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Abstract—We study algebraic structures called weighted

clones. These structures characterise the computational complex-

ity of discrete optimisation problems of special form, known as

valued constraint satisfaction problems. We identify all minimal

weighted clones for every Boolean support clone.

I. INTRODUCTION

The Valued Constraint Satisfaction Problem (VCSP) is a
general framework of discrete optimisation problems [7], [26].
It is a generalisation of the Constraint Satisfaction Problem
(CSP), a framework that captures fundamental decision prob-
lems from artificial intelligence, database theory, logic, and
graph theory [9]–[11], [17]. The VCSP framework, in addition
to the problems above, captures many discrete optimisation
problems from combinatorial optimisation and computer vi-
sion [7], [26].

In analysing the computational complexity of the CSP with
restricted constraint types (the so-called non-uniform CSP),
the algebraic approach was one of the main tools [1]–
[3], [5], [13]. This approach was obtained by estalishing the
link between CSPs and universal algebra in [4], [15], [16].
Recently, the link between VCSPs and the algebraic structures,
called weighted clones, has also been established [6]. This
algebraic approach has been used to classify the complexity of
various fragments of the VCSP [12], [19], [22] and to reduce
the question of whether the complexity of the VCSP has a
dichotomy to the well-established Algebraic CSP Dichotomy
Conjecture [18], [20].

Weighted clones are known to capture the computational
complexity of the VCSP with any specified set of valued con-
straints [6]. In particular, weighted clones with Boolean sup-
port clone capture the complexity of the VCSP on the Boolean
domain. In this paper we classify all minimal weighted clones
for each possible Boolean support clone. These minimal
weighted clones correspond to maximal weighted relational
clones and hence to maximal sets of possible valued con-
straints. We refer the reader to the recent survey [14] that
provides motivation for this work and connects it to the
computational complexity of the VCSP. Other recent work on
weighted clones includes [23]–[25].

II. PRELIMINARIES

Let D be finite a set. A function f : D

k ! D is called a
k-ary operation on D. We denote by OD the set of all finitary
operations on D and by O

(k)
D the k-ary operations in OD.
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Definition II.1. The k-ary projections on D are the operations
⇡

(k)
i : D

k ! D such that ⇡

(k)
i : (x1, ..., xk) 7! xi, where

i 2 {1, . . . , k} and (x1, ..., xk) 2 D

k.

Definition II.2. Let f 2 O
(k)
D and g1, ..., gk 2 O

(`)
D . Define

the superposition of f and g1, ..., gk to be the `-ary operation
f [g1, ..., gk] : D

` ! D such that for any (x1, ..., x`) 2 D

`

(x1, ..., x`) 7! f(g1(x1, ..., x`), ..., gk(x1, ..., x`)).

Definition II.3. A set C ✓ OD is called a clone of operations
on D if it contains all the projections on D and is closed under
superposition. For each F ✓ OD we define Clone(F ) to be
the smallest clone containing F . We denote by C

(k) the k-ary
operations in clone C.

Example 1. For any set D, the set OD, and the set JD

containing all projections on D (of all arities), are both clones.

Example 2. For any totally ordered set D, the clone C :=

Clone({^}), where ^ is the binary minimum operation on D,
consists of all operations on D which return the minimum
element of some (non-empty) subset of their arguments. In
particular, C

(2), the set of binary operations in C, contains
precisely three operations, namely, ⇡(2)

1 ,⇡

(2)
2 , and ^.

Definition II.4. We define a k-ary weighting of a clone C to
be a function ! : C

(k) ! Q such that
P

f2C(k)

!(f) = 0, and

!(f) < 0 only if f is a projection. We denote by W
(k)
C the

set of all k-ary weightings of C, and by WC the set of all
possible weightings of C (of arbitrary arity).

The notation
�
↵1, ...,↵m | f1, ..., fm

�
, where ↵i 2 Q and

fi 2 C

(k), will denote the function ! : C

(k) ! Q given by

!(f) =

X

i2{1,...,m}
fi=f

↵i, for every f 2 C

(k)
. (1)

Note that some of the functions fi might be equal, and !(f) =

0 when the summation is empty.

Example 3. The following functions are weightings of
Clone({^}), which was described in Example 2:

⇣
�1, 1 | ⇡(2)

1 ,^
⌘

and
⇣
�2, 1, 1 | ⇡(2)

1 ,⇡

(2)
2 ,^

⌘
.

