
D
R

A
FT

1

Tractable Valued Constraints

Peter G. Jeavonsa and Stanislav Živnýb

Abstract

In this chapter, we will survey recent results on the broad family of

optimisation problems that can be cast as valued constraint satisfac-

tion problems (VCSPs). We discuss general methods for analysing the

complexity of such problems, and give examples of tractable cases.

1.1 Introduction

Computational problems from many different areas involve finding val-

ues for variables that satisfy certain specified restrictions and optimise

certain specified criteria.

In this chapter, we will show that it is useful to abstract the general

form of such problems to obtain a single generic framework. Bringing all

such problems into a common framework draws attention to common

aspects that they all share, and allows very general analytical approaches

to be developed. We will survey some of these approaches, and the results

that have been obtained by using them.

The generic framework we shall use is the valued constraint satis-

faction problem (VCSP), defined formally in Section 1.3. We will show

that many combinatorial optimisation problems can be conveniently ex-

pressed in this framework, and we will focus on finding restrictions to

the general problem which are sufficient to ensure tractability.

a Supported by EPSRC grant EP/G055114/1.
E-mail: Peter.Jeavons@cs.ox.ac.uk

b Supported by a Junior Research Fellowship at University College, Oxford.
E-mail: Standa.Zivny@cs.ox.ac.uk

D
R

A
FT

2 Tractable Valued Constraints

An important and well-studied special case of the VCSP is the con-

straint satisfaction problem (CSP), which deals with combinatorial search

problems which have no optimisation criteria. We give a brief introduc-

tion to the CSP in Section 1.2, before defining the more general VCSP

framework in Section 1.3. Section 1.4 then presents a number of exam-

ples of problems that can be seen as special cases of the VCSP.

The remainder of the chapter discusses what happens to the complex-

ity of the valued constraint satisfaction problem when we restrict it in

various ways. Section 1.6 considers the important special case of valued

constraint problems involving submodular functions. Motivated by this

example, we introduce the notion of a multimorphism, which can be used

to define many other tractable forms of valued constraint, and we use

this notion to obtain a complexity classification of all valued constraints

over a 2-element domain. In Section 1.7 we present a complexity clas-

sification of problems over arbitrary finite domains allowing all unary

valued constraints.

Section 1.8 describes the basics of a recently developed general al-

gebraic theory for studying the complexity of different forms of valued

constraints. Finally, Section 1.9 concludes with some open problems.

This chapter is self-contained, but we refer the reader to one of the

standard textbooks (Apt, 2003; Dechter, 2003; Rossi et al., 2006) for

more detailed background information on the basics of constraint satis-

faction. Earlier surveys on the complexity of various forms of restricted

constraint satisfaction problems can be found in (Cohen and Jeavons,

2006; Chen, 2006; Kolaitis and Vardi, 2007; Creignou et al., 2008a; Hell

and Nešetřil, 2008; Jeavons, 2009; Nešetřil et al., 2010).

1.2 Constraint Satisfaction Problems

In this section, we present the simplest form of constraint satisfaction

problem, where there are no optimisation criteria, so all solutions satisfy-

ing the specified constraints are considered equally desirable. This form

of problem has been widely-studied since the pioneering work of Monta-

nari (1974), and there are now several textbooks covering this topic (Apt,

2003; Dechter, 2003; Rossi et al., 2006), as well as a regular international

conference devoted to constraint programming.

The basic constraint satisfaction problem (CSP) can be defined in a

number of equivalent ways. Here we will present three equivalent stan-

dard definitions, each emphasizing different aspects of the problem.

D
R

A
FT

1.2 Constraint Satisfaction Problems 3

Our first definition is couched in the terminology of predicate logic.

Let B = (D,R1, R2, . . .) be a relational structure, where D is the uni-

verse and R1, R2, . . . are relations over D. A first-order formula is called

primitive positive over B if it is of the form

∃x1∃x2 . . . ∃xn ψ1 ∧ · · · ∧ ψm

where the ψi are atomic formulas, i.e., formulas of the formR(xi1 , . . . , xik
)

where R is a relation symbol for a k-ary relation from B.

Definition 1.1 An instance of the constraint satisfaction problem

(CSP) is given by a primitive positive sentence, Φ, over a fixed rela-

tional structure, B. The question is whether Φ is true in B.

This logical formulation of constraint satisfaction allows some classical

combinatorial problems to be formulated very naturally.

Example 1.2 (Satisfiability) The standard propositional Satisfia-

bility problem for ternary clauses, 3-SAT (Garey and Johnson, 1979)

consists in determining whether it is possible to satisfy a Boolean for-

mula given in CNF as a conjunction of ternary clauses.

This can be viewed as a constraint satisfaction problem by fixing the

structure B3SAT to be ({0, 1}, R1, . . . , R8), where the Ri are the 8 re-

lations definable by a single ternary clause. For example, the clause

x ∨ ¬y ∨ ¬z can be written as R1(x, y, z), where

R1 = {〈0, 0, 0〉 , 〈0, 0, 1〉 , 〈0, 1, 0〉 , 〈1, 0, 0〉 , 〈1, 0, 1〉 , 〈1, 1, 0〉 , 〈1, 1, 1〉}.

An instance of 3-SAT corresponds to a primitive positive sentence over

B3SAT with a conjunct for each clause.

Example 1.3 (Graph Colouring) The standard k-Colourability

problem (Garey and Johnson, 1979) consists in determining whether it

is possible to assign k colours to the vertices of a given graph so that

adjacent vertices are assigned different colours.

This can be viewed as a constraint satisfaction problem by fixing the

structure BkCOL to be ({1, . . . , k}, 6=), where 6= is the binary disequality

relation on {1, . . . , k} given by {〈i, j〉 | i, j ∈ {1, . . . , k}, i 6= j}.

An instance of Graph k-Colouring corresponds to a primitive pos-

itive sentence over BkCOL with a conjunct for each edge of the graph.

An important line of research in dealing with constraint satisfaction

problems has been the development of programming languages to facili-

tate the expression of practical problems, and software tools to solve such

D
R

A
FT

4 Tractable Valued Constraints

problems. This approach is known as constraint programming (Rossi

et al., 2006).

In the field of constraint programming, a constraint satisfaction prob-

lem is usually defined in a more operational way, as follows.

Definition 1.4 An instance of the constraint satisfaction problem

(CSP) is a triple P = 〈V,D, C〉, where: V is a finite set of variables ; D

is a set of possible values that may be assigned to the variables (called

the domain); C is a multi-set of constraints. Each element of C is a pair

c = 〈σ,R〉 where σ is a tuple of variables called the scope of c, and R is a

|σ|-ary relation over D that defines the combinations of assignments to

the variables in σ that are allowed by c. An assignment for P is a map-

ping s : V → D. A solution to P is an assignment which is consistent

with all of the constraints.

This formulation focuses attention on the variables, the domain and

the constraints ; these are the key data structures in a software system

for solving constraint satisfaction problems.1 In this formulation the con-

straints are often represented by oracles - black-box algorithms for a

particular constraint type, known as “propagators” (Rossi et al., 2006),

which communicate information with each other during the search for a

solution by modifying the domains of the individual variables.

Many real-world problems such as timetabling and scheduling, are

captured very naturally in this formulation, as well as classic combina-

torial search problems and puzzles (Rossi et al., 2006).

It is easy to translate from this second formulation of the constraint

satisfaction problem (Definition 1.4) to our original logical formulation

(Definition 1.1). To do this, simply collect together the relations over D

that occur in the constraints of C, to give a relational structure B with

universe D. The instance can then be written as a primitive positive

sentence over B with a conjunct R(σ[1], . . . , σ[m]) for each constraint

〈σ,R〉 of arity m that occurs in C.

In a given CSP instance there may be several constraints with the

same constraint relation, but different scopes. If we collect together the

scopes associated with a particular constraint relation we get a set of

tuples which is itself a relation, but a relation over the set of variables,

V . If we do this for each distinct constraint relation occurring in our

problem, we obtain a collection of such relations over V , which can

1 In Definition 1.4, we have assumed that all the variables have the same domain.
If this is not the case, we could simply collect together all the possible values
occurring in the domains of the individual variables into a single set D.

D
R

A
FT

1.2 Constraint Satisfaction Problems 5

be viewed as a relational structure A with universe V . Note that each

relation E in A corresponds to a relation R in B of the same arity, and

vice versa. This is captured in standard algebraic terminology by saying

that the two relational structures, A and B are similar. Note also that

a solution to the original CSP instance is a mapping from V to D that

maps any tuple of variables related by a relation E in A to a tuple of

values which are related by the corresponding relation R in B. This is

captured in standard algebraic terminology by saying that a solution is

a homomorphism from A to B.

These observations gives rise to our third alternative formulation of

the CSP, this time in the terminology of algebra.

Definition 1.5 An instance of the constraint satisfaction problem

(CSP) is given by a pair of similar relational structures A and B. The

question is whether there exists a homomorphism from A to B.

This clean algebraic formulation of constraint satisfaction was intro-

duced by Feder and Vardi (1998) (and independently by Jeavons (1998))

and has turned out to be very useful for the analysis of the complexity

of different forms of the problem.

Example 1.6 (Graph Homomorphism) The standard Graph Homo-

morphism problem (Hell and Nešetřil, 2004) consists in determining

whether it is possible to map the vertices of a given graph G to the ver-

tices of another given graphH so that adjacent vertices of G are mapped

to adjacent vertices of H .

This can be viewed as a constraint satisfaction problem by viewing G

and H as similar relational structures, each with a single binary relation.

A homomorphism between these structures is precisely a mapping with

the desired properties.

Example 1.7 (Graph Colouring) The standard k-Colourability

problem described in Example 1.3 can be viewed as the constraint satis-

faction problem which asks whether there is a homomorphism from the

given graph G to the structure BkCOL, defined in Example 1.3, which

corresponds to a complete graph on k vertices.

This formulation makes it easy to see that the Graph k-Colourability

problem is a special case of Graph Homomorphism.

Example 1.8 (Clique) The standard k-Clique problem (Garey and

Johnson, 1979) consists in determining whether a given graph G has a

clique of size k, that is, a set of k vertices which are fully connected. This

D
R

A
FT

6 Tractable Valued Constraints

can be viewed as a constraint satisfaction problem which asks whether

there is a homomorphism from the complete graph on k vertices to the

given graph G.

This formulation of the problem makes it easy to see that k-Clique

is a special case of Graph Homomorphism.

It is clear from the examples above that the general CSP is at least

NP-hard. This has prompted many researchers to investigate ways in

which restricting the problem can reduce its complexity. We will call

a restricted version of the CSP tractable if there is a polynomial-time

algorithm to determine whether any instance of the restricted problem

has a solution.

The algebraic formulation of the CSP, given in Definition 1.5, clearly

identifies two separate aspects of the specification of an instance: the

source structure, A, and the target structure, B.

The source structure, A, specifies the tuples referred to in Defini-

tion 1.4 as the scopes of the constraints. If we restrict the possible source

structures that we allow in an instance, then we are restricting the set

of variables and the ways in which the constraints may be imposed on

those variables. Such restrictions are known as structural restrictions.

The target structure, B, specifies the relations referred to in Defini-

tion 1.4 as constraint relations. If we restrict the possible target struc-

tures that we allow in an instance, then we are restricting the set of

possible values and the types of constraints that may be imposed on

those values. Such restrictions are known as language restrictions.

Definition 1.9 Given classes of structures, A and B, we define the

problem CSP(A,B) to be the class of CSP instances (A,B), where A ∈

A and B ∈ B.

