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Abstract
We study the complexity of valued constraint satisfaction problems
(VCSP). A problem from VCSP is characterised by a constraint
language, a fixed set of cost functions over a finite domain. An
instance of the problem is specified by a sum of cost functions from
the language and the goal is to minimise the sum. Under the unique
games conjecture, the approximability of finite-valued VCSPs is
well-understood, see Raghavendra [FOCS’08]. However, there is
no characterisation of finite-valued VCSPs, let alone general-valued
VCSPs, that can be solved exactly in polynomial time, thus giving
insights from a combinatorial optimisation perspective.

We consider the case of languages containing all possible
unary cost functions. In the case of languages consisting of only
{0,∞}-valued cost functions (i.e. relations), such languages have
been called conservative and studied by Bulatov [LICS’03] and
recently by Barto [LICS’11]. Since we study valued languages, we
call a language conservative if it contains all finite-valued unary
cost functions. The computational complexity of conservative
valued languages has been studied by Cohen et al. [AIJ’06] for
languages over Boolean domains, by Deineko et al. [JACM’08]
for {0, 1}-valued languages (a.k.a Max-CSP), and by Takhanov
[STACS’10] for {0,∞}-valued languages containing all finite-
valued unary cost functions (a.k.a. Min-Cost-Hom).

We prove a Schaefer-like dichotomy theorem for conservative
valued languages: if all cost functions in the language satisfy a
certain condition (specified by a complementary combination of
STP and MJN multimorphisms), then any instance can be solved
in polynomial time (via a new algorithm developed in this paper),
otherwise the language is NP-hard. This is the first complete
complexity classification of general-valued constraint languages
over non-Boolean domains. It is a common phenomenon that
complexity classifications of problems over non-Boolean domains
is significantly harder than the Boolean case. The polynomial-time
algorithm we present for the tractable cases is a generalisation of
the submodular minimisation problem and a result of Cohen et al.
[TCS’08].

Our results generalise previous results by Takhanov
[STACS’10] and (a subset of results) by Cohen et al. [AIJ’06] and
Deineko et al. [JACM’08]. Moreover, our results do not rely on
any computer-assisted search as in Deineko et al. [JACM’08], and
provide a powerful tool for proving hardness of finite-valued and
general-valued languages.
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†Stanislav Živný is supported by a Junior Research Fellowship at

University College, Oxford. Part of this work was done while the second
author was visiting Microsoft Research Cambridge.

1 Introduction
The constraint satisfaction problem is a central generic prob-
lem in computer science. It provides a common framework
for many theoretical problems as well as for many real-life
applications, see [27] for a nice survey. An instance of the
constraint satisfaction problem (CSP) consists of a collec-
tion of variables which must be assigned values subject to
specified constraints. CSP is equivalent to the problem of
evaluating conjunctive queries on databases [33], and to the
homomorphism problem for relational structures [23].

An important line of research on the CSP is to iden-
tify all tractable cases; that is, cases that are recognisable
and solvable in polynomial time. Most of this work has
been focused on one of the two general approaches: either
identifying structural properties of the way constraints inter-
act which ensure tractability no matter what forms of con-
straints are imposed [21], or else identifying forms of con-
straints which are sufficiently restrictive to ensure tractability
no matter how they are combined [10, 23].

The first approach has been used to characterise all
tractable cases of bounded-arity CSPs: the only class
of structures which ensures tractability (subject to a cer-
tain complexity theory assumption, namely FPT 6= W[1])
are structures of bounded tree-width modulo homomor-
phic equivalence [19, 25, 26, 36]; and recently also for
unbounded-arity CSPs [37]. The second approach has led to
identifying certain algebraic properties known as polymor-
phisms [29] which are necessary for a set of constraint types
to ensure tractability. A set of constraint types which ensures
tractability is called a tractable constraint language.

Schaefer in his seminal work [41] gave a complete com-
plexity classification of Boolean constraint languages. The
algebraic approach based on polymorphisms [30] has been
so far the most successful tool in generalising Schaefer’s re-
sult to languages over a 3-element domain [9], languages
with all unary relations [11, 4], languages comprised of a
single binary relation without sources and sinks [3] (see
also [6]), and languages comprised of a single binary rela-
tion that is a special triad [2]. The algebraic approach has
also been essential in characterising the power of local con-
sistency [5] and the “few subpowers property” [7], the two



main tools known for solving tractable CSPs. A major open
question in this line of research is the Dichotomy Conjec-
ture of Feder and Vardi, which states that every constraint
language is either tractable or NP-hard [23]. We remark
that there are other approaches to the dichotomy conjecture;
see, for instance, [27] for a nice survey of Hell and Nešetřil,
and [34] for a connection between the Dichotomy Conjecture
and probabilistically checkable proofs.