The following functions are not weightings:
⇣
1,�1 | ⇡(2)

1 ,^
⌘

and
⇣
�1,�1, 3 | ⇡(2)

1 ,⇡

(2)
2 ,^

⌘

as the first assigns a negative weight to a non-projection and
in the second the weights do not add up to zero.



Definition II.5. For any ! =

�
↵1, ...,↵m | f1, ..., fm

�
2

W
(k)
C and any g1, ..., gk 2 C

(`), we define the superposition

of ! and g1, ..., gk to be the function ![g1, ..., gk] : C
(`) ! Q

given by
�
↵1, ...,↵m | f1[g1, ..., gk], ..., fm[g1, ..., gk]

�
.

If the result of the superposition is a valid weighting, then
it is said to be a proper superposition.

Definition II.6. A weighted clone, W , is a non-empty set of
weightings of some fixed clone C which is closed under:

(i) nonnegative scaling by rational numbers;
(ii) addition of weightings of equal arity; and

(iii) proper superposition with operations from C.
The clone C is called the support of W . For any S ✓ WC ,
we define hSi to be the smallest weighted clone containing S

and say that hSi is generated by S. We write h!1, ...,!ni for
the weighted clone

⌦
{!1, ...,!n}

↵
.

For a weighting ! 2 W
(k)
C , we say that ! is a zero-valued

weighting if !(f) = 0 for all f 2 C

(k). Otherwise, we say
that ! is a non-zero weighting. A weighted clone that contains
a non-zero weighting is said to be non-trivial.

Example 4. For any clone C, the set W0
C containing all

zero-valued weightings of C, and the set WC containing
all possible weightings of C, are both weighted clones with
support C.

For any two weighted clones W

0
and W

00
with support

C, we define W

0 ^ W

00
:= W

0 \ W

00
and W

0 _ W

00
:=D

W

0 [W

00
E

. For any clone C on a finite set D, the set of all
weighted clones with support C ordered by inclusion forms a
complete lattice, with the meet and join operations as defined
above, and with the least element W0

C and the greatest element
WC . We denote this lattice by Lat (C) and call it the lattice

of a clone C.
Recall that an atom is a minimal non-trivial element in a

lattice. A minimal weighted clone is a weighted clone W such
that for any non-zero weighting ! 2 W we have h!i = W .
Note that a weighted clone W is minimal if, and only if, it is
an atom of Lat (C), where C is the support of W .

We will use the following two results. The first gives a
uniform way to obtain any weighting in a weighted clone.

Lemma II.7 ( [25, Corollary 3.13], [24, Corollary 2.2.4]). Let
C be a clone and S ✓ WC be a set of weightings. Let W be
the smallest weighted clone containing S, that is, W = hSi.
Then for each k-ary weighting ! 2 W there are weightings
!1, . . . ,!n 2 S of arities k1, . . . , kn respectively, scalars
c1, . . . , cn 2 Q�0, and k-ary operations g

1
1 , . . . , g

n
kn

2 C

(k),
such that

! =

nX

i=1

ci · !i[g
i
1, ..., g

i
ki
]. (2)

Note that some of the !i can be equal and improper super-
position is allowed in (2).

The second result gives a sufficient condition for a weight-
ing to generate the weighted clone of all weightings,WC .

Lemma II.8 ( [25, Theorem 3.2]). Let ! be a non-zero
weighting of a clone C that assigns positive weight to some
projection. Then ! generates the weighted clone containing
all weightings of C, that is, h!i = WC .

III. MAIN RESULTS

In this paper we focus on Boolean clones, consisting of
operations defined on the domain B := {0, 1}, with the
usual order 0 < 1. We will use the following six standard
Boolean operations: 0,1,¬,^,_,mjr, mnr, which we call
key operations. They are defined, respectively, to be the
unary constant 0 operation, the unary constant 1 operation,
the unary inverse operation given by x 7! 1 � x, the binary
operation returning the smaller of its two arguments, the binary
operation returning the larger of its two arguments, the unique
ternary operation on B such that mjr(x, x, y) = mjr(x, y, x) =
mjr(y, x, x) = x for any x, y 2 B (known as the majority
operation), and the unique ternary operation on D such that
mnr(x, x, y) = mnr(x, y, x) = mnr(y, x, x) = y for any
x, y 2 B (known as the minority operation).