Structural restrictions If B is the class of all structures, we write

CSP(A,−) in place of CSP(A,B). In this case we impose no restriction

on the type of constraint, but some restriction on how the constraints

may overlap.

Structural restrictions of this kind have been studied since the pio-

neering work by Montanari (1974), who observed that CSPs on trees

are solvable in polynomial time. This observation has since been gener-

alised in many different ways (Freuder, 1985; Dechter and Pearl, 1989;

Freuder, 1990; Gyssens et al., 1994; Gottlob et al., 2000; Kolaitis and

Vardi, 2000; Dalmau et al., 2002; Gottlob et al., 2002; Chen and Dal-

D
R

A
FT

1.2 Constraint Satisfaction Problems 7

mau, 2005; Grohe and Marx, 2006; Adler et al., 2007; Cohen et al.,

2008a; Gottlob et al., 2009; Marx, 2010b,a, 2011).

In general, the structural restrictions that ensure tractability are those

that enforce a bound on some measure of width in the class of source

structures allowed (Gottlob et al., 2000). Complete classifications, iden-

tifying all tractable cases, have been obtained for bounded-arity CSPs

by Grohe (2007), and for unbounded-arity CSPs by Marx (2010c).

One example of a constraint satisfaction problem with restricted struc-

ture is the k-Clique problem (see Example 1.8), which is tractable for

any bounded k, but NP-complete if k is unbounded.

Language restrictions If A is the class of all structures, we write

CSP(−,B) in place of CSP(A,B). In this case we impose no restriction

on the way the constraints are placed, but some restriction on the forms

of constraints that may be imposed.

Such language restrictions have also been widely studied (Jeavons and

Cooper, 1995; Jeavons et al., 1997; Feder and Vardi, 1998; Bulatov et al.,

2005; Bulatov, 2006; Bulatov and Dalmau, 2006; Dalmau, 2006; Bula-

tov and Valeriote, 2008; Barto et al., 2009b; Barto and Kozik, 2009;

Barto et al., 2009a; Kun and Szegedy, 2009; Berman et al., 2010; Idziak

et al., 2010; Bulatov, 2011b; Bodirsky and Pinsker, 2011; Bulatov, 2011a;

Barto, 2011).

One example of a constraint satisfaction problem with a restricted con-

straint language is the Graph k-Colourability problem, described in

Example 1.3, which is tractable when k ≤ 2, but NP-complete for k ≥ 3.

Hybrid restrictions Of course it is possible to impose other kinds of

restrictions on the CSP, by restricting the possible pairs (A,B) that are

allowed in instances in some other way. Such restrictions are sometimes

referred to as hybrid restrictions (Pearson and Jeavons, 1997), because

they involve simultaneous restrictions on both the source structure and

the target structure. Hybrid restrictions have been much less widely

studied, although some interesting cases have been identified (Cohen,

2003; Salamon and Jeavons, 2008; Cooper et al., 2010a; Cohen et al.,

2011b; Fellows et al., 2011).

Related work In this chapter we focus on constraint satisfaction prob-

lems over a finite domain, but there has also been considerable work

on such problems over infinite domains (Bodirsky, 2008; Bodirsky and

Kára, 2010). The complexity of various forms of the CSP has recently

D
R

A
FT

8 Tractable Valued Constraints

also been studied with respect to fixed-parameter tractability (Gottlob

and Szeider, 2008; Samer and Szeider, 2010; Fellows et al., 2011).

1.3 Valued Constraint Satisfaction Problems

The standard constraint satisfaction problem, or CSP, described in the

previous section, captures only the feasibility aspects of a given prob-

lem. Since in practice many problems involve seeking a solution that

optimises certain criteria, as well as satisfying certain restrictions, var-

ious more general frameworks for so-called soft constraint satisfaction

have been studied, which allow measures of desirability to be associated

with different assignments to the variables (Dechter, 2003).

Several very general soft CSP frameworks have been proposed in the

literature (Schiex et al., 1995; Bistarelli et al., 1997; Rossi et al., 2006),

the two most general being the semi-ring CSP and the valued CSP.

The main difference between semi-ring CSPs and valued CSPs is that

the measures of desirability used in valued CSPs represent costs and

have to be totally ordered, whereas the measures used in semi-ring CSPs

represent preferences and might be ordered only partially. Hence the

semi-ring CSP framework is slightly more general than the valued CSP

framework, but the valued CSP framework is sufficiently powerful to

model a wide range of optimisation problems (Cohen et al., 2006b).

Hence we will simply focus here on the valued CSP framework, which

we will now define formally.

For a tuple t, we shall denote by t[i] its i-th component. We shall

denote by Q+ the set of all non-negative2 rational numbers.3 We define

Q+ = Q+ ∪ {∞}, with the standard addition operation, +, extended so

that for all a ∈ Q+, a+ ∞ = ∞. Members of Q+ are called costs.

A function φ from Dm to Q+ will be called a cost function on D of

arity m. If the range of φ is {α,∞}, for some finite α ∈ Q+ then φ is

called essentially crisp. If α = 0, i.e. the range of φ is {0,∞}, then φ is

called crisp. If the range of φ lies entirely within Q+, then φ is called

2 It is standard to define the range of cost functions as non-negative rationals with
infinity. However, it is easy to observe that one could define the range to be all
rationals with infinity. Indeed, any VCSP instance with such cost functions is
equivalent to an instance with non-negative costs by adding a suitable constant.

3 To avoid computational and representational issues, we work with rational
numbers rather than arbitrary real numbers. We note that some of the
algorithmic results stated in this chapter have been proved for the reals, but we
will state the results only for the special case of the rationals.

D
R

A
FT

1.3 Valued Constraint Satisfaction Problems 9

finite-valued. If the range of φ includes both nonzero finite costs and

infinity, we sometimes emphasise this fact by calling φ general-valued.

Definition 1.10 An instance of the valued constraint satisfaction prob-

lem, (VCSP), is a triple P = 〈V,D, C〉 where: V is a finite set of variables ;

D is a set of possible values that may be assigned to the variables (called

the domain); C is a multi-set of valued constraints. Each element of C is

a pair c = 〈σ, φ〉 where σ is a tuple of variables called the scope of c, and

φ is a |σ|-ary cost function on D taking values in Q+. An assignment

for P is a mapping s : V → D. The cost of an assignment s, denoted

CostP (s), is given by the sum of the costs for the restrictions of s onto

each constraint scope, that is,

CostP (s)
def
=

∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)) .

A solution to P is an assignment with minimum cost, and the question

is to find a solution.

Remark In the original, more general, definition of the VCSP, as given

by Bistarelli et al. (1999), costs were allowed to lie in any positive totally-

ordered monoid, called a valuation structure. However, using costs from

Q+ and combining them using standard addition is sufficient for our

purposes and standard in operational research. We refer the reader

to Cooper (2005) for details on why the restriction to Q+ is not severe.

There are many alternative frameworks for optimisation problems

which can easily be shown to be equivalent to the valued constraint satis-

faction problem. These include: Min-Sum Problems, Gibbs energy min-

imisation, Markov Random Fields (MRF), Conditional Random Fields

(CRF) and others (Lauritzen, 1996; Boros and Hammer, 2002; Werner,

2007; Wainwright and Jordan, 2008; Crama and Hammer, 2011). Hence,

all of the tractability and intractability results that we derive for the

VCSP framework immediately apply to all of these other frameworks as

well.

As with the CSP defined in Section 1.2, one can study structural re-

strictions4 for the VCSP, and hybrid restrictions for the VCSP (see Cooper

and Živný (2011a,b,c) for recent results on hybrid restrictions).

4 The study of structural restrictions for the VCSP has not led to essentially new
results as hardness results for the CSP immediately apply to the (more general)
VCSP, and all known tractable structural classes for the CSP extend easily to
the VCSP, see (Bertelé and Brioshi, 1972; Dechter, 2003).

D
R

A
FT

10 Tractable Valued Constraints

However, the main focus in this chapter will be on language restric-

tions for the VCSP. For the remainder of the chapter we will assume

that D denotes some fixed finite set D; that is, the size of D is not part

of the input. A valued constraint language (or simply a language) is a

set of possible cost functions mapping Dm to Q+. A valued constraint

language Γ is called crisp (essentially crisp, finite-valued, general-valued,

respectively) if all cost functions from Γ are crisp (essentially crisp, finite-

valued, general-valued, respectively). A language Γ over a two-element

domain is called a Boolean language.

Definition 1.11 We will denote by VCSP(Γ) the class of all VCSP

instances where the cost functions of the valued constraints are all con-

tained in Γ.

A language Γ is called tractable if VCSP(Γ′) can be solved in poly-

nomial time for every finite subset Γ′ ⊆ Γ, and Γ is called intractable if

VCSP(Γ) is NP-hard for some finite Γ′ ⊆ Γ.

Since we are interested in the complexity of languages over fixed finite

domains, we can always assume an explicit representation (such as a

table of values) for all cost functions from the language.

1.4 Examples of Valued Constraint Languages

We now give some examples of tractable and intractable valued con-

straint languages that can be used to model a wide variety of discrete

combinatorial search and optimisation problems.

Example 1.12 (CSP) The standard constraint satisfaction problem

defined in Section 1.2 can be seen as the special case of the VCSP where

all cost functions are (essentially) crisp. In other words, the CSP can be

seen as VCSP(Γecrisp), where Γecrisp is the language consisting of all cost

functions with range {c,∞}, for some fixed finite c ∈ Q+.

By the examples given in Section 1.2, the language Γecrisp is clearly

intractable.

Example 1.13 ((s, t)-Min-Cut) Let G = 〈V,E〉 be a directed weighted

graph such that for every (u, v) ∈ E there is a weight w(u, v) ∈ Q+ and

let s, t ∈ V be the source and target nodes. Recall that an (s, t)-cut C

is a subset of vertices V such that s ∈ C but t 6∈ C. The weight, or

the size, of an (s, t)-cut C is defined as
∑

(u,v)∈E,u∈C,v 6∈C w(u, v). The

(s, t)-Min-Cut problem consists in finding a minimum-weight (s, t)-cut

D
R

A
FT

1.4 Examples of Valued Constraint Languages 11

in G. We can formulate the search for a minimum-weight (s, t)-cut in G

as a VCSP instance as follows.

Let D = {0, 1}. For any cost w ∈ Q+, we define

λw(x, y)
def
=

{

w if x = 0 and y = 1

0 if x = 1 or y = 0
.

For any value d ∈ D and cost c ∈ Q+, we define

µd
c(x)

def
=

{

c if x = d

0 if x 6= d
.

We denote by Γcut the set of all cost functions of the form λw or µd
c ,

for all w, c ∈ Q+ and d ∈ D. Any instance of (s, t)-Min-Cut can be

formulated in VCSP(Γcut) as follows:

P =
〈

V,D, {
〈

〈u, v〉 , λw(u,v)

〉

| (u, v) ∈ E} ∪ {
〈

s, µ1
∞

〉

,
〈

t, µ0
∞

〉

}
〉

.

The unary constraints ensure that the source and target nodes take

the values 0 and 1, respectively, in any solution. Therefore, a minimum-

weight (s, t)-cut in G corresponds to the set of variables assigned the

value 0 in some solution to P .

Furthermore, we claim that any instance P of VCSP(Γcut) on variables

x1, . . . , xn can be solved in O(n3) time by a reduction to (s, t)-Min-Cut,

and then using the standard algorithm (Goldberg and Tarjan, 1988).