Since in practice many constraint satisfaction problems
are over-constrained, and hence have no solution, or are
under-constrained, and hence have many solutions, soft con-
straint satisfaction problems have been studied [20]. In an
instance of the soft CSP, every constraint is associated with
a cost function (rather than a relation as in the CSP) which
represents preferences among different partial assignments,
and the goal is to find the best assignment. Several very gen-
eral soft CSP frameworks have been proposed in the litera-
ture [42, 8]. In this paper we focus on one of the very gen-
eral frameworks, the valued constraint satisfaction problem
(VCSP) [42]. Throughout the paper, we use the term con-
strain language (or just language) for a set of cost functions
over a finite domain. If all cost functions from a given lan-
guage Γ are {0,∞}-valued (i.e. relations), we call Γ a crisp
language. (If necessary, to stress the fact that Γ is a lan-
guage, but not a crisp language, we call Γ a general-valued
language.)

Similarly to the CSP, an important line of research on the
VCSP is to identify tractable cases which are recognisable in
polynomial time. Is is well known that structural reasons
for tractability generalise to the VCSP [20]. In the case of
language restrictions, only a few conditions are known to
guarantee tractability of a given language [14, 13].

Related work The problem of characterising the com-
plexity of different languages has received significant atten-
tion in the literature. For some classes researchers have
established a Schaefer-like dichotomy theorem of the fol-
lowing form: if language Γ admits certain polymorphisms
or multimorphisms then it is tractable, otherwise it is NP-
hard. Some of these classes are as follows: Boolean lan-
guages, i.e. languages with a 2-element domain (Cohen et
al. [14]); crisp languages including all unary relations (Bu-
latov [11] and recently Barto [4]); crisp languages with a
3-element domain (Bulatov [9]); {0, 1}-valued languages in-
cluding all unary cost functions (Deineko et al. [22]); crisp
languages including additionally all finite-valued unary cost
functions (Takhanov [43]); crisp languages including addi-
tionally a certain subset of finite-valued unary cost functions
(Takhanov [44]).

Our proof exploits the results of Takhanov [43], who
showed the existence of a majority polymorphism as a nec-
essary condition for tractability of crisp languages including
additionally all finite-valued unary cost functions. Other re-
lated work includes the work of Creignou et al. who studied

various generalisations of the CSP to optimisation problems
over Boolean domains [17], see also [18, 32]. Raghaven-
dra [39] and Raghavendra and Steurer [40] have shown how
to optimally approximate any finite-valued VCSP.

Contributions This paper focuses on valued languages
containing all finite-valued unary cost functions; we call
such languages conservative. Our main result is a dichotomy
theorem for all conservative languages: if a conservative
language Γ admits a complementary combination of STP
(symmetric tournament pair) and MJN (majority-majority-
minority) multimorphisms, then it is tractable, otherwise Γ
is NP-hard. This is the first complete complexity classifica-
tion of general-valued languages over non-Boolean domains,
generalising previously obtained results in [14, 22, 43] as fol-
lows:

• Cohen et al. proved a dichotomy for arbitrary Boolean
languages (|D| = 2). We generalise it to arbitrary do-
mains (|D| ≥ 2), although only for conservative lan-
guages.

• Deineko et al. [22] and Takhanov [43] proved a dichotomy
for the following languages, respectively:

– {0, 1}-valued languages containing additionally all
unary cost functions;

– {0,∞}-valued languages containing additionally all
unary cost functions.

In both of these case the languages are conservative, so
these classifications are special cases of our result. Note,
however, that Deineko et al. additionally give a dichotomy
with respect to approximability (PO vs. APX-hard), even
when the number of occurrences of variables in instances
is bounded; this part of [22] does not follow from our
classification.

Moreover, our results provide a new powerful tool and do not
rely on a computer-assisted search as in [22]. Building on
techniques from this paper, Jonsson et al. [31] have recently
shown that the same approach can be also used for certain
non-conservative languages.

Since the complexity of Boolean conservative languages
is known, we start, similarly to Bulatov and Takhanov [11,
43], by exploring the interactions between different 2-
element subdomains. Given a conservative language Γ, we
will investigate properties of a certain graph GΓ associated
with the language and cost functions expressible over Γ. We
link the complexity of Γ to certain properties of the graph
GΓ.

First, we show that ifGΓ does not satisfy certain proper-
ties, then Γ is intractable. Second, using GΓ, we construct a
(partial) STP multimorphism and a (partial) MJN multimor-
phism. Finally, we show that any language which admits



a complementary combination of STP and MJN multimor-
phisms is tractable, thus generalising a tractable class of Co-
hen et al. [13], which in turn is a generalisation of the sub-
modular minimisation problem. Thus we obtain a dichotomy
theorem. The general-valued case is much more involved
than the finite-valued case, and requires different techniques
compared to previous results.

Given a finite language Γ, the graph GΓ is finite as well,
but depends on the expressive power of Γ (see Section 2
for precise definitions), which is infinite. In order to test
whether Γ is tractable, we do not need to construct the graph
GΓ as it follows from our result that we just need to test
for the existence of a complementary combination of two
multimorphisms, which can be established in polynomial
time.

Our results are formulated using the terminology of
valued constraint satisfaction problems, but they apply to
various other optimisation frameworks that are equivalent to
valued constraint satisfaction problems such as Gibbs energy
minimisation, Markov Random Fields, Min-Sum problems,
and other models [35, 46].

