
THE POWER OF LINEAR PROGRAMMING FOR
GENERAL-VALUED CSPS∗

VLADIMIR KOLMOGOROV† , JOHAN THAPPER‡ , AND STANISLAV ŽIVNÝ§

Abstract. Let D, called the domain, be a fixed finite set and let Γ, called the valued constraint
language, be a fixed set of functions of the form f : Dm → Q ∪ {∞}, where different functions
might have different arity m. We study the valued constraint satisfaction problem parametrised by
Γ, denoted by VCSP(Γ). These are minimisation problems given by n variables and the objective
function given by a sum of functions from Γ, each depending on a subset of the n variables. For
example, if D = {0, 1} and Γ contains all ternary {0,∞}-valued functions, VCSP(Γ) corresponds to
3-SAT. More generally, if Γ contains only {0,∞}-valued functions, VCSP(Γ) corresponds to CSP(Γ).
If D = {0, 1} and Γ contains all ternary {0, 1}-valued functions, VCSP(Γ) corresponds to Min-3-SAT,
in which the goal is to minimise the number of unsatisfied clauses in a 3-CNF instance. Finite-valued
constraint languages contain functions that take on only rational values and not infinite values.

Our main result is a precise algebraic characterisation of valued constraint languages whose
instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued
constraint language Γ, BLP is a decision procedure for Γ if and only if Γ admits a symmetric fractional
polymorphism of every arity. For a finite-valued constraint language Γ, BLP is a decision procedure if
and only if Γ admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ admits
a symmetric fractional polymorphism of arity 2.

Using these results, we obtain tractability of several novel classes of problems, including problems
over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) k-submodular on
arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.

Key words. valued constraint satisfaction, fractional polymorphisms, submodularity, bisubmod-
ularity, linear programming

AMS subject classifications. 08A70, 68Q25, 68Q17, 90C27

1. Introduction.

1.1. Constraint Satisfaction. The constraint satisfaction problem provides a
common framework for many theoretical and practical problems in computer sci-
ence [31]. An instance of the constraint satisfaction problem (CSP) consists of a
collection of variables that must be assigned labels from a given domain subject to
specified constraints [60]. The CSP is equivalent to the problem of evaluating con-
junctive queries on databases [47], and to the homomorphism problem for relational
structures [25].

The classic 3-COLOUR problem can be seen as the following CSP: the domain
consists of three labels corresponding to the three colours; the variables correspond to
the vertices of the graph; and the constraints specify that the variables corresponding
to adjacent vertices have to be assigned different labels.

The CSP is NP-complete in general and thus one is interested in restrictions which
give rise to tractable classes of problems. One possibility is to restrict the structure

∗Part of this work (by J. Thapper and S. Živný) appeared in the Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 669–678, 2012 [69]. Part of
this work (by V. Kolmogorov) appeared in the Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), pp. 625–636, 2013 [49]. Vladimir Kolmogorov
is supported by the European Research Council under the European Unions Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement no 616160. Stanislav Živný is supported by a
Royal Society University Research Fellowship.
†Institute of Science and Technology Austria, Austria (vnk@ist.ac.at)
‡Université Paris-Est, Marne-la-Vallée, France (thapper@u-pem.fr)
§University of Oxford, UK (standa.zivny@cs.ox.ac.uk)

1

of the instances [30, 58]. Another possibility, suggested by Feder and Vardi [25],
is to restrict the constraint language; that is, all constraint relations in a given
instance must belong to a fixed, finite set of relations on the domain. The most
successful approach to classifying the language-restricted CSP is the so-called algebraic
approach [6,39,40], which has led to several complexity classifications [1, 4, 5, 7] and
algorithmic characterisations [3, 35] going beyond the seminal work of Schaefer [63].

1.2. Valued Constraint Satisfaction. The CSP deals with only feasibility
issues: Is there a solution satisfying certain constraints? In this work we are interested
in problems that capture both feasibility and optimisation issues: What is the best
solution satisfying certain constraints? Problems of this form can be cast as valued
constraint satisfaction problems [38,76].

An instance of the valued constraint satisfaction problem (VCSP) is given by a
collection of variables that must be assigned labels from a given domain with the
goal to minimise the objective function that is given by the sum of cost functions,
each depending on some subset of the variables [12]. The cost functions can take
on finite rational values and positive infinity. The VCSP framework is very robust
and has also been studied under different names such as Min-Sum problems, Gibbs
energy minimisation, Markov Random Fields, Conditional Random Fields and others
in different contexts in computer science [17,56,74].

The CSP corresponds to the special case of the VCSP when the codomain of all
cost functions is {0,∞}. Given a CSP instance, the Max-CSP consists in determining
the maximum possible number of satisfied constraints, or equivalently with respect
to exact solvability, the minimum number of unsatisfied constraints. The Max-CSP
corresponds to the case of the VCSP when the codomain of all cost functions is {0, 1}.

The VCSP is NP-hard in general and thus we are interested in the restrictions
which give rise to tractable classes of problems. As for the CSP, one can restrict the
structure of the instances [28]. We will be interested in restricting the valued constraint
language; that is, all cost functions in a given instance must belong to a fixed set of
cost functions on the domain. The ultimate goal is to understand the computational
complexity of all valued constraint languages, that is, determine which languages give
rise to classes of problems solvable in polynomial time and which languages give rise
to classes of problems that are NP-hard. Languages of the former type are called
tractable, and languages of the latter type are called intractable.

Given the generality of the VCSP, it is not surprising that only few valued
constraint languages have been completely classified as tractable or intractable. In
particular, only Boolean (on a 2-element domain) languages [12,18] and conservative
(containing all {0, 1}-valued unary cost functions) languages [50] have been completely
classified with respect to exact solvability.

Extending the notion of (generalised) arc consistency for the CSP [26, 57] and
several previously studied notions of arc consistencies for the VCSP [16], Cooper
et al. introduced optimal soft arc consistency (OSAC) [14, 15], which is a linear
programming relaxation of a given VCSP instance. In fact, the VCSP problem has a
natural linear programming (LP) relaxation, proposed independently by a number of
authors [8,46,52,55,67,73,75]. This relaxation is referred to as the basic LP relaxation
(BLP) of VCSP as it is the first level in the Sheralli-Adams hierarchy [66], which
provides successively tighter LP relaxation of an integer LP. The BLP relaxation of a
VCSP instance is known to be equivalent to the dual (Lagrangian) decomposition of the
instance in which the subproblems are chosen as the individual constraints [41, 51, 68].

2

It is known that OSAC is at least as tight as BLP.1

Apart from exact solvability of the CSP and its optimisation variants, the ap-
proximability of the Max-CSP has attracted a lot of attention [19, 42, 44]. Under
the assumption of the unique games conjecture [45], Raghavendra has shown that
the optimal approximation ratio for the finite-valued CSP is achieved by the basic
semidefinite programming relaxation [61,62]. Recently, the classes of the Max-CSP
that are robustly approximable have been characterised [2, 21, 55]. Specifically, Kun et
al. have studied the question of which classes of the Max-CSP can be robustly approx-
imated using BLP [55]. Moreover, the power of BLP with respect to constant-factor
approximation of finite-valued CSPs has been recently studied [20,24].

More details on the complexity of the CSP can be found in [31] and more details
on the complexity of the VCSP can be found in the recent survey [38].

1.3. Contributions. We study the power of the basic linear programming re-
laxation (BLP). Our main result is a precise characterisation of valued constraint
languages for which BLP is a decision procedure. In other words, we characterise
valued constraint languages over which VCSP instances can be solved exactly by the
BLP, i.e., when the BLP has integrality gap 1.

The characterisation is algebraic in terms of fractional polymorphisms [10]. For a
valued constraint language Γ with codomain the set of rationals with infinity, BLP is a
decision procedure for Γ if and only if Γ admits a symmetric fractional polymorphism
of every arity. For a valued constraint language Γ with codomain the set of rationals
(so-called finite-valued languages), BLP is a decision procedure if and only if any
of the following equivalent statements is satisfied: Γ admits a symmetric fractional
polymorphism of every arity; Γ admits a symmetric fractional polymorphism of some
arity; Γ admits a symmetric fractional polymorphism of arity 2 ; Γ admits a fractional
polymorphism ω such that the support of ω generates a symmetric operation (possibly
of different arity than the arity of ω).

Our work links solving VCSP instances exactly using linear programming and
the algebraic machinery for the language-restricted VCSP introduced by Cohen et
al. in [9, 13]. Part of the proof is inspired by the characterisation of the width-
1 CSP [22, 25]. The two main technical contributions are the construction of a
symmetric fractional polymorphism of a general-valued language (Theorem 2) and the
construction of symmetric fractional polymorphisms of all arities of a finite-valued
language (Theorem 4). In order to prove these two results, we present two techniques:
a “tree cutting” argument, used in Section 6 to prove Theorem 2, and an argument
based on a “graph of generalised operations”, used in Section 8 to prove Theorem 4.

Our results allow us to demonstrate that several valued constraint languages are
tractable; that is, VCSP instances over these languages can be solved exactly using BLP.
Languages not previously known to be tractable include: (1) submodular languages
on arbitrary lattices; (2) k-submodular languages on arbitrary finite domains (k = 2
corresponds to bisubmodularity); (3) weakly (and hence strongly) tree-submodular
languages on arbitrary trees. The complexity of (subclasses of) these languages has
been mentioned explicitly as open problems in [23,33,48,53].

1.4. Follow-up work. Since the announcement of our results [69], they have
already been used to settle the complexity of the minimum 0-extension problem [32],

1The difference between BLP and OSAC is that (the dual of) OSAC has only one variable for
all constraints with the same scope (seen as a set) of variables. In BLP, different constraints yield
different BLP variables even if the scopes (seen as sets) are the same.

3

the complexity of the 3-element finite-valued VCSP [34], and the complexity of the
3-element Min-Sol problems and conservative Min-Cost-Hom problems [71]. Moreover,
the last two authors have recently shown that for finite-valued constraint languages,
the condition of admitting a symmetric fractional polymorphism of arity 2 is also
necessary for tractability [70].

1.5. Combinatorial Optimisation. Throughout the paper we assume that the
objective function in our problem is represented as a sum of functions each defined on
some subset of the variables. There is a rich tradition in combinatorial optimisation
of studying problems in which the objective function to be optimised is represented
by a value-giving oracle. In this model, a problem is tractable if it can be solved
in polynomial time using only polynomially many queries to the oracle (where the
polynomial is in the number of variables). Any query to the oracle can be easily
simulated in linear time in the VCSP model. Consequently, a tractability result (for a
class of functions) in the value oracle model automatically carries over to the VCSP
model, while hardness results automatically carries over in the opposite direction.

One class of functions that has received particular attention in the value oracle
model is the class of submodular functions. There are several known algorithms for
minimising a (finite-valued) submodular function using only a polynomial number of
calls to a value-giving oracle, see, for instance, Iwata’s survey [36]. Most previously
discovered tractable valued constraint languages are somewhat related to submodular
functions on distributive lattices [11,12,43,50]. However, some VCSP instance with
submodular functions can be solved much more efficiently than by using these general
approaches [77].

Whilst submodular functions given by an oracle can be minimised in pseudopoly-
nomial time on diamonds [54], in polynomial time on distributive lattices [37,65] and
the pentagon [53], and several constructions on lattices preserving tractability have
been identified [53], it is an interesting open open question as to what happens on
non-distributive lattices. Similarly, k-submodular functions given by an oracle can
be minimised in polynomial-time on domains of size three [27], but the complexity is
unknown on domains of larger size [33]. It is known that strongly tree-submodular
functions given by an oracle can be minimised in polynomial time on binary trees [48],
but the complexity is open on general (non-binary) trees. Similarly, it is known that
weakly tree-submodular functions given by an oracle can be minimised in polynomial
time on chains and forks [48], but the complexity on (even binary) trees is open.

2. Background. In this section we describe the necessary background for the rest
of the paper. We start with some basic notation. We denote Q≥0 = {x ∈ Q | x ≥ 0},
Q = Q ∪ {∞} and Q≥0 = Q≥0 ∪ {∞}. We define sets of real numbers R≥0, R and

R≥0 in a similar way. Throughout the paper we assume that 0 ·∞ = 0 and x ·∞ =∞
for x > 0 (we will never use such multiplication in the case when x < 0). Note that
value ∞ is understood as positive infinity (and accordingly x <∞ for any x ∈ R).

2.1. Valued CSP. Throughout the paper, let D be a fixed finite domain. We
will call the elements of D labels (for variables). A function f : Dm → Q is called an
m-ary cost function and we say that f takes values. The argument of f is called a
labelling. For a cost function f , we denote dom f = {x ∈ Dn | f(x) <∞}.

A language Γ is a set of cost functions of possibly different arities. A language Γ
is called finite-valued if the codomain of every f ∈ Γ is Q. If Γ is not finite-valued we
may emphasise this fact by calling Γ general-valued.

Definition 1. An instance I of the valued constraint satisfaction problem (VCSP)

4

is a function DV → Q given by

fI(x) =
∑
t∈T

ft(xv(t,1), . . . , xv(t,nt)).

It is specified by a finite set of variables V , finite set of terms T , cost functions
ft : Dnt → Q of arity nt and indices v(t, k) ∈ V for t ∈ T, k = 1, . . . , nt. The indices
of term t ∈ T give the scope of the cost function ft. A solution to I is a labelling
(also an assignment) x ∈ DV with the minimum total value. The instance I is called
a Γ-instance if all terms ft belong to Γ.

The class of optimisation problems consisting of all Γ-instances is referred to as
VCSP(Γ). A language Γ is called tractable if VCSP(Γ′) can be solved in polynomial
time for each finite Γ′ ⊆ Γ. It is called NP-hard if VCSP(Γ′) is NP-hard for some
finite Γ′ ⊆ Γ.

2.2. The basic LP relaxation. Let Mn be the set of probability distributions
over labellings in Dn, i.e. Mn = {µ ≥ 0 |

∑
x∈Dn µ(x) = 1}. We also denote ∆ = M1;

thus, ∆ is the standard (|D| − 1)-dimensional simplex. The corners of ∆ can be
identified with elements in D. For a distribution µ ∈Mn and a variable v ∈ {1, . . . , n}
let µ[v] ∈ ∆ be the marginal probability of distribution µ for v:

µ[v](a) =
∑

x∈Dn:xv=a

µ(x) ∀a ∈ D.

Given an instance I, we define the value BLP(I) as follows:

BLP(I) = min
∑
t∈T

∑
x∈dom ft

µt(x)ft(x) (2.1)

s.t. (µt)[k] = αv(t,k) ∀t ∈ T, k ∈ {1, . . . , nt}
µt ∈ Mnt ∀t ∈ T

µt(x) = 0 ∀t ∈ T, x /∈ dom ft

αv ∈ ∆ ∀v ∈ V

If there are no feasible solutions then BLP(I) = ∞. All constraints in this system
are linear, therefore this is a linear program. We call it the basic LP relaxation of
I (BLP). We say that BLP solves I if BLP(I) = minx∈Dn fI(x). We say that BLP
solves a language Γ if it solves all instances I ∈ VCSP(Γ).