The reduction works as follows: any unary constraint µ0
c (respectively

µ1
c) on xi can be modelled by an edge of weight c from xi to the target

node (respectively, from the source node to the node xi). Any constraint

with cost function λw(xi, xj) is modelled by an edge of weight w from

xi to xj .

Hence Γcut is tractable.

Example 1.14 (Max-Cut) Let Γxor be the language that contains just

the single binary cost function φxor : D2 → Q+ defined by

φxor(x, y)
def
=

{

1 if x = y

0 if x 6= y
.

If D = {0, 1}, then the problem VCSP(Γxor) corresponds to the Max-

SAT problem for the exclusive-or predicate, which is known to be NP-

hard (Creignou et al., 2001). Therefore, Γxor is intractable. Moreover,

VCSP(Γxor) is also equivalent to the Max-Cut problem, a well-known

NP-complete problem (Garey and Johnson, 1979).

D
R

A
FT

12 Tractable Valued Constraints

For |D| > 2, VCSP(Γxor) includes the |D|-Colouring problem, which

is also NP-complete.

Example 1.15 (Max-CSP) An instance of the maximum constraint

satisfaction problem (Max-CSP) is an instance of the CSP with the goal

to maximise the number of satisfied constraints. In the weighted version,

each constraint has a non-negative weight and the goal is to maximise

the weighted number of satisfied constraints.

When seeking the optimal solution, maximising the weighted number

of satisfied constraints is the same as minimising the weighted number of

unsatisfied constraints.5 Hence for any instance P of the Max-CSP, we

can define a corresponding VCSP instance P ′ in which each constraint

c of P with weight w is associated with a cost function over the same

scope in P ′ which assigns cost 0 to tuples allowed by c, and cost w to

tuples disallowed by c.

The complexity of Boolean languages for Max-CSP has been com-

pletely classified in (Khanna et al., 2001), see also (Creignou et al., 2001).

First results on languages over arbitrary finite domains appeared in (Co-

hen et al., 2005). A complexity classification (with respect to approx-

imability) of languages over three-element domains appeared in (Jonsson

et al., 2006). Let Γfix be the language containing unary cost functions

ud for all d ∈ D, where ud(x) = 0 if x = d and ud(x) = 1 if x 6= d.

A complexity classification with respect to approximability of all lan-

guages including Γfix, (so-called languages with fixed-value constraints),

was obtained in (Deineko et al., 2008).

The last two mentioned results rely heavily on computer search. How-

ever, the main results of these papers follow easily from a recent result

on conservative VCSPs (Kolmogorov and Živný, 2012), which we will

discuss in Section 1.7.

For recent results on approximability and inapproximability of the

Max-CSP, see (Raghavendra, 2008)

A generalisation of the Max-CSP allowing both positive and nega-

tive weights has also been considered, and the complexity of all Boolean

languages in this framework was classified by Jonsson (2000), later gen-

eralised to all languages by Jonsson and Krokhin (2007).

Example 1.16 (Max-Ones) An instance of the Boolean Max-Ones

problem is an instance of the CSP with the goal to maximise the num-

ber of variables assigned the value 1. A classification of the complexity

5 This statement is not true with respect to approximability, even over Boolean
domains (Creignou et al., 2001).

D
R

A
FT

1.4 Examples of Valued Constraint Languages 13

of Boolean languages for this problem was obtained by Creignou et al.

(2001). This result was later generalised to a classification of maximal

languages over domains of size up to 4, and to a classification of lan-

guages containing all permutation relations by Jonsson et al. (2008).

Example 1.17 (Min-Cost-Hom) Given two graphs (directed or undi-

rected) G and H , we denote by V (G) and V (H) the set of vertices of

G and H respectively. We denote by E(G) and E(H) the set of edges

of G and H respectively. A mapping f : V (G) → V (H) is a homomor-

phism of G to H if f preserves edges, that is, (u, v) ∈ E(G) implies

(f(u), f(v)) ∈ E(H).

The homomorphism problem for graphs was described in Example 1.6

as a special case of the CSP. It asks whether an input graph G admits

a homomorphism to a fixed graph H . This problem is also known as

H-Colouring (Hell and Nešetřil, 1990, 2004).

For two graphs G and H , define nonnegative rational costs cv(u), for

all u ∈ V (G) and v ∈ V (H). The cost of a homomorphism f from G

to H can then be defined to be
∑

u∈V (G) cf(u)(u). For a fixed H , the

Minimum-Cost Homomorphism problem (Min-Cost-Hom) asks for a

homomorphism from G to H with minimum cost.

The Min-Cost-Hom problem can be seen as a special case of the VCSP,

where all cost functions are either binary crisp functions, or unary finite-

valued functions, and each instance has a unary cost function on each

variable, and exactly one binary cost function imposed on some pairs of

variables.

A complexity classification of Min-Cost-Hom for undirected graphs

was obtained in (Gutin et al., 2008). A complexity classification of Min-

Cost-Hom for digraphs follows from results in (Takhanov, 2010a), with

generalisations in (Takhanov, 2010b).

Example 1.18 (Max-Sol) The Maximum Solution problem (Max-

Sol) (Jonsson and Nordh, 2008) can be seen as a valued constraint sat-

isfaction problem over a domain with positive integer values. It is equiv-

alent to the VCSP over the language consisting of crisp cost functions

together with all unary cost functions of the following form: µ(d) = wd

for any domain value d and some fixed w ∈ N. Jonsson et al. (2007) stud-

ied the Max-Sol problem over undirected graphs, that is, for languages

containing only a single symmetric binary crisp cost function, and unary

D
R

A
FT

14 Tractable Valued Constraints

functions of the form specified above.6 Max-Sol has been also studied

by Jonsson and Thapper (2009).

1.5 Expressive power

In this section, we define and study a notion of expressibility for valued

constraint languages. This notion has played a key role in the analysis

of complexity for the CSP and VCSP. Expressibility allows a partic-

ular form of problem reduction: if a constraint can be expressed in a

given constraint language, then it can be added to the language with-

out changing the computational complexity of the associated class of

problems. To indicate its central role we note that the same basic idea

of expressibility has been studied under many different names in differ-

ent fields: implementation (Creignou et al., 2001), pp-definability (Chen,

2006), existential inverse satisfiability (Creignou et al., 2008b), structure

identification (Dechter and Pearl, 1992) or join and projection operations

in relational databases (Ullman, 1989). In the context of the CSP, both

upper bounds (Jeavons et al., 1996, 1999) and lower bounds (Willard,

2010) on the complexity of deciding expressibility have been studied.

Expressibility is also a significant notion in practical constraint pro-

gramming. As with all computing paradigms, it is desirable for many

purposes to have a small language which can be used to describe a large

collection of problems. Determining which additional constraints can be

expressed by a given constraint language is therefore a central issue in

assessing the flexibility and usefulness of a constraint system.

Definition 1.19 For any VCSP instance P = 〈V,D,C〉, and any list

L = 〈v1, . . . , vm〉 of variables of P , the projection of P onto L, denoted

πL(P), is the m-ary cost function defined as follows:

πL(P)(x1, . . . , xm)
def
= min

{s:V →D | 〈s(v1),...,s(vm)〉=〈x1,...,xm〉}
CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ

if there exists a VCSP instance P ∈ VCSP(Γ) and a list L of variables of

P such that πL(P) = φ. We call the pair 〈P , L〉 a gadget for expressing

φ over Γ. We define 〈Γ〉 to be the expressive power of Γ; that is, the set

of all cost functions expressible over Γ.

6 This problem is a restriction of Min-Cost-Hom for graphs, but a generalisation of
both List-Hom for graphs and Max-Ones.

D
R

A
FT

1.5 Expressive power 15

x1

x2

x3

x4

φ 6=

φ 6=

φ 6=

φ 6=

φ 6=

φ=

Figure 1.1 Expressing φ= over Γ = {φ 6=} for |D| = 3 (Example 1.20).

Example 1.20 Let Γ = {φ6=} be a language over D which consists of

a binary crisp cost function, φ6=, given by

φ6=(x, y)
def
=

{

∞ if x = y

0 if x 6= y
.

Consider an instance P = 〈V,D, C〉 of VCSP(Γ), where n = |D|,

V = {x1, . . . , xn+1}, and

C = {〈〈xi, xj〉 , φ6=〉 | i 6= j ∈ {1, . . . , n}}∪{〈〈xi, xn+1〉 , φ6=〉 | i ∈ {2, . . . , n}}.

An example of this construction for |D| = 3 is shown in Figure 1.1.

In order to avoid infinite cost, variables x1, . . . , xn have to be as-

signed different values. Moreover, the value of the variable xn+1 has to

be different from the values of the variables x2, . . . , xn. Hence, the only

remaining value that can be assigned to the variable xn+1 is the value

which is assigned to the variable x1. Therefore, every solution s to P

with minimum total cost (in this case zero) satisfies s(x1) = s(xn+1).

Therefore, 〈P , 〈x1, xn+1〉〉 is a gadget for expressing the equality cost

function, φ=, given by

φ=(x, y)
def
=

{

0 if x = y

∞ if x 6= y
.

In other words, the equality cost function, φ=, can be expressed using

the disequality cost function, φ6=, that is, φ= ∈ 〈{φ6=}〉.

The importance of Definition 1.19 is in the following:

D
R

A
FT

16 Tractable Valued Constraints

Theorem 1.21 (Cohen et al. (2006b)) For any valued constraint lan-

guage Γ, Γ is tractable if and only if 〈Γ〉 is tractable.

Consequently, in order to classify the computational complexity of

all valued constraint languages, it is sufficient to consider only those

languages which are closed under expressibility.

Example 1.22 By Theorem 1.21 and Example 1.14, in order to show

that Γ is an intractable language it is sufficient to show that φxor is

expressible over Γ.

Questions related to the expressive power of various valued constraint

languages have been studied in (Cohen et al., 2008c; Zanuttini and

Živný, 2009; Živný, 2009).

1.6 Submodular Functions and Multimorphisms

In this section, we define submodular functions and multimorphisms.

We show how the minimisation problem for submodular functions can be

expressed as a particular case of the VCSP, over a language characterised

by having a certain binary multimorphism. Moreover, we show several

generalisations which give rise to other tractable languages characterised

by other kinds of multimorphisms.

Submodular functions For any finite set V , a rational-valued function

f defined on subsets of V is called a set function.

Definition 1.23 (Submodularity) A set function f : 2V → Q+ is

called submodular if for all subsets S and T of V ,

f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T). (1.1)

Submodular functions are a key concept in operational research and

combinatorial optimisation (Nemhauser and Wolsey, 1988; Narayanan,

1997; Topkis, 1998; Schrijver, 2003; Fujishige, 2005; Korte and Vygen,

2007). Examples include cuts in graphs (Goemans and Williamson, 1995;

Queyranne, 1998), matroid rank functions (Edmonds, 1970), set covering

problems (Feige, 1998) and entropy functions. Submodular functions are

often considered to be a discrete analogue of convex functions (Lovász,

1983).

Both minimising and maximising submodular functions, possibly un-

der some additional conditions, have been considered extensively in the

D
R

A
FT

1.6 Submodular Functions and Multimorphisms 17

literature. Most scenarios use the so-called oracle value model : for any

set S ⊆ V , an algorithm can query an oracle to find the value of f(S).

