
1

The complexity of conservative valued CSPs

VLADIMIR KOLMOGOROV, Institute of Science and Technology (IST), Austria
STANISLAV ŽIVNÝ, University of Warwick, United Kingdom

We study the complexity of valued constraint satisfaction problems (VCSPs) parametrised by a constraint
language, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum
of cost functions from the language and the goal is to minimise the sum. Under the unique games conjecture,
the approximability of finite-valued VCSPs is well-understood, see Raghavendra [STOC’08]. However, there
is no characterisation of finite-valued VCSPs, let alone general-valued VCSPs, that can be solved exactly in
polynomial time, thus giving insights from a combinatorial optimisation perspective.

We consider the case of languages containing all possible unary cost functions. In the case of languages
consisting of only {0,∞}-valued cost functions (i.e. relations), such languages have been called conservative
and studied by Bulatov [LICS’03, ACM TOCL’11] and recently by Barto [LICS’11]. Since we study valued
languages, we call a language conservative if it contains all finite-valued unary cost functions. The computa-
tional complexity of conservative valued languages has been studied by Cohen et al. [AIJ’06] for languages
over Boolean domains, by Deineko et al. [JACM’08] for {0, 1}-valued languages (a.k.a Max-CSP), and by
Takhanov [STACS’10] for {0,∞}-valued languages containing all finite-valued unary cost functions (a.k.a.
Min-Cost-Hom).

We prove a Schaefer-like dichotomy theorem for conservative valued languages: if all cost functions in the
language satisfy a certain condition (specified by a complementary combination of STP and MJN multimor-
phisms), then any instance can be solved in polynomial time (via a new algorithm developed in this paper),
otherwise the language is NP-hard. This is the first complete complexity classification of general-valued con-
straint languages over non-Boolean domains. It is a common phenomenon that complexity classifications of
problems over non-Boolean domains are significantly harder than the Boolean cases. The polynomial-time
algorithm we present for the tractable cases is a generalisation of the submodular minimisation problem
and a result of Cohen et al. [TCS’08].

Our results generalise previous results by Takhanov [STACS’10] and (a subset of results) by Cohen et al.
[AIJ’06] and Deineko et al. [JACM’08]. Moreover, our results do not rely on any computer-assisted search as
in Deineko et al. [JACM’08], and provide a powerful tool for proving hardness of finite-valued and general-
valued languages.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Complexity, dichotomy, valued constraint satisfaction problems, multi-
morphisms, discrete optimisation, submodularity

An extended abstract of this work appeared in the Proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2012.
Vladimir Kolmogorov was supported by the Royal Academy of Engineering/EPSRC, UK. Stanislav Živný
was supported by a Junior Research Fellowship at Oxford’s University College. Part of this work was done
while the second author was visiting Microsoft Research Cambridge.
Author’s addresses: V. Kolmogorov, Institute of Science and Technology Austria (IST Austria), Am Campus 1,
3400 Klosterneuburg, Austria; S. Živný, Department of Computer Science, University of Warwick, Coventry
CV4 7AL, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0004-5411/2011/10-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:2 V. Kolmogorov and S. Živný

ACM Reference Format:
Kolmogovor, V. and Živný, S. 2011. The complexity of conservative valued CSPs. J. ACM 1, 1, Article 1
(October 2011), 39 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The constraint satisfaction problem is a central generic problem in computer science.
It provides a common framework for many theoretical problems as well as for many
real-life applications, see [Hell and Nešetřil 2008] for a nice survey. An instance of the
constraint satisfaction problem (CSP) consists of a collection of variables which must be
assigned values subject to specified constraints [Montanari 1974]. CSP is equivalent to
the problem of evaluating conjunctive queries on databases [Kolaitis and Vardi 2000],
and to the homomorphism problem for relational structures [Feder and Vardi 1998].

An important line of research on the CSP is to identify all tractable cases; that is,
cases that are recognisable and solvable in polynomial time. Most of this work has
been focused on one of the two general approaches: either identifying structural prop-
erties of the way constraints interact which ensure tractability no matter what forms
of constraints are imposed [Dechter and Pearl 1988], or else identifying forms of con-
straints which are sufficiently restrictive to ensure tractability no matter how they are
combined [Bulatov et al. 2005; Feder and Vardi 1998].