2.3. Fractional polymorphisms. We denote by O(m) the set of m-ary oper-
ations g : Dm → D. An operation g : D2 → D of arity 2 is called binary. An

m-ary projection on the ith coordinate is the operation e
(m)
i : Dm → D defined by

e
(m)
i (x1, . . . , xm) = xi. Let Sm be the symmetric group on {1, . . . ,m}. An operation
g ∈ O(m) is called symmetric if it is invariant with respect to any permutation of its
arguments: g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)) for any permutation π ∈ Sm and any

(x1, . . . , xm) ∈ Dm. The set of symmetric operations in O(m) will be denoted by O(m)
sym .

A fractional operation of arity m is a vector ω : O(m) → R≥0 satisfying ‖ω‖1 = 1,
where ‖ω‖1 =

∑
g∈O(m) ω(g). We let supp(ω) denote the support of ω, defined by

supp(ω) = {g ∈ O(m) | ω(g) > 0}.
It will often be convenient to write a fractional operation ω : O(m) → R≥0 as a

sum ω =
∑
g∈O(m) ω(g) · χg, where χg : O(m) → R≥0 denotes the vector that assigns

weight 1 to the operation g and 0 to all other operations.

5

A fractional operation ω is called symmetric if all operations in supp(ω) are
symmetric.

The superposition, h[g1, . . . , gn], of an n-ary operation h with n m-ary operations
g1, . . . , gn is the m-ary operation defined by

h[g1, . . . , gn](x1, . . . , xm) = h(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

This can also be seen as a composition h ◦ (g1, . . . , gn) : Dm → D of the operation
h : Dn → D and the mapping (g1, . . . , gn) : Dm → Dn.

The superposition, ω[g1, . . . , gn], of an n-ary fractional operation ω with n m-ary
operations g1, . . . , gn is the m-ary fractional operation defined as follows:

ω[g1, . . . , gn](h) =
∑

{h′ | h=h′[g1,...,gn]}

ω(h′).

The following example illustrates these definitions.
Example 1. Let D = {0, 1, . . . , d} and let min,max : D2 → D be the two binary

operations on D that return the smaller (larger) of its two arguments respectively with
respect to the natural order of integers.

The ternary operation min(3) returning the smallest of its three arguments can be

obtained by the following superposition: min(3)(x, y, z) = min[e
(3)
1 ,min[e

(3)
2 , e

(3)
3]].

Let ω be the fractional operation that assigns weight 1
2 to min and weight 1

2 to max.
Clearly, supp(ω) = {min,max}. Since both min and max are symmetric operations,
we have that ω is a symmetric fractional operation.

Let min
(4)
12 and min

(4)
34 be the two 4-ary operations that return the smaller of its

first (last) two arguments respectively. Then the superposition of ω with min
(4)
12 and

min
(4)
34 is the 4-ary fractional operation ω′ = ω[min

(4)
12 ,min

(4)
34] that assigns weight 1

2 to

the operation min(4), which returns the smallest of its four arguments, and weight 1
2 to

the operation max[min
(4)
12 ,min

(4)
34].

Definition 2. For an n-ary cost function f : Dn → Q and x1, . . . , xm ∈ Dn for
some m ≥ 1, we define the average value of f applied to the labellings x1, . . . , xm by

fm(x1, . . . , xm) =
1

m
(f(x1) + . . .+ f(xm)).

Definition 3. A fractional operation ω : O(m) → R≥0 is called a fractional
polymorphism of the language Γ, and we say that Γ admits ω, if for every cost function
f ∈ Γ,∑

g∈O(m)

ω(g)f(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ dom f. (2.2)

We note that (2.2) implies that if g ∈ supp(ω) and x1, . . . , xm ∈ dom f then
g(x1, . . . , xm) ∈ dom f .

Definition 3 is illustrated in Figure 2.1, which should be read from left to right.
Let f be an n-ary cost function and ω : O(m) → R≥0 an m-ary fractional operation.
Moreover, let k = |O(m)|. Starting with m n-tuples x1, . . . , xm ∈ dom f , which we view
as row vectors in Figure 2.1, we first apply all m-ary operations g1, . . . , gk to these
tuples componentwise, thus obtaining the m-tuples y1, . . . , yk. Inequality 2.2 amounts

6

x1

x2

...
xm

y1 = g1(x
1, . . . , xm)

y2 = g2(x
1, . . . , xm)
...

yk = gk(x
1, . . . , xm)

= (x1
1 x1

2 . . . x1
n)

= (x2
1 x2

2 . . . x2
n)

...
= (xm

1 xm
2 . . . xm

n)

= (y1
1 y1

2 . . . y1
n)

= (y2
1 y2

2 . . . y2
n)

...

= (yk
1 yk

2 . . . yk
n)

f−→

f(x1)
f(x2)

...
f(xm)


1

m

m∑
i=1

f(xi)

≥

f−→

f(y1)
f(y2)

...

f(yk)


k∑
i=1

ω(gi)f(yi)

Figure 2.1. Definition of a fractional polymorphism.

to comparing the average of the values of f applied to the tuples x1, . . . , xm with the
weighted sum of the values of f applied to the tuples y1, . . . , yk, where the weight of
the ith tuple yi (obtained from gi) is the weight assigned to gi by ω.

Example 2. A simple example of an m-ary fractional operation is the vector

ω : O(m) → R≥0 defined by ω(e
(m)
i) = 1/m for all 1 ≤ i ≤ m and ω(h) = 0 for any

m-ary operation h that is not a projection. It follows from Definition 3 that ω is a
fractional polymorphism of every cost function f and in fact (2.2) holds with equality
in this case.

Example 3. Recall from Example 1 the fractional operation ω defined on D that
assigns weight 1

2 to min and weight 1
2 to max. In this special case, (2.2) simplifies to

f(min(x1, x2)) + f(max(x1, x2)) ≤ f(x1) + f(x2) ∀x1, x2 ∈ dom f.

For D = {0, 1}, a cost function f that satisfies (2.2) with this ω is called submod-
ular [65].

Remark 1. One can equivalently view fractional polymorphisms in a probabilistic
setting. A fractional operation ω : O(m) → R≥0 is a fractional polymorphism of Γ if ω
is a probability distribution over O(m), and every cost function f ∈ Γ satisfies,

Eg∼ωf(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ dom f.

3. Results. In this section we will state our main results together with some
algorithmic consequences. The rest of the paper will be devoted to the proofs of the
results.

3.1. The power of BLP. Let Γ be a language such that the set Γ is countable.
First, we give a precise characterisation of the power of BLP for (general-valued)
languages.

Theorem 1. BLP solves Γ if and only if Γ admits a symmetric fractional
polymorphism of every arity m ≥ 2.

Second, we give a sufficient condition for the existence of symmetric fractional
polymorphisms. But first we need a standard definition from universal algebra.

A set C of operations is called a clone if it contains all projections and is closed

under superposition; that is, C contains e
(m)
i for all m ≥ 1 and 1 ≤ i ≤ m, and if

h, g1, . . . , gn ∈ C then h[g1, . . . , gn] ∈ C, where h is an n-ary operation and g1, . . . , gn

7

are operations of the same arity. A set O of operations is said to generate g if g
belongs to the smallest clone containing O; in other words, g can be obtained by
superpositions of operations from O and projections.

Example 4. If O contains the binary maximum operation max : D2 → D that
returns the larger of its two arguments (with respect to some total order on D), then O
can generate the m-ary operation max(m) that returns the largest of its m arguments
by max(m)(x1, . . . , xm) = max(x1,max(x2, . . . ,max(xm−1, xm) . . .)).

Theorem 2. Suppose that, for every n ≥ 2, Γ admits a fractional polymorphism
ωn such that supp(ωn) generates a symmetric n-ary operation. Then, Γ admits a
symmetric fractional polymorphism of every arity m ≥ 2.

The following is an immediate consequence of Theorems 1 and 2.
Corollary 3. BLP solves Γ if and only if for every n ≥ 2, Γ admits a fractional

polymorphism ωn such that supp(ωn) generates a symmetric n-ary operation.
Finally, we give, in Theorem 5, a more refined characterisation of the power of

BLP for finite-valued languages. It is based on the following result.
Theorem 4. Suppose that a finite-valued language Γ admits a symmetric fractional

polymorphism of arity m−1 ≥ 2. Then Γ admits a symmetric fractional polymorphism
of arity m.

Theorem 5. Suppose that Γ is finite-valued. The following are equivalent:
1. BLP solves Γ;
2. Γ admits a symmetric fractional polymorphism of every arity m ≥ 2;
3. Γ admits a symmetric fractional polymorphism of some arity m ≥ 2;
4. Γ admits a symmetric fractional polymorphism of arity 2;
5. For every n ≥ 2, Γ admits a fractional polymorphism ωn such that supp(ωn)

generates a symmetric n-ary operation.
Proof. The equivalence between statements (1) and (2) is a special case of

Theorem 1. The implications (2) =⇒ (4) =⇒ (3) and (2) =⇒ (5) are trivial. The
implication (4) =⇒ (2) follows from Theorem 4. Assume (3). By Theorem 4, we may

assume that m is even. Let e
(2)
1 and e

(2)
2 be the two binary projections on the domain

of Γ. Then ω[e
(2)
1 , e

(2)
2 , . . . , e

(2)
1 , e

(2)
2] is a binary symmetric fractional polymorphism of

Γ, so (4) follows. Finally, the implication (5) =⇒ (3) follows from Theorem 2.
Note that the finite-valuedness assumption in Theorems 4 and 5 is essential:

for general-valued languages these theorems do not hold as the following example
demonstrates.

Example 5. Let D = {a, b, c} and consider the binary operation g : D2 → D
defined by g(x, x) = x for x ∈ D, g(a, b) = g(b, a) = b, g(b, c) = g(c, b) = c, and
g(a, c) = g(c, a) = a (g corresponds to the oriented cycle a → b → c → a). Note
that g is symmetric. Moreover, g is also conservative, that is, g(x, y) ∈ {x, y} for all
x, y ∈ D. Any operation that is symmetric and conservative is called a tournament
operation [11]. Consider the fractional operation ω defined by ω(g) = 1. It is known
that any general-valued constraint language admitting ω is tractable [11] (ω is called a
tournament pair in [11]).

Let f : D2 → Q≥0 be the following binary cost function: f(x, y) = 0 if (x, y) ∈
{(a, b), (b, c), (c, a)} and f(x, y) =∞ otherwise. Let Γ = {f}. It can be verified that Γ
admits ω as a fractional polymorphism and thus is tractable.

We now show, however, that Γ does not admit any ternary symmetric fractional
polymorphism. Let h : D3 → D be an arbitrary ternary symmetric operation. Since
dom f = {(a, b), (b, c), (c, a)}, we have that h applied to the tuples (a, b), (b, c), and
(c, a) componentwise gives a tuple (x, x) for some x ∈ D but (x, x) 6∈ dom f for any

8

x ∈ D. Thus no ternary fractional polymorphism of Γ can have a symmetric ternary
operation in its support. By Theorem 1, BLP does not solve Γ.

3.2. Examples of languages solved by BLP. We now give examples of lan-
guages that are solved by BLP. In some cases, the tractability of these languages was
known before, while in others, we present here the first proof of their tractability.

A binary operation g : D2 → D is idempotent if g(x, x) = x for all x ∈ D,
commutative if g(x, y) = g(y, x) for all x, y ∈ D, and associative if g(x, g(y, z)) =
g(g(x, y), z)) for all x, y, z ∈ D. A binary operation g : D2 → D is a semilattice
operation if g is idempotent, commutative, and associative. The max-operation
of Example 4 is an example of a semilattice operation. In the same way that max
generates max(m), m ≥ 2, every semilattice operation g : D2 → D generates symmetric
operations of all arities. In particular, a symmetric operation g(m) : Dm → D can be
obtained from g by

g(m)(x1, . . . , xm) = g(x1, g(x2, . . . , g(xm−1, xm) . . .)).

Consequently, we obtain the following result.
Corollary 6 (of Theorem 1 and Theorem 2). If Γ admits a fractional polymor-

phism with a semilattice operation in its support, then BLP solves Γ.
Most previously identified tractable languages have been defined via binary multi-

morphisms, which are a special case of binary fractional polymorphisms [12]. A binary
multimorphism 〈g1, g2〉 of a language Γ is a binary fractional polymorphism ω of Γ
such that ω(g1) = ω(g2) = 1/2, where g1, g2 : D2 → D. For a binary multimorphism
〈g1, g2〉, the fractional polymorphism inequality (2.2) simplifies to,

f(g1(x1, x2)) + f(g2(x1, x2)) ≤ f(x1) + f(x2) ∀f ∈ Γ, x1, x2 ∈ dom f.

With the exception of skew bisubmodularity, the languages discussed below are
all defined by binary multimorphisms.

Submodularity on a lattice. Let (D;∧,∨) be an arbitrary lattice on D, where
∧ and ∨ are the meet and join operations, respectively. Let Γ be a language admit-
ting the multimorphism 〈∧,∨〉; such languages are called submodular on the lattice
(D;∧,∨). The operations ∧ and ∨ of any lattice are semilattice operations, hence
Corollary 6 shows that BLP solves Γ. The tractability of submodular languages was
previously known only for distributive lattices [37, 65]. Moreover, several tractability-
preserving operations on lattices have been identified in [53]. Finally, it is known
that VCSP instances over submodular languages on diamonds can be minimised in
pseudopolynomial time [54].

Symmetric tournament pair. A binary operation g : D2 → D is conservative
if g(x, y) ∈ {x, y} for all x, y ∈ D. A binary operation g : D2 → D is a tournament
operation if g is commutative and conservative. The dual of a tournament operation
g is the unique tournament operation g′ satisfying g(x, y) 6= g′(x, y) for all x 6= y.
The multimorphism 〈g1, g2〉 is a symmetric tournament pair (STP) if both g1 and
g2 are tournament operations and g2 is the dual of g1 [11]. If Γ is a finite-valued
language with an STP multimorphism 〈g1, g2〉 then Γ also admits a submodularity
multimorphism discussed above. This result is implicitly contained in [11] and a full
proof is given in Appendix A. Consequently, BLP solves Γ by Corollary 6. This also
follows from Theorem 5.

9

k-Submodularity. Let D = {0, 1, . . . , k} and let Γ be a language defined on D
that admits the multimorphism 〈min0,max0〉 [12], where min0(x, x) = x for all x ∈ D
and min0(x, y) = 0 for all x, y ∈ D,x 6= y; max0(x, y) = 0 if 0 6= x 6= y 6= 0
and max0(x, y) = max(x, y) otherwise, where max returns the larger of its two
arguments with respect to the normal order of integers; such languages are known as
k-submodular [33]. Since min0 is a semilattice operation, BLP solves Γ by Corollary 6.
The tractability of k-submodular languages was previously open for k > 2 [33].

Applications of k-submodular functions can be found in [29,72].

Bisubmodularity. The special case of k-submodularity for k = 2 is known
as bisubmodularity. The tractability of (finite-valued) bisubmodular languages was
previously known only using a general algorithm for minimising bisubmodular set
functions [27,59].