Submodular function maximisation is easily shown to be NP-hard

(Schrijver, 2003), but good approximation algorithms exist (Feige et al.,

2011). In contrast, the submodular function minimisation problem can

be solved efficiently with only polynomially many oracle calls. Since the

first combinatorial7 polynomial-time algorithms (Schrijver, 2000; Iwata

et al., 2001) for minimising submodular functions, there have been sev-

eral improvements in the running times, see Iwata (2008) for a sur-

vey. The time complexity of the fastest known strongly8 polynomial

time algorithm for minimising a submodular function in n variables is

O(n6 +n5L), where L is the time required to evaluate the function in n

variables (Orlin, 2009).

Binary multimorphisms We now define the concept of a binary mul-

timorphism and give several examples.

Definition 1.24 (Binary multimorphisms) Let 〈f, g〉 be a pair of oper-

ations f, g : D2 → D. We say that an m-ary cost function φ : Dm → Q+

admits 〈f, g〉 as a multimorphism if for all x1, y1, . . . , xm, ym ∈ D it

holds that

φ(f(x1, y1), . . . , f(xm, ym)) + φ(g(x1, y1), . . . , g(xm, ym))

≤ φ(x1, . . . , xm) + φ(y1, . . . , ym). (1.2)

If a cost function φ admits 〈f, g〉 as a multimorphism, we also say

that φ is improved by 〈f, g〉. We say that a language Γ admits 〈f, g〉 as

a multimorphism (or equivalently, that Γ is improved by 〈f, g〉), if every

cost function φ from Γ admits 〈f, g〉 as a multimorphism.

Remark Using standard vector notation, an m-ary cost function φ ad-

mits 〈f, g〉 as a multimorphism if

φ(f(x,y) + φ(g(x,y)) ≤ φ(x) + φ(y)

for all x,y ∈ Dm, where both f and g are applied coordinate-wise.

Example 1.25 (Submodular cost functions) Any set function f de-

fined on subsets of V = {v1, . . . , vm} can be associated with a cost

7 An algorithm is called combinatorial if it does not employ the ellipsoid method.
8 An algorithm is called strongly polynomial if the running time does not depend

on the maximum value of the function to be minimised.

D
R

A
FT

18 Tractable Valued Constraints

function φ : {0, 1}m → Q+ defined as follows: for each tuple t ∈ Dm, set

φ(t) = f(T), where T = {vi | t[i] = 1}.

For any tuples s, t over {0, 1}, if we set S = {vi | s[i] = 1} and T =

{vi | t[i] = 1}, then S ∩ T = {vi | Min(s[i], t[i]) = 1} and S ∪ T =

{vi |Max(s[i], t[i]) = 1}. Here Min is the function returning the minimum

of its two arguments and Max is the function returning the maximum

of its two arguments. By comparing Definitions 1.24 and 1.23, it can

be seen that f is submodular if and only if φ admits 〈Min,Max〉 as a

multimorphism.

Example 1.26 (Submodular languages) We denote by Γsub the set

of all cost functions (over some fixed finite totally ordered set D) that

admit 〈Min,Max〉 as a multimorphism. Using a polynomial-time strongly

combinatorial algorithm for minimising submodular functions, it was

shown in (Cohen et al., 2006b) that Γsub is tractable.

However, an instance P ∈ VCSP(Γsub) is a special kind of submodular

function minimisation problem, because the objective function is given

explicitly by the sum of the cost functions for each individual constraint

of P. (Note that submodularity is preserved under addition.) Such func-

tions are also known as locally-defined functions (Cooper, 2008) or suc-

cinct functions (Feige et al., 2011). Hence, one might hope that there

is an algorithm for VCSP(Γsub) with better running time than the gen-

eral submodular function minimisation algorithms, which work in the

oracle-value model and do not assume anything about the structure of

the objective function.

In some special cases more efficient algorithms are known. For exam-

ple, in the case when D = {0, 1}, the cost functions defined in Exam-

ple 1.13 are all submodular, so the language Γcut defined in Example 1.13

is strictly contained in Γsub for this set D. (Indeed, it is well known that

the cut function for any graph is submodular.) Since cut functions can

be minimised more efficiently than general submodular functions (see

Example 1.13), classes of submodular functions from Γsub that are ex-

pressible over Γcut have been studied (Živný, 2009; Živný and Jeavons,

2010). However, it has been shown in (Živný, 2009; Živný et al., 2009)

that not all functions from Γsub are expressible over Γcut, so this ap-

proach cannot be used to obtain a more efficient algorithm for the whole

of VCSP(Γsub).

Other approaches for solving instances from VCSP(Γsub) include lin-

ear programming (Cooper, 2008; Cooper et al., 2010b) or submodular

flows (Kolmogorov, 2010).

D
R

A
FT

1.6 Submodular Functions and Multimorphisms 19

Example 1.27 (Max) Let Γmax be a language, over some totally or-

dered domain D, which is improved by the pair 〈Max,Max〉, where

Max : D2 → D is the binary operation returning the larger of its two

arguments. For crisp languages, the tractability of Γmax has been shown

in (Jeavons and Cooper, 1995). Using this result, it was shown in (Cohen

et al., 2006b) that after establishing arc consistency (Rossi et al., 2006)

(which might restrict the domains of individual variables), assigning the

smallest remaining domain value to all variables will yield an optimal

solution. Thus Γmax is tractable.

Example 1.28 (Min) Let Γmin be a language, over some totally or-

dered domain D, which is improved by the pair 〈Min,Min〉, where Min :

D2 → D is the binary operation returning the smaller of its two argu-

ments. The tractability of Γmin has been shown in (Cohen et al., 2006b),

using a similar argument to the one in Example 1.27.

Example 1.29 (Bisubmodularity) For a given finite set V , bisubmod-

ular functions are functions defined on pairs of disjoint subsets of V with

a requirement similar to Inequality 1.1 (see (Fujishige and Iwata, 2005)

for the precise definition). Examples of bisubmodular functions include

rank functions of delta-matroids (Bouchet, 1987; Chandrasekaran and

Kabadi, 1988). Bisubmodularity also arises in bicooperative games (Bil-

bao et al., 2008).

A property equivalent to bisubmodularity can be defined on cost func-

tions on the set D = {0, 1, 2}. We define two binary operations Min0 and

Max0 as follows:

Min0(x, y)
def
=

{

0 if 0 6= x 6= y 6= 0

Min(x, y) otherwise
,

and

Max0(x, y)
def
=

{

0 if 0 6= x 6= y 6= 0

Max(x, y) otherwise
.

We denote by Γbis the set of finite-valued cost functions (i.e. with range

Q+) that admit 〈Min0,Max0〉 as a multimorphism. Γbis can be shown to

be tractable using the results of (Fujishige and Iwata, 2005; McCormick

and Fujishige, 2010).

We remark that the tractability of general-valued languages defined on

D = {0, 1, 2} and admitting 〈Min0,Max0〉 as a multimorphism remains

open. Another open question is the tractability of (even finite-valued)

languages defined overD, where |D| > 3, and improved by 〈Min0,Max0〉.

D
R

A
FT

20 Tractable Valued Constraints

Example 1.30 ((Symmetric) tournament pair) A binary operation

f : D2 → D is called a tournament operation if (i) f is commutative,

i.e., f(x, y) = f(y, x) for all x, y ∈ D; and (ii) f is conservative, i.e.,

f(x, y) ∈ {x, y} for all x, y ∈ D. The dual of a tournament operation is

the unique tournament operation g satisfying x 6= y ⇒ g(x, y) 6= f(x, y).

A tournament pair is a pair 〈f, g〉, where both f and g are tournament

operations. A tournament pair 〈f, g〉 is called symmetric if g is the dual

of f .

Let Γ be an arbitrary language that admits a symmetric tournament

pair multimorphism. It has been shown in (Cohen et al., 2008b), by

a reduction to the minimisation problem for submodular functions (cf.

Example 1.26), that any such Γ is tractable.

Now let Γ be an arbitrary language that admits any tournament pair

multimorphism. It has been shown in (Cohen et al., 2008b), by a re-

duction to the symmetric tournament pair case, that any such Γ is also

tractable.

Example 1.31 (Tree-submodularity) Now assume that the domain

values from D can be arranged into a binary tree T ; i.e., a tree where

each node has at most two children. Given a, b ∈ T , let Pab denote

the unique path in T between a and b of length (=number of edges)

d(a, b), and let Pab[i] denote the i-th vertex on Pab, where 0 ≤ i ≤

d(a, b) and Pab[0] = a. Let 〈g⊓, g⊔〉 be two binary operations satisfying

{g⊓(a, b), g⊔(a, b)} = {Pab[⌊d/2⌋], Pab[⌈d/2⌉]}.

A language admitting 〈g⊔, g⊓〉 as a multimorphism has been called

strongly tree-submodular. The tractability of strongly tree-submodular

languages was shown in (Kolmogorov, 2011).

For a, b ∈ T , let g∧(a, b) be defined as the highest common ancestor

of a and b in T ; i.e. the unique node on the path Pab that is ancestor

of both a and b. We define g∨(a, b) as the unique node on the path Pab

such that the distance between a and g∨(a, b) is the same as the distance

between b and g∧(a, b).

A language admitting 〈g∧, g∨〉 as a multimorphism has been called

weakly tree-submodular, since it has been shown that the property of

strong tree-submodularity implies weak tree-submodularity (Kolmogorov,

2011). The tractability of weakly tree-submodular languages on chains9

and forks10 has also been shown in (Kolmogorov, 2011).

9 A chain is a binary tree in which all nodes except leaves have exactly one child.
10 A fork is a binary tree in which all nodes except leaves and one special node have

exactly one child. The special node has exactly two children.

D
R

A
FT

1.6 Submodular Functions and Multimorphisms 21

We remark that the tractability of strongly tree-submodular languages

defined similarly on general (not necessarily binary) trees remains open.

(A special case is a tree on k + 1 vertices, where k > 2, consisting of a

root node with k children. This corresponds precisely to bisubmodular

languages on domains of size k + 1, cf. Example 1.29.) Moreover, the

tractability of weakly tree-submodular languages defined on any trees

other than chains and forks remains open.

Example 1.32 (1-defect) Let b and c be two distinct elements of D

and let (D;<) be a partial order which relates all pairs of elements

except for b and c. We call 〈f, g〉, where f, g : D2 → D are two binary

operations, a 1-defect if f and g are both commutative and satisfy the

following conditions:

• If {x, y} 6= {b, c}, then f(x, y) = Min(x, y) and g(x, y) = Max(x, y).

• If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) <

g(x, y).

The tractability of languages that admit a 1-defect multimorphism

has recently been shown in (Jonsson et al., 2011). This result gener-

alises the tractability result for weakly tree-submodular languages on

chains and forks described in Example 1.31, but is incomparable with

the tractability result for strongly tree-submodular languages on binary

trees.

General multimorphisms Having seen several examples of binary

multimorphisms, we are now ready to define general (not necessarily

binary) multimorphisms.

Definition 1.33 (General multimorphisms) Let g = 〈g1, . . . , gk〉 be

a k-tuple of k-ary operations gi : Dk → D, 1 ≤ i ≤ k. An m-ary cost

function φ : Dm → Q+ admits g as a multimorphism if

k
∑

i=1

φ(gi(x1, . . . ,xk)) ≤
k

∑

i=1

φ(xi) (1.3)

for all xi ∈ Dm, 1 ≤ i ≤ k, where all functions gi, 1 ≤ i ≤ k are applied

coordinate-wise.

