables assigned the label 0 in a minimal cost assignment to the VCSP instance
defined by

Φ(x1, . . . , xn) def
= η∞0 (s) + η∞1 (t) +

∑
(xi,x j)∈E

φ
w(xi,x j)
cut (xi, x j).

The unary constraints ensure that the source and target nodes must be assigned
the labels 0 and 1, respectively, in any minimal cost assignment.

Furthermore, it is an easy exercise to show that any instance of VCSP(Γcut) on
n variables can be solved in O(n3) time by a reduction to (s, t)-Min-Cut and then
using the standard algorithm [35]. Hence Γcut is tractable.

Example 9 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks
for a minimum size set W of vertices in a given graph G = (V, E) such that each
edge in E has at least one endpoint in W. This problem is NP-hard [33].

Let D = {0, 1}. We define

φvc(x, y) def
=

∞ if x = y = 0
0 otherwise

.

We denote by Γvc the language {φvc, η
1
0}, where η1

0 is the function defined in
Example 8 that imposes unit cost for any variable assigned the label 1. A mini-
mum vertex cover in a graph G with set of vertices V = {x1, . . . , xn} corresponds
to the set of vertices assigned the label 1 in some minimum cost assignment to the
VCSP(Γvc) instance defined by

Φ(x1, . . . , xn) def
=

∑
xi∈V

η1
0(xi) +

∑
(xi,x j)∈E

φvc(xi, x j).

The binary constraints ensure that in any minimal cost assignment at least one
endpoint of each edge belongs to the vertex cover.

Furthermore, it is easy to convert any instance of VCSP(Γvc) to an equivalent
instance of Minimum Vertex Cover by repeatedly assigning the label 1 to all vari-
ables which do not appear in the scope of any unary constraints and removing
these variables and all constraints involving them. Hence Γvc is intractable.

We will now show how several broad frameworks previously studied in the
literature can be expressed as special cases of the VCSP with restricted languages.
We will discuss algorithms and complexity classifications for them in Section 5.

Example 10 (CSP). The standard constraint satisfaction problem (CSP) over any
fixed set of possible labels D can be seen as the special case of the VCSP where all
cost functions take only the values 0 or ∞, representing allowed (satisfying) and
disallowed tuples, respectively. Such constraints and cost functions are sometimes
called crisp. In other words, the CSP can be seen as VCSP(Γcrisp), where Γcrisp is
the language consisting of all cost functions on some fixed set D with range {0,∞}.
Note that the CSP can also be cast as the homomorphism problem for relational
structures [29] (cf. Example 11).

Since the CSP includes many known NP-hard problems, such as NAE-SAT
(Example 5) and Graph-3-Colouring, the language Γcrisp is clearly intractable.
However, many tractable subsets of Γcrisp have been identified [77, 52, 29, 11,
7, 12, 49, 3, 4], mostly through an algebraic approach whose extension we dis-
cuss in Section 4. There are many surveys on the complexity of the CSP, see the
books [25, 26], and also [14, 42].

Feder and Vardi conjectured that the CSP exhibits a dichotomy: that is, ev-
ery finite language Γ ⊆ Γcrisp is either tractable or intractable [29], thus exclud-
ing problems of intermediate complexity, as given by Ladner’s Theorem (assum-
ing P,NP) [66]. The Algebraic Dichotomy conjecture, which we state formally
and discuss in Section 5, specifies the precise boundary between tractable and
intractable crisp languages [11].

Example 11 (Graph Homomorphism). Given two digraphs G = (V(G), E(G)) and
H = (V(H), E(H)), a mapping f : V(G) → V(H) is a homomorphism from G to
H if f preserves edges, that is, (u, v) ∈ E(G) implies (f (u), f (v)) ∈ E(H).

The problem whether an input digraph G admits a homomorphism to a fixed
digraph H is also known as the H-Colouring problem and has been actively stud-
ied in graph theory [41, 42].

For any graph H, let D = V(H) and let ΓH be the language that contains just
the single binary cost function φH : D2 → Q defined by

φH(x, y) def
=

{
0 if (x, y) ∈ E(H)
∞ otherwise .

For any digraph H, the problem VCSP(ΓH), which is a special case of the CSP
(Example 10), corresponds to the H-colouring problem, where the input graph G
is given by the scopes of the constraints. If we add all unary crisp functions to ΓH

then the resulting VCSP is known as List H-Colouring [41, 42].
It is known that both the Feder-Vardi conjecture and the Algebraic Dichotomy

conjecture are equivalent to their restrictions to the H-colouring problem [13, 29].

Example 12 (Max-CSP). An instance of the (weighted) maximum constraint sat-
isfaction problem (Max-CSP) is an instance of the CSP where the goal is to max-
imise the (weighted) number of satisfied constraints.

When seeking the optimal solution, maximising the number of satisfied con-
straints is the same as minimising the number of unsatisfied constraints. Hence
for any instance Φ of the Max-CSP, we can define a corresponding VCSP instance
Φ′ in which each constraint c of Φ is associated with a constraint over the same
scope in Φ′ which assigns cost 0 to tuples allowed by c, and cost 1 to tuples disal-
lowed by c. It follows that Max-CSP is equivalent to VCSP(ΓMax), where ΓMax is
the language consisting of cost functions whose values are restricted to zero and
one.

For D = {0, 1}, the complexity of all subsets of ΓMax has been completely
classified in [58]. Initial results for languages over arbitrary finite sets appeared
in [15]. A complete complexity classification will be discussed in Section 5.

Example 13 (Min-Cost-Hom). Let Γunary consist of all unary cost functions and
let Γmc = Γcrisp ∪ Γunary (where Γcrisp is defined in Example 10). Problems of the
form VCSP(Γ) with Γ ⊆ Γmc have been studied under the name of the Minimum-
Cost Homomorphism problem (or Min-Cost-Hom) [39, 43, 81, 80, 85, 86]. Note
that the first three of these papers assume that Γunary ⊆ Γ, while the last three do
not. In [39, 43] Γ is assumed to be of the form {φH} ∪ Γunary, where φH is a binary
crisp cost function, as in Example 11.

In any instance of VCSP(Γmc), the crisp constraints specify the CSP part, i.e.,
the feasibility aspect of the problem, while the unary constraints specify the opti-
misation aspect. More precisely, the unary constraints specify the costs of assign-
ing labels to individual variables. Complexity classifications for special cases of
Min-Cost-Hom will be discussed in Section 5.

Example 14 (Min-Ones). An instance of the Boolean Minimum Ones (Min-Ones)
problem is an instance of the CSP over D = {0, 1} where the goal is to satisfy
all constraints and minimise the number of variables assigned the label 1. Such
instances correspond to Min-Cost-Hom instances over {0, 1} in which all unary
constraints are of the form η1

0 as defined in Example 8 (which impose a unit cost
for any variables assigned the label 1). A classification of the complexity of all
subsets of this language was obtained in [25].

Example 15 (Min-Sol). The Minimum Solution problem (Min-Sol) [53, 54] is a
generalisation of Min-Ones from Example 14 to larger sets of labels where the
only allowed unary cost function is a particular finite-valued injective function.
Thus, this problem is also a subproblem of Min-Cost-Hom. Known complexity
classifications for Min-Sol problems will be discussed in Section 5.

3 Polymorphisms and weighted polymorphisms
To develop general tools to classify the complexity of different valued constraint
languages, we will now define certain algebraic properties of cost functions.

A function f : Dk → D is called a k-ary operation on D. The k-ary projections,
defined for all 1 ≤ i ≤ k, are the operations e(k)

i such that e(k)
i (x1, . . . , xk) = xi. For

any tuples x1, . . . , xk ∈ Dm, we denote by f (x1, . . . , xk) the tuple in Dm obtained
by applying f to x1, . . . , xk componentwise.

Any valued constraint language Γ defined on D can be associated with a set of
operations on D, known as the polymorphisms of Γ, and defined as follows.

Definition 16 (Polymorphism). Let φ : Dm → Q be a cost function and let
Feas(φ) = {x ∈ Dm | φ(x) is finite} be the feasibility relation of φ. We say that an
operation f : Dk → D is a polymorphism of φ if, for any x1, x2, . . . , xk ∈ Feas(φ)
we have that f (x1, x2, . . . , xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the
set of all operations on D which are polymorphisms of all φ ∈ Γ. We denote by
Pol(k)(Γ) the k-ary operations in Pol(Γ).

Note that the projections are polymorphisms of all valued constraint languages.
For {0,∞}-valued cost functions (relations) this notion of polymorphism cor-

responds precisely to the standard notion of polymorphism for relations [5, 52].
This notion of polymorphism has played a key role in the analysis of complexity
for the CSP [52, 11]. However, for the analysis of the VCSP we need a more
flexible notion that assigns weights to a collection of polymorphisms.