Skew bisubmodularity. Let D = {0, 1, 2} with the partial order satisfying
0 < 1 and 0 < 2. Recall the definition of the operations min0 and max0 from the
description of k-submodularity above. We define max1(x, y) = 1 if 0 6= x 6= y 6= 0 and
max1(x, y) = max(x, y) otherwise, where max returns the larger of its two arguments
with respect to the normal order of integers. A language Γ defined on D is called
α-bisubmodular, for some real 0 < α ≤ 1, if Γ admits a fractional polymorphism
ω defined by ω(min0) = 1/2, ω(max0) = α/2, and ω(max1) = (1 − α)/2. (Note
that 1-bisubmodular languages are bisubmodular languages discussed above.) A
language that is α-bisubmodular for some α is called skew bisubmodular. Since min0

is a semilattice operation, BLP solves Γ by Corollary 6. The tractability of skew
bisubmodular languages was first observed in [34] using an extended abstract of this
paper [69].

Strong tree-submodularity. Assume that the labels in the domain D are
arranged into a tree T . The tree induces a partial order: a � b if a is an ancestor of b,
that is, if a lies on the unique path from b to the root of T . Given a, b ∈ T , let Pab
denote the unique path in T between a and b of length (=number of edges) d(a, b),
and let Pab[i] denote the i-th vertex on Pab, where 0 ≤ i ≤ d(a, b) and Pab[0] = a.
Let 〈g1, g2〉 be two binary commutative operations defined as follows: given a and
b, let a1 = Pab[bd/2c] and a2 = Pab[dd/2e]. If a2 � a1 then swap a1 and a2 so that
a1 � a2. Finally, g1(a, b) = g1(b, a) = a1 and g2(a, b) = g2(b, a) = a2. Let Γ be a
language admitting the multimorphism 〈g1, g2〉; such languages are called strongly
tree-submodular. Since g1 is a semilattice operation, BLP solves Γ by Corollary 6.
The tractability of finite-valued strongly tree-submodular languages on binary trees
has been shown in [48] but the tractability of strongly tree-submodular languages on
non-binary trees was left open.

Weak tree-submodularity. Assume that the labels in the domain D are ar-
ranged into a tree T . For a, b ∈ T , let g1(a, b) be defined as the highest common
ancestor of a and b in T ; that is, the unique node on the path Pab that is ancestor of
both a and b. We define g2(a, b) as the unique node on the path Pab such that the
distance between a and g2(a, b) is the same as the distance between b and g1(a, b). Let
Γ be a language admitting the multimorphism 〈g1, g2〉; such languages are called weakly
tree-submodular. Since g1 is a semilattice operation, BLP solves Γ by Corollary 6. The

10

tractability of finite-valued weakly tree-submodular languages on chains2 and forks3

has been shown in [48] and left open for all other trees. Weak tree-submodularity gen-
eralises the above-discussed concept of strong tree-submodularity in the sense that any
language that is strongly tree-submodular is also weakly tree-submodular [48]. Weak
tree-submodularity also generalises the above-discussed concept of k-submodularity,
which corresponds to the special case with a tree on k + 1 vertices consisting of a root
node with k children.

1-Defect chain. In our final example, Corollary 6 does not suffice to prove that
BLP solves the specific languages. Instead, we refer directly to Theorems 1 and 2
(and also Theorem 5 in the special case of finite-valued languages). Let b and c be
two distinct elements of D and let (D;<) be a partial order which relates all pairs
of elements except for b and c. A pair 〈g1, g2〉, where g1, g2 : D2 → D are two binary
operations, is a 1-defect chain multimorphism if g1 and g2 are both commutative and
satisfy the following conditions:

• If {x, y} 6= {b, c}, then g1(x, y) = x ∧ y and g2(x, y) = x ∨ y.
• If {x, y} = {b, c}, then {g1(x, y), g2(x, y)}∩{x, y} = ∅, and g1(x, y) < g2(x, y).

The tractability of finite-valued languages admitting a 1-defect chain multimor-
phism has been shown in [43]. By Theorem 5, the BLP solves any such language. We
now show a more general result: BLP also solves general-valued languages admitting
a 1-defect chain multimorphism.

We consider the case when g1(b, c) < b, c and set g = g1. (An analogous argument
works in the case when g2(b, c) > b, c.) Using g, we construct a symmetric m-ary
operation h(m)(x1, . . . , xm) for each m. Consequently, BLP solves Γ by Theorem 1
and Theorem 2.

Let h1, . . . , hM be the M =
(
m
2

)
terms g(xi, xj). Let

h(m) = g(h1, g(h2, . . . , g(hM−1, hM) . . .)).

There are three possible cases:
• {b, c} 6⊆ x1, . . . , xm. Then g acts as ∧, which is a semilattice operation, hence

so does h(m).
• {b, c} ⊆ {x1, . . . , xm} and g(b, c) ≤ x1, . . . , xm. Then hi = g(b, c) for some

1 ≤ i ≤ M , and g(hi, hj) = g(b, c) for all 1 ≤ j ≤ M , so h(m)(x1, . . . , xm) =
g(b, c).

• {b, c} ⊆ {x1, . . . , xm} and xp ≤ g(b, c), for some 1 ≤ p ≤ m. By choice of
g, xp 6∈ {b, c} and we can additionally choose p so that xp ≤ x1, . . . , xm.
Then g(xp, xq) = xp for all 1 ≤ q ≤ m so hi = xp for some 1 ≤ i ≤ M and
g(hi, hj) = xp for all 1 ≤ j ≤M , so h(m)(x1, . . . , xm) = xp.

3.3. Finding a solution. Let I be an instance of VCSP(Γ) and assume that
the BLP solves Γ. We will now justify this terminology by showing how to obtain an
actual assignment that optimises I.

The basic idea is that of self-reduction: we iteratively assign labels to the first
variable of I and test whether the partially assigned instance has the same optimum
as I. When such a label is found, we proceed with the next variable. After n · |D|
steps, where n is the number of variables of I, we are guaranteed to have found an
optimal assignment. This method requires that we can find the optimum of a partially

2A chain is a binary tree in which all nodes except leaves have exactly one child.
3A fork is a binary tree in which all nodes except leaves and one special node have exactly one

child. The special node has exactly two children.

11

assigned instance. In order to do this, we need the following technical lemma which is
proved in Section 7.

Lemma 7. There exists a subset D′ ⊆ D such that if Γ admits an m-ary symmetric
fractional polymorphism, then it admits an m-ary symmetric fractional polymorphism
ω such that, for all g ∈ supp(ω),

1. g(x, x, . . . , x) ∈ D′ for all x ∈ D;
2. g(x, x, . . . , x) = x for all x ∈ D′.

The utility of Lemma 7 can be described as follows: whenever we have an
appropriate fractional polymorphism that maps into a sub-domain D′ and that is
idempotent on D′, then we can infer that there is an optimal solution just consisting
of labels from D′. Such languages are made no more complex by adding constants
restricting variables to be particular labels from D′. In particular, we can use BLP to
solve partially assigned instances.

Proposition 8. Let Γ be an arbitrary valued constraint language and let I be an
instance of VCSP(Γ). If BLP solves Γ, then an optimal assignment of I can be found
in polynomial time.

Proof. Let D′ ⊆ D be the set in Lemma 7. Let cd be the unary cost function with
cd(x) = ∞ for x 6= d and cd(d) = 0, and let Γc = Γ ∪ {cd | d ∈ D′}. It follows from
Theorem 1 and Lemma 7(2) that the BLP solves Γc. We can now apply self-reduction
to obtain an optimal assignment of I. Let x = (x1, . . . , xn) be the variables of I. The
idea is to successively try each possible label d ∈ D′ for x1 by adding the term cd(x1)
to the sum of I. The modified instance is an instance of VCSP(Γc) so we can use
the BLP to obtain its optimum. If, for some d1 ∈ D′, the optimum of the modified
instance matches that of I, then we know that there exists an optimal solution to I
in which x1 is assigned d1 and we can proceed with the next variable.

We now claim that this procedure always terminates with an optimal assignment.
In particular, we must show that if the optimum of I is equal to the optimum of
the instance I ′ obtained by adding

∑k
i=1 cdi(xi), di ∈ D′, k ≥ 1, to the sum of I,

then we can always find an optimal solution of I ′ that assigns dk+1 to xk+1, for some
dk+1 ∈ D′. Let s : V → D be an optimal solution to I ′. Note that s(xi) = di for
all i = 1, . . . , k. Let ω be a fractional polymorphism of Γ satisfying (1) and (2) in
Lemma 7. Then, with I represented as in Definition 1 on page 4, and with the notation
xt = (xv(t,1), . . . , xv(t,nt)),

fI′(s(x)) = fI(s(x)) +

k∑
i=1

cdi(s(xi))

≥
∑
t∈T

∑
g∈supp(ω)

ω(g)ft(g(s(xt), . . . , s(xt)))

=
∑

g∈supp(ω)

ω(g)fI(g[s, . . . , s](x)) ≥ min
x∈Dn

fI(x).

Since fI′(s(x)) = minx∈Dn fI(x), we conclude that g[s, . . . , s] is an optimal so-
lution to I, for each g ∈ supp(ω). Every g ∈ supp(ω) satisfies (2) in Lemma 7, so
g[s, . . . , s](xi) = di for all i = 1, . . . , k, and it follows that g[s, . . . , s] is also an optimal
solution to I ′. Finally, g satisfies (1) in Lemma 7, so g[s, . . . , s](xk+1) ∈ D′, from
which the claim follows.

4. Characterisation of general-valued languages. In this section we will
prove the main characterisation of general-valued languages solved by BLP.

12

Theorem 1 (restated). BLP solves Γ if and only if Γ admits a symmetric
fractional polymorphism of every arity m ≥ 2.

Recall that Mn is the set of probability distributions over labellings in Dn and

∆ = M1. For an integer m ≥ 1 we denote by M(m)
n the set of vectors µ ∈ Mn such

that all components of µ are rational numbers of the form p/m, where p ∈ Z. We also

denote ∆(m) = M(m)
1 , and define Ω(m) to be the set of mappings ∆(m) → D.

A vector α ∈ ∆(m) can be viewed as a multiset over D of size m, or equivalently
as an element of the quotient space Dm/ ∼ where ∼ is the equivalence relation defined
by permutations. Therefore, a symmetric mapping g : Dm → D can be equivalently

viewed as a mapping g : ∆(m) → D. This gives a natural isomorphism between O(m)
sym

and Ω(m).
A symmetric fractional polymorphism ω can thus be viewed either as a probability

distribution over O(m)
sym or as a probability distribution over Ω(m). In the proposition

below we use both views interchangeably.
Proposition 9. Let ω be a symmetric fractional operation of arity m and let f

be a cost function of arity n. Then ω is a fractional polymorphism of f (i.e., (2.2)

holds) if and only if for every µ ∈M(m)
n ,

Eg∼ωf(g(µ[1], . . . , µ[n])) ≤ Ex∼µf(x), (4.1)

where µ[i] ∈ ∆(m) is the marginal probability of distribution µ for the ith coordinate.
Proof. The left-hand side of (4.1) is equal

∑
g∈Ω(m) ω(g)f(g(µ[1], . . . , µ[n])) and

the right-hand side is equal
∑
x∈Dn µ(x)f(x). The claim thus follows from Definition 3

and Remark 1.
Proof. (of Theorem 1) To prove Theorem 1, we need to establish the following:

BLP solves Γ if and only if for every m ≥ 2 there exists a probability distribution ω
over Ω(m) that satisfies (4.1).

“⇐”: Suppose that Γ admits a symmetric fractional polymorphism of every arity.
Let I be a Γ-instance with n variables. We need to show that system (2.1) for I has
an integral minimiser.

It is well known that every LP with rational coefficients has an optimal solution
with rational coefficients (for instance, this is a direct consequence of Fourier-Motzkin
elimination) [64]. Therefore, since the LP (2.1) has rational coefficients, it has an
optimal solution {α, µt} such that all variables are rational numbers of the form p/m
for some integers p,m with m ≥ 1. We can assume that m ≥ 2, otherwise the claim is
trivial.

Let ω be a symmetric fractional polymorphism of Γ of arity m. For any n-ary cost

function f and µ ∈M(m)
n , we denote by f(µ) the expectation f(µ) = Ex∼µf(x).

Using (2.1) and (4.1), we can write

BLP(I) =
∑
t∈T

∑
x∈dom ft

µt(x)ft(x) =
∑
t∈T

ft(µt)

≥
∑
t∈T

∑
g∈Ω(m)

ω(g)f(g(µv(t,1)), . . . , g(µv(t,nt)))

=
∑

g∈Ω(m)

ω(g)fI(g(µ)), (4.2)

where g is applied component-wise, i.e., if α = (α1, . . . , αn) ∈ [∆(m)]n, then g(α) =
(g(α1), . . . , g(αn)) ∈ Dn. (Note that in the second equality in (4.2) we have used

13

0 · ∞ = 0.) Eq. (4.2) implies that BLP(I) ≥ fI(g(µ)) for some g ∈ supp(ω), and
therefore BLP solves the instance I.

“⇒”: Let us fix m ≥ 2, and assume that BLP solves Γ. In this part we will use
letters with a “hat” (α̂ and µ̂) for vectors of the form p/m, p ∈ Z.

First, we consider the case when |Γ| is finite. Suppose that Γ does not admit a
symmetric fractional polymorphism of arity m. Using the notation

• Γ+ is the set of tuples (f, µ̂, α̂) such that f is a function in Γ of arity n,

µ̂ ∈M(m)
n with supp(µ̂) ⊆ dom f , and α̂ = (µ̂[1], . . . , µ̂[n]) ∈ [∆(m)]n; and

• Ω
(m)
Γ ⊆ Ω(m) is the set of mappings g : ∆(m) → D such that g(α̂) ∈ dom f for

all (f, µ̂, α̂)∈Γ+,
the following system does not have a solution:

∑
g∈Ω

(m)
Γ

ω(g)f(g(α̂)) ≤ f(µ̂) ∀(f, µ̂, α̂) ∈ Γ+ (4.3a)

∑
g∈Ω

(m)
Γ

ω(g) = 1 (4.3b)

ω(g) ≥ 0 ∀g ∈ Ω
(m)
Γ (4.3c)

Since system (4.3) is infeasible, by Farkas’ lemma [64] the following system has a
solution: ∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) + z < 0 (4.4a)

∑
(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(g(α̂)) + z ≥ 0 ∀g ∈ Ω
(m)
Γ (4.4b)

y(f, µ̂, α̂) ≥ 0 ∀(f, µ̂, α̂) ∈ Γ+ (4.4c)

Eliminating z gives∑
(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(g(α̂)) >
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) ∀g ∈ Ω
(m)
Γ (4.5a)

y(f, µ̂, α̂) ≥ 0 ∀(f, µ̂, α̂) ∈ Γ+ (4.5b)

We claim that vector y in (4.5) can be chosen to be integer-valued and strictly positive.
To see this, observe that if y is a feasible solution then so is any vector y′ with
y′(f, µ̂, α̂) ∈ [Cy(f, µ̂, α̂), Cy(f, µ̂, α̂) + 1] for (f, µ̂, α̂) ∈ Γ+, for some sufficiently large
constant C (namely, C > 2

ε maxf∈Γ,x∈dom f |f(x)| where ε > 0 is the minimum difference
between the left-hand side and the right-hand side in (4.5a)).

Let us construct an instance I with variables V = ∆(m) and the function

fI(x) =
∑

(f,µ̂,α̂)∈Γ+,α̂=(α̂1,...,α̂n)

y(f, µ̂, α̂)f(xα̂1
, . . . , xα̂n

). (4.6)

This can be viewed as a Γ-instance, if we simulate the multiplication of y(f, µ̂, α̂) and
f by repeating the latter term y(f, µ̂, α̂) times.