Organisation of the paper The rest of the paper is
organised as follows. In Section 2, we define valued
constraint satisfaction problems (VCSPs), conservative lan-
guages, multimorphisms and other necessary definitions
needed throughout the paper. We state our results in Sec-
tion 3. Finally, Section 4 gives an overview of the omitted
proofs, which will be given in full detail in the full version
of this paper.

2 Background and notation
We denote by Q+ the set of all non-negative rational num-
bers. We define Q+ = Q+∪{∞} with the standard addition
operation extended so that for all a ∈ Q+, a +∞ = ∞.
Members of Q+ are called costs. Throughout the paper, we
denote by D any fixed finite set, called a domain. Elements
of D are called domain values or labels.

A function f from Dm to Q+ will be called a cost
function onD of aritym. If the range of f lies entirely within
Q+, then f is called a finite-valued cost function. If the range
of f is {0,∞}, then f is called a crisp cost function. If the
range of a cost function f includes non-zero finite costs and
infinity, we emphasise this fact by calling f a general-valued
cost function. Let f : Dm → Q+ be an m-ary cost function
f . We denote domf = {x ∈ Dm | f(x) < ∞} to be
the effective domain of f . The argument of f is called an
assignment or a labelling. Functions f of arity m = 2 are
called binary.

A language is a set of cost functions with the same do-
main D. Language Γ is called finite-valued (crisp, general-
valued respectively) if all cost functions in Γ are finite-
valued (crisp, general-valued respectively). A language Γ
is Boolean if |D| = 2.

DEFINITION 2.1. An instance I of the valued constraint
satisfaction problem (VCSP) is a function DV → Q+ given
by

CostI(x) =
∑
t∈T

ft

(
xi(t,1), . . . , xi(t,mt)

)
It is specified by a finite set of nodes V , finite set of terms
(also known as constraints) T , cost functions ft : Dmt →
Q+ or arity mt and indices i(t, k) ∈ V for t ∈ T , k =
1, . . . ,mt. A solution to I is an assignment x ∈ DV with
the minimum cost.

We denote by VCSP(Γ) the class of all VCSP instances
whose terms ft belong to Γ. A finite language Γ is called
tractable if VCSP(Γ) can be solved in polynomial time, and
intractable if VCSP(Γ) is NP-hard. An infinite language
Γ is tractable if every finite subset Γ′ ⊆ Γ is tractable, and
intractable if there is a finite subset Γ′ ⊆ Γ that is intractable.

The idea behind conservative languages is to contain all
possible unary cost functions: Bulatov has called a crisp lan-
guage Γ conservative if Γ contains all unary relations [11].
We are interested in valued languages containing all possi-
ble unary cost functions and hence define conservative lan-
guages as follows:

DEFINITION 2.2. Language Γ is called conservative
if Γ contains all {0, 1}-valued unary cost functions
u : D → {0, 1}.

Such languages have been studied by Deineko et al. [22]
and Takhanov [43]. Note, we could have defined Γ to
be conservative if it contains all possible general-valued
unary cost functions u : D → Q+. However, the weaker
definition 2.2 will be sufficient for our purposes: as shown in
the full version of this paper, adding all possible unary cost
functions u : D → Q+ to a conservative language Γ does not
change the complexity of Γ.

DEFINITION 2.3. A mapping F : Dk → D, k ≥ 1 is called
a polymorphism of a cost function f : Dm → Q+ if

F (x1, . . . ,xk) ∈ domf ∀x1, . . . ,xk ∈ domf

where F is applied component-wise. F is a polymorphism of
a language Γ if F is a polymorphism of every cost function
in Γ.

Multimorphisms [14] are generalisations of polymor-
phisms. To make the paper easier to read, we only define
binary and ternary multimorphisms as we will not need mul-
timorphisms of higher arities.

DEFINITION 2.4. Let 〈u,t〉 be a pair of operations, where
u,t : D × D → D, and let 〈F1, F2, F3〉 be a triple of
operations, where Fi : D ×D ×D → D, 1 ≤ i ≤ 3.



• Pair 〈u,t〉 is called a (binary) multimorphism of cost
function f : Dm → Q+ if

(2.1) f(xuy)+f(xty)≤f(x)+f(y) ∀x,y∈domf

where operations u,t are applied component-wise. 〈u,t〉
is a multimorphism of language Γ if 〈u,t〉 is a multimor-
phism of every f from Γ.

• Triple 〈F1, F2, F3〉 is called a (ternary) multimorphism of
cost function f : Dm → Q+ if

(2.2) f(F1(x,y, z)) + f(F2(x,y, z)) + f(F3(x,y, z))

≤ f(x) + f(y) + f(z) ∀x,y, z ∈ domf

where operations F1, F2, F3 are applied component-
wise. 〈F1, F2, F3〉 is a multimorphism of language Γ if
〈F1, F2, F3〉 is a multimorphism of every f from Γ.

• Operation F : Dk → D is called conservative if
F (x1, . . . , kk) ∈ {x1, . . . , xk} for all x1, . . . , xk ∈ D.