Definition 17 (Weighted Polymorphism). Let φ : Dm → Q be a cost function and
let C ⊆ Pol(k)(φ) be a collection of k-ary polymorphisms. A function ω : C → Q
is called a k-ary weighted polymorphism of φ on C if it satisfies the following
conditions:

•
∑

f∈C ω(f) = 0;

• if ω(f) < 0, then f is a projection;

• for any x1, x2, . . . , xk ∈ Feas(φ)∑
f∈C

ω(f)φ(f (x1, . . . , xk)) ≤ 0 . (2)

We define supp(ω) = { f | ω(f) > 0) to be the positive support of ω.

Remark. The definition of a weighted polymorphism can be re-stated in proba-
bilistic terms, as follows. Consider Inequality (2) and assume that it is non-trivial,
i.e., not all weights ω(f) are equal to 0. Let c be the smallest (negative) weight
ω(f) that appears there. Add

∑k
i=1 |c| · φ(e(k)

i (x1, . . . , xk)) =
∑k

i=1 |c| · φ(xi) to both
sides of Inequality (2). Note that all weights of operations on the left-hand side
are now non-negative. Normalise by dividing both sides by |c| · k and view the
(new) weights of operations on the left-hand side as a probability distribution µ
over a subset of Pol(k)(φ). We can then re-write Inequality (2) as follows:

E f∼µ[φ(f (x1, . . . , xk))] ≤ avg{φ(x1), . . . , φ(xk)}. (3)

Thus, one can identify (non-trivial) k-ary weighted polymorphisms of φwith prob-
ability distributions µ over subsets of Pol(k)(φ) satisfying Inequality (3) for all
x1, . . . , xk ∈ Feas(φ).

This is illustrated in Figure 1, which should be read from left to right. Let
C = { f1, . . . , fn} ⊆ Pol(k)(φ) and let µ be a probability distribution on C. Starting
with the m-tuples x1, . . . , xk, we first apply operations f1, . . . , fn to these tuples
componentwise, thus obtaining the m-tuples x′1, . . . , x

′
n. Inequality 3 amounts to

comparing the average of the values of φ applied to the tuples x1, . . . , xk, which
corresponds to projections, with the weighted sum of the values of φ applied to
the tuples x′1, . . . , x

′
n, which is the expected value of φ(f (x1, . . . , xk)) as f is drawn

from µ.

x1
x2
...

xk

x′1 = f1(x1, . . . , xk)
x′2 = f2(x1, . . . , xk)

...
x′n = fn(x1, . . . , xk)

x1[1] x1[2] . . . x1[m]
x2[1] x2[2] . . . x2[m]

...
xk[1] xk[2] . . . xk[m]

x′1[1] x′1[2] . . . x′1[m]
x′2[1] x′2[2] . . . x′2[m]

...
x′n[1] x′n[2] . . . x′n[m]

φ
−→

φ(x1)
φ(x2)
...

φ(xk)

1
k

k∑
i=1

φ(xi)

≥

φ
−→

φ(x′1)
φ(x′2)
...

φ(x′n)

n∑

i=1

Pr
µ

[fi]φ(x′i)

Figure 1: Probabilistic definition of a weighted polymorphism.

If ω is a weighted polymorphism of φ, then we say that φ admits ω as a
weighted polymorphism. We say that a language Γ admits a weighted polymor-
phism ω if ω is a weighted polymorphism of every cost function φ ∈ Γ.

Weighted polymorphisms were introduced in [19] and have allowed a general
algebraic theory of complexity for valued constraints to be developed, as we will
describe in Section 4.

Certain special kinds of weighted polymorphisms were introduced in earlier
papers, but have now been subsumed by the more general theory described here.
For example, the notion of a fractional polymorphism was introduced in [16].
For finite-valued functions, this notion coincides with the notion of a weighted
polymorphism.

A more restricted form of weighted polymorphism was introduced earlier
in [17] and is known as a multimorphism. This is essentially a k-ary weighted
polymorphism where the values of ω(f) are all integers, and the values of ω(f)
for projection operations are all equal to −1. Using the probabilistic view, this
means that the probability of each operation in a k-ary weighted polymorphism is
of the form `/k where ` ∈ Z.

One can specify a k-ary multimorphism as a k-tuple f = 〈 f1, . . . , fk〉 of k-ary
operations fi on D, where each operation f for which ω(f) is positive appears
ω(f) times, and then the definition simplifies as follows: for all x1, . . . , xk ∈ Dm,

k∑
i=1

φ(fi(x1, . . . , xk)) ≤
k∑

i=1

φ(xi) . (4)

Weighted polymorphisms (including the special cases of fractional polymor-
phisms and multimorphisms) have proved to be a valuable tool for identifying
tractable valued constraint languages, as we will illustrate in this Section.

Example 18 (Submodularity). For any finite set V , a rational-valued function h
defined on subsets of V is called a set function. A set function h is called submod-
ular if for all subsets S and T of V ,

h(S ∩ T) + h(S ∪ T) ≤ h(S) + h(T). (5)

Submodular functions are a key concept in operational research and combinatorial
optimisation (see, e.g. [30, 78, 84] for extensive information about them). They
are often considered to be a discrete analogue of convex functions. Examples
of submodular functions include cuts in graphs, matroid rank functions, and en-
tropy functions. There are combinatorial algorithms for minimising submodular
functions in polynomial time (see [78, 30], and also [51]).

If we set D = {0, 1}, then any set function h on V can be associated with
a (|V |-ary) cost function φ defined on the characteristic vectors of subsets of V .
The union and intersection operations on subsets correspond to the Min and Max
operations on the associated characteristic vectors. Hence h is submodular if and
only if the associated cost function φ satisfies the following inequality:

φ(Min(x1, x2)) + φ(Max(x1, x2)) − φ(x1) − φ(x2) ≤ 0 .

But this means that φ admits the 2-ary weighted polymorphism ωsub, defined by:

ωsub(f) def
=

−1 if f ∈ {e(2)

1 , e(2)
2 }

+1 if f ∈ {Min,Max}
0 otherwise.

.

This is equivalent to saying that φ admits 〈Min,Max〉 as a multimorphism.

Example 19 (Generalised Submodularity). Let D be a finite lattice, i.e., a par-
tially ordered set, where each pair of elements {a, b} has a least upper bound,
∨(a, b), and a greatest lower bound, ∧(a, b). We denote by Γsub the set of all
cost functions over D that admit 〈∨,∧〉 as a multimorphism. Using a polynomial-
time strongly combinatorial algorithm for minimising submodular functions, it
was shown in [17] that Γsub is tractable when D is a totally ordered lattice (i.e., a
chain). More general lattices will be discussed in Section 5 and Section 7.

Example 20 (Max). We denote by Γmax the set of all cost functions (over some
fixed finite totally ordered set D) that admit 〈Max,Max〉 as a multimorphism,
where Max : D2 → D is the binary operation returning the larger of its two
arguments. Note that Γmax includes all monotonic decreasing finite-valued cost
functions, as well as some non-monotonic crisp cost functions [17]. It was shown
in [17] that Γmax is tractable.

Example 21 (Min). We denote by Γmin the set of all cost functions (over some
fixed finite totally ordered set D) that admit 〈Min,Min〉 as a multimorphism,
where Min : D2 → D is the binary operation returning the smaller of its two
arguments. The tractability of Γmin was established in [17].

Example 22 (Bisubmodularity). For a given finite set V , bisubmodular functions
are functions defined on pairs of disjoint subsets of V with a requirement similar
to Inequality 5 (see [30, 71] for the precise definition). Examples of bisubmodular
functions include rank functions of delta-matroids [30].

A property equivalent to bisubmodularity can be defined on cost functions on
the set D = {0, 1, 2}. We define two binary operations Min0 and Max0 as follows:

Min0(x, y) def
=

{
0 if 0 , x , y , 0
Min(x, y) otherwise ,

Max0(x, y) def
=

{
0 if 0 , x , y , 0
Max(x, y) otherwise .

We denote by Γbis the set of finite-valued cost functions that admit 〈Min0,Max0〉

as a multimorphism. The language Γbis can be shown to be tractable using the
results of [71] (see also [30]).

The definitions of Min0 and Max0 still make sense when D = {0, 1, 2 . . . , k},
k ≥ 3. In that case, functions on D that admit 〈Min0,Max0〉 as a multimorphism
are called k-submodular; they were introduced in [46].

Example 23 (Skew Bisubmodularity). Let D = {0, 1, 2}. Recall the definition of
operations Min0 and Max0 from Example 22. We define

Max1(x, y) def
=

{
1 if 0 , x , y , 0
Max(x, y) otherwise .