The first approach has been used to characterise all tractable cases of bounded-arity
CSPs: the only class of structures which ensures tractability (subject to a certain com-
plexity theory assumption, namely FPT 6= W[1]) are structures of bounded tree-width
modulo homomorphic equivalence [Dalmau et al. 2002; Grohe 2007]; and recently also
for unbounded-arity CSPs [Marx 2010b]; see also [Grohe and Marx 2006; Marx 2010a].
The second approach has led to identifying certain algebraic properties known as poly-
morphisms [Jeavons 1998] which are necessary for a set of constraint types to ensure
tractability. A set of constraint types which ensures tractability is called a tractable
constraint language.

Schaefer in his seminal work [Schaefer 1978] gave a complete complexity classi-
fication of Boolean constraint languages. The algebraic approach based on polymor-
phisms [Jeavons et al. 1997] has been so far the most successful tool in generalising
Schaefer’s result to languages over a 3-element domain [Bulatov 2006], languages with
all unary relations [Bulatov 2003; 2011; Barto 2011], languages comprised of a single
binary relation without sources and sinks [Barto et al. 2009b] (see also [Barto and
Kozik 2010]), and languages comprised of a single binary relation that is a special
triad [Barto et al. 2009a]. The algebraic approach has also been essential in charac-
terising the power of local consistency [Barto and Kozik 2009] and the “few subpowers
property” [Berman et al. 2010; Idziak et al. 2010], the two main tools known for solving
tractable CSPs. A major open question in this line of research is the Dichotomy Conjec-
ture of Feder and Vardi, which states that every constraint language is either tractable
or NP-hard [Feder and Vardi 1998]. We remark that there are other approaches to
the dichotomy conjecture; see, for instance, [Hell and Nešetřil 2008] for a nice survey,
and [Kun and Szegedy 2009] for a connection between the Dichotomy Conjecture and
probabilistically checkable proofs.

Since in practice many constraint satisfaction problems are over-constrained, and
hence have no solution, or are under-constrained, and hence have many solutions, soft
constraint satisfaction problems have been studied [Dechter 2003]. In an instance of
the soft CSP, every constraint is associated with a cost function (rather than a relation
as in the CSP) which represents preferences among different partial assignments, and
the goal is to find the best assignment. Several very general soft CSP frameworks have
been proposed in the literature [Schiex et al. 1995; Bistarelli et al. 1997]. In this paper

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:3

we focus on one of the very general frameworks, the valued constraint satisfaction
problem (VCSP) [Schiex et al. 1995]. Throughout the paper, we use the term constraint
language (or just language) for a set of cost functions over a finite domain. If all cost
functions from a given language Γ are {0,∞}-valued (i.e. relations), we call Γ a crisp
language. (If necessary, to stress the fact that Γ is a language, but not a crisp language,
we call Γ a general-valued language.)

Similarly to the CSP, an important line of research on the VCSP is to identify
tractable cases which are recognisable in polynomial time. Is is well known that struc-
tural reasons for tractability generalise to the VCSP [Bertelé and Brioshi 1972; Gott-
lob et al. 2009]. In the case of language restrictions, only a few conditions are known
to guarantee tractability of a given language [Cohen et al. 2006; Cohen et al. 2008].
Recently, the power of linear programming relaxations for VCSPs has been charac-
terised [Thapper and Živný 2012a; Kolmogorov 2012] and also the complexity of all
finite-valued languages has been established [Thapper and Živný 2013]. Apart from
structural and language restrictions on VCSPs, hybrid restrictions have also recently
been studied [Cooper and Živný 2011; 2012].