Consider a mapping g : ∆(m) → D. Since V = ∆(m), such g is a valid labelling for

the instance I, so we can evaluate fI(g). If g ∈ Ω(m) \ Ω
(m)
Γ then fI(g) =∞ (by the

14

definition of Ω
(m)
Γ), and if g ∈ Ω

(m)
Γ then fI(g) equals the left-hand side of eq. (4.5a).

Thus, eq. (4.5a) gives

min
g:V→D

fI(g) >
∑

(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂). (4.7)

The left-hand side of eq. (4.7) is the optimal value of the instance I. We claim that∑
(f,µ̂,α̂)∈Γ+

y(f, µ̂, α̂)f(µ̂) ≥ BLP(I) (4.8)

and so ming fI(g) > BLP(I), which contradicts the assumption that BLP solves Γ. To
prove eq. (4.8), it suffices to specify a feasible vector of the BLP relaxation of I (given
by eq. (2.1)) whose value equals the left-hand side of (4.8). Such vector is constructed
as follows: αv = v for all v ∈ V = ∆(m) and µt = µ̂ for all t = (f, µ̂, α̂) ∈ Γ+.

We showed that if Γ is finite then it admits a symmetric fractional polymorphism
of arity m. Now suppose that Γ is infinite but countable: Γ = {f1, f2, . . .}. For any
integer r ≥ 1, denote by Γr = {f1, . . . , fr}. As we just showed, Γr admits some
symmetric fractional polymorphism ωr of arity m. The space of symmetric fractional

polymorphisms is a compact subset of R|Ω(m)|, therefore the sequence ω1, ω2, . . . has
a limit vector ω. Using standard continuity arguments, we conclude that ω is a
symmetric fractional polymorphism of Γ. This concludes the proof.

5. Constructing new fractional polymorphisms. In this section we intro-
duce a generic procedure for constructing new fractional polymorphisms of a language
Γ from existing ones. This procedure will be used in the proofs of Theorems 2 and 4,
and Lemma 7.

We start with a motivating example to illustrate techniques that we will use.
Example 6. Let us consider all idempotent binary operations D2 → D for the set

of labels D = {0, 1}. In total, there are four such operations: g00, g01, g10, g11 where
gab for a, b ∈ D denotes the operation with

gab(0, 0) = 0, gab(0, 1) = a, gab(1, 0) = b, gab(1, 1) = 1.

The operations g01 and g10 are the two binary projections e
(2)
1 and e

(2)
2 to the first

and second coordinate respectively. The operations g00 and g11 are the min and max
operations with respect to the natural order on D.

Suppose that Γ admits a binary fractional polymorphism ω = 1
3χg00

+ 2
3χg01

(so
that one operation in supp(ω) is symmetric and the other is not), and we want to
prove that Γ admits a symmetric binary fractional polymorphism. For a function f ∈ Γ
and labellings x, y ∈ dom f we can write

f(x) + f(y)

2
=

1

2

f(x) + f(y)

2
+

1

2

f(y) + f(x)

2

≥ 1

2

∑
g∈supp(ω)

ω(g)f(g(x, y)) +
1

2

∑
g∈supp(ω)

ω(g)f(g(y, x))

=
1

3
f(g00(x, y)) +

2

3

f(x) + f(y)

2
(5.1)

This inequality means that vector ρ1 = 1
3χg00

+ 2
3

χg01+χg10

2 is a fractional polymorphism
of Γ. This demonstrates how we can derive new fractional polymorphisms of a language
from existing ones by taking superpositions.

To obtain a symmetric fractional polymorphism of Γ, we can now use two strategies:

15

(i) Cancel terms in (5.1), obtaining inequality 1
3
f(x)+f(y)

2 ≥ 1
3f(g00(x, y)). This

inequality means that vector χg00 is a fractional polymorphism of Γ.

(ii) Take the last term 2
3
f(x)+f(y)

2 in (5.1) and apply ω to it again. This gives a new

inequality corresponding to a fractional polymorphism ρ2 = 5
9χg00 + 4

9

χg01+χg10

2 .
By repeating this process we obtain a sequence of vectors ρ1, ρ2, ρ3, . . . that are
fractional polymorphisms of Γ. The weight of operation g00 in ρi tends to 1
as i tends to infinity; thus, by taking the limit we can prove that vector χg00

is
a fractional polymorphism of Γ.

Observe that in the construction in Example 6 operations g01 and g10 always
had the same weight in ρi. Therefore, we were working with a subset of all possible
fractional polymorphisms. This example motivates definitions given below.

5.1. Generalised fractional polymorphisms. The construction of new frac-
tional polymorphisms is based on the idea of grouping operations in O(m) together into
what we will call collections and working with fractional operations that assign the
same weight to every operation in a collection. We will consider two types of collections:
ordered and unordered. Ordered collections are finite sequences of operations from
O(m) and unordered collections are subsets of O(m).

Let G be a fixed set of collections. We will always assume that all collections in G
are of the same type, i.e., either ordered or unordered. (In Example 6 above we would
use G = {{g00}, {g11}, {g01, g10}}.) For a collection g ∈ G, we let |g| denote its size,
i.e., the cardinality of the set, or the length of the sequence, depending on its type.
We write

∑
g∈g to denote a sum over all components of the (ordered or unordered)

collection g; one has e.g.
∑
g∈g 1 = |g|.

For a given G, we define a generalised fractional polymorphism ρ of a language Γ
as a probability distribution over G such that, for every cost function f ∈ Γ,∑

g∈G
ρ(g)

∑
g∈g

1

|g|
f(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm), ∀x1, . . . , xm ∈ dom f. (5.2)

To simplify notation, we will write (5.2) as∑
g∈G

ρ(g)f |g|(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm), ∀x1, . . . , xm ∈ dom f, (5.3)

where, for an unordered collection g = {g1, . . . , gk} of m-ary operations, the applica-
tion g(x1, . . . , xm) denotes the set of labellings {g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)},
and we define fk({y1, . . . , yk}) = fk(y1, . . . , yk) for labellings y1, . . . , yk ∈ Dn. Simi-
larly, for an ordered collection g = (g1, . . . , gk) of m-ary operations, the application
g(x1, . . . , xm) denotes the sequence of labellings (g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)).

As for fractional operations, we define the supp(ρ) as the set of collections g for
which ρ(g) > 0, and the vector χg as the vector that assigns weight 1 to the collection
g and 0 to all other collections.

Note that ρ is a generalised fractional polymorphism of Γ if and only if ω =∑
g∈G ρ(g)

∑
g∈g

1
|g|χg is an m-ary fractional polymorphism of Γ.

Terminology for ordered collections. Observe that an ordered collection g =
(g1, . . . , gk) is a mapping Dm → Dk. Denote the set of such mappings by O(m→k). If
G is a subset of O(m→k), then a generalised fractional polymorphism ρ over G will be
called a generalised fractional polymorphism of arity m→ k. We can identify fractional
polymorphisms of arity m with generalised fractional polymorphisms of arity m→ 1.

16

5.2. Constructing generalised fractional polymorphisms. Our goal will
be to construct a generalised fractional polymorphism ρ such that all collections
g ∈ supp(ρ) satisfy some desired property. Let G∗ ⊆ G be the set of such “good”
collections. We consider an expansion operator Exp that takes a collection g ∈ G and
produces a probability distribution ρ over G. We say that Exp is valid for a language
Γ if, for any f ∈ Γ and any g ∈ G, the probability distribution ρ = Exp(g) satisfies∑

h∈G
ρ(h)f |h|(h(x1, . . . , xm)) ≤ f |g|(g(x1, . . . , xm)), ∀x1, . . . , xm ∈ dom f. (5.4)

We say that the operator Exp is non-vanishing (with respect to the pair (G,G∗)) if,
for any g ∈ G, there exists a sequence of collections g0,g1, . . . ,gr such that g0 = g,
gi+1 ∈ supp(Exp(gi)) for i = 0, . . . , r − 1, and gr ∈ G∗.

The main result of this section is the following.
Lemma 10 (“Expansion Lemma”). Let Exp be an expansion operator which

is valid for the language Γ and non-vanishing with respect to (G,G∗). If Γ admits
a generalised fractional polymorphism ρ with supp(ρ) ⊆ G, then it also admits a
generalised fractional polymorphism ρ∗ with supp(ρ∗) ⊆ G∗.

The example below demonstrates how this lemma can be used.
Example 6 (revisited). Recall that in this example we have a language Γ over

D = {0, 1} that admits a fractional polymorphism ω = 1
3χg00

+ 2
3χg01

. Let us show
how we can use the Expansion Lemma to derive the fact that Γ admits a symmetric
fractional polymorphism.

Let G = {{g00}, {g11}, {g01, g10}} and G∗ = {{g00}, {g11}}. Note that vector
ρ = χ{g01,g10} is a generalised fractional polymorphism of Γ. Define expansion operator
Exp as follows:

Exp({g00}) =
∑

g∈supp(ω)

ω(g)χ{g[g00,g00]} = χ{g00}

Exp({g11}) =
∑

g∈supp(ω)

ω(g)χ{g[g11,g11]} = χ{g11}

Exp({g01, g10}) =
∑

g∈supp(ω)

ω(g)χ{g[g01,g10],g[g10,g01]} =
1

3
χ{g00} +

2

3
χ{g01,g10}

It can be verified Exp is valid for Γ and non-vanishing with respect to (G,G∗); we
leave this to the reader. By the Expansion Lemma, Γ admits a generalised fractional
polymorphism ρ∗ with supp(ρ∗) ⊆ G∗, i.e. ρ∗ = ρ∗00χ{g00} + ρ∗11χ{g11} for some
ρ∗00, ρ

∗
11 ≥ 0 with ρ∗00 + ρ∗11 = 1. This means that vector ρ∗00χg00

+ ρ∗11χg11
is a

(symmetric) fractional polymorphism of Γ.
Note that in the original Example 6 we claimed a stronger property, namely

that Γ admits a fractional polymorphism χg00
. This can be established by taking

G = {{g00}, {g01, g10}} and G∗ = {{g00}}; the expansion operator for these collections
is defined as above.

The lemma will be used for constructing the desired fractional polymorphisms
in Theorem 2 and Lemma 7; their proofs consist of exhibiting an appropriate pair
(G,G∗) and an expansion operator Exp. We will also exploit the lemma in the proof of
Theorem 4. However, on its own it will not be enough, and we will need an additional
method for constructing symmetric fractional polymorphisms. Considering Example 5,
this should not come as a surprise: Theorem 4 holds only for finite-valued languages,
while Lemma 10 is valid for all general-valued languages.

17

We will now give two proofs of Lemma 10. The first one is constructive: it shows
how to obtain ρ∗ from ρ using a finite number of steps. The second one is shorter
but non-constructive. Roughly speaking, the constructive proof uses strategy (i) from
Example 6, while the non-constructive one uses strategy (ii).

5.3. Constructive proof of the Expansion Lemma. In this subsection, we
give a constructive proof of the Expansion Lemma based on a node-weighted tree
generated by repeated applications of the expansion operator.

Proof. (of Lemma 10) The proof goes via an explicit construction of a node-
weighted tree. Each node of the tree contains a collection g ∈ G, and we will use g
to denote both the node and the collection of operations it contains. We say that
two nodes are equal as collections if the collections they contain are the same. Each
node also carries a (strictly) positive weight, denoted by w(g). We say that a node
g is covered (by h), and that h is a covering node (of g) if g is a descendant of h
and g and h are equal as collections. We say that h is a minimal covering node if no
descendant of h is a covering node.

The root of the tree will be denoted by p. If the collections in G are unordered,

then we let p = {e(m)
1 , . . . , e

(m)
m } be the set of m-ary projections. If the collections are

ordered, then we let p = (e
(m)
1 , . . . , e

(m)
m). If p is not in G, then we can augment G

with p and define Exp(p) to be ρ. In both cases, since Γ admits ρ, the augmented
expansion operator remains non-vanishing and valid for Γ.

The construction is performed in two steps. In the first step, the expansion, a tree
with root p is constructed. At the end of this step, the tree will have leaves that are
either in G∗ or that are covered. From the construction, it will immediately follow
that the leaves induce a generalised fractional polymorphism of Γ. In the second step,
the pruning, certain parts of the tree will be cut down to remove all leaves that are
not in G∗. We then prove that the set of leaves remaining after the pruning step still
induces a generalised fractional polymorphism of Γ.

The expansion step is carried out as follows.
• While there exists a leaf g in the tree that is in G \G∗ and not covered, add

the set supp(Exp(g)) as children to g with the weight of each added node h
given by w(g) · Exp(g)(h).

First, we argue that the expansion step terminates after a finite number of
applications of the expansion operator. Assume to the contrary that the expansion
generates an infinite tree. Since there is a finite number of m-ary operations, |G| is
finite, and hence it follows that the tree has an infinite path g0,g1, . . . , descending
from the root. Therefore, there exist i < j such that gi = gj as collections. If gj ∈ G∗,
then gi would never have been expanded, so we may assume that gj 6∈ G∗. But then
gj is covered by gi, hence gj would never have been expanded. We have reached a
contradiction and it follows that the tree generated by the expansion is finite.

Let T be the tree generated by the expansion step. For a node g in T , let L(g)
be the set of leaves of the sub-tree rooted at g and define the vector νg ∈ RG

≥0

by νg =
∑

h∈L(g)(w(h)/w(g))χh. We claim that the following three properties are
satisfied:
(a) For every node g in T , the vector νg is a probability distribution on G such that

for every function f ∈ Γ, and all tuples x1, . . . , xm ∈ dom f ,∑
h∈G

νg(h)f |h|(h(x1, . . . , xm)) ≤ f |g|(g(x1, . . . , xm)). (5.5)

(b) Every leaf in T is either a member of G∗ or covered.

18

(c) Every sub-tree of T contains a leaf that is not covered by a node in that sub-tree.

Property (a) follows by repeated application of (5.4), with special care taken to
the case νp, where the fact that ρ satisfies (5.3) is also used. Property (b) holds
trivially when the expansion step terminates. To see that (c) holds, assume to the
contrary that, after the expansion step, there is a sub-tree rooted at g for which every
leaf is in G \ G∗. Pick any node g0 in this sub-tree, and for i ≥ 0, arbitrarily pick
gi+1 ∈ supp(Exp(gi)). Then, each gi contains a collection that already exists in the
sub-tree, hence the sequence g0,g1, . . . never encounters a collection in G∗. This is
a contradiction since Exp is assumed to be non-vanishing. Hence, (c) holds after the
expansion step.

The pruning step is carried out as follows.

• While there exists a covered leaf in the tree, pick a minimal covering node g
and let Tg be the sub-tree rooted at g. Write νg as νg = (1 − κ) · χg + ν⊥,
where 1− κ = νg(g) so that ν⊥(g) = 0. Remove all nodes below g from the
tree and, for each collection h ∈ G such that ν⊥(h) > 0, add a new leaf h′ as
a child to g containing the collection h and with weight w(h′) = w(g) 1

κν⊥(h).