A function φ: Dm → Q is called α-bisubmodular [48], for some real 0 < α ≤ 1,
if φ admits the weighted polymorphism ω defined by ω(Min0) = 1, ω(Max0) =

α, ω(Max1) = (1 − α), and ω(e(2)
1) = ω(e(2)

2) = −1. Note that 1-bisubmodular
functions are (ordinary) bisubmodular functions as defined in Example 22. It is
shown in [48] that each distinct value of α is associated with a distinct class of
α-bisubmodular functions. The tractability of α-bisubmodular valued constraint
languages will be discussed in Section 5.

Example 24 ((Symmetric) Tournament Pair). A binary operation f : D2 → D is
called a tournament operation if (i) f is commutative, i.e., f (x, y) = f (y, x) for
all x, y ∈ D; and (ii) f is conservative, i.e., f (x, y) ∈ {x, y} for all x, y ∈ D. The
dual of a tournament operation is the unique tournament operation g satisfying
x , y⇒ g(x, y) , f (x, y).

A tournament pair is a pair 〈 f , g〉, where both f and g are tournament opera-
tions. A tournament pair 〈 f , g〉 is called symmetric if g is the dual of f .

Let Γ be an arbitrary language that admits a symmetric tournament pair as a
multimorphism. It was shown in [18], by a reduction to the minimisation problem
for submodular functions (cf. Example 19), that any such Γ is tractable. It is
shown in [62] that any finite-valued language that admits a symmetric tournament
pair multimorphism also admits the submodularity multimorphism with respect to
some totally ordered lattice on D (cf. Example 19).

Now let Γ be an arbitrary language that admits any tournament pair as a multi-
morphism. It was shown in [18], by a reduction to the symmetric tournament pair
case, that any such Γ is also tractable.

Example 25 (1-Defect). Let b and c be two distinct elements of D and let (D;<)
be a partial order which relates all pairs of elements except for b and c. We call
〈 f , g〉, where f , g : D2 → D are two binary operations, a 1-defect if f and g are
both commutative and satisfy the following conditions:

• If {x, y} , {b, c}, then f (x, y) = Min(x, y) and g(x, y) = Max(x, y).

• If {x, y} = {b, c}, then { f (x, y), g(x, y)} ∩ {x, y} = ∅, and f (x, y) < g(x, y).

The tractability of languages that admit a 1-defect multimorphism was shown
in [57], and was used in the classification of the Max-CSP over a four-element set
(see Section 5).

Example 26 (Majority). A ternary operation f : D3 → D is called a majority
operation if f (x, x, y) = f (x, y, x) = f (y, x, x) = x for all x, y ∈ D.

Let f = 〈 f1, f2, f3〉 be a triple of ternary operations such that f1, f2 and f3 are
all majority operations. Let φ : Dm → Q be an m-ary cost function that admits f as
a multimorphism. By Inequality (4), for all x, y ∈ Dm, 3φ(x) ≤ φ(x) + φ(x) + φ(y)
and 3φ(y) ≤ φ(y) + φ(y) + φ(x). Therefore, if both φ(x) and φ(y) are finite, then
we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), and hence φ(x) = φ(y). In other words, the
range of φ is {c,∞}, for some finite c ∈ Q.

Let ΓMjty be the set of all cost functions that admit as a multimorphism some
triple f = 〈 f1, f2, f3〉 of arbitrary ternary majority operations. The tractability of
ΓMjty was shown in [17].

Example 27 (Minority). A ternary operation f : D3 → D is called a minority
operation if f (x, x, y) = f (x, y, x) = f (y, x, x) = y for all x, y ∈ D. Let ΓMnty be
the set of cost functions that admit as a multimorphism some triple f = 〈 f1, f2, f3〉

of arbitrary ternary minority operations. A similar argument to the one in Exam-
ple 26 shows that the cost functions in ΓMnty have range {c,∞}, for some finite
c ∈ Q. The tractability of ΓMnty was shown in [17].

Example 28 (MJN). Let f = 〈 f1, f2, f3〉 be three ternary operations such that f1

and f2 are majority operations, and f3 is a minority operation. Let ΓMJN be the set
of cost functions that admit f as a multimorphism. The tractability of ΓMJN was
shown in [63], generalising an earlier tractability result for a specific f of this form
from [17].

Other tractable valued constraint languages defined by weighted polymor-
phisms include the so-called L#-convex languages [30], as well as the weakly
and strongly tree-submodular languages defined in [60]. Hirai [45] recently intro-
duced a framework of submodular functions on modular semilattices (defined by a
type of weighted polymorphism) that generalises many examples given above, in-
cluding standard submodularity, k-submodularity, skew bisubmodularity, and tree
submodularity. See [45] for the natural, but somewhat technical, definition of this
very general framework.

4 A general algebraic theory of complexity
We have seen in the previous section that many tractable cases of the VCSP can
be defined by having a particular weighted polymorphism. The algebraic theory
developed in [19] establishes that, in fact, every tractable valued constraint lan-
guage can be exactly characterised by its weighted polymorphisms. This extends
(parts of) the algebraic theory previously developed for the CSP [10, 11, 52] that
has led to significant advances in understanding the landscape of complexity for
the CSP over the last 10 years (e.g., [2, 3, 4, 7, 8, 9, 12, 49, 67]). In this section,
we will give a brief overview of the main results of this new algebraic theory for
the VCSP. We refer the reader to [19] for full details and proofs.

We first recall some basic terminology from universal algebra [5, 79]. We
denote by OD the set of all finitary operations on D and by O(k)

D the k-ary oper-
ations in OD. Let f ∈ O(k)

D and g1, . . . , gk ∈ O(`)
D . The superposition of f and

g1, . . . , gk is the `-ary operation f [g1, . . . , gk] such that f [g1, . . . , gk](x1, . . . , x`) =

f (g1(x1, . . . , x`), . . . , gk(x1 . . . , x`)).
A set F ⊆ OD is called a clone of operations if it contains all the projections on

D and is closed under superposition. It is easy to verify that the set of operations
Pol(Γ) is a clone. Clones are actively studied in universal algebra; for example,

all (countably many) clones on D = {0, 1} are known, but the situation is known
to be much more complicated for larger sets D (see, e.g., [5, 79]).

For each F ⊆ OD we define Clone(F) to be the smallest clone containing F.
For any clone C, we use C(k) to denote the k-ary operations in C.

Now we consider the effect of extending a valued constraint language Γ ⊆ ΦD

to a possibly larger valued constraint language. We first define and study a notion
of expressibility for valued constraint languages. This notion has played a key role
in the analysis of complexity for the CSP and VCSP [11, 52, 17, 89].

Definition 29. We say that an m-ary cost function φ is expressible over a con-
straint language Γ if there exists a instance Φ ∈ VCSP(Γ) with variables V =

{x1, . . . , xn, y1, . . . , ym}, such that

φ(y1, . . . , ym) = min
x1,...,xn

Φ(x1, . . . , xn, y1, . . . , ym) .

Definition 30. A valued constraint language Γ ⊆ ΦD is called a weighted rela-
tional clone if it is closed under expressibility, scaling by non-negative rational
constants, and addition of rational constants. We define wRelClone(Γ) to be the
smallest weighted relational clone containing Γ.

Theorem 31 ([19]). A valued constraint language Γ is tractable if wRelClone(Γ)
is tractable and intractable if wRelClone(Γ) is intractable.

Example 32. By Theorem 31, and Examples 5 and 6, in order to show that Γ is
an intractable language it is sufficient to show that φnae or φxor is in wRelClone(Γ).
We discuss general reasons for intractability of constraint languages in Section 5.

We now develop tools that will allow an alternative characterisation of any
weighted relational clone.

Definition 33. We define a k-ary weighting of a clone C to be a function ω :
C(k) → Q such that ω(f) < 0 only if f is a projection and∑

f∈C(k)

ω(f) = 0 .

We denote by WC the set of all possible weightings of C and by W(k)
C the set of

k-ary weightings of C.

Since a weighting is simply a rational-valued function satisfying certain linear
inequalities it can be scaled by any non-negative rational to obtain a new weight-
ing. Similarly, any two weightings of the same clone of the same arity can be
added to obtain a new weighting of that clone.

The notion of superposition can also be extended to weightings in a natural
way, by forming a superposition with each argument of the weighting, as follows.

Definition 34. For any clone C, any ω ∈ W(k)
C and any g1, g2, . . . , gk ∈ C(`), we

define the superposition of ω and g1, . . . , gk, to be the function ω[g1, . . . , gk] :
C(`) → Q defined by

ω[g1, . . . , gk](f ′) def
=

∑
f∈C(k)

f [g1,...,gk]= f ′

ω(f) . (6)

It follows immediately from the definition of superposition that the sum of the
weights in any superposition ω[g1, . . . , gk] is equal to the sum of the weights in ω,
which is zero, by Definition 33. However, it is not always the case that an arbitrary
superposition satisfies the other condition in Definition 33, that negative weights
are only assigned to projections. Hence we make the following definition:

Definition 35. If the result of a superposition is a valid weighting, then that su-
perposition will be called a proper superposition.