The next result identifies a special set of weightings, called
key weightings and shows that every non-trivial weighted
Boolean clone must contain a key weighting. This implies that
every minimal weighted clone is generated by a key weighting.
Since there are only nine key weightings, for any Boolean
clone C, Lat (C) has at most nine candidates for atoms.

Theorem III.1 ( [6, Theorem 8.1]). Let C 6= JB be a clone
on B. Then any non-trivial weighted clone W with support C
must contain at least one of the following weightings:

1)
⇣
�1, 1 | ⇡(1)

1 , f

⌘
, where f = 0,1 or ¬;

2)
⇣
�1,�1, 2 | ⇡(2)

1 ,⇡

(2)
2 , f

⌘
, where f = ^ or _, or

⇣
�1,�1, 1, 1 | ⇡(2)

1 ,⇡

(2)
2 ,^,_

⌘
;

3)
⇣
�1,�1,�1, 3 | ⇡(3)

1 ,⇡

(3)
2 ,⇡

(3)
3 , f

⌘
, where f = mjr or

mnr, or⇣
�1,�1,�1, 2, 1 | ⇡(3)

1 ,⇡

(3)
2 ,⇡

(3)
3 ,mjr,mnr

⌘
.

Our notations for these key weightings, and the weighted
clones they generate, are listed in Table I. We add a subscript

TABLE I
WEIGHTED CLONES FROM WEIGHTINGS IN THEOREM III.1

Weighted clone Generating key weighting

W0 !0 :=
⇣
�1, 1 | ⇡(1)

1 ,0
⌘

W1 !1 :=
⇣
�1, 1 | ⇡(1)

1 ,1
⌘

W¬ !¬ :=
⇣
�1, 1 | ⇡(1)

1 ,¬
⌘

W^ !^ :=
⇣
�1,�1, 2 | ⇡(2)

1 ,⇡
(2)
2 ,^

⌘

W_ !_ :=
⇣
�1,�1, 2 | ⇡(2)

1 ,⇡
(2)
2 ,_

⌘

W^,_ !^,_ :=
⇣
�1,�1, 1, 1 | ⇡(2)

1 ,⇡
(2)
2 ,^,_

⌘

Wmjr !mjr :=
⇣
�1,�1,�1, 3 | ⇡(3)

1 ,⇡
(3)
2 ,⇡

(3)
3 ,mjr

⌘

Wmnr !mnr :=
⇣
�1,�1,�1, 3 | ⇡(3)

1 ,⇡
(3)
2 ,⇡

(3)
3 ,mnr

⌘

Wmjr,mnr !mjr,mnr :=
⇣
�1,�1,�1, 2, 1 | ⇡(3)

1 ,⇡
(3)
2 ,⇡

(3)
3 ,mjr,mnr

⌘



C to denote a key weighting of a clone C, and the correspond-
ing weighted clone with support C that it generates. Note that
a key weighting exists as a weighting of C if, and only if, the
operations to which it assigns a positive value are contained
in C. For example, !0

C and W

0
C do not exist if 0 /2 C.

The next result is a simple consequence of Theorem III.1.

Lemma III.2. Let C be a Boolean clone, !C be a key
weighting of C and let WC = h!Ci. If !C is the only key
weighting contained in WC , then WC is an atom of Lat (C) .

By analysing the structure of weightings in the respective
weighted clones, we will establish the following results.

Theorem III.3. Let C be a Boolean clone with 0,1 or ¬ 2 C.
Then W

0
C , W 1

C or W

¬
C is an atom of Lat (C), respectively.

Theorem III.4. Let C be a Boolean clone. If ^ 2 C, then
W

^
C is an atom of Lat (C) if, and only if, 0 62 C. Similarly, if

_ 2 C, then W

_
C is an atom of Lat (C) if, and only if, 1 62 C.

As our main result, we show the following result.

Theorem III.5. Let C be a Boolean clone with ^,_ 2 C.
Then W

^,_
C is an atom of Lat (C).

The weighted clone W

^,_
C corresponds, via the Galois

connection established in [6], to the set of valued constraints
defined by submodular functions, which are a fundamental
concept in combinatorial optimisation [21]. Hence Theo-
rem III.5 implies that the corresponding valued constraint
languages (which are strictly contained in the class of all
general-valued submodular functions if C is strictly larger than
Clone({^,_})) are maximal. This was previously shown by
different means for C = Clone({^,_}) and C = OD (where
D is any finite set) in [7].

We complete the picture of minimal Boolean weighted
clones by establishing the following results.