Definition 1.33 is illustrated in Figure 1.2, which should be read from

left to right. Starting with the m-tuples x1, . . . ,xk, we first apply func-

tions g1, . . . , gk on these tuples coordinate-wise, thus obtaining the m-

D
R

A
FT

22 Tractable Valued Constraints

x1

x2

...
xk

x′
1 = g1(x1, . . . ,xk)

x′
2 = g2(x1, . . . ,xk)

...
x′

k = gk(x1, . . . ,xk)

x1[1] x1[2] . . . x1[m]
x2[1] x2[2] . . . x2[m]

...
xk[1] xk[2] . . . xk[m]

x′
1[1] x′

1[2] . . . x′
1[m]

x′
2[1] x′

2[2] . . . x′
2[m]

...
x′

k[1] x′
k[2] . . . x′

k[m]

φ
−→

φ(x1)
φ(x2)

...
φ(xk)

9

>

>

>

=

>

>

>

;

k
∑

i=1

φ(xi)
≥

φ
−→

φ(x′
1)

φ(x′
2)

...
φ(x′

k)

9

>

>

>

=

>

>

>

;

k
∑

i=1

φ(x′
i)

Figure 1.2 Definition of a multimorphism g = 〈g1, . . . , gk〉.

tuples x′
1, . . . ,x

′
k. Inequality 1.3 amounts to comparing the sum of φ

applied to tuples x1, . . . ,xk and φ applied to tuples x′
1, . . . ,x

′
k.

We now give a simple example of a unary multimorphism.

Example 1.34 (c-validity) Given a fixed c ∈ D, we say that language

Γ is c-valid if for all φ ∈ Γ, φ(c, . . . , c) ≤ φ(x) holds for all x ∈ Dm, where

m is the arity of φ. It is clear that c-valued languages are tractable as

assigning the value c to all variables yields an optimal solution.

It is easy to see that Γ is c-valid if and only if Γ admits 〈gc〉 as a

multimorphism, where gc : D → D is defined as gc(x) = c for all x ∈ D

(i.e., gc is the constant function returning the value c).

Example 1.35 (Majority) A ternary operation f : D3 → D is called

a majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all

x, y ∈ D.

Let g = 〈g1, g2, g3〉 be a triple of ternary operations such that g1, g2
and g3 are all majority operations. Let φ : Dm → Q+ be an m-ary

cost function that admits g as a multimorphism. It follows from Def-

inition 1.33 that for all x,y ∈ Dm, 3φ(x) ≤ φ(x) + φ(x) + φ(y) and

3φ(y) ≤ φ(y)+φ(y)+φ(x). Therefore, if both φ(x) and φ(y) are finite,

then we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), and hence φ(x) = φ(y). In

other words, the range of φ is {c,∞}, for some finite c ∈ Q+, and hence

φ is essentially crisp.

Let ΓMjty be the set of cost functions improved by a triple g = 〈g1, g2, g3〉

of ternary majority operations gi : D3 → D, 1 ≤ i ≤ 3. The tractability

of ΓMjty has been shown by Cohen et al. (2006b), using the earlier result

that CSPs closed under a majority polymorphism are tractable (Jeavons

et al., 1997).

D
R

A
FT

1.6 Submodular Functions and Multimorphisms 23

Example 1.36 (Minority) A ternary operation f : D3 → D is called

a minority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all

x, y ∈ D. Let ΓMnty be the set of cost functions improved by a triple

g = 〈g1, g2, g3〉 of ternary minority operations gi : D3 → D, 1 ≤ i ≤ 3.

A similar argument to the one in Example 1.35 shows that the cost

functions in ΓMnty are essentially crisp. The tractability of ΓMnty has

been shown in (Cohen et al., 2006b), using the result that CSPs closed

under a Mal’tsev polymorphism11 are tractable (Dalmau, 2006).

Example 1.37 (Majority & Minority) Let g = 〈g1, g2, g3〉 be three

ternary operations such that g1 and g2 are majority operations, and g3
is a minority operation. Let ΓMJN be an arbitrary language improved by

g. The tractability of ΓMJN has been shown in (Kolmogorov and Živný,

2012), generalising an earlier tractability result for a specific g of this

form from (Cohen et al., 2006b).

Having seen several tractable languages characterised by multimor-

phisms, we are now able to state a dichotomy classification for Boolean

languages given in (Cohen et al., 2006b).

Theorem 1.38 (Classification of Boolean languages) An arbitrary val-

ued constraint language on D = {0, 1} is tractable if it admits at least

one of the following eight multimorphisms. Otherwise it is intractable.

1. 〈g0〉(i.e., Γ is 0-valid),

2. 〈g1〉 (i.e., Γ is 1-valid),

3. 〈Min,Min〉,

4. 〈Max,Max〉,

5. 〈Min,Max〉,

6. 〈Mjrty,Mjrty,Mjrty〉,

7. 〈Mnrty,Mnrty,Mnrty〉,

8. 〈Mjrty,Mjrty,Mnrty〉.

Using results from (Kolmogorov and Živný, 2012) on conservative lan-

guages, as described in the next section, a complete classification of

{0, 1}-valued languages over a domain with at most 4 elements has re-

cently appeared in (Jonsson et al., 2011). It turns out that the only

two tractable classes over these domain sizes are those characterised by

〈Min,Max〉 multimorphisms (cf. Example 1.26) and those characterised

by 1-defect multimorphisms (cf. Example 1.32).

11 A ternary operation f : D3 → D is called Mal’tsev if f(x, y, y) = f(y, y, x) = x
for all x, y ∈ D.

D
R

A
FT

24 Tractable Valued Constraints

1.7 Conservative Valued Constraint Languages

A language Γ is called conservative if Γ includes all unary cost func-

tions.12 In this section, we will survey recent results on the complexity

of conservative languages (Kolmogorov and Živný, 2012).

Let Γ be a fixed language on D. Let P = {(a, b) | a, b ∈ D, a 6= b}. Let

M ⊆ P be arbitrary. We denote by M the complement of M in P , i.e.,

M = P \M .

Let 〈g⊓, g⊔〉 be two binary operations. We call 〈g⊓, g⊔〉 a symmetric

tournament pair (STP) on M (cf. Example 1.30) if g⊓ and g⊔ are con-

servative on D and commutative on M . Let 〈Mjrty1,Mjrty2,Mnrty3〉

be three ternary operations. We call 〈Mjrty1,Mjrty2,Mnrty3〉 an MJN

on M if operations Mjrty1,Mjrty2,Mnrty3 are conservative and for each

triple 〈a, b, c〉 ∈ D3 with {a, b, c} = {x, y} ∈M operations Mjrty1(a, b, c),

Mjrty2(a, b, c) return the unique majority element among a, b, c (that oc-

curs twice) and Mnrty3(a, b, c) returns the remaining minority element.

Given a language Γ, we say that Γ admits complementary STP and

MJN multimorphisms if there is a setM ⊆ P , binary operations 〈g⊓, g⊔〉

and ternary operations 〈Mjrty1,Mjrty2,Mnrty3〉 such that 〈g⊓, g⊔〉 is

an STP on M and 〈Mjrty1,Mjrty2,Mnrty3〉 is an MJN on M , where

M = P \M .

Generalising the tractability results described in Examples 1.30 and

1.37, Kolmogorov and Živný (2012) have shown that languages admit-

ting complementary STP and MJN multimorphisms are tractable. More-

over, for general-valued conservative languages, it has been shown that

this class is the only tractable case, as the following result from (Kol-

mogorov and Živný, 2012) indicates.

Theorem 1.39 (General-valued conservative languages) A general-

valued conservative valued constraint language is tractable if it admits

complementary STP and MJN multimorphisms. Otherwise it is intractable.

In the finite-valued case, the more restricted class from Example 1.30

is the only tractable case, as the following result from (Kolmogorov and

Živný, 2012) indicates.

Theorem 1.40 (Finite-valued conservative languages) A finite-valued

conservative valued constraint language is tractable if it admits a symmetric-

tournament pair multimorphism. Otherwise it is intractable.

12 Kolmogorov and Živný (2012) have shown that this condition is polynomial-time
equivalent to the (weaker) requirement that Γ includes all {0, 1}-valued unary
cost functions.

D
R

A
FT

1.8 A General Algebraic Theory of Complexity 25

These results for conservative languages over arbitrary finite domains

are obtained by considering restrictions to all 2-element subdomains,

using unary constraints. The possible tractable languages for 2-element

domains are already known (see Theorem 1.38) and highly restricted.

1.8 A General Algebraic Theory of Complexity

One of the three equivalent definitions of the CSP presented in Sec-

tion 1.2 uses the terminology of algebra (Definition 1.5). This formu-

lation led to the development of an algebraic approach for classifying

the complexity of crisp constraint languages, started by Jeavons et al.

(1997), which has so far been the most successful technique for precisely

identifying the tractable cases (Bulatov et al., 2005; Bulatov and Vale-

riote, 2008; Bulatov, 2011b).

Cohen et al. (2011a) have recently presented an extension of this al-

gebraic approach to the more general setting of valued constraint lan-

guages.

The basic idea of this extended algebraic theory is to associate with

each valued constraint language a set of functions, called weighted poly-

morphisms. These objects are similar to the multimorphisms defined

in Section 1.6 (see Example 1.46), but are defined in a slightly more

general way. The theory then establishes that there is a one-to-one cor-

respondence between certain sets of weighted polymorphisms and valued

constraint languages which are closed under expressibility and scaling.

This correspondence simplifies the search for tractable languages to a

search for suitable sets of weighted polymorphisms. For example, Creed

and Živný (2011) have used this result to obtain the classification of

Boolean valued languages presented in Theorem 1.38 using simple alge-

braic arguments.

In this section, we will give a brief overview of the main results of this

new algebraic theory. We refer the reader to (Cohen et al., 2011a) for

full details and proofs.

We first recall some basic terminology from universal algebra (De-

necke and Wismath, 2002; Börner, 2008). A function f : Dk → D is

called a k-ary operation on D. We denote by OD the set of all finitary

operations on D and by O
(k)
D the k-ary operations in OD. The k-ary

projections on D, defined for i = 1, . . . , k, are the operations e
(k)
i such

that e
(k)
i (a1, . . . , ak) = ai. Let f ∈ O

(k)
D and g1, . . . , gk ∈ O

(l)
D . The su-

D
R

A
FT

26 Tractable Valued Constraints

perposition of f and g1, . . . , gk is the l-ary operation f [g1, . . . , gk] such

that f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)).

A set F ⊆ OD is called a clone of operations if it contains all the

projections on D and is closed under superposition. For each F ⊆ OD

we define Clone(F) to be the smallest clone containing F . For any clone

C, we use C(k) to denote the k-ary terms in C.

Definition 1.41 A Galois connection between two sets A and B is

a pair 〈F,G〉 of mappings between the power sets P(A) and P(B), F :

P(A) → P(B) and G : P(B) → P(B), such that for all X,X ′ ⊆ A and

all Y, Y ′ ⊆ B the following conditions are satisfied:

1. X ⊆ G(F (X)),

2. Y ⊆ F (G(Y)),

3. X ⊆ X ′ ⇒ F (X) ⊇ F (X ′),

4. Y ⊆ Y ′ ⇒ G(Y) ⊇ G(Y ′).

The algebraic theory of complexity for crisp constraint languages (Bu-

latov et al., 2005; Bulatov and Valeriote, 2008) makes use of a standard

Galois connection between the set of all relations on a fixed set D and

the set of all operations on D (Denecke and Wismath, 2002). Using this

result, Jeavons (1998) showed that there was a one-to-one correspon-

dence between crisp constraint languages over a finite set D which are

closed under expressibility and clones of operations on D.