Definition 36. A weighted clone, W, is a non-empty set of weightings of some
fixed clone C which is closed under non-negative scaling, addition of weightings
of equal arity, and proper superposition with operations from C. The clone C is
called the support of W.

Example 37. For any clone, C, the set WC containing all possible weightings of
C is a weighted clone with support C.

Example 38. For any clone, C, the set W0
C containing all zero-valued weightings

of C is a weighted clone with support C. W0
C contains exactly one weighting of

each possible arity, which assigns the value 0 to all operations in C of that arity.

Weighted clones were introduced only very recently and not much is known
about them (in comparison with ordinary clones). Some initial study of weighted
clones can be found in [19, 24].

Given a cost function φ, some weightings will satisfy the conditions of Defi-
nition 17, and hence be weighted polymorphisms of φ.

Definition 39. For any Γ ⊆ ΦD, we denote by wPol(Γ) the set of all weightings
of Pol(Γ) which are weighted polymorphisms of all cost functions φ ∈ Γ.

To define a mapping in the other direction, we need to consider the union
of the sets WC over all clones C on some fixed set D, which will be denoted
WD. If we have a set W ⊆ WD which may contain weightings of different clones
over D, then we can extend each of these weightings with zeros, as necessary,
so that they are weightings of the same clone C, where C is the smallest clone
containing all the clones that are supports of weightings in W. For any set W ⊆

WD, we define wClone(W) to be the smallest weighted clone containing this set
of extended weightings obtained from W.

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weightings

Γ

wPol(Γ)

Imp(wPol(Γ))
= wRelClone(Γ)

wPol

Imp

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weightings

F

Imp(F)

wPol(Imp(F))
= wClone(F)wPol

Imp

Figure 2: Galois connection between ΦD and WD.

Definition 40. For any W ⊆WD, we denote by Imp(W) the set of all cost functions
in ΦD which admit all weightings ω ∈ W as weighted polymorphisms 1.

It follows immediately from the definition of a Galois connection [5] that, for
any set D, the mappings wPol and Imp form a Galois connection between WD

andΦD, as illustrated in Figure 2. A characterisation of this Galois connection for
finite sets D is given by the following theorem from [19]:

Theorem 41 (Galois Connection for Valued Constraint Languages [19]).

1. For any finite D, and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).

2. For any finite D and any finite W ⊆WD, wPol(Imp(W)) = wClone(W).

1The name Imp is chosen to suggest that such cost functions are improved by weightings in W.

It follows that to identify all tractable valued constraint languages on a finite
set D it is sufficient to study the possible weighted clones on D. This provides a
new approach to the identification of tractable cases, which we hope will prove to
be as successful as the algebraic approach has been in the study of the CSP.

The Galois connection described in Theorem 41 can be used to derive neces-
sary conditions for tractability. It is shown in [19] that every tractable valued con-
straint language must have a weighted polymorphism that assigns positive weight
to certain specific kinds of operations.

The algebraic theory of the CSP extends beyond clones to finite algebras and
varieties of algebras (see [10, 11, 67], see also the surveys in [26]). This extension
explains why the complexity of a (crisp) language is determined by the identi-
ties satisfied by its polymorphisms, which is why we usually define the relevant
operations by identities. This extension was instrumental in obtaining most state-
of-the-art results in this area (e.g. [2, 3, 4, 7, 8, 9, 12, 49, 67]). An initial study of
a similar extension of the algebraic theory for the VCSP can be found in [73].

A valued constraint language Γ is called a core if every unary weighted poly-
morphism ω of Γ has the property that every operation f ∈ supp(ω) is surjective.
Intuitively, a valued constraint language Γ defined on D is a core if no label x ∈ D
can be removed without losing solutions. In other words, for every a ∈ D there
is an instance Φa ∈ VCSP(Γ) such that a appears in every optimal solution to
Φa [48]. Furthermore, a language Γ is called a rigid core if Pol(1)(Γ) contains only
the unary projection e(1)

1 . In this case, all operations in Pol(Γ) must be idempotent,
i.e., satisfy the identity f (x, . . . , x) = x.

Generalising the arguments used for the CSP [11] and finite-valued languages
[48, 83], one can show that the search for tractable valued constraint languages
can be restricted to languages that are rigid cores, see [73]. This technical re-
striction has very important implications because the structural theory of finite
algebras works much better for idempotent operations (and idempotent algebras
and varieties), see, e.g. [2, 3, 4, 7, 8, 12, 49, 67, 69]

5 Algorithms and complexity classifications
A curious feature of research into the tractability of constraint languages is that
all languages known to be tractable have been shown tractable by using very few
algorithmic techniques.

Despite many tractability results concerning crisp languages (i.e., the CSP),
only two algorithmic techniques seem to be sufficient, and the applicability of
each of them individually has been characterised by specific algebraic conditions.

The first technique is based on enforcing local consistency, which is a natural
algorithm for dealing with (crisp) constraints. Roughly, this algorithm, for a given
CSP instance, starts by adding a new constraint for each subset of variables of
bounded size, the new constraints initially allowing all tuples. Then the algorithm
repeatedly discards (i.e., disallows) tuples of labels in the new constraints that
are inconsistent with at least one constraint in the instance. Eventually, either all
assignments are discarded or else local consistency is established; this procedure
takes polynomial time for any fixed D and any fixed bound on the size of subsets.
The former case implies no feasible assignments. One says that a CSP is solved by
local consistency if the latter case implies the existence of a feasible assignment.
The power of local consistency (i.e., a precise characterisation of crisp languages
that give rise to VCSP instances solvable by some form of local consistency) has
recently been established [4, 8]. A k-ary (k ≥ 2) idempotent operation f : Dk → D
is called a weak near-unanimity operation if, for all x, y ∈ D,

f (y, x, x, . . . , x) = f (x, y, x, x, . . . , x) = f (x, x, . . . , x, y).

Theorem 42 (Bounded Width [4, 8]). Let Γ be a crisp language that is a rigid
core. VCSP(Γ) is solvable by local consistency if and only if Pol(Γ) contains
weak near-unanimity operations of all but finitely many arities.

Remark. One of many equivalent forms of the Algebraic Dichotomy conjecture [11]
mentioned in Example 10 is the following: A crisp language Γ that is a rigid core
is tractable if and only if Pol(Γ) contains a weak near-unanimity operation. Crisp
rigid cores Γ that do not satisfy this condition are known to be NP-complete [11].
This reformulation of the conjecture follows from [69] via [10] (see also [3]).

The second standard algorithmic technique for the CSP is based on the prop-
erty of having a polynomial-sized representation (a generating set) for the solu-
tion set of any instance [9, 49]. Roughly, the algorithm works by starting from
the empty set and adding constraints in an instance one by one while maintain-
ing (in polynomial time) a small enough representation of the current solution set
(of feasible assignments). At the end (i.e., after all constraints have been added),
either this representation is non-empty and contains a solution to the instance or
else there is no solution. In a way, this technique is a generalisation of Gaussian
elimination. This algorithm is often called “few subpowers” because it is related
to a certain algebraic property to do with the number of of subalgebras in powers
of an algebra. The power of this algorithm was established in [49]. A k-ary (k ≥ 3)
operation f : Dk → D is called an edge operation if, for all x, y ∈ D,

f (y, y, x, x, . . . , x) = f (y, x, y, x, x, . . . , x) = x

and

f (x, x, x, y, x, . . . , x) = f (x, x, x, x, y, x, . . . , x) = f (x, . . . , x, y) = x.

Theorem 43 (Few Subpowers [49]). Let Γ be a crisp language. Then VCSP(Γ) is
solvable by the few subpowers algorithm if Pol(Γ) contains an edge operation.

The converse to this theorem is true in the following sense: the absence of edge
operations from Pol(Γ) implies that the presence of small enough representations
is not guaranteed, see [49] for details. Interestingly, the few subpowers algorithm
makes use of the actual edge operations in its work (in contrast with bounded
width, where the weak near-unanimity operations only guarantee correctness).

It is natural to try to extend the conditions characterising the applicability of
these two algorithms to the VCSP, and to investigate whether valued constraint
languages satisfying these algebraic conditions are also tractable. However, so far
this approach is largely unexplored. Some forms of local consistency techniques
have been generalised to the VCSP [20], but their power is not fully understood.