• Pair 〈u,t〉 is called conservative if {{a u b, a t b}} =
{{a, b}} for all a, b ∈ D, where {{. . .}} denotes a multiset,
i.e. in the case of repetitions elements’ multiplicities are
taken into account. Similarly, triple 〈F1, F2, F3〉 is called
conservative if {{F1(a, b, c), F2(a, b, c), F3(a, b, c)}} =
{{a, b, c}} for all a, b, c ∈ D. In other words, apply-
ing 〈F1, F2, F3〉 to (a, b, c) should give a permutation of
(a, b, c).

• Pair 〈u,t〉 is called a symmetric tournament pair (STP)
if it is conservative and both operations u,t are commuta-
tive, i.e. a u b = b u a and a t b = b t a for all a, b ∈ D.

• An operation Mj : D3 → D is called a majority operation
if for every tuple (a, b, c) ∈ D3 with |{a, b, c}| = 2
operation Mj returns the unique majority element among
a, b, c (that occurs twice). An operation Mn : D3 → D
is called a minority operation if for every tuple (a, b, c) ∈
D3 with |{a, b, c}| = 2 operation Mn returns the unique
minority element among a, b, c (that occurs once).

• Triple 〈Mj1,Mj2,Mn3〉 is called an MJN if it is conserva-
tive, Mj1,Mj2 are (possibly different) majority operations,
and Mn3 is a minority operation.

We say that 〈u,t〉 is a multimorphism of language Γ, or
Γ admits 〈u,t〉, if all cost functions f ∈ Γ satisfy (2.1). Us-
ing a polynomial-time algorithm for minimising submodular
functions, Cohen et al. have obtained the following result:

THEOREM 2.1. ([13]) If a language Γ admits an STP, then
Γ is tractable.

The existence of an MJN multimorphism also leads to
tractability. This was shown for a specific choice of an MJN
by Cohen et al. [14].

Our tractability result, presented in the next section, will
include both above-mentioned tractable classes as special
cases.
Expressibility Finally, we define the important notion
of expressibility, which captures the idea of introducing
auxiliary variables in a VCSP instance and the possibility
of minimising over these auxiliary variables. (For crisp
languages, this is equivalent to implementation [18].)

DEFINITION 2.5. A cost function f : Dm → Q+ is
expressible over a language Γ if there exists an instance
I ∈ VCSP(Γ) with the set of nodes V = {1, . . . ,m,m +
1, . . . ,m+ k} where k ≥ 0 such that

f(x) = min
y∈Dk

CostI(x,y) ∀x ∈ Dm

We define Γ∗ to be the expressive power of Γ; that is, the set
of all cost functions f such that f is expressible over Γ.

The importance of expressibility is in the following
result:

THEOREM 2.2. ([14]) For any language Γ, Γ is tractable
iff Γ∗ is tractable.

It is easy to observe and well known that any polymor-
phism (multimorphism) of Γ is also a polymorphism (multi-
morphism) of Γ∗ [14].

3 Our results
In this section, we relate the complexity of a conservative
language Γ to properties of a certain graph GΓ associated
with Γ.

Given a conservative language Γ, let GΓ = (P,E) be
the graph with the set of nodes P = {(a, b)|a, b ∈ D, a 6= b}
and the set of edges E defined as follows: there is an edge
between (a, b) ∈ P and (a′, b′) ∈ P iff there exists binary
cost function f ∈ Γ∗ such that

(3.3) f(a, a′) + f(b, b′) > f(a, b′) + f(b, a′) ,

(a, b′), (b, a′) ∈ domf

Note that GΓ may have self-loops. For node p ∈ P
we denote the self-loop by {p, p}. We say that edge
{(a, b), (a′, b′)} ∈ E is soft if there exists binary f ∈ Γ∗ sat-
isfying (3.3) such that at least one of the assignments (a, a′),
(b, b′) is in domf . Edges in E that are not soft are called
hard. For node p = (a, b) ∈ P we denote p̄ = (b, a) ∈ P .
Note, a somewhat similar graph (but not the same) was used



by Takhanov [43] for languages Γ containing crisp functions
and finite unary cost functions.1

We denote M ⊆ P to be the set of vertices (a, b) ∈ P
without self-loops, and M = P −M to be the complement
of M . It follows from the definition that set M is symmetric,
i.e. (a, b) ∈ M iff (b, a) ∈ M . We will write {a, b} ∈ M
to indicate that (a, b) ∈ M ; this is consistent due to the
symmetry of M . Similarly, we will write {a, b} ∈ M if
(a, b) ∈ M , and {a, b} ∈ P if (a, b) ∈ P , i.e. a, b ∈ D and
a 6= b.

DEFINITION 3.1. Let 〈u,t〉 and 〈Mj1,Mj2,Mn3〉 be binary
and ternary operations respectively.

• Pair 〈u,t〉 is an STP on M if 〈u,t〉 is conservative on
P ∪ {{a} | a ∈ D} and commutative on M .