Theorem III.6. Let C be a Boolean clone. Then W

mjr
C is an

atom of Lat (C) if, and only if, mjr is the only key operation
in C, and W

mnr
C is an atom of Lat (C) if, and only if, mnr is

the only key operation in C.

Theorem III.7. Let C be a Boolean clone with mjr,mnr 2 C.
Then W

mjr,mnr
C is an atom of Lat (C) if, and only if, ^,_ 62 C.

Note that these results are sufficient to establish the minimal
weighted clones with support C for every Boolean clone C.
Some of the proofs we give below also fully characterise
the weightings in these minimal weighted clones. Obvious
directions for future work are to try to extend these results
to non-Boolean domains, and to obtain complete descriptions
of all possible weighted clones.

IV. PROOF OF THEOREM III.3
For any ↵ 2 D, we define a corresponding unary constant

operation ↵ : D ! D, where ↵ : x 7! ↵ for all x 2 D.
For any clone C with ↵ 2 C, we define the weighting !

↵
C :=⇣

�1, 1 | ⇡(1)
1 ,↵

⌘
and the weighted clone W

↵
C :=

⌦
!

↵
C

↵
.

Proposition IV.1. Let ↵ 2 D and C be a clone with ↵ 2 C.
A weighting ! of C is an element of W↵

C if, and only if, ! is
of the form

0

@�q1, ...,�qn,

nX

i=1

qi | ⇡(k)
1 , ...,⇡

(k)
n ,↵

1

A
,

where qi � 0 for each i 2 {1, ..., n}.

Proof. By Lemma II.7, ! 2 W

↵
C if, and only if,

! =

nX

i=1

ci · !↵
C [gi] =

nX

i=1

ci ·
�
�1, 1 | gi,↵

�
,

where each gi 2 C

(k). Since weightings assign negative values
only to projections, all of the gi must be k-ary projections.

The following proposition shows that the W

↵
C are atoms if

↵ 2 C, thus establishing the first two cases of Theorem III.3.

Proposition IV.2. Let C be a clone with ↵ 2 C. Then W

↵
C

is an atom of Lat(C).

Proof. Let ! be a non-zero k-ary weighting in W

↵
C . By

Proposition IV.1, only ↵ gets positive weight in ! and we
have

![⇡

(1)
1 , . . . ,⇡

(1)
1| {z }

k times

] =

⇣
�q, q | ⇡(1)

1 ,↵
⌘
,

with q > 0. Since ![⇡

(1)
1 , . . . ,⇡

(1)
1 ] is equal to q ·!↵ we have

that ! generates !

↵
C and hence W

↵
C , so W

↵
C is minimal.

For an operation g, we denote by ¬g the operation ¬[g].
The following proposition is essentially [25, Theorem 4.1].

Proposition IV.3. . Let C be a clone with ¬ 2 C. A weighting
! of C is an element of W¬

C if, and only if, ! is of the form
⇣
�q1, ...,�qk, q1, ..., qk | ⇡(k)

1 , ...,⇡

(k)
k ,¬⇡(k)

1 , ...,¬⇡(k)
k

⌘
,

where qi � 0 for each i 2 {1, ..., k}.

Proof. By Lemma II.7, ! 2 W

¬
C if, and only if,

! =

kX

i=1

ci · !¬
C [gi]

=

kX

i=1

ci ·
�
�1, 1 | gi,¬gi

�
, (3)

where each gi 2 C

(k). As ! can assign negative weight only
to projections, the terms in (3) give the required form.

The following proposition shows that W

¬
C is an atom if

¬ 2 C, thus establishing the third case of Theorem III.3.

Proposition IV.4. Let C be a clone with ¬ 2 C. Then W

¬
C is

an atom of Lat(C).

Proof. Let ! be a non-zero k-ary weighting in W

¬
C . By

Proposition IV.3,

![⇡

(1)
1 , . . . ,⇡

(1)
1| {z }

k times

] =

⇣
�q, q | ⇡(1)

1 ,¬⇡(1)
1

⌘
,



where q > 0. As ![⇡

(1)
1 , . . . ,⇡

(1)
1 ] = q · !¬

C , the weighting !

generates !

¬
C and hence W

¬
C , so W

¬
C is minimal.