For the general VCSP another algorithm, based on linear programming, has
been the most thoroughly investigated. Every VCSP instance has a natural linear
programming relaxation called the basic LP relaxation (BLP). For an instance Φ

defined by Φ(x) =
∑q

i=1 φi(xi), with set of variables V , the associated LP instance
BLP(Φ) is defined as follows:

BLP(Φ) def
= min

q∑
i=1

∑
si∈Dxi

φi(si) λi,si (7a)

s.t.
∑

si∈Dxi | si(x)=a

λi,si = µx(a), 1 ≤ i ≤ q, x ∈ xi, a ∈ D (7b)∑
a∈D

µx(a) = 1, x ∈ V (7c)

λi,si = 0, 1 ≤ i ≤ q, φi(si) = ∞ (7d)

We minimise over the variables µx(a), where x ∈ V and a ∈ D, and λi,si , where
1 ≤ i ≤ q and si ∈ Dxi , that take on real values in the interval [0, 1]. These
variables can be seen as probability distributions on D and Dxi , respectively. The
marginalization constraints (7b) impose that µx is the marginal of λi,si , for each
constraint and each variable x in the scope of that constraint. Note that terms
in (7a) corresponding to (7d) are assumed to be equal to 0.

We remark that an LP relaxation of the VCSP, similar or closely related to (7),
has been proposed independently by many authors; we refer the reader to [62] and
the references therein.

Given a VCSP instance Φ, we say that BLP solves Φ if the optimal value of
BLP(Φ) is equal to the optimal value of Φ. Moreover, we say that BLP solves
a valued constraint language Γ if BLP solves every instance Φ ∈ VCSP(Γ). It
is shown in [62] that in all cases where BLP solves Γ, a standard self-reduction

technique can be used to obtain an assignment that minimises any Φ in VCSP(Γ)
in polynomial time. Hence if BLP solves Γ, then Γ is tractable.

The power of BLP for valued constraint languages was fully characterised
in [82]. To state this result, we first introduce some further terminology about op-
erations. A k-ary operation f : Dk → D is called symmetric if for every permuta-
tion π on {1, . . . , k}, f (x1, . . . , xk) = f (xπ(1), . . . , xπ(k)). A weighted polymorphism
ω is called symmetric if supp(ω) is non-empty and contains symmetric operations
only. Finally, we say that an operation f is generated from a set of operations
F ⊆ OD if f ∈ Clone(F).

Theorem 44 (Power of BLP for Arbitrary Languages [82]). Let Γ be a valued
constraint language. Then the following are equivalent:

1. BLP solves Γ;

2. For every k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

3. For every k ≥ 2, Γ admits a weighted polymorphism (not necessarily k-ary)
ωk such that supp(ωk) generates a symmetric k-ary operation.

It is unknown whether the conditions in Theorem 44 are decidable. Never-
theless, condition (3) has turned out to be very useful for proving the tractability
of many valued constraint languages. A binary operation f : D2 → D is called
a semilattice operation if f is associative, commutative, and idempotent. Since
any semilattice operation trivially generates symmetric operations of all arities,
Theorem 44 shows that any valued constraint language with a binary weighted
polymorphism whose positive support includes a semilattice operation is solv-
able using the BLP. This immediately implies that all of the following cases are
solvable using the BLP, and hence tractable: languages with a (generalised) sub-
modular multimorphism (Example 19), a bisubmodular multimorphism (Exam-
ple 22), a symmetric tournament pair multimorphism (Example 24), or a skew
bisubmodular weighted polymorphism (Example 23), or the weighted polymor-
phisms describing submodularity on modular semilattices [45]. Moreover, a not
very difficult argument can be used to show that languages with a 1-defect multi-
morphism (Example 25) also satisfy condition (3) of Theorem 44 [82], and thus
are tractable.

For valued constraint languages where the cost functions take only finite val-
ues, this result has been strengthened even further [82, 61], see also [62].

Theorem 45 (Power of BLP for Finite-Valued Languages [82, 61]). Let Γ be
a valued constraint language where every cost function takes only finite values.
Then the following are equivalent:

1. BLP solves Γ;

2. For every k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

3. For some k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

4. Γ admits a binary symmetric weighted polymorphism;

5. Γ admits a weighted polymorphism ω such that supp(ω) generates a sym-
metric operation.

We mentioned above that the tractability of constraint languages seems to
come from very few techniques. Interestingly, the hardness of constraint lan-
guages also seems to come from very few specific hard problems! Recall the
functions φnae and φxor on {0, 1}, from Examples 5 and 6, corresponding to the
NP-hard problems NAE-SAT and Max-Cut.

The hardness of VCSP({φnae}) generalises in an obvious way to any prob-
lem VCSP({φ}) over any set D, where φ is defined as follows: choose a subset
X ⊆ D with |X| > 1 and a surjective function h : X → {0, 1}, and let φ(x, y, z) =

φnae(h(x), h(y), h(z)) if (x, y, z) ∈ X3 and φ(x, y, z) = ∞ otherwise. Call such func-
tions NAE-like. By Theorem 31, every language Γ such that wRelClone (Γ) con-
tains a NAE-like function is intractable. Moreover, every crisp core language Γ

known to be NP-complete satisfies this condition [11]. In other words, the ability
to express φnae is the only known reason for a crisp core language to be NP-hard,
and the only reason for this if the Algebraic Dichotomy conjecture holds.

Now let φ be a binary cost function over D such that, for some distinct a, b ∈ D,
argmin(φ) = {(a, b), (b, a)} and φ(a, a), φ(b, b) are both finite. The hardness of
VCSP({φxor}) on {0, 1} generalises in an obvious way to VCSP({φ}) for such func-
tions φ (see [48, 83]). Call such a function XOR-like. By Theorem 31, every Γ

such that wRelClone (Γ) contains a XOR-like function is intractable. Moreover,
the converse is known to be true, that is, for every NP-hard finite-valued core lan-
guage Γ, wRelClone (Γ) contains a XOR-like function [48, 83] (see Theorem 46).

In fact, most languages (not necessarily crisp or finite-valued) known to be NP-
hard are known to satisfy the condition that wRelClone (Γ) contains a function that
is NAE-like or XOR-like. It is an open question whether there exist intractable
languages Γ that do not satisfy this condition. Some NP-hard languages, e.g. those
from [81], are not known to satisfy it.

We now focus on complexity classifications. For crisp languages (i.e. pure fea-
sibility problems), complexity classifications have been established for languages
over two-element sets [77] and three-element sets [7] and for languages contain-
ing all unary relations [12, 2]. For finite-valued languages (i.e. pure optimisation

problems), it has been shown that BLP solves all tractable cases [83].

Theorem 46 (Classification of Finite-Valued Languages [83]). Let Γ be a finite-
valued constraint language that is a core. Either Γ has a binary symmetric weighted
polymorphism (and hence is solvable by BLP), or else wRelClone(Γ) contains a
XOR-like function, and hence Γ is intractable.

Theorem 46 generalises several previous classification results for finite-valued
languages. Tractability in these earlier results was often characterised by (more)
specific binary symmetric weighted polymorphisms:

• A core {0, 1}-valued language2 over a two-element set [58, 25], or over a
three-element set [55], or including all unary {0, 1}-valued functions [28]
is tractable if it is submodular on a chain (cf. Examples 18 and 19), and
intractable otherwise.

• A core {0, 1}-valued language over a four-element set [57] is tractable if it is
submodular on some lattice (cf. Example 19) or 1-defect (cf. Example 25)
and intractable otherwise.

• A core finite-valued language over a two-element set [17] is tractable if it is
submodular (cf. Example 18) and intractable otherwise.

• A core finite-valued language over a three-element set [48] is intractable if
it is submodular on a chain (cf. Example 19) or skew bisubmodular (cf.
Example 23) and intractable otherwise.

• A finite-valued language containing all {0, 1}-valued unary cost functions [63]
is tractable if it is submodular on a chain (cf. Example 24) and intractable
otherwise.

Theorem 46 also implies a classification of the so-called Min-0-Ext problems [45].
For languages where the cost functions can take infinite values, no general

complexity classification is known. In fact, even the special case of {0,∞}-valued
languages is a challenging open problem over sets with four or more elements as
it corresponds to the complexity classification of the CSP (cf. Example 10). For
the general VCSP, unlike the CSP, there is not even a well-established conjecture.

Nevertheless, some interesting and nontrivial partial results are known. For ex-
ample, a complete complexity classification for valued constraint languages over
a two-element set was established in [17]. Note that on a two-element set there is
precisely one majority operation, as defined in Example 26, which we will denote
by Mjrty, and precisely one minority operation, as defined in Example 27, which
we will denote by Mnrty. There are also precisely two constant operations, which
will be denoted Const0 and Const1.

2{0, 1}-valued languages correspond to Max-CSPs, cf. Example 12.

Theorem 47 (Classification of Boolean Languages [17]). A valued constraint
language Γ on D = {0, 1} is tractable if it admits at least one of the following
eight multimorphisms. Otherwise wRelClone (Γ) contains φnae or φxor and Γ is
intractable.

1. 〈Const0〉

2. 〈Const1〉

3. 〈Min,Min〉,
4. 〈Max,Max〉,
5. 〈Min,Max〉,
6.

〈
Mjrty,Mjrty,Mjrty

〉
,

7.
〈
Mnrty,Mnrty,Mnrty

〉
,

8.
〈
Mjrty,Mjrty,Mnrty

〉
.