Related work. The problem of characterising the complexity of different languages
has received significant attention in the literature. For some classes researchers have
established a Schaefer-like dichotomy theorem of the following form: if a language Γ
admits certain polymorphisms or multimorphisms then it is tractable, otherwise it is
NP-hard. Some of these classes are as follows: Boolean languages, i.e. languages with
a 2-element domain [Cohen et al. 2006]; crisp languages including all unary relations
- [Bulatov 2003; 2011] and recently [Barto 2011]; crisp languages with a 3-element
domain [Bulatov 2006]; {0, 1}-valued languages including all unary cost functions
[Deineko et al. 2008]; crisp languages including additionally all finite-valued unary
cost functions [Takhanov 2010a]; crisp languages including additionally a certain sub-
set of finite-valued unary cost functions [Takhanov 2010b].

Our proof exploits the results of Takhanov [Takhanov 2010a], who showed the
existence of a majority polymorphism as a necessary condition for tractability of
crisp languages including additionally all finite-valued unary cost functions. Other
related work includes the work of Creignou et al. who studied various generalisa-
tions of the CSP to optimisation problems over Boolean domains [Creignou 1995], see
also [Creignou et al. 2001; Khanna et al. 2001]. [Raghavendra 2008] and [Raghavendra
and Steurer 2009] have shown how to optimally approximate any finite-valued VCSP.

Contributions. This paper focuses on valued languages containing all finite-valued
unary cost functions; we call such languages conservative. Our main result is a di-
chotomy theorem for all conservative languages: if a conservative language Γ ad-
mits a complementary combination of STP (symmetric tournament pair) and MJN
(majority-majority-minority) multimorphisms, then it is tractable, otherwise Γ is NP-
hard. This is the first complete complexity classification of general-valued languages
over non-Boolean domains, generalising previously obtained results in [Cohen et al.
2006; Deineko et al. 2008; Takhanov 2010a] as follows:

— Cohen et al. proved a dichotomy for arbitrary Boolean languages (|D| = 2). We gener-
alise it to arbitrary domains (|D| ≥ 2), although only for conservative languages.

— Deineko et al. [Deineko et al. 2008] and Takhanov [Takhanov 2010a] proved a di-
chotomy for the following languages, respectively:
− {0, 1}-valued languages containing additionally all unary cost functions;
− {0,∞}-valued languages containing additionally all unary cost functions.

In both of these case the languages are conservative, so these classifications are spe-
cial cases of our result. Note, however, that Deineko et al. additionally give a di-

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:4 V. Kolmogorov and S. Živný

chotomy with respect to approximability (PO vs. APX-hard), even when the number
of occurrences of variables in instances is bounded; this part of [Deineko et al. 2008]
does not follow from our classification.

Moreover, our results provide a new powerful tool and do not rely on a computer-
assisted search as in [Deineko et al. 2008]. Building on techniques from this paper,
Jonsson et al. [Jonsson et al. 2011] have recently shown that the same approach can
be also used for certain non-conservative languages, and Chen et al. [Chen et al. 2012]
have recently shown that the same approach can be also used for approximate count-
ing.

Since the complexity of Boolean conservative languages is known, we start, similarly
to Bulatov and Takhanov [Bulatov 2003; Takhanov 2010a], by exploring the interac-
tions between different 2-element subdomains. Given a conservative language Γ, we
will investigate properties of a certain graph GΓ associated with the language and cost
functions expressible over Γ. We link the complexity of Γ to certain properties of the
graph GΓ.

First, we show that if GΓ does not satisfy certain properties, then Γ is intractable.
Second, using GΓ, we construct a (partial) STP multimorphism and a (partial) MJN
multimorphism. Finally, we show that any language which admits a complemen-
tary combination of STP and MJN multimorphisms is tractable, thus generalising
a tractable class of Cohen et al. [Cohen et al. 2008], which in turn is a generalisation
of the submodular minimisation problem. Thus we obtain a dichotomy theorem. The
tractable criterion in the finite-valued case turns out to be equivalent to the condi-
tion of submodularity. The general-valued case is much more involved than the finite-
valued case, and requires different techniques compared to previous results.

Given a finite language Γ, the graph GΓ is finite as well, but depends on the expres-
sive power of Γ (see Section 2 for precise definitions), which is infinite. In order to test
whether Γ is tractable, we do not need to construct the graph GΓ as it follows from our
result that we just need to test for the existence of a complementary combination of
two multimorphisms, which can be established in polynomial time.