• Triple 〈Mj1,Mj2,Mn3〉 is an MJN on M if it is conser-
vative and for each triple (a, b, c) ∈ D3 with {a, b, c} =
{x, y} ∈M operations Mj1(a, b, c), Mj2(a, b, c) return the
unique majority element among a, b, c (that occurs twice)
and Mn3(a, b, c) returns the remaining minority element.

Our main results are given by the following three theorems.

THEOREM 3.1. Let Γ be a conservative language.

(a) If GΓ has a soft self-loop then Γ is NP-hard.

(b) If GΓ does not have soft self-loops then Γ admits a pair
〈t,u〉 which is an STP on M and satisfies additionally
a u b = a, a t b = b for {a, b} ∈M .

THEOREM 3.2. Let Γ be a conservative language. If Γ does
not admit an MJN on M then it is NP-hard.

THEOREM 3.3. Suppose language Γ admits an STP on M
and an MJN on M , for some choice of symmetric M ⊆ P .
Then Γ is tractable.

Theorems 3.1-3.3 give the dichotomy result for conser-
vative languages:

COROLLARY 3.1. If a conservative language Γ admits an
STP on M and an MJN on M for some symmetric M ⊆ P
then Γ is tractable. Otherwise Γ is NP-hard.

Proof. The first part follows from Theorem 3.3; let us
show the second part. Suppose that the precondition of the
corollary does not hold, then one of the following cases must
be true (we assume below that M is the set of nodes without
self-loops in GΓ):

1Roughly speaking, the graph structure in [43] was defined via a “min”
polymorphism rather than a 〈min, max〉 multimorphism, so the property
{p, q} ∈ E ⇒ {p̄, q̄} ∈ E (that we prove for our graph in the next section)
might not hold in Takhanov’s case. Also, in [43] edges were not classified
as being soft or hard.

• GΓ has a soft self-loop. Then Γ is NP-hard by Theo-
rem 3.1(a).

• GΓ does not have soft self-loops and Γ does not admit an
STP on M . This is a contradiction by Theorem 3.1(b).

• GΓ does not have soft self-loops and Γ does not admit an
MJN on M . Then Γ is NP-hard by Theorem 3.2.

In the finite-valued case, we get a simpler tractability
criterion:

COROLLARY 3.2. If a conservative finite-valued language
Γ admits an STP then Γ is tractable. Otherwise Γ is NP-
hard. 2

Proof. Consider the graph GΓ associated with Γ. If GΓ

contains a soft self-loop, then, by Theorem 3.1(a), Γ is NP-
hard. Suppose thatGΓ does not contain soft self-loops. As Γ
is finite-valued, GΓ cannot have hard self-loops. Therefore,
M is empty and M = P . By Theorem 3.1(b), Γ admits an
STP. The tractability then follows from Theorem 3.3.

4 Overview of the proofs
In this section we sketch proofs of our results. Complete
proofs of Theorems 3.1-3.3 will be given in the full version
of this paper.

First, we show that we can strengthen the definition of
conservative languages without loss of generality. Let Γ̄ be
the language obtained from Γ by adding all possible general-
valued unary cost functions u : D → Q+. Note, Γ̄ may
be different from Γ since Γ is only guaranteed to have all
possible {0, 1}-valued unary cost functions.

PROPOSITION 4.1. (a) Graphs GΓ and GΓ̄ are the same: if
{p, q} is a soft (hard) edge in GΓ then it is also a soft (hard)
edge in GΓ̄, and vice versa. (b) If Γ̄ is NP-hard then so is Γ.

This shows that it suffices to prove Theorems 3.1 and 3.2 for
language Γ̄. Indeed, consider Theorem 3.1 for a conserva-
tive language G. If GΓ has a soft self-loop then by Propo-
sition 4.1(a) so does GΓ̄. Theorem 3.1(a) for language Γ̄
would imply that Γ̄ is NP-hard, and therefore Γ is also NP-
hard by Proposition 4.1(b). If GΓ does not have soft self-
loops then neither does GΓ̄. Theorem 3.1(b) for language Γ̄
would imply that Γ̄ admits the appropriate multimorphism

2It can be shown that if a finite-valued language admits an STP mul-
timorphism, it also admits a submodularity multimorphism. This result is
implicitly contained in [13]. Namely, after reducing the domains as in [13,
Theorem 8.3], the STP might contain cycles. [13, Lemma 7.15] tells us that
on cycles we have, in the finite-valued case, only unary cost functions. It
follows that the cost functions admitting the STP must be submodular w.r.t.
some total order [16].

This simplifies the tractability criterion in the finite-valued case (though
we do not exploit this fact anywhere in the paper).



〈t,u〉. Since Γ ⊆ Γ̄, 〈t,u〉 is also a multimorphism of Γ.
A similar argumentation holds for Theorem 3.2.

We can therefore make the following assumption with-
out loss of generality when proving Theorems 3.1 and 3.2:

Assumption 1. Γ contains all general-valued unary cost
functions u : D → Q+.

4.1 Sketch of the proof of Theorem 3.1 Using unary cost
functions, Theorem 3.1(a) can be proved via a reduction
from the Max-SAT problem with XOR clauses and the
Independent Set problem. We focus on Theorem 3.1(b).
Graph GΓ and its properties play a crucial role in the proofs.