Let us compare Theorem 47 with a classification of crisp Boolean languages, orig-
inally established by Schaefer in [77] and restated here using polymorphisms (see,
e.g. [14]): A crisp constraint language on D = {0, 1} is tractable if it admits one
of the following six polymorphisms: Const0, Const1, Min, Max, Mjrty, Mnrty;
otherwise it is intractable. These six tractable cases are covered by cases (1-4),
(6), and (7) in Theorem 47. The six cases correspond to sets of Boolean relations
that are 0-valid, or 1-valid, or expressible by Horn clauses, dual Horn clauses,
2-clauses, or linear equations over the field with 2 elements, respectively.

The hardness part of Theorem 47 can be rederived using the algebraic theory
described in Section 4; see [24, 19] for details. We remark that if we restrict
to core Boolean valued constraint languages, the first two cases in Theorem 47
disappear as those languages are not cores (and in fact are solvable trivially).

Another general complexity classification result concerns languages that con-
tain all {0, 1}-valued unary cost functions. Note that a weighted polymorphism ω
is called conservative if f (x1, . . . , xk) ∈ {x1, . . . , xk} for all f ∈ supp(ω).

Theorem 48 (Classification of Conservative Languages [63]). Let Γ be a valued
constraint language on a set D such that Γ contains all {0, 1}-valued unary cost
functions on D. Then either Γ admits a conservative binary multimorphism 〈 f1, f2〉

and a conservative ternary multimorphism
〈

f ′1 , f ′2 , f ′3
〉

and there is a family M of
2-element subsets of D, such that:

• for every {a, b} ∈ M, 〈 f1, f2〉 restricted to {a, b} is a symmetric tournament
pair (see Example 24), and

• for every {a, b} < M,
〈

f ′1 , f ′2 , f ′3
〉

restricted to {a, b} is an MJN multimor-
phism (see Example 28),

in which case Γ is tractable, or else Γ is intractable.

The algorithm for solving the tractable case identified in Theorem 48 first
enforces local consistency (see the discussion of bounded width at the beginning
of this section). After this preprocessing step, any instance admits a symmetric
tournament pair multimorphism [63] and is thus solvable using BLP.

We now briefly describe the partial classification results so far obtained for the
Min-Cost-Hom and Min-Sol problems discussed in Examples 13 and 15 respec-
tively. Recall that a Min-Cost-Hom problem corresponds to VCSP(Γ) for some
language Γ containing only crisp cost functions and unary cost functions. Min-
Sol problems are Min-Cost-Hom problems where the only unary cost function in
Γ is a specific injective and finite-valued cost function.

The complexity classification for Min-Cost-Hom for languages containing all
unary cost functions was established in [81]. The tractable case can be reduced,
after a preprocessing step using local consistency techniques, to a certain problem
on perfect graphs known to be solvable in polynomial time using linear program-
ming [38]. For the special case of digraphs (i.e., when the only non-unary cost
function allowed is a single binary crisp cost function), a complexity classifica-
tion was obtained in [43].

The classification of Min-Cost-Hom for languages containing all unary crisp
cost functions was initially studied in [80] and fully established in [85].

Finally, using the techniques from Section 4 and from [83], a very recent result
has established the computational complexity of Min-Cost-Hom for all languages
over a three-element set [86]. The only tractable cases either admit a weighted
polymorphism with a semilattice operation in its positive support or a certain type
of tournament pair. The former case is tractable using BLP by Theorem 44 and
the latter case is tractable using a reduction to the result in [81] discussed above.

The classification of Min-Sol problems was established in [56] for maximal
languages over a four-element set and for homogenenous languages. The classifi-
cation of Min-Sol has recently also been obtained for all languages over a three-
element set [85]. Using the notion of cores and the algebraic techniques from
Section 4 and from [82, 83], three tractable cases have been identified: bisub-
modular languages (Example 22), generalised min-closed languages (generalis-
ing Example 21), and generalised weak-tournament pair languages (generalising
Example 24); the first two are solvable using BLP, by Theorem 44, while the last
is solvable by a method similar to the tractable case from [81] discussed above.

Adapting the main result of [13] on CSPs, Powell and Krokhin have recently
shown [74] that for every problem VCSP(Γ), where Γ is finite, there is a polynomial-
time equivalent Min-Cost-Hom problem, VCSP(Γ′), where Γ′ contains only a sin-
gle crisp binary function and a single finite-valued unary function. Moreover, the
equivalence also preserves (in both directions) many useful weighted polymor-
phisms of Γ, such as symmetric and weak near-unanimity polymorphisms [4].
Thus, in order to classify the computational complexity of any valued constraint

language it suffices to classify Min-Cost-Hom problems of this restricted form.
This mirrors a similar reduction from the general CSP to the binary case which
was first established in [29].

6 Approximation
Since many forms of valued constraint satisfaction problem are NP-hard, it is
natural to study approximation algorithms for these problems, and their limits.
Recall that a polynomial-time algorithm for an optimisation problem Π is called
an r-approximation algorithm if, for each instance I of Π, the algorithm returns a
solution S for I whose measure m(S) satisfies the inequality

max
(

m(S)
OPT (S)

,
OPT (S)

m(S)

)
≤ r.

The bound r is called the approximation ratio of the algorithm. Note that in gen-
eral r can be a function of the size of I.

There has been major progress in the last 20 years in designing approximation
algorithms and understanding the (in)approximability of combinatorial optimisa-
tion problems. The former direction was boosted by the application of techniques
based on semidefinite programming (SDP) [34] whilst the latter was powered to a
large extent by the theory of probabilistically checkable proofs, or PCPs, see [1].
A notable early source of inapproximability results is [40], where it is shown that
certain problems (such as Max-3-Sat) can be approximated within a (problem-
specific) constant r, but, unless P=NP, not within r− ε for any ε > 0. There is now
a large body of such optimal inapproximability results, including those for Min-
imum Vertex Cover and Max Cut, whose validity depends on the Unique Games
Conjecture, or UGC (see survey [59]). This conjecture states that, for any ε > 0,
there is a large enough integer k = k(ε) such that it is NP-hard to distinguish two
types of systems of linear equations of the form xi +x j ≡ ai j (mod k): those where
at least a (1− ε)-fraction of the equations can be satisfied and those where any as-
signment satisfies at most an ε-fraction of the equations. Despite the fact that the
UGC has been used as a basis for many results, it is still open and the approxima-
tion community seems to be evenly divided as to which way it will eventually be
resolved.

Semidefinite programming is an extension of linear programming where the
variables are vectors in a high-dimensional space and the constraints, as well as
the objective function, are linear in the inner products of these vectors. Any VCSP
instance has a basic semidefinite programming relaxation similar to the BLP re-
laxation defined in Section 5. A breakthrough result of Raghavendra [75, 76]
shows how to use the basic SDP relaxation to design, for any given finite and

finite-valued language Γ, an approximation algorithm for VCSP(Γ) that achieves
some constant approximation ratio; moreover, this ratio cannot be improved un-
less the UGC is false. This ratio is not explicit, but there is an algorithm that can
compute it with any given accuracy in doubly exponential time. It is interesting
that this (conditionally) optimal ratio is related to a parameter of some objects
similar to weighted polymorphisms. For more details, consult Raghavendra’s pa-
per and thesis [75, 76]; note that the (finite-valued) VCSP is referred to there as
the generalized CSP or GCSP.

The class of all optimisation problems having a (polynomial-time) constant-
factor approximation algorithm is denoted by APX. From the approximation point
of view, the best type of algorithm is a PTAS (polynomial-time approximation
scheme) which is actually a series of algorithms Aε , ε > 0, such that Aε gives
a (1 + ε)-approximation and runs in time that is polynomial in the size of the
instance (but not necessarily in 1/ε). One way to rule out the existence of a PTAS
for a specific optimisation problem Π (unless P=NP) is to show that this problem
is APX-hard, i.e., that every problem in APX has an approximation-preserving
reduction to Π.

The classification results from Section 5 distinguish between (exact) polyno-
mial solvability and NP-hardness. Some of these results can be strengthened to
become dichotomies between polynomial solvability and APX-hardness For ex-
ample, as discussed in Example 12, Max-CSP is equivalent to VCSP(ΓMax) where
ΓMax consists of all cost functions taking only the values 0 and 1. For approxi-
mation results it is convenient to replace these with values with −1 and 0 respec-
tively. Then the intractable cases of VCSP(Γ) with Γ ⊆ ΓMax can be shown to be
APX-hard (in fact, APX-complete, as each Max-CSP problem with a finite lan-
guage belongs to APX) when Γ contains all unary {−1, 0}-valued functions [28]
and when |D| = 3 [55].