V. PROOF OF THEOREM III.4
We now give a description of the weightings in the weighted

clones W

^
C and W

_
C and use it to prove Theorem III.4. A

description of weightings in W

^
⇤P, where ⇤P = Clone

�
{^}

�

was obtained in [25] using Farkas lemma. For our more
general treatment of W^

C and W

_
C , we use the notion of depen-

dence [24], which is motivated by the following observation.

Lemma V.1. Suppose that f1, f2 2 O
(k)
D are operations and

↵,� 2 D such that for any x 2 D

k we have

f1(x) = ↵ =) f2(x) = �.

Then for any g1, ..., gk 2 O
(`)
D and y 2 D

`, we have

f1[g1, ..., gk](y) = ↵ =) f2[g1, ..., gk](y) = �.

Definition V.2. If f1, f2 2 O
(k)
D are distinct operations and

↵,� 2 D such that, for all x 2 D

k, we have

f1(x) = ↵ =) f2(x) = �,

then we say that f2 is (↵!�)-dependent on f1.
Moreover, we say that f 2 O

(k)
D is (↵!�)-dependent on

T ✓ {1, . . . , k} if there is i 2 T such that f is (↵!�)-
dependent on ⇡

(k)
i and f is not a projection.

We now give a characterisation of the weightings in W

^
C .

Note that, for any k-ary non-projection operation f , the
operation ⇡

(k)
i ^ f is (0!0)-dependent on ⇡

(k)
i . This is a

crucial observation for the description of W^
C .

Proposition V.3. Let C be a clone with ^ 2 C. A k-ary
weighting ! of C is an element of the weighted clone W

^
C if,

and only if,
• ! assigns positive weights only to non-projections that

are (0!0)-dependent on some k-ary projection;
• for every subset T ✓ {1, ..., k},

�
X

i2T

!(⇡

(k)
i ) 

X

f2C(k)

(0!0)-dependent on T

!(f). (4)

Proof. First, suppose that ! 2 W

^
C . We define

!

^01

C := !

^
C [⇡

(2)
1 ,^] =

⇣
�1, 1 | ⇡(2)

1 ,^
⌘
.

We have !

^01

C [⇡

(2)
1 ,⇡

(2)
2 ] + !

^01

C [⇡

(2)
2 ,⇡

(2)
1 ] = !

^, and thus
⌦
!

^
C

↵
=

D
!

^01

C

E
= W

^
C .

Hence, by Lemma II.7, there are k-ary operations g

j
1, g

j
2 2

C and constants cj 2 Q�0 such that

! =

nX

j=1

cj · !^01

C [g

j
1, g

j
2]

=

nX

j=1

cj ·
⇣
�1, 1 | gj1, g

j
1 ^ g

j
2

⌘
.

(5)

We will now show that there is a subset T ✓ {1, . . . , k}
and for each i 2 T an indexing set Ti such that

! =

X

i2T

X

j2Ti

cij ·
⇣
�1, 1 | ⇡(k)

i ,⇡

(k)
i ^ f

i
j

⌘
, (6)

for some f

i
j 2 C, which proves that ! is of the required form.

First note that we can rewrite (5) as

! =

X

i2S

X

j2Si

c

0
ij ·

⇣
�1, 1 | gi, gi ^ h

i
j

⌘
, (7)

where gi, h
i
j 2 C with gi distinct, and S and Si are indexing

sets.
If for each i 2 S the operation gi is a projection, then the

expression in (7) is of the form (6) and we are done. Otherwise
there is some m 2 S such that gm is a non-projection. In this
case the sum of the positive and negative weights assigned to
gm by the terms in (7) has to be non-negative, as otherwise
!(gm) < 0, so ! would not be a valid weighting.

We can cancel out positive and negative weights assigned
to gm and preserve the form of expression (7). Suppose g`

and h

`
r are such that gm = g` ^ h

`
r. Note that we can find

an operation h

m
s with s 2 Sm such that c

0
ms  c

0
`r, if

necessary we split the weighting with coefficient c

0
ms into

two. We replace the weightings c

0
`r ·

�
�1, 1 | g`, g` ^ h

`
r

�
and

c

0
ms ·

�
�1, 1 | gm, gm ^ h

m
s

�
by

(c

0
`r � c

0
ms) ·

⇣
�1, 1 | g`, g` ^ h

`
r

⌘

and
c

0
ms ·

⇣
�1, 1 | g`, g` ^ (h

`
r ^ h

m
s )

⌘
.

After identifying all operations assigned non-negative
weights and performing all possible eliminations of this kind,
we obtain a weighting of the form (6).