In the lemma below, a path of length k is a se-
quence of edges {p0, p1}, {p1, p2}, . . . , {pk−1, pk}, where
{pi−1, pi} ∈ E. Note that we allow edge repetitions. A path
is even iff its length is even. A path is a cycle if p0 = pk.
If X ⊆ P then (X,E[X]) denotes the subgraph of (P,E)
induced by X .

LEMMA 4.1. Graph GΓ = (P,E) satisfies the following
properties:

(a) {p, q} ∈ E implies {p̄, q̄} ∈ E and vice versa. The two
edges are either both soft or both hard.

(b) Suppose that {p, q} ∈ E and {q, r} ∈ E, then {p, r̄} ∈
E. If at least one of the first two edges is soft then the
third edge is also soft.

(c) For each p ∈ P , nodes p and p̄ are either both in M or
both in M .

(d) There are no edges from M to M .

(e) Graph (M,E[M ]) does not have odd cycles.

(f) If node p is not isolated (i.e. it has at least one incident
edge {p, q} ∈ E) then {p, p̄} ∈ E.

(g) Nodes p ∈M do not have incident soft edges.

We now construct a pair of operations 〈u,t〉 for Γ that
behaves as an STP onM and as a multi-projection (returning
its two arguments in the same order) on M .

LEMMA 4.2. There exists an assignment σ : M →
{−1,+1} such that (i) σ(p) = −σ(q) for all edges {p, q} ∈
E, and (ii) σ(p) = −σ(p̄) for all p ∈M .

Proof. By Lemma 4.1(e) graph (M,E[M ]) does not have
odd cycles. Therefore, by Harary’s Theorem, graph
(M,E[M ]) is bipartite and there exists an assignment σ :
M → {−1,+1} that satisfies property (i). Let us modify
this assignment as follows: for each isolated node p ∈ M
(i.e. node without incident edges) set σ(p), σ(p̄) so that
σ(p) = −σ(p̄) ∈ {−1,+1}. (Note, if p is isolated then by

Lemma 4.1(a) so is p̄). Clearly, property (i) still holds. Prop-
erty (ii) holds for each node p ∈ M as well: if p is isolated
then (ii) holds by construction, otherwise by Lemma 4.1(f)
there exists edge {p, p̄} ∈ E, and so (ii) follows from prop-
erty (i).

Given assignment σ constructed in Lemma 4.2, we now
define operations u,t : D2 → D as follows:

• a u a = a t a = a for a ∈ D.

• If (a, b) ∈ M then a u b and a t b are the unique
elements of D satisfying {a u b, a t b} = {a, b} and
σ(a u b, a t b) = +1.

• If (a, b) ∈M then a u b = a and a t b = b.

LEMMA 4.3. For any binary cost function f ∈ Γ∗ and any
x,y ∈ domf there holds

(4.4) f(x u y) + f(x t y) ≤ f(x) + f(y)

In order to proceed, we introduce the following notation.
Given a cost function f of arity m, we denote by V the
set of variables corresponding to the arguments of f , with
|V | = m. For two assignments x,y ∈ Dm we denote
∆(x,y) = {i ∈ V | xi 6= yi} to be the set of variables
on which x and y differ.

Having Lemma 4.3 as a base case and using induction
on |V |, we can prove the following

LEMMA 4.4. Condition (4.4) holds for any cost function
f ∈ Γ∗ and assignments x,y ∈ domf with |∆(x,y)| ≤ 2.

Having Lemma 4.4 as a base case and using induction
on |∆(x,y)|, we can prove the following

LEMMA 4.5. Condition (4.4) holds for any cost function
f ∈ Γ∗ and any x,y ∈ domf .

The previous lemma finishes the proof of Theo-
rem 3.1(b).

We remark that the idea behind the previous three lem-
mas comes from the proof that a k-ary finite-valued cost
function f is submodular iff every binary projection of f is
submodular [45]. However, this is known to not hold for
general-valued cost functions (i.e. cost functions taking on
both finite and infinite costs) [12], and hence our proofs are
more elaborate.

4.2 Sketch of the proof of Theorem 3.2 First, we intro-
duce the following simplifying assumptions:

Assumption 2. Γ admits a majority polymorphism.



Assumption 3. GΓ does not have soft self-loops.

(If these assumptions do not hold then it can be shown that
Γ is NP-hard, using results of Takhanov [43] and Theo-
rem 3.1(a)). Our goal is then to construct an MJN multi-
morphism on M under assumptions 1-3.

In order to do this, we introduce a function µ which
maps every set {a, b, c} ⊆ D with |{a, b, c}| = 3 to a
subset of {a, b, c}. This subset is defined as follows: c ∈
µ({a, b, c}) iff there exists binary function f ∈ Γ∗ and a pair
(a′, b′) ∈M such that

domf = {(a, a′), (b, a′), (c, b′)}

LEMMA 4.6. Set µ({a, b, c}) contains at most one label.
Furthermore, if µ({a, b, c}) = {c} then (a, c) ∈ M and
(b, c) ∈M .