To extend this approach to valued constraint languages, we make the

following definitions. We denote by ΦD the set of all cost functions on

D taking values in Q+.

Definition 1.42 A valued constraint language Γ ⊆ ΦD is called a

weighted relational clone if it is closed under expressibility, scaling by

non-negative rational constants, and addition of rational constants.

We define wRelClone(Γ) to be the smallest weighted relational clone

containing Γ.

It follows from Theorem 1.21, and the results of (Cohen et al., 2006a),

that Γ is tractable if and only if wRelClone(Γ) is tractable.

Definition 1.43 We define a k-ary weighted operation on a set D to

be a (partial) function ω : O
(k)
D → Q such that ω(f) < 0 only if f is a

projection and
∑

f∈dom(ω)

ω(f) = 0 .

D
R

A
FT

1.8 A General Algebraic Theory of Complexity 27

The domain of ω, denoted dom(ω), is the subset of O
(k)
D on which ω is

defined.

We denote by WD the set of all finitary weighted operations on D.

Definition 1.44 Let C be a clone of operations on D. A weighted

clone supported by C is a set of weighted operations with domain C(k)

for some k, which is closed under:

1. proper translation Given a k-ary weighted operation ω : C(k) → Q

and a list of operations g1, . . . , gk ∈ C(ℓ), we define the translation of

ω by g1, . . . , gk, denoted ω[g1, . . . , gk], to be the function ω′ : C(ℓ) →

Q satisfying

ω′(f ′) =
∑

f∈C(k):f ′=f [g1,...,gk]

ω(f) ,

for each f ′ ∈ C(ℓ). A translation is called a proper translation if ω′ is

a weighted operation.

2. addition Given a pair of k-ary weighted operations ω1, ω2 : C(k) →

Q, we define the addition ω1 + ω2 to be the weighted operation ω′

satisfying ω′(f) = ω1(f) + ω2(f) , for each f ∈ C(k).

3. scaling Given a k-ary weighted operation ω : C(k) → Q and a ra-

tional α ≥ 0, we define the α-scaling of ω, αω, to be the weighted

operation ω′ satisfying ω′(f) = αω(f) , for each f ∈ C(k).

For each W ⊆ WD we define wClone(W) to be the smallest weighted

clone containing W .

Definition 1.45 We say that a weighted operation ω of arity k is

a weighted polymorphism of the cost function φ of arity r if, for any

x1, x2, . . . , xk ∈ Dr such that φ(xi) <∞ for i = 1, . . . , k, we have

∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (1.4)

If ω is a weighted polymorphism of φ we also say φ is improved by ω.

Example 1.46 Consider the class of submodular cost functions from

Example 1.25. These are precisely the cost functions satisfying

φ(Min(x1, x2)) + φ(Max(x1, x2)) − φ(x) − φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of

D
R

A
FT

28 Tractable Valued Constraints

cost functions with the 2-ary weighted polymorphism

ω(f)
def
=

{

−1 if f ∈ {e
(2)
1 , e

(2)
2 }

+1 if f ∈ {Min,Max}
.

Definition 1.47 For any Γ ⊆ ΦD, we denote by wPol(Γ) the set of all

finitary weighted operations on D which are weighted polymorphisms of

all cost functions φ ∈ Γ.

Definition 1.48 For any W ⊆ WD, we denote by Imp(W) the set of

all cost functions in ΦD that are improved by all weighted operations

ω ∈W .

It follows immediately from Definition 1.41 that, for any set D, the

mappings wPol and Imp form a Galois connection between WD and ΦD.

A characterisation of this Galois connection for finite sets D is given by

the following theorem from Cohen et al. (2011a):

Theorem 1.49 (Galois Connection for Valued Constraint Languages)
1. For any finite sets D and Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).

2. For any finite sets D and W ⊆ WD, wPol(Imp(W)) = wClone(W).

Theorem 1.49 is depicted in Figure 1.3. Using the standard properties

of Galois connections, it follows that there is a one-to-one correspondence

between weighted relational clones on a finite set D and weighted clones

on D. Hence, to identify all tractable valued constraint languages on a

finite set D it is sufficient to study the possible weighted clones on D.

This provides a new approach to the identification of tractable cases,

which we hope will prove to be as successful as the algebraic approach

has been in the study of crisp constraint languages.

1.9 Conclusions and Open Problems

We have seen in this chapter that the valued constraint satisfaction prob-

lem is a powerful general framework that can be used to express many

standard combinatorial optimisation problems. The general problem is

NP-hard, but there are many special cases that have been shown to be

tractable. In particular, by considering restrictions on the cost functions

we allow in problem instances, we have identified a range of different

sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued con-

straint languages, and we have seen that such languages can sometimes

D
R

A
FT

1.9 Conclusions and Open Problems 29

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weighted operations

Γ

wPol(Γ)

Imp(wPol(Γ))

= wRelClone(Γ)

wPol

Imp

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weighted operations

F

Imp(F)

wPol(Imp(F))

= wClone(F)wPol

Imp

Figure 1.3 Galois connection between ΦD and WD.

D
R

A
FT

30 Tractable Valued Constraints

be shown to be tractable, and sometimes be shown to be NP-hard. Some

powerful algebraic techniques are now being developed to carry out this

classification, as described in Section 1.8, but it is still far from complete.

In fact, even in the special case of the CSP, discussed in Section 1.2,

there is still no complete classification of complexity for the correspond-

ing crisp constraint languages, although many partial results have been

obtained over the past 15 years. In particular, it has been shown that the

tractable cases fall into two broad groups. The first of these are the prob-

lems that can be solved by some form of local consistency (Barto and

Kozik, 2009), and the second are the problems that have a polynomial-

sized generating set (Idziak et al., 2010). These two cases are both char-

acterised by specific algebraic conditions.

Using the same argument as in Example 1.35, it can be shown that

the second condition gives only essentially crisp languages. Hence only

the first condition gives rise to interesting tractable valued constraint

languages. Local consistency techniques have been generalised to the

VCSP, but their power is not fully understood (Cooper et al., 2010b).

Even the classic tractable problem of submodular function minimisa-

tion, discussed in Section 1.6, is not fully understood. As discussed in

Example 1.26, it is currently unknown whether VCSP instances with

submodular cost functions can be solved more efficiently than general

submodular function minimisation. Moreover, the complexity of sub-

modular function minimisation over a domain D which is partially or-

dered by a lattice ordering is still unknown for non-distributive lattices.

However, it has been shown that there is a pseudo-polynomial-time algo-

rithm for diamonds (Kuivinen, 2011), and several constructions on lat-

tices preserving tractability have been identified (Krokhin and Larose,

2008).

The complexity of VCSP instances with bisubmodular cost functions

on domains of size greater than 3 is open (cf. Example 1.29). The

complexity of strongly tree-submodular languages on general (i.e. non-

binary) trees as well as the complexity of weakly tree-submodular lan-

guages on binary (let alone general) trees also remain open (cf. Exam-

ple 1.31). In fact, even the complexity of finite-valued (let alone general-

valued) languages on domains of size 3 is open, whereas crisp languages

on domains of size 3 have been classified in Bulatov (2006).

D
R

A
FT

References

Adler, Isolde, Gottlob, Georg, and Grohe, Martin. 2007. Hypertree width
and related hypergraph invariants. European Journal of Combinatorics,
28(8), 2167–2181.

Apt, Krzysztof. 2003. Principles of Constraint Programming. Cambridge
University Press.

Barto, Libor. 2011. The dichotomy for conservative constraint satisfaction
problems revisited. In: Proceedings of the 26th IEEE Symposium on Logic
in Computer Science (LICS’11).

Barto, Libor, and Kozik, Marcin. 2009. Constraint Satisfaction Problems of
Bounded Width. Pages 461–471 of: Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’09).

Barto, Libor, Kozik, Marcin, Maróti, Miklós, and Niven, Todd. 2009a. CSP
dichotomy for special triads. Proceedings of the American Mathematical
Society, 137(9), 2921–2934.

Barto, Libor, Kozik, Marcin, and Niven, Todd. 2009b. The CSP dichotomy
holds for digraphs with no sources and no sinks (a positive answer to
a conjecture of Bang-Jensen and Hell). SIAM Journal on Computing,
38(5), 1782–1802.

Berman, Joel, Idziak, Pawel, Marković, Petar, McKenzie, Ralph, Valeriote,
Matthew, and Willard, Ross. 2010. Varieties with few subalgebras of
powers. Transactions of the American Mathematical Society, 362(3),
1445–1473.

Bertelé, Umberto, and Brioshi, Francesco. 1972. Nonserial dynamic program-
ming. Academic Press.

Bilbao, Jesús M., Fernández, Julio R., Jiménez, Nieves, and López, Jorge J.
2008. Survey of Bicooperative Games. In: Chinchuluun, Altannar,
Pardalos, Panos M., Migdalas, Athanasios, and Pitsoulis, Leonidas (eds),
Pareto Optimality, Game Theory And Equilibria. Springer.

Bistarelli, Stefano, Montanari, Ugo, and Rossi, Francesca. 1997. Semiring-
based Constraint Satisfaction and Optimisation. Journal of the ACM,
44(2), 201–236.

Bistarelli, Stefano, Montanari, Ugo, Rossi, Francesca, Schiex, Thomas, Verfail-
lie, Gérard, and Fargier, Hélène. 1999. Semiring-based CSPs and Valued

D
R

A
FT

32 References

CSPs: Frameworks, Properties, and Comparison. Constraints, 4(3), 199–
240.

Bodirsky, Manuel. 2008. Constraint Satisfaction Problems with Infinite Tem-
plates. Pages 196–228 of: Complexity of Constraints. Lecture Notes in
Computer Science, vol. 5250. Springer.

Bodirsky, Manuel, and Kára, Jan. 2010. The complexity of temporal constraint
satisfaction problems. Journal of the ACM, 57(2).

Bodirsky, Manuel, and Pinsker, Michael. 2011. Schaefer’s theorem for graphs.
Pages 655–664 of: Proceedings of the 43rd ACM Symposium on Theory
of Computing (STOC’11).

Börner, Ferdinand. 2008. Basics of Galois Connections. Pages 38–67 of: Com-
plexity of Constraints. Lecture Notes in Computer Science, vol. 5250.
Springer.

Boros, Endre, and Hammer, Peter L. 2002. Pseudo-Boolean optimization.
Discrete Applied Mathematics, 123(1-3), 155–225.

Bouchet, André. 1987. Greedy algorithm and symmetric matroids. Mathe-
matical Programming, 38(1), 147–159.

Bulatov, Andrei. 2006. A dichotomy theorem for constraint satisfaction prob-
lems on a 3-element set. Journal of the ACM, 53(1), 66–120.

Bulatov, Andrei, and Dalmau, Vı́ctor. 2006. A Simple Algorithm for Mal’tsev
Constraints. SIAM Journal on Computing, 36(1), 16–27.

Bulatov, Andrei, Krokhin, Andrei, and Jeavons, Peter. 2005. Classifying the
Complexity of Constraints using Finite Algebras. SIAM Journal on Com-
puting, 34(3), 720–742.

Bulatov, Andrei A. 2011a. Complexity of conservative constraint satisfaction
problems. ACM Transactions on Computational Logic, 12(4), 24.

Bulatov, Andrei A. 2011b. On the CSP Dichotomy Conjecture. Pages 331–
344 of: Proceedings of the 6th International Computer Science Sympo-
sium in Russia (CSR’11). Lecture Notes in Computer Science, vol. 6651.
Springer.