For the other direction suppose that ! 2 W
(k)
C satisfies the

stated conditions. To show that ! is in the weighted clone
W

^
C we shall show that ! corresponds to a flow in a certain

network, and all such flows correspond to elements of W^
C .

For any k � 2, we construct a directed network Gk, with
vertices V1 [ V2 [ {s, t}, where V1 is the set of all k-ary
projections on B, V2 is the set of all k-ary non-projections on
B that are (0!0)-dependent on some projection, and s and
t are two additional source and sink vertices. The edges of
Gk are all possible edges of the following three types: either
(s,⇡

(k)
i ), where ⇡

(k)
i 2 V1, or (⇡(k)

i , f), where ⇡

(k)
i 2 V1 and

f 2 V2 is (0!0)-dependent on ⇡

(k)
i , or (f, t), where f 2 V2.

The network G2 is shown in Figure 1, where the binary
operations are defined in Table II.

We set the capacity on each edge into ⇡

(k)
i to be �!(⇡

(k)
i ),

which is nonnegative by the first inequality in (4), the capacity
on each edge out of f 2 V2 to be !(f), and all other
edge capacities to be infinite. Then by the second inequal-
ity in (4), the minimum cut in the network has capacity
�
Pk

i=1 !(⇡
(k)
i ) =

P
f2V2

!(f). Hence, by the max-flow
min-cut theorem there is a flow where each edge out of s

and each edge into t carries its maximum capacity.



TABLE II
BINARY OPERATIONS (0!0)-DEPENDENT ON SOME ⇡

(2)
i

input ^ op1 op2 0

(0,0) 0 0 0 0
(0,1) 0 1 0 0
(1,0) 0 0 1 0
(1,1) 1 0 0 0

Fig. 1. Directed network G2

Finally, we note that any valid flow on Gk is determined
by the flows along the edges of the form (⇡

(k)
i , f), where

⇡

(k)
i 2 V1 and f 2 V2. Hence any flow in Gk can be associated

with a weighting in W

^
C by adding nonnegative scalings of

weightings of the form
⇣
�1, 1 | ⇡(k)

i , f

⌘
= !

^01

C [⇡

(k)
i , f ],

where each nonnegative scaling factor is given by the flow
on the edge (⇡

(k)
i , f).

We note that, dually, a similar description holds for the
weighted clone W

_
C with (0!0)-dependence replaced by

(1!1)-dependence. A similar proof technique was used in [8].
The corollary below follows from Proposition V.3 and

Proposition IV.1.

Corollary V.4. Let C be a clone. We have that
1) W

0
C ( W

^
C if the support clone C contains 0 and ^, and

2) W

1
C ( W

_
C if the support clone C contains 1 and _.

Finally, we prove Thorem III.4, which tells us that W^
C is

an atom of Lat (C) if, and only if, ^ 2 C and 0 62 C.

Proof of Theorem III.4. First we show that the condition is
necessary for W

^
C to be an atom. If ^ /2 C, then W

^
C would

not exist. If 0 2 C then W

0
C 2 Lat (C) and, by Corollary V.4,

W

0
C ( W

^
C , which means that W^

C is not an atom.
Now we show that the condition is sufficient. The only

key operations that are (0!0)-dependent on projections are
0 and ^. Thus, by Proposition V.3, the only key weightings
that might belong to W

^
C are !

0
C and !

^
C . Since 0 /2 C, !0

C is
not a weighting of C. Therefore, !^

C is the only key weighting
in W

^
C , and so by Lemma III.2 W

^
C is an atom of Lat (C).

An analogous argument gives the second case of Theo-
rem III.4.

VI. PROOF OF THEOREM III.5
The following proposition gives a property that all weight-

ings in W

^,_
C satisfy, and this will be sufficient to show that

W

^,_
C is an atom.

Proposition VI.1. Let C be a clone containing ^ and _,
and let ! 2 W

^,_
C be a non-zero k-ary weighting of C.

Then for every projection ⇡

(k)
i with !(⇡

(k)
i ) < 0, there are

operations g, h 2 C

(k) with !(g),!(h) > 0 such that g is
(0!0)-dependent on ⇡

(k)
i and h is (1!1)-dependent on ⇡

(k)
i .

Proof. Let ⇡(k)
i be a projection with !(⇡

(k)
i ) < 0. Note that

such a projection exists as ! is non-zero and assigns negative
weights only to projections. We shall show that there exists an
operation g with !(g) > 0 that is (0!0)-dependent on ⇡

(k)
i .