For convenience, we define µ({a, b, c}) = ∅ if
|{a, b, c}| ≤ 2. We are now ready to construct operation
MJN = 〈Mj1,Mj2,Mn3〉. Given a tuple (a, b, c) ∈ D3, we
define

MJN(a, b, c) =
(x, x, y) if {{a, b, c}}={{x, x, y}}, {x, y} ∈M(4.5a)
(b u c, b t c, a) if µ({a, b, c}) = {a}(4.5b)
(a u c, a t c, b) if µ({a, b, c}) = {b}(4.5c)
(a u b, a t b, c) in any other case(4.5d)

where {{. . .}} denotes a multiset, i.e. elements’ multiplicities
are taken into account.

To prove Theorem 3.2, we need to prove for every
f ∈ Γ∗ and for every x,y, z ∈ domf ,

(4.6) f(Mj1(x,y, z))+f(Mj2(x,y, z))+f(Mn3(x,y, z))

≤ f(x) + f(y) + f(z)

We say that an instance (f,x,y, z) is valid if f ∈
Γ∗ and x,y, z ∈ domf . It is satisfiable if (4.6) holds,
and unsatisfiable otherwise. For a triple x,y, z ∈ DV

denote δ(x,y, z) =
∑

i∈V |{xi, yi, zi}|, ∆(x,y, z) =
{i ∈ V | xi 6= yi} and ∆M (x,y, z) = {i ∈
∆(x,y, z) | {xi, yi, zi} = {a, b} ∈M}.

Suppose that an unsatisfiable instance exists. Let
(f,x,y, z) be a lowest unsatisfiable instance with respect to
the partial order � defined as the lexicographical order with
components

( δ(x,y, z),(4.7)
|∆(x,y, z)|,
|∆M (x,y, z)|,
|{i ∈ V | µ({xi, yi, zi}) = {xi}}| )

(the first component is more significant). We denote δmin =
δ(x,y, z). Thus, we can assume that all valid instances
(f,x′,y′, z′) with (x′,y′, z′) ≺ (x,y, z) (and in particular
with δ(x′,y′, z′) < δmin) are satisfiable, while the instance
(f,x,y, z) is unsatisfiable.

By analysing this minimal counter-example, we show
that none of the cases (4.5a)-(4.5c) are possible. The ar-
guments that we use are more complicated versions of the
induction arguments used for proving theorem 3.1; addition-
ally, for one of the cases we exploit the fact that f admits a
majority polymorphism.

We obtain that MJN(x,y, z) is defined via (4.5d) for all
nodes. But then inequality (4.6) follows from the fact that
〈u,t〉 is a multimorphism of f , contradicting to the choice
of (f,x,y, z). This proves Theorem 3.2.

4.3 Sketch of the proof of Theorem 3.3 In this sec-
tion we present an algorithm for minimising instances from
VCSP(Γ). The idea for the algorithm and some of the proof
techniques have been influenced by the techniques used by
Takhanov [43] for proving the absence of arithmetical dead-
locks in certain instances. However, the algorithm itself is
very different from Takhanov’s approach. (The latter does
not rely on submodular minimization algorithms; instead, it
performs a reduction to an optimization problem in a perfect
graph).

Let f : D → Q+ be the function to be minimised, V be
the set of its variables (which we will also call nodes), and
Di be the domain of variable i ∈ V with D = ×i∈V Di. In
the beginning all domains are the same (Di = D), but as the
algorithm progresses we will allow Di to become different
for different i ∈ V . As a consequence, operations u,t may
act differently on different components of vectors x,y ∈ D
We denote ui,ti : Di ×Di → Di to be the i-th operations
of 〈u,t〉. Similarly, we denote by Mj1i,Mj2i,Mn3i : Di ×
Di×Di → Di to be the i-th operations of 〈Mj1,Mj2,Mn3〉.

We denote by P the collection of sets P = (Pi)i∈V

where Pi = {{a, b} | a, b ∈ Di, a 6= b}. We denote
by M a collection of subsets M = (Mi)i∈V , Mi ⊆ Pi,
and M = (M i)i∈V , M i = Pi − Mi. We now extend
Definition 3.1 as follows.

DEFINITION 4.1. Let 〈u,t〉 and 〈Mj1,Mj2,Mn3〉 be col-
lections of binary and ternary operations respectively.

• Pair 〈u,t〉 is an STP on M if for all i ∈ V pair 〈ui,ti〉
is an STP on Mi.

• Triple 〈Mj1,Mj2,Mn3〉 is an MJN on M if for all i ∈ V
triple 〈Mj1i,Mj2i,Mn3i〉 is an MJN on M i.

We will assume without loss of generality that 〈ui,ti〉
is non-commutative on any {a, b} ∈ M i (if not, we can
simply add such {a, b} to Mi).

We are now ready to present the algorithm; it will
consist of three stages.