There are only a few results concerning the approximability of VCSP(Γ) for
languages Γ containing cost functions that can take infinite values. For example,
it is shown in [44] that the problem VCSP({φH} ∪ Γ+

unary), a special case of Min-
Cost-Hom (see Example 13) where H = (V, E) is an undirected graph without
loops and Γ+

unary contains all unary functions with non-negative values, is not ap-
proximable within any factor if the List H-Colouring problem (cf. Example 11) is
NP-complete and it has a |V |-approximation algorithm otherwise. As another ex-
ample, the APX-hardness of some Min-Sol problems (Example 15) is established
in [53].

7 The oracle model

In this paper we have assumed that the objective function in our problem is repre-
sented as a sum of functions each defined on some subset of the variables. There
is a rich tradition in combinatorial optimisation of studying problems where the
objective function is represented instead by a value-giving oracle. In this model a
problem is tractable if it can be solved in polynomial time using only polynomially
many queries to the oracle (where the polynomial is in the number of variables).
Note that any query to the oracle can be simulated in linear time in the VCSP
model. Hence, a tractability result (for a class of functions) in the oracle model
automatically transfers to the VCSP model, while hardness results automatically
transfer in the opposite direction.

One class of functions that has received particular attention in the oracle model
is the class of submodular functions (cf. Example 18). There are several known al-
gorithms for minimising a (finite-valued) submodular function using only a poly-
nomial number of calls to a value-giving oracle (see [50, 51, 78]).

However, for some submodular valued constraint languages Γ, VCSP(Γ) can
be solved much more efficiently than by using these general approaches. For
example, the language Γcut defined in Example 8 can be solved in cubic time
using the Min-Cut-based algorithm described in Example 8. A similar efficient
approach can be used for all languages that are expressible over Γcut. However, it
was shown in [88, 90] that not all submodular functions are expressible over Γcut,
so this approach cannot be directly extended to solve arbitrary submodular VCSP
instances. It is currently an open question whether the minimisation problem for
submodular functions defined by sums of bounded arity submodular functions in
the VCSP model is easier than general submodular function minimisation in the
oracle model.

Other classes of finite-valued functions that can be efficiently minimised in
the oracle model include bisubmodular and α-bisubmodular functions (Exam-
ples 22 and 23) [31, 71, 32, 47], functions with a 1-defect multimorphism (Ex-
ample 25) [57], and functions that are submodular on certain lattices (Exam-
ple 19) [64, 65]. The complexity of submodular function minimisation in the
oracle model over arbitrary non-distributive lattices is still unknown (in the VCSP
model, all such language are tractable, by Theorem 44).

The following general problem was mentioned in [48, 57, 82]: which weighted
polymorphisms ω are sufficient to guarantee an efficient minimization algorithm,
in the value-oracle model, for valued constraint languages Γ with ω ∈ wPol(Γ)?
Natural candidates for which the question is open include the k-submodularity
multimorphism for k ≥ 3 from Example 22 and submodularity multimorphisms
on many lattices from Example 19.

8 Conclusions and future directions
We have shown that the valued constraint satisfaction problem is a powerful gen-
eral framework that can be used to express many standard combinatorial optimisa-
tion problems. The general problem is NP-hard, but there are many special cases
that have been shown to be tractable. In particular, by considering restrictions on
the cost functions we allow in problem instances, we have identified a range of
different sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued constraint lan-
guages, and we have described in Section 4 the very general algebraic techniques
now being developed to classify the complexity of these languages.

This classification is still far from complete. In fact, even in the special case of
the CSP (Example 10), where all cost functions take only the values 0 or∞, there
is still no complete classification of complexity for the corresponding constraint
languages. This problem has been studied for many years, beginning with the
seminal work of Feder and Vardi who conjectured that any such language will be
either tractable or NP-complete [29]. This conjecture is still unresolved. However,
the Algebraic Dichotomy conjecture [11] specifies the boundary between tractable
and intractable languages, and it has been proved in many important cases. Natu-
rally, it is desirable to develop the algebraic theory of VCSPs to the point where
one could make a credible algebraic dichotomy conjecture for the VCSP, in order
to have a specific target to aim at.

For finite-valued languages, the complexity classification is complete, see
Theorem 46. One could ask, however, whether the tractability condition can be
made tighter by being more specific about which binary symmetric weighted poly-
morphisms need to be present there. For |D| = 2, 3, tight descriptions are given
in [17, 48].

The algebraic theory of the VCSP presented in Section 4 is based on the new
notion of a weighted clone. Very little is known about weighted clones, and this
direction is wide open for purely algebraic investigation. Some specific open
problems include the (possible) description of weighted clones for D = {0, 1},
the identification of minimal weighted clones, and the investigation of classes of
weighted clones supported by a given ordinary clone.

Further developing the algebraic theory of the VCSP using algebras and va-
rieties [73] is a very promising direction of research because this theory works
with a more general notion of expressibility. Possible algebraic dichotomy results
from this theory would state that either a language expresses, in this more gen-
eral way, a given function (usually with undesirable algorithmic properties of the
corresponding VCSP) or else it has a “nice” weighted polymorphism. Such re-
sults [11, 67] have been fundamental to the success of the algebraic approach to
complexity for the CSP.

It is natural to investigate how the operations that play a role in the algebraic
theory for the CSP can be adapted to the VCSP setting. Examples of such con-
ditions that we discussed earlier are weak near-unanimity and edge operations;
there are several others. What can be said about valued constraint languages with
weighted polymorphisms whose positive support includes such operations?

As we discussed in Section 5, only three algorithmic techniques seem to be
sufficient to solve tractable crisp and finite-valued VCSPs (Bounded Width, Few
Subpowers, and Basic LP relaxation). There also seem to be essentially only two
seeds of hardness that cause intractability (NAE-like and XOR-like functions).
Are there tractable general-valued VCSPs that require different techniques? Are
there intractable general-valued VCSPs that can express neither NAE-like nor
XOR-like functions?

The notion of weighted polymorphism works well for studying the exact solv-
ability of the VCSP. It would be natural to explore its applicability to approxima-
bility questions for the VCSP and to oracle-tractability for classes of functions, as
we discussed in Sections 6 and 7.

In this survey we have focused on the complexity of valued constraint satis-
faction problems with restricted constraint languages. It is also possible to ensure
tractability by restricting the structure of the constraint scopes - so-called struc-
tural restrictions [36, 37, 70]. Combining structural restrictions with language
restrictions leads to so-called hybrid restrictions, and these provide a promising
source of new tractable cases [21, 22] which has so far been very little explored.

References
[1] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cam-

bridge University Press, 2009.

[2] L. Barto. The dichotomy for conservative constraint satisfaction problems revisited.
In LICS’11, pages 301–310. IEEE Computer Society, 2011.

[3] L. Barto and M. Kozik. Absorbing subalgebras, cyclic terms and the constraint
satisfaction problem. Logical Methods in Computer Science, 8, 2012.

[4] L. Barto and M. Kozik. Constraint Satisfaction Problems Solvable by Local Consis-
tency Methods. Journal of the ACM, 61(1), 2014. Article No. 3.

[5] F. Börner. Basics of Galois connections. In Complexity of Constraints, volume 5250
of LNCS, pages 38–67. Springer, 2008.

[6] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approxi-
mations. In Computer Vision and Pattern Recognition, pages 648–655. IEEE Com-
puter Society, 1998.

[7] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, 53(1):66–120, 2006.

[8] A. Bulatov. Bounded relational width. Manuscript, 2009.

[9] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM
Journal on Computing, 36(1):16–27, 2006.

[10] A. Bulatov and P. Jeavons. Algebraic structures in combinatorial problems. Techni-
cal Report MATH-AL-4-2001, Technische Universität Dresden, 2001.

[11] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[12] A. A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Transactions on Computational Logic, 12(4), 2011. Article 24.

[13] J. Bulín, D. Delic, M. Jackson, and T. Niven. On the Reduction of the CSP Di-
chotomy Conjecture to Digraphs. In CP’13, volume 8124 of LNCS, pages 184–199.
Springer, 2013.

[14] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi, P. van
Beek, and T. Walsh, editors, The Handbook of Constraint Programming. Elsevier,
2006.

[15] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular Functions and the
Complexity of MAX-CSP. Discrete Applied Mathematics, 149(1-3):53–72, 2005.

[16] D. A. Cohen, M. C. Cooper, and P. G. Jeavons. An Algebraic Characterisation of
Complexity for Valued Constraints. In CP’06, volume 4204 of LNCS, pages 107–
121. Springer, 2006a.

[17] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The Complexity of
Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006b.

[18] D. A. Cohen, M. C. Cooper, and P. G. Jeavons. Generalising submodularity and
Horn clauses: Tractable optimization problems defined by tournament pair multi-
morphisms. Theoretical Computer Science, 401(1-3):36–51, 2008.

[19] D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, and S. Živný. An algebraic theory
of complexity for discrete optimisation. SIAM Journal on Computing, 42(5):915–
1939, 2013.