We will find such a function by iteration.
By Lemma II.7, for some gi,1, gi,2 2 C

(k),

! =

mX

i=1

ci · !^,_
C [gi,1, gi,2]. (8)

As !(⇡

(k)
i ) < 0, a non-zero term !

^,_
C [⇡

(k)
i , g

0
0] appears in

the summation (8) for some g

0
0 2 C

(k). Let g1 = ⇡

(k)
i ^ g

0
0.

If !(g1) > 0, as g1 is (0!0)-dependent on ⇡

(k)
i , then we

have found a suitable operation g. Otherwise, !(g1) = 0 and
so there is an operation g

0
1 2 C

(k) such that a non-zero term
!

^,_
C [g1, g

0
1] appears in the summation (8). For i > 1 we define

gi = gi�1 ^ g

0
i�1. If !(gi) > 0, as the operation gi is (0!0)-

dependent on gi�1 and so on ⇡

(k)
i , then we have found a

suitable operation g. Otherwise, !(gi) = 0 and there is an
operation g

0
i such that a non-zero term ![gi, g

0
i] appears in

the summation (8). We repeat this process until we find an
operation gi with !(gi) > 0.

Note that for each i � 0 we have that gi+1 is (0!0)-
dependent on gi and hence gi assigns strictly more zeros than
gi+1 to tuples in D

k. The above process must terminate as
C

(k) is finite and no two operations among gi can be equal.
Similarly, we can show the existence of an operation h with

!(h) > 0 that is (1!1)-dependent on ⇡

(k)
i .

Proof of Theorem III.5. First note that the condition is nec-
essary for W

^,_
C to be an atom. If ^ or _ is not in C, then

W

^,_
C does not exist and so W

^,_
C is not an atom of Lat (C).

Now we show that the condition is sufficient. If ^ and
_ are in C, then !

^,_
C is a weighting of C. We claim that

every other possible key weighting violates properties listed
in Proposition VI.1 and so !

^,_
C is the only key weighting in

W

^,_
C . Hence, by Lemma III.2 W

^,_
C is an atom of Lat (C).

To establish this claim note that the key weighting !

¬
C /2

W

^,_
C as ¬ is neither (0!0) nor (1!1)-dependent on ⇡

(1)
1 .

The key weightings !

0
C /2 W

^,_
C and !

1
C /2 W

^,_
C as these

weightings do not assign a positive weight to any (1!1) and
(0!0)-dependent operation, respectively. The key weightings
!

^
C /2 W

^,_
C and !

_
C /2 W

^,_
C as these weightings do not

assign a positive weight to any (1!1) and (0!0)-dependent
operation, respectively. The key weightings !

mjr
C ,!

mnr
C , and

!

mjr,mnr
C /2 W

^,_
C as neither mjr nor mnr is (0!0) or (1!1)-

dependent on any ternary projection.

VII. PROOF OF THEOREM III.6
First we show that weighted clones W

mjr
,W

mnr are always
equal to the top element of the lattice of weighted clones.



Proposition VII.1. Let C be a clone. If C contains mjr, then
W

mjr
C = WC . If C contains mnr, then W

mnr
C = WC .

Proof. Note that

!

mjr
C [⇡

(2)
1 ,⇡

(2)
2 ,⇡

(2)
2 ] =

⇣
�1, 1 | ⇡(2)

1 ,⇡

(2)
2

⌘

and
!

mnr
C [⇡

(2)
1 ,⇡

(2)
1 ,⇡

(2)
2 ] =

⇣
�1, 1 | ⇡(2)

1 ,⇡

(2)
2

⌘
.

Both of these weightings assign a positive weight to a
projection operation. So by Lemma II.8, we have that !

mjr
C

and !

mnr
C , when they exist, generate WC .

Proof of Theorem III.6. First we show that the condition is
necessary for W

mjr
C to be an atom. Suppose, that mjr is not

the only key operation in C. First, note that mjr 2 C as
otherwise W

mjr
C would not exist. If C also contains a key

operation f equal to one of 0,1,¬,^ or _, then we have
that W f

C 6= WC , by our earlier results, and so W

f
C ( W

mjr
C

by Proposition VII.1. If f = mnr, then as W

mjr
C = WC we

have that !mjr,mnr
C 2 W

mjr
C , but Wmjr,mnr

C 6= WC by the proof
of Theorem III.7, below. Hence in all cases W

mjr
C is not an

atom.
Now we show that the condition is sufficient. Suppose that

mjr is the only key operation in C. Then !

mjr
C is the only key

weighting in W

mjr
C and so by Lemma III.2 we have that Wmjr

C
is an atom of Lat (C).