We refer to each choice of a minimal covering node g and the subsequent restruc-
turing of Tg as a round of pruning. Below, we prove that the properties (a–c) are
invariants that hold before and after each round of pruning. This has the following
consequences. Since (c) holds before each round, some leaf h of g is different from g
as a collection, and since w(h) is strictly positive, κ > 0. Therefore the new weights
in the pruning step are defined. Each round of pruning decreases the size of the tree
by at least one, so the pruning step eventually terminates. After the pruning step has
terminated, let ρ∗ be νp. By (a), ρ∗ is a generalised fractional polymorphism of Γ,
and by (b), every leaf must contain a collection in G∗, so supp(ρ∗) ⊆ G∗.

We finish the proof by showing that (a–c) hold after a round of pruning that picks
a minimal covering node g, assuming that they held before the round. By (a) and
noting that

∑
h∈G χg(h)f |h|(h(x1, . . . , xm)) = f |g|(g(x1, . . . , xm)), we have

∑
h∈G

νg(h)f |g|(g(x1, . . . , xm)) =
∑
h∈G

((1− κ) · χg + ν⊥)(h)f |h|(h(x1, . . . , xm))

≥
∑
h∈G

((1− κ) · νg + ν⊥)(h)f |h|(h(x1, . . . , xm)), (5.6)

for all f ∈ Γ and x1, . . . , xm ∈ dom f . Since κ > 0, inequality (5.6) is equivalent to

∑
h∈G

νg(h)f |h|(h(x1, . . . , xm)) ≥
∑
h∈G

1

κ
ν⊥(h)f |h|(h(x1, . . . , xm)). (5.7)

The round of pruning only affects the vector νg′ for nodes g′ that lie on the path
from the root to g. Let g′ be such a node and let ν′g′ be the altered function after the

round. Let C = w(g)/w(g′). Then, ν′g′ = νg′ − Cνg + C 1
κν⊥ and ν′g′ can easily be

verified to be a probability distribution on G, and

19

f |g
′|(g′(x1, . . . , xm)) ≥

∑
h∈G

(νg′ − Cνg + Cνg)(h)f |h|(h(x1, . . . , xm))

≥
∑
h∈G

(νg′ − Cνg + C
1

κ
ν⊥)(h)f |h|(h(x1, . . . , xm))

=
∑
h∈G

ν′g′(h)f |h|(h(x1, . . . , xm)), (5.8)

so (a) holds after the round.
Before the round of pruning, using (b) and the fact that g is a minimal covering

node, every leaf in Tg is either equal to g as collections, is a member of G∗, or is
covered by a node above g in the tree. Therefore, every new child h′ added to g in
the pruning is either a member of G∗ or is still covered by some node above g, so (b)
holds after the round.

The round of pruning only affects the leaves of the sub-trees Tg′ that contain g.
Before the round, by (c), the sub-tree Tg′ either contains a leaf in G∗ or a leaf that
is covered by a node above g′ in the tree. If such a leaf h is also a leaf of Tg, and
therefore potentially altered in the round of pruning, then h is different from g as
collections, hence g will have a new child h′ with the same property. It follows that
(c) holds after the round.

5.4. Non-constructive proof of the Expansion Lemma. We now give a
non-constructive proof of the Expansion Lemma.

Proof. (of Lemma 10) Let Ω be the set of generalised fractional polymorphisms ρ
of Γ with supp(ρ) ⊆ G; it is non-empty by the assumption of Lemma 10. Let us pick
ρ∗ ∈ Ω with the maximum value of ρ∗(G∗) =

∑
g∈G∗ ρ(g). (Clearly, Ω is a compact set

which is a subset of R|G|, so the maximum is attained by some vector in Ω). We claim
that supp(ρ∗) ⊆ G∗. Indeed, suppose that g0 /∈ G∗ for some g0 ∈ supp(ρ∗). Since Exp
is non-vanishing, there exists a sequence g0,g1, . . . ,gr such that gi+1 ∈ supp(Exp(gi))
for i = 0, . . . , r − 1, g0, . . . ,gr−1 /∈ G∗, and gr ∈ G∗. Define a sequence of generalised
fractional polymorphisms ρ0 = ρ∗, ρ1, . . . , ρr as follows:

ρi+1 = ρi + ρi(gi) · (−χgi + νi), νi = Exp(gi)

for i = 0, . . . , r− 1. We can prove by induction on i that ρi ∈ Ω, i.e. ρi is a generalised
fractional polymorphism of Γ. Indeed, for any f ∈ Γ, and x1, . . . , xm ∈ dom f , we have∑

h∈G
(−χgi + νi)(h)f |h|(h(x1, . . . , xm)) ≤ 0

where we used eq. (5.4) and the fact that f |gi|(gi(x
1, . . . , xm)) is finite (since gi ∈

supp(ρi) and ρi is a generalised fractional polymorphism of f). Therefore,

∑
h∈G

ρi+1(h)f |h|(h(x1, . . . , xm)) ≤
∑
h∈G

ρi(h)f |h|(h(x1, . . . , xm)) ≤ fm(g(x1, . . . , xm))

(the last inequality is by the induction hypothesis). We proved that ρi ∈ Ω for all i.
By construction, ρ∗(G∗) = ρ0(G∗) ≤ ρ1(G∗) ≤ . . . ≤ ρr−1(G∗) < ρr(G∗). This

contradicts the choice of ρ∗.

20

6. Second characterisation of general-valued languages. In this section,
we use the Expansion Lemma from Section 5 to prove Theorem 2.

Theorem 2 (restated). Suppose that, for every n ≥ 2, Γ admits a fractional
polymorphism ωn such that supp(ωn) generates a symmetric n-ary operation. Then, Γ
admits a symmetric fractional polymorphism of every arity m ≥ 2.

Proof. The proof is an application of Lemma 10. Fix some arbitrary arity m ≥ 2.
Let ∼ denote the following equivalence relation on the set O(m) of m-ary operations
on D:

g ∼ g′ ⇔ ∃π ∈ Sm : g(x1, . . . , xm) = g′(xπ(1), . . . , xπ(m)).

Let G be the set of equivalence classes of the relation ∼ and let G∗ be the set
of all equivalence classes g ∈ G for which |g| = 1, i.e., the set of equivalence classes
containing a single symmetric operation. We say that a fractional operation ν is
weight-symmetric if ν(g) = ν(g′) whenever g ∼ g′. A weight-symmetric fractional
operation ν induces a probability distribution ρ on G: ρ(g) = ν(g)/|g|, where g is any
of the operations in g.

We now define the expansion operator Exp by giving its result when applied to an
arbitrary g ∈ G. Let n = |g| and let ω be a k-ary fractional polymorphism of Γ such
that supp(ω) generates a symmetric n-ary operation.

Define a sequence of m-ary weight-symmetric fractional operations ν0, ν1, . . . , each
with ‖νi‖1 = 1, as follows. Let ν0 =

∑
g∈g

1
|g|χg. For i ≥ 1, assume that νi−1 has

been defined. Let li−1 = min{νi−1(g) | g ∈ supp(νi−1)} be the minimum weight of an
operation in the support of νi−1. The fractional operation νi is obtained by subtracting
from νi−1 an equal weight from each operation in supp(νi−1) and adding back this
weight as superpositions of ω by all possible choices of operations in supp(νi−1). The
amount subtracted from each operation is 1

2 li−1. This implies that every collection in
supp(νi−1) is also in supp(νi).

Formally νi is defined as follows:

νi = νi−1 −
li−1

2
χi−1 +

li−1

2
ηi−1,

where χi−1 =
1

| supp(νi−1)|
∑

g∈supp(νi−1)

χg and, with K = | supp(νi−1)|k,

ηi−1 =
1

K

∑
g1,...,gk∈supp(νi−1)

ω[g1, . . . , gk].

By definition, ν ≥ 0 and ‖νi‖1 = ‖νi−1‖1 = 1. To see that νi is weight-symmetric,
it suffices to verify that ηi−1 is weight-symmetric. Let g be any m-ary operation of
the form g = h[g1, . . . , gk] and let g ∼ g′. Let π ∈ Sm be such that g(x1, . . . , xm) =
g′(xπ(1), . . . , xπ(m)) and define g′j(x1, . . . , xm) = gj(xπ(1), . . . , xπ(m)) for 1 ≤ j ≤ k.
Since νi−1 is weight-symmetric, it follows that gi ∈ supp(νi−1) if and only if g′i ∈
supp(νi−1). Therefore the terms ω(h)h[g1, . . . , gk] in ηi−1 such that g = h[g1, . . . , gk]
are in bijection with the terms ω(h)h[g′1, . . . , g

′
k] such that g′ = h[g′1, . . . , g

′
k]. So the

fractional operation ηi−1 assigns the same weight to g and g′.
The assumption that supp(ω) generates a symmetric n-ary operation t means that

t can be obtained by a finite number of superpositions of operations from supp(ω) and

the set of all projections. Formally, define A0 = {e(i)
j | 1 ≤ j ≤ i} to be the set of

21

all projections and, for j ≥ 1, define Aj = {g[h1, . . . , hq] | g ∈ supp(ω), h1, . . . , hq ∈
Aj′ , j′ < j}. Then, t ∈ Ad, for some d ≥ 1. Fix any such value of d and define Exp(g)
to be the probability distribution on G induced by νd.

We now show that this operator is non-vanishing. Assume that g = {g1, . . . , gn}.
Since supp(ν0) = {g1, . . . , gn} and using the fact that supp(νi) contains all superposi-
tions g[h1, . . . , hq], g ∈ supp(ω), h1, . . . , hq ∈ supp(νi−1), it follows by induction that
t[g1, . . . , gn] ∈ supp(νd). Note that the operation t[g1, . . . , gn] is symmetric since for
all π ∈ Sm, there is a permutation π′ ∈ Sn such that t[g1, . . . , gn](xπ(1), . . . , xπ(m)) =
t[gπ′(1), . . . , gπ′(n)](x1, . . . , xm) = t[g1, . . . , gn](x1, . . . , xm). Hence, Exp(g) assigns non-
zero probability to {t[g1, . . . , gn]} and since {t[g1, . . . , gn]} ∈ G∗, it follows that Exp is
non-vanishing.

It remains to show that Exp is valid for Γ, i.e., that (5.4) is satisfied. We claim
that for each i ≥ 1, we have∑

g∈O(m)

νi(g)f(g(x1, . . . , xm)) ≤
∑

g∈O(m)

νi−1(g)f(g(x1, . . . , xm)), (6.1)

for all f ∈ Γ and x1, . . . , xm ∈ dom f . The inequality (5.4) then follows by induc-
tion on i, noting that

∑
g∈O(m) ν0(g)f(g(x1, . . . , xm)) =

∑
g∈g

1
|g|f(g(x1, . . . , xm)) =

f |g|(g(x1, . . . , xm)). To see why (6.1) holds, compare the last two terms in the definition
of νi:∑
g∈O(m)

χi−1(g)f(g(x1, . . . , xm)) =
1

K

∑
g1,...,gk∈supp(νi−1)

1

k

k∑
i=1

f(gi(x
1, . . . , xm))

≥ 1

K

∑
g1,...,gk∈supp(νi−1)

∑
h∈O(m)

ω(h)f(h[g1, . . . , gk](x1, . . . , xm))

=
∑

h′∈O(m)

ηi−1(h′)f(h′(x1, . . . , xm)).

Hence, Exp is valid, so Lemma 10 is applicable and shows that Γ admits a
generalised fractional polymorphism ρ∗ with support on singleton sets, each containing
a symmetric m-ary operation. Therefore, Γ admits the symmetric m-ary fractional
polymorphism

∑
{g}∈G∗ ρ

∗({g})χg.
7. Imposing idempotency. In this section we prove Lemma 7 which was used

to find optimal solutions in Section 3.3. The lemma states that for a symmetric
fractional polymorphism, we can impose idempotency on a sub-domain D′ of D while
simultaneously ensuring that there is an optimal solution with labels restricted to D′.
The proof uses the Expansion Lemma.

Lemma 7 (restated). There exists a subset D′ ⊆ D such that if Γ admits an m-ary
symmetric fractional polymorphism, then it admits an m-ary symmetric fractional
polymorphism ω such that, for all g ∈ supp(ω),

1. g(x, x, . . . , x) ∈ D′ for all x ∈ D;
2. g(x, x, . . . , x) = x for all x ∈ D′.

Proof. Every language Γ admits the fractional polymorphism that assigns proba-
bility 1 to the unary identity operation on D. Furthermore, assuming that Γ admits
two unary fractional polymorphisms ν1 and ν2, Γ also admits ν′ = 1

2 (ν1 + ν2) with
supp(ν′) = supp(ν1) ∪ supp(ν2). Therefore, we can let ν be a unary fractional poly-
morphism of Γ with inclusion-maximal support. Let h ∈ supp(ν) be such that
|h(D)| = min{|g(D)| | g ∈ supp(ν)} and define D′ = h(D).

22

Let G = {{g} | g ∈ O(m)
sym } and let G∗ be the operations in G that additionally

satisfy (1) and (2). The expansion operatior Exp is defined as follows: Exp({g}) assigns
probabilty

∑
h′∈supp(ν),g′=h′◦g ν(h′) to the set {g′}. It is easy to see that Exp is valid

and we show below that it is non-vanishing. Therefore, Lemma 10 is applicable with
ρ taken to be an m-ary symmetric fractional polymorphism of Γ. Consequently, Γ
admits ω =

∑
{g}∈G∗ ρ

∗({g})χg.
We finish the proof by showing that Exp is non-vanishing. It is easy to see that Γ ad-

mits the unary fractional polymorphism µ =
∑
h1∈supp(ν) ν(h1)

∑
h2∈supp(ν) ν(h2)χh1◦h2

.

Since ν is inclusion-maximal, it follows that h1 ◦ h2 ∈ supp(µ) ⊆ supp(ν), so supp(ν)
forms a monoid under composition.

Define G as {g|D′ | g ∈ supp(ν), g(D) = D′}. Then, G is a set of permutations of
D′ that contains the identity. Let g′1, g

′
2 ∈ G be two permutations in this set and let

g1, g2 ∈ supp(ν) be such that g1(D) = g2(D) = D′ and g′i = gi|D′ . Since supp(ν) forms
a monoid under composition, g1 ◦ g2 ∈ supp(ν). Therefore, g′1 ◦ g′2 = g1|D′ ◦ g2|D′ =
(g1 ◦ g2)|D′ ∈ G, so G forms a group under composition.

Let {g} ∈ G. By the diagonal of an operation f we mean the unary operation
x 7→ f(x, . . . , x). Note that the diagonal of h ◦ g acts as a permutation on D′. This
permutation has an inverse in G, so there exists an operation i ∈ supp(ν) such that
i(D) = D′ and such that the restriction of i to D′ is the inverse of the diagonal of
h ◦ g. Hence {i ◦ h ◦ g} ∈ G∗. Since supp(ν) forms a monoid under composition,
i ◦ h ∈ supp(ν) so we conclude that {i ◦ h ◦ g} ∈ supp(Exp({g})).

8. Characterisation of finite-valued languages. The goal of this section is
to prove the characterisation of finite-valued languages solved by BLP. In particular,
we prove the following theorem.

Theorem 4 (restated). Suppose that a finite-valued language Γ admits a symmet-
ric fractional polymorphism of arity m− 1 ≥ 2. Then Γ admits a symmetric fractional
polymorphism of arity m.