Stage 1: Decomposition into binary relations It can
be shown that the instance admits a majority polymorphism,
and hence every cost function f can be decomposed [1]
into unary relations ρi ⊆ Di, i ∈ Di and binary relations
ρij ⊆ Di ×Dj , i, j ∈ V , i 6= j such that

x ∈ domf ⇔

[xi ∈ ρi ∀i ∈ V ] and [(xi, xj) ∈ ρij ∀i, j ∈ V, i 6= j]

We will always assume that binary relations are symmetric,
i.e. (x, y) ∈ ρij ⇔ (y, x) ∈ ρji. We use the following
notation for relations:

• If ρij ∈ Di ×Dj , X ⊆ Di and Y ⊆ Dj then

ρij(X, ·) = {y | ∃x ∈ X s.t. (x, y) ∈ ρij}
ρij(·, Y ) = {x | ∃y ∈ Y s.t. (x, y) ∈ ρij}

If X = {x} and Y = {y} then these two sets will be
denoted as ρij(x, ·) and ρij(·, y) respectively.

In the first stage we establish strong 3-consistency using the
standard constraint-processing techniques [15] so that the
resulting relations satisfy arc-consistency:

{x | (∃y)(x, y) ∈ ρij} = ρi ∀ distinct i, j ∈ V

and path-consistency:

ρik(x, ·)∩ρjk(y, ·) 6= ∅ ∀ distinct i, j, k ∈ V, (x, y) ∈ ρij

It is known that in the presence of a majority polymorphism
strong 3-consistency is equivalent to global consistency [28];
that is domf is empty iff all ρi and ρij are empty. Using this
fact, it is not difficult to show that the strong 3-consistency
relations ρi, ρij are uniquely determined by f via

ρi = {xi | x ∈ domf} ρij = {(xi, xj) | x ∈ domf}

The second equation implies that any polymorphism of f is
also a polymorphism of ρij .

From now on we will assume thatDi = ρi for all i ∈ V .
This can be achieved by reducing sets Di if necessary. We
will also assume that all sets Di are non-empty.

Stage 2: Modifying M and 〈u,t〉 The second stage
of the algorithm works by iteratively growing sets Mi and
simultaneously modifying operations 〈ui,ti〉 so that (i)
〈ui,ti〉 is still a conservative pair which is commutative
on Mi and non-commutative on M i, and (ii) 〈u,t〉 is a
multimorphism of f . It stops when we get Mi = Pi for
all i ∈ V .

We now describe one iteration. First, we identify subset
U ⊆ V and subsets Ai, Bi ⊆ Di for each i ∈ U using the
following algorithm:

1: pick node k ∈ V and pair {a, b} ∈ Mk. (If they do not
exist, terminate and go to Stage 3.)

2: set U = {k}, Ak = {a}, Bk = {b}
3: while there exists i ∈ V − U such that ρki(Ak, ·) ∩
ρki(Bk, ·) = ∅ do

4: add i to U , set Ai = ρki(Ak, ·), Bi = ρki(Bk, ·)
// compute “closure” of sets Ai for i ∈ U

5: while there exists a ∈ Dk−Ak s.t. a ∈ ρki(·, Ai) for
some i ∈ U − {k} do

6: add a to Ak

set Aj = ρkj(Ak, ·) for all j ∈ U − {k}
7: end while

// compute “closure” of sets Bi for i ∈ U
8: while there exists b ∈ Dk −Bk s.t. b ∈ ρki(·, Bi) for

some i ∈ U − {k} do
9: add b to Bk

set Bj = ρkj(Bk, ·) for all j ∈ U − {k}
10: end while

// done
11: end while
12: return set U ⊆ V and sets Ai, Bi ⊆ Di for i ∈ U

LEMMA 4.7. Sets U and Ai, Bi for i ∈ U produced by the
algorithm have the following properties:

(a) Sets Ai and Bi for i ∈ U are disjoint.

(b) {a, b} ∈M i for all i ∈ U , a ∈ Ai, b ∈ Bi.

(c) ρki(Ak, ·) = Ai, ρki(Bk, ·) = Bi, ρki(·, Ai) = Ak,
ρki(·, Bi) = Bk for all i ∈ U − {k} where k is the
node chosen in line 1.

(d) Suppose that i ∈ U and j ∈ U ≡ V −U . If (c, x) ∈ ρij

where c ∈ Ai ∪Bi and x ∈ Dj then (d, x) ∈ ρij for all
d ∈ Ai ∪Bi.

To complete the iteration, we modify sets Mi and oper-
ations ui,ti for each i ∈ U as follows:

• add all pairs {a, b} to Mi where a ∈ Ai, b ∈ Bi.

• redefine a ui b = b ui a = a, a ti b = b ti a = b for all
a ∈ Ai, b ∈ Bi

LEMMA 4.8. The new pair of operations 〈u,t〉 is a multi-
morphism of f .

The two lemmas imply that all steps are well-defined,
and upon termination the algorithm produces a pair 〈u,t〉
which is an STP multimorphism of f .

Stage 3: Reduction to a submodular minimisation
problem At this stage we have an STP multimorphism.
Hence, the instance can be solved by Theorem 2.1.
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