An analogous argument establishes the result for Wmnr
C .

VIII. PROOF OF THEOREM III.7
We prove the following lemma that is needed to give the

conditions for Wmjr,mnr to be an atom.

Lemma VIII.1. Let C be a clone that contains ^,_,mjr and
mnr. Then W

^,_
C ( W

mjr,mnr
C .

Proof. We have that W

^,_
C 6= W

mjr,mnr
C as !

mjr,mnr
C /2 W

^,_
C

by Proposition VI.1. Also, note that !

mjr,mnr
C [⇡

(2)
1 ,⇡

(2)
2 ,_] =⇣

�1,�1, 1, 1 | ⇡(2)
1 ,⇡

(2)
2 ,^,_

⌘
= !

^,_
C . Hence !

^,_
C 2

D
!

mjr,mnr
C

E
and so W

^,_
C ✓ W

mjr,mnr
C .

Proof of Theorem III.7. First note that by Lemma VIII.1 the
condition is necessary for Wmjr,mnr

C to be an atom of Lat (C).
Now we show that the condition is sufficient. We will show

that if mjr,mnr 2 C and ^,_ /2 C, then W

mjr,mnr
C contains no

other key weightings apart from !

mjr,mnr
C , and so is an atom of

Lat (C) by Lemma III.2. Note that only two non-zero unary
weighted maps (not weightings) may be obtained by super-
position from !

mjr,mnr
C ; these are

⇣
�1, 1, 1,�1 | ⇡(1)

1 ,0,1,¬
⌘
,

and
⇣
1,�1,�1, 1 | ⇡(1)

1 ,0,1,¬
⌘
. Therefore by Lemma II.7

W

mjr,mnr
C contains no unary weightings. So !

0
C ,!

1
C and !

¬
C are

never contained in W

mjr,mnr
C . This also implies that Wmjr,mnr

C 6=
WC . Therefore !

mjr
C and !

mnr
C are not contained in W

mjr,mnr
C .

Note that if C contains mjr,mnr, and at least one of ^
and _, then C contains all four operations. In such a case,
W

^,_
C ( W

mjr,mnr
C , by Lemma VIII.1, and so W

mjr,mnr
C is not

an atom. Hence, !^
C and !

_
C are not contained in W

mjr,mnr
C .

REFERENCES

[1] L. Barto and M. Kozik, “Constraint Satisfaction Problems Solvable by
Local Consistency Methods,” Journal of the ACM, vol. 61, no. 1, 2014,
article No. 3.

[2] L. Barto, M. Kozik, and T. Niven, “The CSP dichotomy holds for
digraphs with no sources and no sinks (a positive answer to a conjecture
of Bang-Jensen and Hell),” SIAM Journal on Computing, vol. 38, no. 5,
pp. 1782–1802, 2009.

[3] A. Bulatov, “A dichotomy theorem for constraint satisfaction problems
on a 3-element set,” Journal of the ACM, vol. 53, no. 1, pp. 66–120,
2006.

[4] A. Bulatov, A. Krokhin, and P. Jeavons, “Classifying the Complexity of
Constraints using Finite Algebras,” SIAM Journal on Computing, vol. 34,
no. 3, pp. 720–742, 2005.

[5] A. A. Bulatov, “Complexity of conservative constraint satisfaction
problems,” ACM Transactions on Computational Logic, vol. 12, no. 4,
2011, article 24.

[6] D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, and S. Živný, “An
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[11] P. Hell and J. Nešetřil, “Colouring, constraint satisfaction, and complex-
ity,” Computer Science Review, vol. 2, no. 3, pp. 143–163, 2008.

[12] A. Huber, A. Krokhin, and R. Powell, “Skew bisubmodularity and valued
CSPs,” SIAM J. on Computing, vol. 43, no. 3, pp. 1064–1084, 2014.

[13] P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard,
“Tractability and learnability arising from algebras with few subpowers,”
SIAM Journal on Computing, vol. 39, no. 7, pp. 3023–3037, 2010.

[14] P. Jeavons, A. Krokhin, and S. Živný, “The complexity of valued con-
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