Bulatov, Andrei A., and Valeriote, Matthew. 2008. Recent Results on the Al-
gebraic Approach to the CSP. Pages 68–92 of: Complexity of Constraints.
Lecture Notes in Computer Science, vol. 5250. Springer.

Chandrasekaran, Ramaswamy, and Kabadi, Santosh N. 1988. Pseudomatroids.
Discrete Mathematics, 71(3), 205–217.

Chen, Hubie. 2006. A rendezvous of logic, complexity, and algebra. SIGACT
News, 37(4), 85–114.

Chen, Hubie, and Dalmau, Vı́ctor. 2005. Beyond Hypertree Width: Decompo-
sition Methods Without Decompositions. Pages 167–181 of: Proceedings
of the 11th International Conference on Principles and Practice of Con-
straint Programming (CP’05). Lecture Notes in Computer Science, vol.
3709. Springer.

Cohen, David, and Jeavons, Peter. 2006. The complexity of constraint lan-
guages. In: Rossi, F., van Beek, P., and Walsh, T. (eds), The Handbook
of Constraint Programming. Elsevier.

D
R

A
FT

References 33

Cohen, David, Cooper, Martin, Jeavons, Peter, and Krokhin, Andrei. 2005.
Supermodular Functions and the Complexity of MAX-CSP. Discrete
Applied Mathematics, 149(1-3), 53–72.

Cohen, David, Jeavons, Peter, and Gyssens, Marc. 2008a. A unified theory
of structural tractability for constraint satisfaction problems. Journal of
Computer and System Sciences, 74(5), 721–743.

Cohen, David A. 2003. A New Class of Binary CSPs for which Arc-
Constistency Is a Decision Procedure. Pages 807–811 of: Proceedings
of the 9th International Conference on Principles and Practice of Con-
straint Programming (CP’03). Lecture Notes in Computer Science, vol.
2833. Springer.

Cohen, David A., Cooper, Martin C., and Jeavons, Peter G. 2006a. An Al-
gebraic Characterisation of Complexity for Valued Constraints. Pages
107–121 of: Proceedings of the 12th International Conference on Princi-
ples and Practice of Constraint Programming (CP’06). Lecture Notes in
Computer Science, vol. 4204. Springer.

Cohen, David A., Cooper, Martin C., Jeavons, Peter G., and Krokhin, An-
drei A. 2006b. The Complexity of Soft Constraint Satisfaction. Artificial
Intelligence, 170(11), 983–1016.

Cohen, David A., Cooper, Martin C., and Jeavons, Peter G. 2008b. General-
ising submodularity and Horn clauses: Tractable optimization problems
defined by tournament pair multimorphisms. Theoretical Computer Sci-
ence, 401(1-3), 36–51.

Cohen, David A., Jeavons, Peter G., and Živný, Stanislav. 2008c. The expres-
sive power of valued constraints: Hierarchies and collapses. Theoretical
Computer Science, 409(1), 137–153.

Cohen, David A., Creed, Páid́ı, Jeavons, Peter G., and Živný, Stanislav. 2011a.
An algebraic theory of complexity for valued constraints: Establishing
a Galois connection. Pages 231–242 of: Proceedings of the 36th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’11). Lecture Notes in Computer Science, vol. 6907. Springer.

Cohen, David A., Cooper, Martin C., Green, Martin, and Marx, Dániel. 2011b.
On guaranteeing polynomially-bounded search tree size. Pages 160–171
of: Proceedings of the 17th International Conference on Principles and
Practice of Constraint Programming (CP’11). Lecture Notes in Computer
Science, vol. 6876. Springer.

Cooper, Martin C. 2005. High-order Consistency in Valued Constraint Satis-
faction. Constraints, 10(3), 283–305.

Cooper, Martin C. 2008. Minimization of Locally Defined Submodular Func-
tions by Optimal Soft Arc Consistency. Constraints, 13(4), 437–458.

Cooper, Martin C., and Živný, Stanislav. 2011a. Hierarchically nested convex
VCSP. Pages 187–194 of: Proceedings of the 17th International Con-
ference on Principles and Practice of Constraint Programming (CP’11).
Lecture Notes in Computer Science, vol. 6876. Springer.

Cooper, Martin C., and Živný, Stanislav. 2011b. Hybrid tractability of valued
constraint problems. Artificial Intelligence, 175(9-10), 1555–1569.

D
R

A
FT

34 References

Cooper, Martin C., and Živný, Stanislav. 2011c. Tractable triangles. Pages
195–209 of: Proceedings of the 17th International Conference on Princi-
ples and Practice of Constraint Programming (CP’11). Lecture Notes in
Computer Science, vol. 6876. Springer.

Cooper, Martin C., Jeavons, Peter G., and Salamon, András Z. 2010a. Gener-
alizing constraint satisfaction on trees: Hybrid tractability and variable
elimination. Artificial Intelligence, 174(9–10), 570–584.

Cooper, Martin C., de Givry, Simon, Sánchez, Mart́ı, Schiex, Thomas, Zyt-
nicki, Matthias, and Werner, Tomáš. 2010b. Soft arc consistency revis-
ited. Artificial Intelligence, 174(7–8), 449–478.

Crama, Yves, and Hammer, Peter L. 2011. Boolean Functions - Theory, Al-
gorithms, and Applications. Cambridge University Press.

Creed, Páid́ı, and Živný, Stanislav. 2011. On minimal weighted clones. Pages
210–224 of: Proceedings of the 17th International Conference on Princi-
ples and Practice of Constraint Programming (CP’11). Lecture Notes in
Computer Science, vol. 6876. Springer.

Creignou, Nadaia, Kolaitis, Phokion G., and Vollmer, Heribert (eds). 2008a.
Complexity of Constraints: An Overview of Current Research Themes.
Lecture Notes in Computer Science, vol. 5250. Springer.

Creignou, Nadia, Khanna, Sanjeev, and Sudan, Madhu. 2001. Complexity
Classification of Boolean Constraint Satisfaction Problems. SIAM Mono-
graphs on Discrete Mathematics and Applications, vol. 7. SIAM.

Creignou, Nadia, Kolaitis, Phokion G., and Zanuttini, Bruno. 2008b. Structure
identification of Boolean relations and plain bases for co-clones. Journal
of Computer and System Sciences, 74(7), 1103–1115.

Dalmau, Vı́ctor. 2006. Generalized Majority-Minority Operations are
Tractable. Logical Methods in Computer Science, 2(4).

Dalmau, Vı́ctor, Kolaitis, Phokion G., and Vardi, Moshe Y. 2002. Constraint
Satisfaction, Bounded Treewidth, and Finite-Variable Logics. Pages 310–
326 of: Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP’02). Lecture Notes in Computer
Science, vol. 2470. Springer.

Dechter, Rina. 2003. Constraint Processing. Morgan Kaufmann.
Dechter, Rina, and Pearl, Judea. 1989. Tree Clustering for Constraint Net-

works. Artificial Intelligence, 38, 353–366.
Dechter, Rina, and Pearl, Judea. 1992. Structure Identification in Relational

Data. Artificial Intelligence, 58, 237–270.
Deineko, Vladimir, Jonsson, Peter, Klasson, Mikael, and Krokhin, Andrei.

2008. The approximability of Max CSP with fixed-value constraints.
Journal of the ACM, 55(4).

Denecke, Klaus, and Wismath, Shelly L. 2002. Universal Algebra and Applica-
tions in Theoretical Computer Science. Chapman and Hall/CRC Press.

Edmonds, Jack. 1970. Submodular Functions, Matroids, and Certain Polyhe-
dra. Combinatorial Structures and Their Applications, 69–87.

Feder, Tomás, and Vardi, Moshe Y. 1998. The Computational Structure of
Monotone Monadic SNP and Constraint Satisfaction: A Study through
Datalog and Group Theory. SIAM Journal on Computing, 28(1), 57–104.

D
R

A
FT

References 35

Feige, Uriel. 1998. A Threshold of ln n for Approximating Set Cover. Journal
of the ACM, 45(4), 634–652.

Feige, Uriel, Mirrokni, Vahab S., and Vondrák, Jan. 2011. Maximizing Non-
monotone Submodular Functions. SIAM Journal on Computing, 40(4),
1133–1153.

Fellows, Michael R., Friedrich, Tobias, Hermelin, Danny, Narodytska, Nina,
and Rosamond, Frances A. 2011. Constraint Satisfaction Problems: Con-
vexity Makes AllDifferent Constraints Tractable. Pages 522–527 of: Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI’11).

Freuder, Eugene C. 1985. A Sufficient Condition for Backtrack-bounded
Search. Journal of the ACM, 32, 755–761.

Freuder, Eugene C. 1990. Complexity of K-Tree Structured Constraint Satis-
faction Problems. Pages 4–9 of: Proceedings of the 8th National Confer-
ence on Artificial Intelligence (AAAI’90).

Fujishige, Satoru. 2005. Submodular Functions and Optimization. 2nd edn.
Annals of Discrete Mathematics, vol. 58. Amsterdam: North-Holland.

Fujishige, Satoru, and Iwata, Satoru. 2005. Bisubmodular Function Minimiza-
tion. SIAM Journal on Discrete Mathematics, 19(4), 1065–1073.

Garey, Michael R., and Johnson, David S. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman.

Goemans, Michel X., and Williamson, David P. 1995. Improved Approxi-
mation Algorithms for Maximum Cut and Satisfiability Problems Using
Semidefinite Programming. Journal of the ACM, 42(6), 1115–1145.

Goldberg, Andrew V., and Tarjan, Rober Endre. 1988. A New Approach to
the Maximum Flow Problem. Journal of the ACM, 35(4), 921–940.

Gottlob, Georg, and Szeider, Stefan. 2008. Fixed-parameter algorithms For
Artificial Intelligence, Constraint Satisfaction and Database Problems.
The Computer Journal, 51(3), 303–325.

Gottlob, Georg, Leone, Nicola, and Scarcello, Francesco. 2000. A comparison
of structural CSP decomposition methods. Artificial Intelligence, 124(2),
243–282.

Gottlob, Georg, Leone, Nicola, and Scarcello, Francesco. 2002. Hypertree
decomposition and tractable queries. Journal of Computer and System
Sciences, 64(3), 579–627.

Gottlob, Georg, Miklós, Zoltán, and Schwentick, Thomas. 2009. Generalized
Hypertree Decompositions: NP-Hardness and Tractable Variants. Jour-
nal of the ACM, 56(6).

Grohe, Martin. 2007. The complexity of homomorphism and constraint sat-
isfaction problems seen from the other side. Journal of the ACM, 54(1),
1–24.

Grohe, Martin, and Marx, Dániel. 2006. Constraint solving via fractional edge
covers. Pages 289–298 of: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’06).

Gutin, Gregory, Hell, Pavol, Rafiey, Arash, and Yeo, Anders. 2008. A di-
chotomy for minimum cost graph homomorphisms. European Journal of
Combinatorics, 29(4), 900–911.

D
R

A
FT

36 References

Gyssens, Marc, Jeavons, Peter G., and Cohen, David A. 1994. Decomposing
Constraint Satisfaction Problems Using Database Techniques. Artificial
Intelligence, 66(1), 57–89.

Hell, Pavol, and Nešetřil, Jaroslav. 1990. On the Complexity of H-coloring.
Journal of Combinatorial Theory, Series B, 48(1), 92–110.

Hell, Pavol, and Nešetřil, Jaroslav. 2004. Graphs and Homomorphisms. Oxford
University Press.