Our results are formulated using the terminology of valued constraint satisfaction
problems, but they apply to various other optimisation frameworks that are equivalent
to valued constraint satisfaction problems such as Gibbs energy minimisation, Markov
Random Fields, Min-Sum problems, and other models [Lauritzen 1996; Wainwright
and Jordan 2008].

Organisation of the paper. The rest of the paper is organised as follows. In Section 2,
we define valued constraint satisfaction problems (VCSPs), conservative languages,
multimorphisms and other necessary definitions needed throughout the paper. We
state our results in Section 3, and then give their proofs in Sections 4-7.

2. BACKGROUND AND NOTATION
We denote by Q+ the set of all non-negative rational numbers. We define Q+ = Q+ ∪
{∞} with the standard addition operation extended so that for all a ∈ Q+, a+∞ =∞.
Members of Q+ are called costs. Throughout the paper, we denote by D any fixed finite
set, called a domain. Elements of D are called domain values or labels.

A function f from Dm to Q+ will be called a cost function on D of arity m. If the
range of f lies entirely within Q+, then f is called a finite-valued cost function. If
the range of f is {0,∞}, then f is called a crisp cost function. If the range of a cost
function f includes non-zero finite costs and infinity, we emphasise this fact by calling
f a general-valued cost function. Let f : Dm → Q+ be an m-ary cost function f . We

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:5

denote by domf = {x ∈ Dm | f(x) <∞} the effective domain of f . The argument of f is
called an assignment or a labelling. Functions f of arity m = 2 are called binary.

A language is a set of cost functions with the same domain D. A language Γ is called
finite-valued (crisp, general-valued respectively) if all cost functions in Γ are finite-
valued (crisp, general-valued respectively). A language Γ is Boolean if |D| = 2.

Definition 2.1. An instance I of the valued constraint satisfaction problem (VCSP)
is a function DV → Q+ given by

CostI(x) =
∑
t∈T

ft

(
xi(t,1), . . . , xi(t,mt)

)
It is specified by a finite set of nodes V , a finite set of terms (also known as constraints)
T , cost functions ft : Dmt → Q+ or arity mt and indices i(t, k) ∈ V for t ∈ T , k =
1, . . . ,mt. A solution to I is an assignment x ∈ DV with minimum cost.

We denote by VCSP(Γ) the class of all VCSP instances whose terms ft belong to Γ. A
finite language Γ is called tractable if VCSP(Γ) can be solved in polynomial time, and
intractable if VCSP(Γ) is NP-hard. An infinite language Γ is tractable if every finite
subset Γ′ ⊆ Γ is tractable, and intractable if there is a finite subset Γ′ ⊆ Γ that is
intractable.

The idea behind conservative languages is to contain all possible unary cost func-
tions: Bulatov has called a crisp language Γ conservative if Γ contains all unary re-
lations [Bulatov 2003]. We are interested in valued languages containing all possible
unary cost functions and hence define conservative languages as follows:

Definition 2.2. A language Γ is called conservative if Γ contains all {0, 1}-valued
unary cost functions u : D → {0, 1}.

Such languages have been studied by Deineko et al. [Deineko et al. 2008] and
Takhanov [Takhanov 2010a]. Note, we could have defined Γ to be conservative if it
contains all possible general-valued unary cost functions u : D → Q+. However, the
weaker definition 2.2 will be sufficient for our purposes: it is shown in Section 4 that
adding all possible unary cost functions u : D → Q+ to a conservative language Γ does
not change the complexity of Γ.

We now define polymorphisms, which have played a crucial role in the complexity
analysis of crisp languages [Jeavons et al. 1997; Bulatov et al. 2005].

Definition 2.3. A mapping F : Dk → D, k ≥ 1 is called a polymorphism of a cost
function f : Dm → Q+ if

F (x1, . . . ,xk) ∈ domf ∀x1, . . . ,xk ∈ domf

where F is applied component-wise. F is a polymorphism of a language Γ if F is a
polymorphism of every cost function in Γ.