Let us fix a symmetric fractional polymorphism ω : O(m−1) → R≥0 of Γ of arity
m − 1. We will use the letter s for operations in supp(ω) to emphasize that these
operations are symmetric.

A symmetric fractional polymorphism of Γ of arity m will be constructed in two
steps. The first one will rely on the Expansion Lemma. Essentially, in this step we

start with a fractional polymorphism ρ0 = 1
m (e

(m)
1 + . . .+ e

(m)
m) and repeatedly modify

it by applying the fractional polymorphism ω. The example below demonstrates such
modification for m = 3.

Example 7. Suppose that language Γ admits a binary symmetric fractional
polymorphism ω. For a function f ∈ Γ and labellings x, y, z ∈ dom f we can write

f3(x, y, z) =
1

3
f2(y, z) +

1

3
f2(x, z) +

1

3
f2(x, y)

≥ 1

3

∑
s∈supp(ω)

ω(s)f(s(y, z)) +
1

3

∑
s∈supp(ω)

ω(s)f(s(x, z)) +
1

3

∑
s∈supp(ω)

ω(s)f(s(x, y))

=
∑

s∈supp(ω)

ω(s)f3(s(y, z), s(x, z), s(x, y))

This means that the following vector is a fractional polymorphism of Γ:

ρ1 =
∑

s∈supp(ω)

ω(s) · 1

3
(χ
s◦(e(3)

2 ,e
(3)
3)

+ χ
s◦(e(3)

1 ,e
(3)
3)

+ χ
s◦(e(3)

1 ,e
(3)
2)

)

23

We can then take one component 1
3 (χg1

+ χg2
+ χg3

) of the sum above and replace it
with another vector by applying ω in a similar way. This shows how we can derive
new fractional polymorphisms of Γ. Note that such polymorphisms will have a special
structure, namely they will be a weighted sum of vectors of the form 1

3 (χg1 +χg2 +χg3)

where g1, g2, g3 ∈ O(3). This means that we will be working with the set G containing
triplets of operations g = (g1, g2, g3) ∈ O(3→3). Recall that in Section 5 a probability
distribution over such G was called a fractional polymorphism of arity 3→ 3.

The example above can be generalised to other values of m ≥ 3 in a natural way.
The output of the first step (described in Section 8.1 below) will thus be a generalised
fractional polymorphism of Γ of arity m → m with certain properties that will be
exploited in step 2.

In the second step (Sections 8.2-8.5) we will turn it into an m-ary symmetric
fractional polymorphism of Γ using tools such as Farkas’ lemma. Note that in the
second step the assumption that Γ is finite-valued will be essential.

With this introduction, we now proceed with the formal proof of Theorem 4.

8.1. Proof of Theorem 4: Step 1. We start with some additional notation
and definitions. We use [m] to denote set {1, . . . ,m}. Let π ∈ Sm be a permutation
of [m]. For a labelling α = (a1, . . . , am) ∈ Dm we define απ ∈ Dm as follows:
απ = (aπ(1), . . . , aπ(m)). For an operation g : Dm → D, let gπ : Dm → D be the
following operation:

gπ(α) = g(απ) (8.1)

For a symmetric operation s ∈ supp(ω) of arity m− 1 we introduce the following
definitions. For a labelling α = (a1, . . . , am) ∈ Dm let αs ∈ Dm be the labelling

αs = (s(α−1), . . . , s(α−m)) (8.2)

where α−i ∈ Dm−1 is the labelling obtained from α by removing the i-th element. For
a mapping g : Dm → Dm, let gs : Dm → Dm be the mapping

gs(α) = [g(α)]s (8.3a)

The last definition can also be expressed as

gs = (s ◦ g−1, . . . , s ◦ g−m) (8.3b)

where g−i : Dm → Dm−1 is the sequence of m − 1 operations obtained from g =
(g1, . . . , gm) by removing the i-th operation. We use gs1...sk to denote (. . . (gs1)...)sk .

Let 1 be the identity mapping Dm → Dm, and let G = {1s1...sk | s1, . . . , sk ∈
supp(ω), k ≥ 0} ⊆ O(m→m) be the set of all mappings that can be obtained from 1 by
applying operations from supp(ω).

Graph on mappings. Let us define a directed weighted graph (G, E, w) with the
set of edges E = {(g,gs) | g ∈ G, s ∈ supp(ω)} and positive weights w(g,h) =∑
s∈supp(ω):h=gs ω(s) for (g,h) ∈ E. Clearly, we have∑

h:(g,h)∈E

w(g,h) = 1 ∀g ∈ G (8.4)

The graph (G, E) can be decomposed into strongly connected components, yielding
a directed acyclic graph (DAG) on these components. We define Sinks(G, E) to be

24

the set of those strongly connected components H ⊆ G of (G, E) that are sinks of
this DAG (i.e. have no outgoing edges). Any DAG has at least one sink, therefore
Sinks(G, E) is non-empty. We denote G∗ =

⋃
H∈Sinks(G,E) H ⊆ G.

By applying the Expansion Lemma to the sets of collections (G,G∗) defined above
we can obtain the following result.

Lemma 11. There exists a generalised fractional polymorphism ρ∗ of Γ of arity
m→ m with supp(ρ∗) ⊆ G∗.

Proof. Clearly, Γ admits a least one generalised fractional polymorphism ρ with
supp(ρ) ⊆ G, namely ρ = χ1. It thus suffices to prove the existence of an expansion
operator Exp which is valid for Γ and non-vanishing with respect to (G,G∗).

Given a mapping g ∈ G, we define the probability distribution ρ = Exp(g) as
follows:

ρ =
∑

s∈supp(ω)

ω(s)χgs

Let us check that it is indeed valid for Γ. Consider a function f ∈ Γ of arity n and
labellings x1, . . . , xm ∈ Dn. Denote (y1, . . . , ym) = g(x1, . . . , xm). Then,∑

h∈supp(ρ)

ρ(h)fm(h(x1, . . . , xm)) =
∑

s∈supp(ω)

ω(s)fm(gs(x1, . . . , xm))

=
∑

s∈supp(ω)

ω(s)
1

m

∑
i∈[m]

f(s((y1, . . . , ym)−i))

=
1

m

∑
i∈[m]

∑
s∈supp(ω)

ω(s)f(s((y1, . . . , ym)−i))

≤ 1

m

∑
i∈[m]

fm−1((y1, . . . , ym)−i))

= fm(y1, . . . , ym) = fm(g(x1, . . . , xm)).

Now let us show that the expansion operator Exp is non-vanishing. Observe that
supp(Exp(g)) = {h | (g,h) ∈ E} for any g ∈ G. Furthermore, it follows from the
definition of G∗ that for any g ∈ G there exists a path in (G, E) from g to some node
g∗ ∈ G∗. These two facts imply the claim.

This concludes the first step of the proof. To summarize, we have constructed a
generalised fractional polymorphism ρ∗ of Γ with supp(ρ∗) ⊆ G∗. Note that operations
in collections g ∈ supp(ρ∗) are not necessarily symmetric (otherwise this would be a
contradiction to Example 5). In the second step we will show that for finite-valued
languages we can replace these collections with p ◦ g, where p : Dm → Dm is a
mapping that orders tuples α = (a1, . . . , am) ∈ Dm according to some total order on
D. More precisely, we will show that

fm(g(x1, . . . , xm)) = fm((p ◦ g)(x1, . . . , xm)) ∀g ∈ G∗, f ∈ Γ, x1, . . . , xm ∈ dom f

This will imply that vector ρ =
∑

g∈supp(ρ∗) ρ
∗(g)χp◦g is also a generalised fractional

polymorphism of Γ, which gives an m-ary symmetric fractional polymorphism of Γ,
thus proving Theorem 4.

8.2. Proof of Theorem 4: Step 2. We start with the following observation.

25

Proposition 12. Every g = (g1, . . . , gm) ∈ G satisfies the following:

(gπ1 , . . . , g
π
m) = (gπ(1), . . . , gπ(m)) ∀ permutations π ∈ Sm (8.5)

Thus, permuting the arguments of gi(·, . . . , ·) gives a mapping which is also present in
the sequence g, possibly at a different position.

Proof. Checking that 1 satisfies (8.5) is straightforward. Let us prove that for
any g : Dm → Dm satisfying (8.5) and for any symmetric operation s ∈ O(m−1), the
mapping gs also satisfies (8.5). Consider i ∈ [m]. We need to show that (s ◦ g−i)

π =
s ◦ g−π(i). For each α ∈ Dm we have

(s ◦ g−i)
π(α) = s ◦ g−i(α

π)

= s(g1(απ), . . . , gi−1(απ), gi+1(απ), . . . , gm(απ))

= s(gπ1 (α), . . . , gπi−1(α), gπi+1(α), . . . , gπm(α))

= s(gπ(1)(α), . . . , gπ(i−1)(α), gπ(i+1)(α), . . . , gπ(m)(α)) = s ◦ g−π(i)(α)

For the next statement consider a connected component H ∈ Sinks(G, E), and
denote I = H× [m]. Below we use the Iverson bracket notation: [φ] = 1 if φ is true,
and [φ] = 0 otherwise.

Lemma 13. (a) For any fixed distinct g′,g′′ ∈ H, there exists a vector λ ∈ RI≥0

that satisfies ∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj
m− 1

= cg ∀(g, i) ∈ I (8.6)

where cg = [g = g′]− [g = g′′].
(b) For any fixed distinct i′, i′′ ∈ [m], there exists a vector λ ∈ RI∪H≥0 that satisfies

∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj
m− 1

= ciλg ∀(g, i) ∈ I (8.7a)

∑
g∈H

λg = 1 (8.7b)

where ci = [i = i′]− [i = i′′].
A proof of this statement is given in Section 8.3, and is based on Farkas’ Lemma.
Now let us fix a function f ∈ Γ of arity n. Given labellings x1, . . . , xm, we define

labellings xgi for all (g, i) ∈ I via

(xg1, . . . , xgm) = g(x1, . . . , xm) (8.8)

Note that xgi is a function of (x1, . . . , xm); for brevity of notation, this dependence is
not shown. For a vector λ ∈ RH and an index i ∈ [m] we define the function Fλi via

Fλi (x1, . . . , xm) =
∑
g∈H

λgf(xgi) ∀x1, . . . , xm ∈ Dn (8.9)

Lemma 14. (a) It holds that fm(xg
′1, . . . , xg

′m) = fm(xg
′′1, . . . , xg

′′m) for all
g′,g′′ ∈ H and x1, . . . , xm ∈ Dn.

26

(b) There exists a probability distribution λ over H such that Fλi′ (x
1, . . . , xm) =

Fλi′′(x
1, . . . , xm) for all i′, i′′ ∈ [m] and x1, . . . , xm ∈ Dn.

A proof of Lemma 14 is given in section 8.4. The idea of the proof is as follows.
Let us fix g′,g′′ and labellings x1, . . . , xm ∈ Dn. We will write down inequalities
for the fractional polymorphism ω applied to m− 1 labellings (xg1, . . . , xgm)−i with
(g, i) ∈ I. We will then take a linear combination of these inequalities with weights
λgi ≥ 0 constructed in Lemma 13(a); this will give inequality fm(xg

′1, . . . , xg
′m) ≤

fm(xg
′′1, . . . , xg

′′m). This inequality should hold for all choices of g′,g′′, therefore it
must actually be an equality. Part (b) of Lemma 14 will be proved in a similar way.

With Lemma 14 we will finally be able to prove the following (see Section 8.5).

Lemma 15. Let g∗ be a mapping in G∗ and p ∈ O(m→m) be any mapping such
that p(α) is a permutation of α for all α ∈ Dm. Denote

Rangen(g∗) = {g∗(x1, . . . , xm) | x1, . . . , xm ∈ Dn}

For any function f ∈ Γ of arity n and any (x1, . . . , xm) ∈ Rangen(g∗) it holds that
fm(x1, . . . , xm) = fm(p(x1, . . . , xm)).

This will imply Theorem 4. Indeed, we can construct anm-ary symmetric fractional
polymorphism of Γ as follows. Take the vector ρ∗ from Lemma 11, take a mapping
p ∈ O(m→m) that orders tuples α = (a1, . . . , am) ∈ Dm according to some total order
on D, and define the following vector.

ρ =
∑

g∈supp(ρ∗)

ρ∗(g)χp◦g

Then, Γ admits ρ since for any f ∈ Γ and for any labellings x1, . . . , xm ∈ Dn we have∑
h∈supp(ρ)

ρ(h)fm(h(x1, . . . , xm)) =
∑

g∈supp(ρ∗)

ρ∗(g)fm(p(g(x1, . . . , xm)))

=
∑

g∈supp(ρ∗)

ρ∗(g)fm(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm)

Note, for any h = (h1, . . . , hm) ∈ supp(ρ), the operations h1, . . . , hm are symmetric.
Indeed, we have h = p ◦ g for some g ∈ G∗. If α ∈ Dm and π is a permutation of
the set [m] then h(απ) = p(g(απ)) = p([g(α)]π) = p(g(α)) = h(α) which implies the
claim.

A symmetric m-ary fractional polymorphism of Γ is finally given by ωm =∑
g∈G ρ(g)

∑
g∈g

1
mχg.

It remains to prove Lemmas 13, 14 and 15.

8.3. Proof of Lemma 13. The lemma has two parts. For each part we will use a
similar technique, namely we will assume the opposite and then derive a contradiction
by using Farkas’ lemma.

Lemma 13 (restated). (a) There exists a vector λ ∈ RI≥0 that satisfies

∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj
m− 1

= cg ∀(g, i) ∈ I (8.10)

where cg = [g = g′]− [g = g′′].

27

Proof. Suppose that the claim does not hold. By Farkas’ lemma [64] there exists
a vector y ∈ RI such that ∑

(g,i)∈I

cgygi < 0 (8.11a)

∑
h:(g,h)∈E

w(g,h)yhi −
∑

j∈[m]−{i}

ygj
m− 1

≥ 0 ∀(g, i) ∈ I (8.11b)

Denote ug =
∑
i∈[m] ygi. Summing inequalities (8.11b) over i ∈ [m] gives∑

h:(g,h)∈E

w(g,h)uh − ug ≥ 0 ∀g ∈ H (8.12)

Denote H∗ = arg max{ug | g ∈ H}. From (8.4) and (8.12) we conclude that g ∈ H∗
implies h ∈ H∗ for all (g,h) ∈ E. Therefore, H∗ = H (since H is a strongly connected
component of G).

We showed that ug = C for all g ∈ H where C ∈ R is some constant. But then
the expression on the LHS of (8.11a) equals C − C = 0, a contradiction.