Hell, Pavol, and Nešetřil, Jaroslav. 2008. Colouring, constraint satisfaction,
and complexity. Computer Science Review, 2(3), 143–163.

Idziak, Pawel M., Markovic, Petar, McKenzie, Ralph, Valeriote, Matthew, and
Willard, Ross. 2010. Tractability and Learnability Arising from Algebras
with Few Subpowers. SIAM Journal on Computing, 39(7), 3023–3037.

Iwata, Satoru. 2008. Submodular Function Minimization. Mathematical Pro-
gramming, 112(1), 45–64.

Iwata, Satoru, Fleischer, Lisa, and Fujishige, Satoru. 2001. A combinato-
rial strongly polynomial algorithm for minimizing submodular functions.
Journal of the ACM, 48(4), 761–777.

Jeavons, Peter G. 1998. On the Algebraic Structure of Combinatorial Prob-
lems. Theoretical Computer Science, 200(1-2), 185–204.

Jeavons, Peter G. 2009. Presenting Constraints. Pages 1–15 of: Proceedings
of the 18th International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods (TABLEAUX’09). Lecture Notes in
Artificial Intelligence, vol. 5607. Springer.

Jeavons, Peter G., and Cooper, Martin C. 1995. Tractable Constraints on
Ordered Domains. Artificial Intelligence, 79(2), 327–339.

Jeavons, Peter G., Cohen, David A., and Gyssens, Marc. 1996. A Test for
Tractability. Pages 267–281 of: Proceedings of the 2nd International Con-
ference on Constraint Programming (CP’96), 1996. Lecture Notes in
Computer Science, vol. 1118. Springer.

Jeavons, Peter G., Cohen, David A., and Gyssens, Marc. 1997. Closure Prop-
erties of Constraints. Journal of the ACM, 44(4), 527–548.

Jeavons, Peter G., Cohen, David A., and Gyssens, Marc. 1999. How to Deter-
mine the Expressive Power of Constraints. Constraints, 4(2), 113–131.

Jonsson, Peter. 2000. Boolean constraint satisfaction: complexity results for
optimization problems with arbitrary weights. Theoretical Computer Sci-
ence, 244(1-2), 189–203.

Jonsson, Peter, and Krokhin, Andrei. 2007. Maximum H-colourable subdi-
graphs and constraint optimization with arbitrary weights. Journal of
Computer and System Sciences, 73(5), 691–702.

Jonsson, Peter, and Nordh, Gustav. 2008. Introduction to the Maximum So-

lution Problem. Pages 255–282 of: Complexity of Constraints. Lecture
Notes in Computer Science, vol. 5250. Springer.

Jonsson, Peter, and Thapper, Johan. 2009. Approximability of the Maximum
Solution Problem for Certain Families of Algebras. Pages 215–226 of: Pro-
ceedings of the 4th International Computer Science Symposium in Russia
(CSR’09). Lecture Notes in Computer Science, vol. 5675. Springer.

D
R

A
FT

References 37

Jonsson, Peter, Klasson, Mikael, and Krokhin, Andrei. 2006. The Approxima-
bility of Three-valued MAX CSP. SIAM Journal on Computing, 35(6),
1329–1349.

Jonsson, Peter, Nordh, Gustav, and Thapper, Johan. 2007. The Maximum
Solution Problem on Graphs. Pages 228–239 of: Proceedings of the 32nd
International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS’07). Lecture Notes in Computer Science, vol. 4708. Springer.

Jonsson, Peter, Kuivinen, Fredrik, and Nordh, Gustav. 2008. MAX ONES
Generalized to Larger Domains. SIAM Journal on Computing, 38(1),
329–365.

Jonsson, Peter, Kuivinen, Fredrik, and Thapper, Johan. 2011. Min CSP on
Four Elements: Moving Beyond Submodularity. Pages 438–453 of: Pro-
ceedings of the 17th International Conference on Principles and Practice
of Constraint Programming (CP’11). Lecture Notes in Computer Science,
vol. 6876. Springer.

Khanna, Sanjeev, Sudan, Madhu, Trevisan, Luca, and Williamson, David.
2001. The approximability of constraint satisfaction problems. SIAM
Journal on Computing, 30(6), 1863–1920.

Kolaitis, Phokion G., and Vardi, Moshe Y. 2000. Conjunctive-Query Con-
tainment and Constraint Satisfaction. Journal of Computer and System
Sciences, 61(2), 302–332.

Kolaitis, Phokion G., and Vardi, Moshe Y. 2007. A Logical Approach to
Constraint Satisfaction. In: Finite Model Theory and Its Applications.
Texts in Theoretical Computer Science. An EATCS Series. Springer.

Kolmogorov, Vladimir. 2010 (June). Minimizing a sum of submodular func-
tions. Tech. rept. arXiv:1006.1990.

Kolmogorov, Vladimir. 2011. Submodularity on a tree: Unifying L♯-convex and
bisubmodular functions. Pages 400–411 of: Proceedings of the 36th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’11). Lecture Notes in Computer Science, vol. 6907. Springer.

Kolmogorov, Vladimir, and Živný, Stanislav. 2012. The complexity of conser-
vative valued CSPs. Pages 750–759 of: Proceedings of of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12).
SIAM. full version available on arXiv:1110.2809.

Korte, Bernhard, and Vygen, Jens. 2007. Combinatorial Optimization. 4th
edn. Algorithms and Combinatorics, vol. 21. Springer.

Krokhin, Andrei, and Larose, Benoit. 2008. Maximizing Supermodular Func-
tions on Product Lattices, with Application to Maximum Constraint Sat-
isfaction. SIAM Journal on Discrete Mathematics, 22(1), 312–328.

Kuivinen, Fredrik. 2011. On the complexity of submodular function minimi-
sation on diamonds. Discrete Optimization, 8(3), 459–477.

Kun, Gabor, and Szegedy, Mario. 2009. A New Line of Attack on the Di-
chotomy Conjecture. Pages 725–734 of: Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC’09).

Lauritzen, Steffen L. 1996. Graphical Models. Oxford University Press.

D
R

A
FT

38 References

Lovász, László. 1983. Submodular Functions and Convexity. Pages 235–
257 of: Bachem, A., Grötschel, M., and Korte, B. (eds), Mathematical
Programming – The State of the Art. Berlin: Springer.

Marx, Dániel. 2010a. Approximating fractional hypertree width. ACM Trans-
actions on Algorithms, 6(2).

Marx, Dániel. 2010b. Can You Beat Treewidth? Theory of Computing, 6(1),
85–112.

Marx, Dániel. 2010c. Tractable hypergraph properties for constraint satisfac-
tion and conjunctive queries. Pages 735–744 of: Proceedings of the 42nd
ACM Symposium on Theory of Computing (STOC’10).

Marx, Dániel. 2011. Tractable Structures for Constraint Satisfaction with
Truth Tables. Theory of Computing Systems, 48(3), 444–464.

McCormick, S. Thomas, and Fujishige, Satoru. 2010. Strongly polynomial and
fully combinatorial algorithms for bisubmodular function minimization.
Mathematical Programming, 122(1), 87–120.

Montanari, Ugo. 1974. Networks of Constraints: Fundamental properties and
applications to picture processing. Information Sciences, 7, 95–132.

Narayanan, H. 1997. Submodular Functions and Electrical Networks. Amster-
dam: North-Holland.

Nemhauser, George L., and Wolsey, Laurence A. 1988. Integer and Combina-
torial Optimization. John Wiley & Sons.

Nešetřil, Jaroslav, Siggers, Marh H., and Zádori, László. 2010. A combinato-
rial constraint satisfaction problem dichotomy classification conjecture.
European Journal of Combinatorics, 31(1), 280–296.

Orlin, James B. 2009. A Faster Strongly Polynomial Time Algorithm for Sub-
modular Function Minimization. Mathematical Programming, 118(2),
237–251.

Pearson, Justin K., and Jeavons, Peter G. 1997 (July). A survey of tractable
constraint satisfaction problems. Tech. rept. CSD-TR-97-15. Royal Hol-
loway, University of London.

Queyranne, Maurice. 1998. Minimising symmetric submodular functions.
Mathematical Programming, 82(1-2), 3–12.

Raghavendra, Prasad. 2008. Optimal algorithms and inapproximability results
for every CSP? Pages 245–254 of: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC’08).

Rossi, Francesca, van Beek, Peter, and Walsh, Toby (eds). 2006. The Handbook
of Constraint Programming. Elsevier.

Salamon, András Z., and Jeavons, Peter G. 2008. Perfect Constraints Are
Tractable. Pages 524–528 of: Proceedings of the 14th International Con-
ference on Principles and Practice of Constraint Programming (CP’08).
Lecture Notes in Computer Science, vol. 5202. Springer.

Samer, Marko, and Szeider, Stefan. 2010. Constraint satisfaction with bounded
treewidth revisited. Journal of Computer and System Sciences, 76(2),
103–114.

Schiex, Thomas, Fargier, Hélène, and Verfaillie, Gérard. 1995. Valued Con-
straint Satisfaction Problems: Hard and Easy Problems. In: Proceedings

D
R

A
FT

References 39

of the 14th International Joint Conference on Artificial Intelligence (IJ-
CAI’95).

Schrijver, Alexander. 2000. A Combinatorial Algorithm Minimizing Submod-
ular Functions in Strongly Polynomial Time. Journal of Combinatorial
Theory, Series B, 80(2), 346–355.

Schrijver, Alexander. 2003. Combinatorial Optimization: Polyhedra and Effi-
ciency. Algorithms and Combinatorics, vol. 24. Springer.

Takhanov, Rustem. 2010a. A Dichotomy Theorem for the General Minimum
Cost Homomorphism Problem. Pages 657–668 of: Proceedings of the 27th
International Symposium on Theoretical Aspects of Computer Science
(STACS’10).

Takhanov, Rustem. 2010b. Extensions of the Minimum Cost Homomorphism
Problem. Pages 328–337 of: Proceedings of the 16th International Com-
puting and Combinatorics Conference (COCOON’10). Lecture Notes in
Computer Science, vol. 6196. Springer.

Topkis, Donald M. 1998. Supermodularity and Complementarity. Princeton
University Press.

Ullman, Jeffrey D. 1989. Principles of Database and Knowledge-Base Systems.
Vol. 1 & 2. Computer Science Press.

Wainwright, Martin J., and Jordan, Michael I. 2008. Graphical models, ex-
ponential families, and variational inference. Foundations and Trends in
Machine Learning, 1(1-2), 1–305.

Werner, Tomáš. 2007. A Linear Programming Approach to Max-Sum Prob-
lem: A Review. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(7), 1165–1179.

Willard, Ross. 2010. Testing Expressibility Is Hard. Pages 9–23 of: Proceed-
ings of the 16th International Conference on Principles and Practice of
Constraint Programming (CP’10). Lecture Notes in Computer Science,
vol. 6308. Springer.

Zanuttini, Bruno, and Živný, Stanislav. 2009. A note on some collapse results
of valued constraints. Information Processing Letters, 109(11), 534–538.

Živný, Stanislav. 2009. The Complexity and Expressive Power of Valued Con-
straints. Ph.D. thesis, University of Oxford.

Živný, Stanislav, and Jeavons, Peter G. 2010. Classes of Submodular Con-
straints Expressible by Graph Cuts. Constraints, 15(3), 430–452.

Živný, Stanislav, Cohen, David A., and Jeavons, Peter G. 2009. The Expressive
Power of Binary Submodular Functions. Discrete Applied Mathematics,
157(15), 3347–3358.

D
R

A
FT