Multimorphisms [Cohen et al. 2006] are generalisations of polymorphisms. To make
the paper easier to read, we only define binary and ternary multimorphisms as we will
not need multimorphisms of higher arities.

Definition 2.4. Let 〈u,t〉 be a pair of operations, where u,t : D ×D → D, and let
〈F1, F2, F3〉 be a triple of operations, where Fi : D ×D ×D → D, 1 ≤ i ≤ 3.

— The pair 〈u,t〉 is called a (binary) multimorphism of a cost function f : Dm → Q+ if

f(x u y) + f(x t y) ≤ f(x) + f(y) ∀x,y ∈ domf (1)

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:6 V. Kolmogorov and S. Živný

where operations u,t are applied component-wise. 〈u,t〉 is a multimorphism of a
language Γ if 〈u,t〉 is a multimorphism of every f from Γ.

— The triple 〈F1, F2, F3〉 is called a (ternary) multimorphism of a cost function f : Dm →
Q+ if

f(F1(x,y, z))+f(F2(x,y, z))+f(F3(x,y, z)) ≤ f(x)+f(y)+f(z) ∀x,y, z ∈ domf (2)

where operations F1, F2, F3 are applied component-wise. 〈F1, F2, F3〉 is a multimor-
phism of a language Γ if 〈F1, F2, F3〉 is a multimorphism of every f from Γ.

— Operation F : Dk → D is called conservative if F (x1, . . . , kk) ∈ {x1, . . . , xk} for all
x1, . . . , xk ∈ D.

— The pair 〈u,t〉 is called conservative if {{a u b, a t b}} = {{a, b}} for all a, b ∈ D,
where {{. . .}} denotes a multiset, i.e. in the case of repetitions elements’ multiplic-
ities are taken into account. Similarly, triple 〈F1, F2, F3〉 is called conservative if
{{F1(a, b, c), F2(a, b, c), F3(a, b, c)}} = {{a, b, c}} for all a, b, c ∈ D. In other words, ap-
plying 〈F1, F2, F3〉 to (a, b, c) should give a permutation of (a, b, c).

— The pair 〈u,t〉 is called a symmetric tournament pair (STP) if it is conservative and
both operations u,t are commutative, i.e. au b = bua and at b = bta for all a, b ∈ D.

— An operation Mj : D3 → D is called a majority operation if for every tuple (a, b, c) ∈ D3

with |{a, b, c}| = 2 the operation Mj returns the unique majority element among a, b, c
(that occurs twice). An operation Mn : D3 → D is called a minority operation if for
every tuple (a, b, c) ∈ D3 with |{a, b, c}| = 2 the operation Mn returns the unique
minority element among a, b, c (that occurs once).

— The triple 〈Mj1, Mj2, Mn3〉 is called an MJN if it is conservative, Mj1, Mj2 are (possibly
different) majority operations, and Mn3 is a minority operation.

We say that 〈u,t〉 is a multimorphism of a language Γ, or Γ admits 〈u,t〉, if all
cost functions f ∈ Γ satisfy (1). Using a polynomial-time algorithm for minimising
submodular functions [Schrijver 2000; Iwata et al. 2001], Cohen et al. have obtained
the following result:

THEOREM 2.5 ([COHEN ET AL. 2008]). If a language Γ admits an STP, then Γ is
tractable.

The existence of an MJN multimorphism also leads to tractability. This was shown for
a specific choice of an MJN by Cohen et al. [Cohen et al. 2006].

Our tractability result, presented in the next section, will include both above-
mentioned tractable classes as special cases.

Expressibility. Finally, we define the important notion of expressibility, which cap-
tures the idea of introducing auxiliary variables in a VCSP instance and the possibility
of minimising over these auxiliary variables. (For crisp languages, this is equivalent to
implementation [Creignou et al. 2001], pp-definability [Chen 2006], existential inverse
satisfiability [Creignou et al. 2008], structure identification [Dechter and Pearl 1992],
and join and projection operations in relational databases [Ullman 1989].