[20] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, M. Zytnicki, and T. Werner. Soft
arc consistency revisited. Artificial Intelligence, 174(7–8):449–478, 2010.

[21] M. C. Cooper and S. Živný. Hybrid tractability of valued constraint problems. Arti-
ficial Intelligence, 175(9-10):1555–1569, 2011.

[22] M. C. Cooper and S. Živný. Tractable triangles and cross-free convexity in discrete
optimisation. Journal of Artificial Intelligence Research, 44:455–490, 2012.

[23] Y. Crama and P. L. Hammer. Boolean Functions - Theory, Algorithms, and Applica-
tions. Cambridge University Press, 2011.

[24] P. Creed and S. Živný. On minimal weighted clones. In CP’11, volume 6876 of
LNCS, pages 210–224. Springer, 2011.

[25] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. SIAM, 2001.

[26] N. Creignou, P. G. Kolaitis, and H. Vollmer, editors. Complexity of Constraints: An
Overview of Current Research Themes, volume 5250 of LNCS, 2008. Springer.

[27] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The
Complexity of Multiterminal Cuts. SIAM Journal on Computing, 23(4):864–894,
1994.

[28] V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. The approximability of Max
CSP with fixed-value constraints. Journal of the ACM, 55(4), 2008. Article 16.

[29] T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

[30] S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals of
Discrete Mathematics. North-Holland, Amsterdam, 2nd edition, 2005.

[31] S. Fujishige and S. Iwata. Bisubmodular Function Minimization. SIAM Journal on
Discrete Mathematics, 19(4):1065–1073, 2005.

[32] S. Fujishige, S. Tanigawa, and Y. Yoshida. Generalized skew bisubmodularity: A
characterization and a min-max theorem. Technical Report RIMS-1781, Kyoto Uni-
versity, 2013.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

[34] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115–1145, 1995.

[35] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem.
Journal of the ACM, 35(4):921–940, 1988.

[36] G. Gottlob, G. Greco, and F. Scarcello. Tractable Optimization Problems through
Hypergraph-Based Structural Restrictions. In ICALP’09, volume 5556 of LNCS,
pages 16–30. Springer, 2009.

[37] M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1–24, 2007.

[38] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

[39] G. Gutin, P. Hell, A. Rafiey, and A. Yeo. A dichotomy for minimum cost graph
homomorphisms. European Journal of Combinatorics, 29(4):900–911, 2008.

[40] J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):
798–859, 2001.

[41] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press,
2004.

[42] P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity. Computer
Science Review, 2(3):143–163, 2008.

[43] P. Hell and A. Rafiey. The Dichotomy of Minimum Cost Homomorphism Problems
for Digraphs. SIAM Journal on Discrete Mathematics, 26(4):1597–1608, 2012.

[44] P. Hell, M. Mastrolilli, M. M. Nevisi, and A. Rafiey. Approximation of Minimum
Cost Homomorphisms. In Proceddings of the 20th Annual European Symposium on
Algorithms (ESA12), pages 587–598, 2012.

[45] H. Hirai. Discrete Convexity and Polynomial Solvability in Minimum 0-Extension
Problems. In SODA’13, pages 1770–1778. SIAM, 2013.

[46] A. Huber and V. Kolmogorov. Towards minimizing k-submodular functions. Tech-
nical Report arXiv:1309.5469, 2013.

[47] A. Huber and A. Krokhin. Oracle tractability of skew bisubmodular functions. Tech-
nical Report arXiv:1308.6505, 2013.

[48] A. Huber, A. Krokhin, and R. Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 2014. To appear.

[49] P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractabil-
ity and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023–3037, 2010.

[50] S. Iwata. Submodular Function Minimization. Mathematical Programming, 112(1):
45–64, 2008.

[51] S. Iwata and J. B. Orlin. A Simple Combinatorial Algorithm for Submodular Func-
tion Minimization. In SODA’09, pages 1230–1237, 2009.

[52] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527–548, 1997.

[53] P. Jonsson and G. Nordh. Introduction to the maximum solution Problem. In Com-
plexity of Constraints, volume 5250 of LNCS, pages 255–282. Springer, 2008.

[54] P. Jonsson and J. Thapper. Approximability of the maximum solution problem for
certain families of algebras. In CSR’09, volume 5675 of LNCS, pages 215–226.
Springer, 2009.

[55] P. Jonsson, M. Klasson, and A. Krokhin. The Approximability of Three-valued
MAX CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006.

[56] P. Jonsson, F. Kuivinen, and G. Nordh. MAX ONES Generalized to Larger Domains.
SIAM Journal on Computing, 38(1):329–365, 2008.

[57] P. Jonsson, F. Kuivinen, and J. Thapper. Min CSP on Four Elements: Moving Be-
yond Submodularity. In CP’11, volume 6876 of LNCS, pages 438–453. Springer,
2011.

[58] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of
constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920,
2001.

[59] S. Khot. On the Unique Games Conjecture (Invited Survey). In CCC’10, pages
99–121. IEEE Computer Society, 2010.

[60] V. Kolmogorov. Submodularity on a tree: Unifying L]-convex and bisubmodular
functions. In MFCS’11, volume 6907 of LNCS, pages 400–411. Springer, 2011.

[61] V. Kolmogorov. The power of linear programming for finite-valued CSPs: a con-
structive characterization. In ICALP’13, volume 7965 of LNCS, pages 625–636.
Springer, 2013.

[62] V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming for
general-valued CSPs. 2013. arXiv:1311.4219.

[63] V. Kolmogorov and S. Živný. The complexity of conservative valued CSPs. Journal
of the ACM, 60(2), 2013. Article No. 10.

[64] A. Krokhin and B. Larose. Maximizing Supermodular Functions on Product Lat-
tices, with Application to Maximum Constraint Satisfaction. SIAM Journal on Dis-
crete Mathematics, 22(1):312–328, 2008.

[65] F. Kuivinen. On the complexity of submodular function minimisation on diamonds.
Discrete Optimization, 8(3):459–477, 2011.

[66] R. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM,
22:155–171, 1975.

[67] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satis-
faction problems. Theoretical Computer Science, 410(18):1629–1647, 2009.

[68] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

[69] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric operations.
Algebra Universalis, 59(3-4):463–489, 2008.

[70] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM, 60(6), 2013. Article No. 42.

[71] S. T. McCormick and S. Fujishige. Strongly polynomial and fully combinatorial
algorithms for bisubmodular function minimization. Mathematical Programming,
122(1):87–120, 2010.

[72] M. Mezard and A. Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

[73] J. Ochremiak. Algebraic properties of valued constraint satisfaction problem. Tech-
nical report, 2014. arXiv:1403.0476.

[74] R. Powell and A. Krokhin. A reduction of VCSP to digraphs. Manuscript, 2014.

[75] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In STOC’08, pages 245–254. ACM, 2008.

[76] P. Raghavendra. Approximating NP-hard problems: Efficient algorithms and their
limits. PhD thesis, University of Washington, 2009.

[77] T. J. Schaefer. The Complexity of Satisfiability Problems. In STOC’78, pages 216–
226. ACM, 1978.

[78] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

[79] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathema-
tiques Superieures. University of Montreal, 1986.

[80] R. Takhanov. Extensions of the Minimum Cost Homomorphism Problem. In CO-
COON’10, volume 6196 of LNCS, pages 328–337. Springer, 2010a.

[81] R. Takhanov. A Dichotomy Theorem for the General Minimum Cost Homomor-
phism Problem. In STACS’10, pages 657–668, 2010b.

[82] J. Thapper and S. Živný. The power of linear programming for valued CSPs. In
FOCS’12, pages 669–678. IEEE, 2012.

[83] J. Thapper and S. Živný. The complexity of finite-valued CSPs. In STOC’13, pages
695–704. ACM, 2013.

[84] D. Topkis. Supermodularity and Complementarity. Princeton University Press,
1998.

[85] H. Uppman. The Complexity of Three-Element Min-Sol and Conservative Min-
Cost-Hom. In ICALP’13, volume 7965 of LNCS, pages 804–815. Springer, 2013.

[86] H. Uppman. Computational Complexity of the Extended Minimum Cost Homo-
morphism Problem on Three-Element Domains. In STACS’14, volume 25, pages
651–662, 2014.

[87] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305,
2008.

[88] S. Živný. The Complexity and Expressive Power of Valued Constraints. PhD thesis,
University of Oxford, 2009.

[89] S. Živný. The complexity of valued constraint satisfaction problems. Cognitive
Technologies. Springer, 2012. ISBN 978-3-642-33973-8.

[90] S. Živný, D. A. Cohen, and P. G. Jeavons. The Expressive Power of Binary Sub-
modular Functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.

	Introduction
	Problems and frameworks captured by the VCSP
	Polymorphisms and weighted polymorphisms
	A general algebraic theory of complexity
	Algorithms and complexity classifications
	Approximation
	The oracle model
	Conclusions and future directions