Lemma 13 (restated). (b) There exists a vector λ ∈ RI∪H≥0 that satisfies

∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj
m− 1

= ciλg ∀(g, i) ∈ I (8.13a)

∑
g∈H

λg = 1 (8.13b)

where ci = [i = i′]− [i = i′′].
Proof. Suppose that the claim does not hold. By Farkas’ lemma [64] there exist a

vector y ∈ RI and a scalar z ∈ R such that

z < 0 (8.14a)

z −
∑
i∈[m]

ciygi ≥ 0 ∀g ∈ H (8.14b)

∑
h:(g,h)∈E

w(g,h)yhi −
∑

j∈[m]−{i}

ygj
m− 1

≥ 0 ∀(g, i) ∈ I (8.14c)

Denote ug =
∑
i∈[m] ygi. Using the same argument as in part (a) we conclude that

ug = C for all g ∈ H where C ∈ R is some constant. We can assume w.l.o.g. that this
constant is zero. Indeed, this can be achieved by subtracting C/m from values ygi
for all (g, i) ∈ I with g ∈ H; it can be checked (using eq. (8.4)) that this operation
preserves inequalities (8.14). We thus have∑

j∈[m]−{i}

ygj = −ygi ∀(g, i) ∈ I (8.15)

Substituting this into (8.14c) gives∑
h:(g,h)∈E

w(g,h)yhi +
ygi

m− 1
≥ 0 ∀(g, i) ∈ I (8.16)

28

Consider k ∈ [m]. Summing (8.16) over i ∈ [m]− {k} and then using (8.15) yields∑
h:(g,h)∈E

w(g,h)(−yhk) +
−ygk
m− 1

≥ 0 ∀(g, k) ∈ I (8.17)

Combining (8.16) and (8.17) gives∑
h:(g,h)∈E

w(g,h)yhi +
ygi

m− 1
= 0 ∀(g, i) ∈ I (8.18)

Denote rg =
∑
i∈[m] ciygi for g ∈ H. Summing (8.18) over i ∈ [m] with appropriate

coefficients gives ∑
h:(g,h)∈E

w(g,h)rh +
rg

m− 1
= 0 ∀g ∈ H (8.19)

From (8.14a) and (8.14b) we conclude that rg < 0 for all g ∈ H, and thus eq. (8.19)
cannot hold, a contradiction.

8.4. Proof of Lemma 14. Let us fix a function f ∈ Γ of arity n and a connected
component H ∈ Sinks(G, E). In this subsection we will prove the following.

Lemma 14 (equivalent statement). (a) Inequality∑
i∈[m]

f(xg
′i)−

∑
i∈[m]

f(xg
′′i) ≤ 0 (8.20a)

holds for any distinct mappings g′,g′′ ∈ H and any x1, . . . , xm ∈ Dn.
(b) There exists a probability distribution λ over H such that∑

g∈H
λgf(xgi

′
)−

∑
g∈H

λgf(xgi
′′
) ≤ 0 (8.20b)

for any distinct indices i′, i′′ ∈ [m] and any x1, . . . , xm ∈ Dn.
Since inequality (8.20a) holds for any pair of distinct mappings g′,g′′ ∈ H, we

conclude that in (8.20a) we actually must have an equality (and similarly for (8.20b)).
Therefore, the statement above is indeed equivalent to the original formulation of
Lemma 14, which had equalities. (Note, we have also moved terms from the right-hand
side of the original equalities to the left-hand side with the negative sign; for that we
have used the fact the Γ is finite-valued.)

We will need the following observation.
Proposition 16. If h = gs where g ∈ H, s ∈ supp(ω) then xhi = s((xg1, . . . , xgm)−i)

for i ∈ [m] where (xg1, . . . , xgm)−i is the sequence of m − 1 labellings obtained by
removing the i-th labelling.

Proof. Consider a coordinate v ∈ [n], and denote α = (x1
v, . . . , x

m
v), β =

(xg1
v , . . . , x

gm
v), γ = (xh1

v , . . . , xhmv). By definition (8.8), β = g(α) and γ = h(α).
Therefore, γ = gs(α) = [g(α)]s = βs. In other words, the ith component of γ equals
s(β−i), which is what we needed to show.

Consider m− 1 labellings (xg1, . . . , xgm)−i for (g, i) ∈ I. Applying the polymor-
phism inequality to these labellings gives∑

s∈supp(ω)

ω(s)f(s((xg1, . . . , xgm)−i)) ≤
1

m− 1

∑
j∈[m]−{i}

f(xgj)

29

Let us multiply this inequality by weight λgi ≥ 0 (to be defined later), and apply
Proposition 16 and the fact that w(g,h) =

∑
s∈supp(ω):h=gs ω(s):

λgi
∑

h:(g,h)∈E

w(g,h)f(xhi)− λgi
m− 1

∑
j∈[m]−{i}

f(xgj) ≤ 0 ∀(g, i) ∈ I

Summing these inequalities over (g, i) ∈ I gives

∑
(g,i)∈I

 ∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[m]−{i}

λgj
m− 1

 f(xgi) ≤ 0 (8.21)

Plugging weights λgi from Lemma 13(a) into 8.21 gives inequality (8.20a). This
proves Lemma 14(a).

Similarly, we can plug weights λgi from Lemma 13(b) into (8.21) and get inequality
(8.20b). However, we need an additional argument in order to establish Lemma 14(b)
with this strategy. Indeed, the vector λ in Lemma 13(b) depends on the pair (i′, i′′);
let us denote it as λi

′i′′ . We need to show that these vectors can be chosen in such
a way that for a given g ∈ H, the components λi

′i′′

g are the same for all pairs (i′, i′′).
This can be done as follows. Take the vector λ12 constructed in Lemma 13(b). For a
pair of distinct indices (i′, i′′) 6= (1, 2) select a permutation π of [m] with π(i′) = 1,
π(i′′) = 2, and define vector λi

′i′′ via

λi
′i′′

g = λ12
g ∀g ∈ H λi

′i′′

gi = λ12
gπ(i) ∀(g, i) ∈ I

Clearly, the vector λi
′i′′ satisfies conditions of Lemma 13(b) for the pair (i′, i′′). Thus,

Lemma 13(b) indeed implies Lemma 14(b).

8.5. Proof of Lemma 15. In this subsection we prove the following.
Lemma 15 (restated). Let g∗ be a mapping in G∗ and p ∈ O(m→m) be any

mapping such that p(α) is a permutation of α for all α ∈ Dm. Denote

Rangen(g∗) = {g∗(x1, . . . , xm) | x1, . . . , xm ∈ Dn}

For any function f ∈ Γ of arity n and any (x1, . . . , xm) ∈ Rangen(g∗) it holds that
fm(x1, . . . , xm) = fm(p(x1, . . . , xm)).

Fix function f ∈ Γ of arity n, and let H ∈ Sinks(G, E) be the strongly connected
component that contains g∗. Let λ ∈ RH

≥0 be a vector constructed in Lemma 14(b).

We denote Fλ(x1, . . . , xm) = Fλi (x1, . . . , xm) for i ∈ [m].
Lemma 17. The following transformation does not change Fλ(x1, . . . , xm): pick

a coordinate v ∈ [n] and permute the labels (x1
v, . . . , x

m
v).

Proof. It suffices to prove the claim for a permutation π which swaps the labels
xiv and xjv for i, j ∈ [m] (since any other permutation can be obtained by repeatedly
applying such swaps). Since m ≥ 3 there exists an index k ∈ [m]− {i, j}. We claim
that for any g = (g1, . . . , gm) ∈ H, the labelling xgk = gk(x1, . . . , xm) is not affected by
the swap above. Indeed, it suffices to check this for coordinate v (for other coordinates
the claim is trivial). Denoting the new labellings as x̃i and x̃gk, we can write

x̃gkv = gk(x̃1
v, . . . , x̃

m
v) = gπ(k)(x̃

1
v, . . . , x̃

m
v) // since π(k) = k

= gπk (x̃1
v, . . . , x̃

m
v) // by Proposition 12

= gk(x̃π(1)
v , . . . , x̃π(m)

v) = gk(x1
v, . . . , x

m
v) = xgkv

30

Since the labellings xgk do not change, the value of Fλk (x1, . . . , xm) is also not affected
by the swap (see its definition in eq. (8.9).) The lemma is proved.

Lemma 18. If (x1, . . . , xm) ∈ Rangen(g∗) then (x1, . . . , xm) = (xg1, . . . , xgm) for
some g ∈ H.

Proof. It suffices to show that there exists g ∈ H with g ◦ g∗ = g∗.
Note that 1s1...sk ◦ h = hs1...sk for any s1, . . . , sk ∈ supp(ω) and h ∈ O(m→m),

since for any α ∈ Dm we have

[1s1...sk ◦ h](α) = 1s1...sk(h(α)) = [1(h(α))]s1...sk = [h(α)]s1...sk = hs1...sk(α).

Therefore, conditions g ∈ G, h ∈ H imply that g ◦ h ∈ H (since g can be written as
g = 1s1...sk and there are no edges leaving H).

Since H is strongly connected, there is a path in (G, E) from g∗ ◦g∗ ∈ H to g∗ ∈ H,
i.e. [g∗ ◦ g∗]s1...sk = g∗ for some s1, . . . , sk ∈ supp(ω). Equivalently, h ◦ g∗ ◦ g∗ = g∗

where h = 1s1...sk . It can be checked that mapping g = h ◦ g∗ has the desired
properties.

Lemma 19. If (x1, . . . , xm) ∈ Rangen(g∗) then fm(x1, . . . , xm) = Fλ(x1, . . . , xm).

Proof. From Theorem 14(a) and Lemma 18 we get that fm(xg1, . . . , xgm) =
fm(x1, . . . , xm) for all g ∈ H. Using this fact and the definition of Fλi (·), we can write

Fλ(x1, . . . , xm) =
1

m

∑
i∈[m]

Fλi (x1, . . . , xm) =
1

m

∑
g∈H

λg
∑
i∈[m]

f(xgi)

=
∑
g∈H

λgf
m(xg1, . . . , xgm) =

∑
g∈H

λgf
m(x1, . . . , xm) = fm(x1, . . . , xm)

The lemma follows.
We can finally establish Lemma 15. For labelings (x1, . . . , xm) ∈ Rangen(g∗) we

can write

fm(x1, . . . , xm)
(1)
= Fλ(x1, . . . , xm)

(2)
= Fλ(p(x1, . . . , xm))

(3)
= fm(p(x1, . . . , xm))

where equalities (1) and (3) follow from Lemma 19, and (2) follows from Lemma 17.
Note, to be able to apply Lemma 19 in (3), we need the condition p(x1, . . . , xm) ∈
Rangen(g∗). The proof of this condition follows mechanically from the assumption
(x1, . . . , xm) ∈ Rangen(g∗) and Proposition 12, and is omitted.

Acknowledgements. We thank Andrei Krokhin for helpful discussions and for
communicating the result of Raghavendra [62]. We also thank the anonymous referees
for their diligent work on improving the presentation of the paper.

REFERENCES

[1] Libor Barto, The dichotomy for conservative constraint satisfaction problems revisited, in
Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11), IEEE
Computer Society, 2011, pp. 301–310.

[2] Libor Barto and Marcin Kozik, Robust Satisfiability of Constraint Satisfaction Problems, in
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12),
ACM, 2012, pp. 931–940.

[3] , Constraint Satisfaction Problems Solvable by Local Consistency Methods, Journal of
the ACM, 61 (2014). Article No. 3.

[4] Libor Barto, Marcin Kozik, and Todd Niven, The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell), SIAM
Journal on Computing, 38 (2009), pp. 1782–1802.

31

[5] Andrei Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element
set, Journal of the ACM, 53 (2006), pp. 66–120.

[6] Andrei Bulatov, Andrei Krokhin, and Peter Jeavons, Classifying the Complexity of
Constraints using Finite Algebras, SIAM Journal on Computing, 34 (2005), pp. 720–742.

[7] Andrei A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Trans-
actions on Computational Logic, 12 (2011). Article 24.

[8] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid Zosin, A linear programming
formulation and approximation algorithms for the metric labeling problem, SIAM Journal
on Discrete Mathematics, 18 (2004), pp. 608–625.

[9] David A. Cohen, Martin C. Cooper, Páid́ı Creed, Peter Jeavons, and Stanislav Živný,
An algebraic theory of complexity for discrete optimisation, SIAM Journal on Computing,
42 (2013), pp. 915–1939.

[10] David A. Cohen, Martin C. Cooper, and Peter G. Jeavons, An Algebraic Characterisation
of Complexity for Valued Constraints, in Proceedings of the 12th International Conference
on Principles and Practice of Constraint Programming (CP’06), vol. 4204 of Lecture Notes
in Computer Science, Springer, 2006, pp. 107–121.

[11] , Generalising submodularity and Horn clauses: Tractable optimization problems defined
by tournament pair multimorphisms, Theoretical Computer Science, 401 (2008), pp. 36–51.

[12] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin, The
Complexity of Soft Constraint Satisfaction, Artificial Intelligence, 170 (2006), pp. 983–1016.

[13] David A. Cohen, Páid́ı Creed, Peter G. Jeavons, and Stanislav Živný, An algebraic theory
of complexity for valued constraints: Establishing a Galois connection, in Proceedings of
the 36th International Symposium on Mathematical Foundations of Computer Science
(MFCS’11), vol. 6907 of Lecture Notes in Computer Science, Springer, 2011, pp. 231–242.

[14] Martin C. Cooper, Minimization of Locally Defined Submodular Functions by Optimal Soft
Arc Consistency, Constraints, 13 (2008), pp. 437–458.

[15] Martin C. Cooper, Simon de Givry, Mart́ı Sánchez, Thomas Schiex, Matthias Zytnicki,
and Tomáš Werner, Soft arc consistency revisited, Artificial Intelligence, 174 (2010),
pp. 449–478.

[16] Martin C. Cooper and Thomas Schiex, Arc consistency for soft constraints, Artificial
Intelligence, 154 (2004), pp. 199–227.

[17] Yves Crama and Peter L. Hammer, Boolean Functions - Theory, Algorithms, and Applica-
tions, Cambridge University Press, 2011.

[18] Páid́ı Creed and Stanislav Živný, On minimal weighted clones, in Proceedings of the 17th
International Conference on Principles and Practice of Constraint Programming (CP’11),
vol. 6876 of Lecture Notes in Computer Science, Springer, 2011, pp. 210–224.

[19] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan, Complexity Classification of Boolean
Constraint Satisfaction Problems, vol. 7 of SIAM Monographs on Discrete Mathematics
and Applications, SIAM, 2001.

[20] V́ıctor Dalmau, Andrei Krokhin, and Rajsekar Manokaran, Towards a characterization
of constant-factor approximable Min CSPs, in Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’15), SIAM, 2015.

[21] V́ıctor Dalmau and Andrei A. Krokhin, Robust Satisfiability for CSPs: Hardness and
Algorithmic Results, ACM Transactions on Computation Theory, 5 (2013). Article No. 15.

[22] V́ıctor Dalmau and Justin Pearson, Set Functions and Width 1 Problems, in Proceedings of
the 5th International Conference on Constraint Programming (CP’99), vol. 1713 of Lecture
Notes in Computer Science, Springer, 1999, pp. 159–173.

[23] Vladimir Deineko, Peter Jonsson, Mikael Klasson, and Andrei Krokhin, The approx-
imability of Max CSP with fixed-value constraints, Journal of the ACM, 55 (2008). Article
16.

[24] Alina Ene, Jan Vondrák, and Yi Wu, Local distribution and the symmetry gap: Approx-
imability of multiway partitioning problems, in Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’13), SIAM, 2013, pp. 306–325.

[25] Tomás Feder and Moshe Y. Vardi, The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory, SIAM Journal
on Computing, 28 (1998), pp. 57–104.

[26] Eugene C. Freuder, Synthesizing Constraint Expressions, Communications of the ACM, 21
(1978), pp. 958–966.

[27] Satoru Fujishige and Satoru Iwata, Bisubmodular Function Minimization, SIAM Journal
on Discrete Mathematics, 19 (2005), pp. 1065–1073.

[28] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello, Tractable Optimization
Problems through Hypergraph-Based Structural Restrictions, in Proceedings of the 36th

32

International Colloquium on Automata, Languages and Programming (ICALP’09), Part II,
vol. 5556 of Lecture Notes in Computer Science, Springer, 2009, pp. 16–30.

[29] Igor Gridchyn and Vladimir Kolmogorov, Potts model, parametric maxflow and k-
submodular functions, in Proceedings of the 14th IEEE International Conference on Com-
puter Vision (ICCV’13), IEEE, 2013, pp. 2320–2327.

[30] Martin Grohe, The complexity of homomorphism and constraint satisfaction problems seen
from the other side, Journal of the ACM, 54 (2007), pp. 1–24.

[31] Pavol Hell and Jaroslav Nešetřil, Colouring, constraint satisfaction, and complexity,
Computer Science Review, 2 (2008), pp. 143–163.

[32] Hiroshi Hirai, Discrete Convexity and Polynomial Solvability in Minimum 0-Extension Prob-
lems, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’13), SIAM, 2013, pp. 1770–1778.

[33] Anna Huber and Vladimir Kolmogorov, Towards Minimizing k-Submodular Functions, in
Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12),
vol. 7422 of Lecture Notes in Computer Science, Springer, 2012, pp. 451–462.

[34] Anna Huber, Andrei Krokhin, and Robert Powell, Skew bisubmodularity and valued CSPs,
SIAM Journal on Computing, 43 (2014), pp. 1064–1084.

[35] Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross
Willard, Tractability and learnability arising from algebras with few subpowers, SIAM
Journal on Computing, 39 (2010), pp. 3023–3037.

[36] Satoru Iwata, Submodular Function Minimization, Mathematical Programming, 112 (2008),
pp. 45–64.

[37] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige, A combinatorial strongly polynomial
algorithm for minimizing submodular functions, Journal of the ACM, 48 (2001), pp. 761–777.

[38] Peter Jeavons, Andrei Krokhin, and Stanislav Živný, The complexity of valued con-
straint satisfaction, Bulletin of the European Association for Theoretical Computer Science
(EATCS), 113 (2014), pp. 21–55.

[39] Peter G. Jeavons, On the Algebraic Structure of Combinatorial Problems, Theoretical Com-
puter Science, 200 (1998), pp. 185–204.

[40] Peter G. Jeavons, David A. Cohen, and Marc Gyssens, Closure Properties of Constraints,
Journal of the ACM, 44 (1997), pp. 527–548.

[41] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky, Lagrangian relaxation for
MAP estimation in graphical models, in Allerton Conference on Communication, Control
and Computing, 2007, pp. 64–73.

[42] Peter Jonsson, Andrei A. Krokhin, and Fredrik Kuivinen, Hard constraint satisfaction
problems have hard gaps at location 1, Theoretical Computer Science, 410 (2009), pp. 3856–
3874.

[43] Peter Jonsson, Fredrik Kuivinen, and Johan Thapper, Min CSP on Four Elements:
Moving Beyond Submodularity, in Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP’11), vol. 6876 of Lecture Notes in
Computer Science, Springer, 2011, pp. 438–453.

[44] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson, The approx-
imability of constraint satisfaction problems, SIAM Journal on Computing, 30 (2001),
pp. 1863–1920.

[45] Subhash Khot, On the unique games conjecture (invited survey), in Proceedings of the 25th
Annual IEEE Conference on Computational Complexity (CCC’10), IEEE Computer Society,
2010, pp. 99–121.

[46] Carleton L. Kingsford, Bernard Chazelle, and Mona Singh, Solving and analyzing
side-chain positioning problems using linear and integer programming, Bioinformatics, 21
(2005), pp. 1028–1039.

[47] Phokion G. Kolaitis and Moshe Y. Vardi, Conjunctive-Query Containment and Constraint
Satisfaction, Journal of Computer and System Sciences, 61 (2000), pp. 302–332.

[48] Vladimir Kolmogorov, Submodularity on a tree: Unifying l]-convex and bisubmodular func-
tions, in Proceedings of the 36th International Symposium on Mathematical Foundations of
Computer Science (MFCS’11), vol. 6907 of Lecture Notes in Computer Science, Springer,
2011, pp. 400–411.

[49] , The power of linear programming for finite-valued CSPs: a constructive characteriza-
tion, in Proceedings of the 40th International Colloquium on Automata, Languages and
Programming (ICALP’13), vol. 7965 of Lecture Notes in Computer Science, Springer, 2013,
pp. 625–636.

[50] Vladimir Kolmogorov and Stanislav Živný, The complexity of conservative valued CSPs,
Journal of the ACM, 60 (2013). Article 10.

33

[51] N. Komodakis, N. Paragios, and G. Tziritas, MRF energy minimization and beyond via
dual decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33
(2011), pp. 531–552.

[52] Arie Koster, Stan P.M. van Hoesel, and Antoon W.J. Kolen, The partial constraint
satisfaction problem: Facets and lifting theorems, Operations Research Letters, 23 (1998),
pp. 89–97.

[53] Andrei Krokhin and Benoit Larose, Maximizing Supermodular Functions on Product
Lattices, with Application to Maximum Constraint Satisfaction, SIAM Journal on Discrete
Mathematics, 22 (2008), pp. 312–328.

[54] Fredrik Kuivinen, On the complexity of submodular function minimisation on diamonds,
Discrete Optimization, 8 (2011), pp. 459–477.

[55] Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou, Linear
programming, width-1 CSPs, and robust satisfaction, in Proceedings of the 3rd Innovations
in Theoretical Computer Science (ITCS’12), ACM, 2012, pp. 484–495.

[56] Steffen L. Lauritzen, Graphical Models, Oxford University Press, 1996.
[57] Alan K. Mackworth, Consistency in Networks of Relations, Artificial Intelligence, 8 (1977),

pp. 99–118.
[58] Dániel Marx, Tractable hypergraph properties for constraint satisfaction and conjunctive

queries, Journal of the ACM, 60 (2013). Article No. 42.
[59] S. Thomas McCormick and Satoru Fujishige, Strongly polynomial and fully combinatorial

algorithms for bisubmodular function minimization, Mathematical Programming, 122 (2010),
pp. 87–120.

[60] Ugo Montanari, Networks of Constraints: Fundamental properties and applications to picture
processing, Information Sciences, 7 (1974), pp. 95–132.

[61] Prasad Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08),
ACM, 2008, pp. 245–254.

[62] , Approximating NP-hard Problems: Efficient Algorithms and their Limits, PhD Thesis,
(2009).

[63] Thomas J. Schaefer, The Complexity of Satisfiability Problems, in Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), ACM, 1978, pp. 216–226.

[64] Alexander Schrijver, Theory of linear and integer programming, John Wiley & Sons, Inc.,
1986.

[65] , A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial
Time, Journal of Combinatorial Theory, Series B, 80 (2000), pp. 346–355.

[66] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIAM Journal of Discrete
Mathematics, 3 (1990), pp. 411–430.

[67] Michail I. Shlezinger, Syntactic analysis of two-dimensional visual signals in noisy conditions,
Cybernetics and Systems Analysis, 12 (1976), pp. 612–628. Translation from Russian.

[68] David Sontag, Amir Globerson, and Tommi Jaakkola, Introduction to dual decomposition
for inference, in Optimization for Machine Learning, Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright, eds., MIT Press, 2011.

[69] Johan Thapper and Stanislav Živný, The power of linear programming for valued CSPs, in
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’12), IEEE, 2012, pp. 669–678.

[70] , The complexity of finite-valued CSPs, in Proceedings of the 45th ACM Symposium on
the Theory of Computing (STOC’13), ACM, 2013, pp. 695–704.

[71] Hannes Uppman, The Complexity of Three-Element Min-Sol and Conservative Min-Cost-
Hom, in Proceedings of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP’13), vol. 7965 of Lecture Notes in Computer Science, Springer, 2013,
pp. 804–815.

[72] Magnus Wahlström, Half-integrality, LP-branching and FPT algorithms, in Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14), SIAM, 2014,
pp. 1762–1781.

[73] M. Wainwright, T. Jaakkola, and A. Willsky, MAP estimation via agreement on trees:
message passing and linear programming, IEEE Transactions on Information Theory, 51
(2005), pp. 3697–3717.

[74] Martin J. Wainwright and Michael I. Jordan, Graphical models, exponential families, and
variational inference, Foundations and Trends in Machine Learning, 1 (2008), pp. 1–305.

[75] Tomáš Werner, A Linear Programming Approach to Max-Sum Problem: A Review, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), pp. 1165–1179.

34

[76] Stanislav Živný, The complexity of valued constraint satisfaction problems, Cognitive Tech-
nologies, Springer, 2012.

[77] Stanislav Živný, David A. Cohen, and Peter G. Jeavons, The Expressive Power of Binary
Submodular Functions, Discrete Applied Mathematics, 157 (2009), pp. 3347–3358.

Appendix A. STP Multimorphisms Imply Submodularity.
In this section, we consider symmetric tournament pair (STP) multimorphisms [11]

mentioned in Section 3.2.
Definition 4. (a) A pair of operations 〈u,t〉 with u,t : D2 → D is called a

symmetric tournament pair (STP) if

a u b = b u a, a t b = b t a ∀a, b ∈ D (commutativity) (A.1a)

{a u b, a t b} = {a, b} ∀a, b ∈ D (conservativity) (A.1b)

(b) Pair 〈u,t〉 is called a submodularity operation if there exists a total order on D
for which a u b = min{a, b}, a t b = max{a, b} for all a, b ∈ D.
(c) Language Γ admits 〈u,t〉 (or 〈u,t〉 is a multimorphism of Γ) if every function
f ∈ Γ of arity n satisfies

f(x u y) + f(x t y) ≤ f(x) + f(y) ∀x, y ∈ Dn

It has been shown in [11] that if Γ admits an STP multimorphism then VCSP(Γ) can
be solved in polynomial time. STP multimorphisms also appeared in the dichotomy
result of [50]:

Theorem 20. Suppose a finite-valued language Γ is conservative, i.e. it contains
all possible unary cost functions u : D → {0, 1}. Then Γ either admits an STP
multimorphism or it is NP-hard.

In this paper we prove the following.
Theorem 21. If a finite-valued language Γ admits an STP multimorphism then

it also admits a submodularity multimorphism.
This fact is already known; in particular, footnote 2 in [50] mentions that this

result is implicitly contained in [11], and sketches a proof strategy. However, to our
knowledge a formal proof has never appeared in the literature. This paper fills this
gap. Our proof is different from the one suggested in [50], and inspired some of the
proof techniques used in the main part of this paper.

A.1. Proof of Theorem 21. Consider a directed graph G = (D,E). We say
that G is a tournament if for each pair of distinct labels a, b ∈ D exactly one of the
edges (a, b), (b, a) belongs to E. We define a one-to-one correspondence between STP
multimorphisms 〈u,t〉 and tournaments G = (D,E) as follows:

(a, b) ∈ E ⇔ (a u b, a t b) = (a, b) ∀a, b ∈ D, a 6= b

It can be seen that 〈u,t〉 is a submodularity multimorphism if and only if the
corresponding graph G is acyclic.

Lemma 22. Suppose a finite-valued language Γ admits an STP multimorphism
〈u,t〉 corresponding to a tournament G = (D,E), and suppose that G has a 3-cycle:
(a, b), (b, c), (c, a) ∈ E. Let Ĝ be the graph obtained from G by reversing the orientation
of edge (a, b), and let 〈û, t̂〉 be the corresponding STP multimorphism. Then Γ admits
〈û, t̂〉.

Proof. Let 〈∧,∨〉 be the following multimorphism:

(x ∧ y, x ∨ y) =

{
(x, y) if (x, y) ∈ {(a, b), (b, a)}
(x u y, x t y) if (x, y) /∈ {(a, b), (b, a)}

35

First, we will prove that Γ admits 〈∧,∨〉 (step 1), and then prove that Γ admits 〈û, t̂〉
(step 2). We fix below function f ∈ Γ of arity n and labellings x, y ∈ Dn.

Step 1 Let us define labellings x′, y′ ∈ Dn via

(x′v, y
′
v) =

{
(xv, xv u yv) if (xv, yv) 6= (b, a)

(c, c) if (xv, yv) = (b, a)
∀v ∈ [n]

It can be checked that the following identities hold:

x′ u y = y′ x t y′ = x′ (A.2a)

x u y′ = x ∧ y x′ t y = x ∨ y (A.2b)

Let us write multimorphism inequalities for pairs (x′, y) and (x, y′):

f(x′ u y) + f(x′ t y) ≤ f(x′) + f(y) (A.3a)

f(x u y′) + f(x t y′) ≤ f(x) + f(y′) (A.3b)

Summing (A.3a) and (A.3b), cancelling terms using (A.2a), and then substituting
expressions using (A.2b) gives

f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) (A.4)

Step 2 Let us define labellings x′, y′ ∈ Dn via

(x′v, y
′
v) =

{
(xv ∧ yv, yv) if (xv, yv) 6= (a, b)

(c, c) if (xv, yv) = (a, b)
∀v ∈ [n]

It can be checked that the following identities hold:

x′ ∨ y = y′ x ∧ y′ = x′ (A.5a)

x ∨ y′ = x t̂ y x′ ∧ y = x û y (A.5b)

Let us write multimorphism inequalities for pairs (x′, y) and (x, y′):

f(x′ ∧ y) + f(x′ ∨ y) ≤ f(x′) + f(y) (A.6a)

f(x ∧ y′) + f(x ∨ y′) ≤ f(x) + f(y′) (A.6b)

Summing (A.6a) and (A.6b), cancelling terms using (A.5a), and then substituting
expressions using (A.5b) gives

f(x û y) + f(x t̂ y) ≤ f(x) + f(y) (A.7)

We call the operation of reversing the orientation of edge (a, b) ∈ E in a graph
G = (D,E) a valid flip if (a, b) belongs to a 3-cycle. To prove Theorem 21, it thus
suffices to show the following:

• For any tournament G there exists a sequence of valid flips that makes it
acyclic.

36

Such sequence can be constructed as follows: (1) start with a subset B ⊆ D with
|B| = 3; (2) perform valid flips in G[B] to make it acyclic, where G[B] = (B,E[B])
is the subgraph of G induced by B; (3) if B 6= D, add a vertex c ∈ D −B to B and
repeat step 2. The lemma below shows how to implement step 2.

Lemma 23. Suppose that G = (B′, E) is a tournament, B′ = B ∪ {c} with c /∈ B
and subgraph G[B] is acyclic. Then there exists a sequence of valid flips that makes G
acyclic.

Proof. Suppose that G has a cycle C, then it must pass through c (since G[B] is
acyclic): C = . . .→b→c→a→ Since there is a path from a to b in G[B], we must
have (a, b) ∈ E (again, due to acyclicity of G[B]). Thus, c→a→b→c is a 3-cycle in
G.

Let us repeat the following procedure while possible: pick such cycle and flip edge
(c, a) to (a, c). This operation decreases the number of edges in G coming out of c.
Therefore, it must terminate after a finite number of steps and yield an acyclic graph
G.

37