Definition 2.6. A cost function f : Dm → Q+ is expressible over a language Γ if there
exists an instance I ∈ VCSP(Γ) with the set of nodes V = {1, . . . ,m,m + 1, . . . ,m + k}
where k ≥ 0 such that

f(x) = min
y∈Dk

CostI(x,y) ∀x ∈ Dm

We define Γ∗ to be the expressive power of Γ; that is, the set of all cost functions f such
that f is expressible over Γ.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:7

The importance of expressibility is in the following result:

THEOREM 2.7 ([COHEN ET AL. 2006]).
For any language Γ, Γ is tractable iff Γ∗ is tractable.

It is easy to observe and well known that any polymorphism (multimorphism) of Γ
is also a polymorphism (multimorphism) of Γ∗ [Cohen et al. 2006].

3. OUR RESULTS
In this section, we relate the complexity of a conservative language Γ to certain prop-
erties of a carefully chosen graph GΓ associated with Γ.

Given a conservative language Γ, let GΓ = (P,E) be the graph with the set of nodes
P = {(a, b) | a, b ∈ D, a 6= b} and the set of edges E defined as follows: there is an edge
between (a, b) ∈ P and (a′, b′) ∈ P iff there exists a binary cost function f ∈ Γ∗ such
that

f(a, a′) + f(b, b′) > f(a, b′) + f(b, a′) , (a, b′), (b, a′) ∈ domf (3)

Note thatGΓ may have self-loops. For a node p ∈ P we denote the self-loop by {p, p}. We
say that an edge {(a, b), (a′, b′)} ∈ E is soft if there exists a binary cost function f ∈ Γ∗
satisfying (3) such that at least one of the assignments (a, a′), (b, b′) is in domf . Edges in
E that are not soft are called hard. For a node p = (a, b) ∈ P we denote p̄ = (b, a) ∈ P .
Note, a somewhat similar graph (but not the same) was used by Takhanov [Takhanov
2010a] for languages Γ containing crisp functions and finite unary cost functions.1

We denote by M ⊆ P the set of vertices (a, b) ∈ P without self-loops, and by M =
P −M the complement of M . It follows from the definition that the set M is symmetric,
i.e. (a, b) ∈ M iff (b, a) ∈ M . We will write {a, b} ∈ M to indicate that (a, b) ∈ M ; this is
consistent due to the symmetry of M . Similarly, we will write {a, b} ∈ M if (a, b) ∈ M ,
and {a, b} ∈ P if (a, b) ∈ P , i.e. a, b ∈ D and a 6= b.

Definition 3.1. Let 〈u,t〉 be a pair of binary operations and 〈Mj1, Mj2, Mn3〉 be a triple
of ternary operations.

— The pair 〈u,t〉 is an STP on M if 〈u,t〉 is conservative and 〈u,t〉 is commutative on
M ; that is, for any {a, b} ∈M , a u b = b u a and a t b = b t a.

— The triple 〈Mj1, Mj2, Mn3〉 is an MJN on M if it is conservative and for each triple
(a, b, c) ∈ D3 with {a, b, c} = {x, y} ∈ M operations Mj1(a, b, c), Mj2(a, b, c) return the
unique majority element among a, b, c (that occurs twice) and Mn3(a, b, c) returns the
remaining minority element.

Our main results are given by the following three theorems.

THEOREM 3.2. Let Γ be a conservative language.

(a) If GΓ has a soft self-loop then Γ is NP-hard.
(b) If GΓ does not have soft self-loops then Γ admits a pair 〈t,u〉 which is an STP on M

and satisfies additionally a u b = a, a t b = b for {a, b} ∈M .

THEOREM 3.3. Let Γ be a conservative language. If Γ does not admit an MJN on M
then it is NP-hard.

1Roughly speaking, the graph structure in [Takhanov 2010a] was defined via a “min” polymorphism rather
than a 〈min,max〉 multimorphism, so the property {p, q} ∈ E ⇒ {p̄, q̄} ∈ E (that we prove for our graph in
the next section) might not hold in Takhanov’s case. Also, in [Takhanov 2010a] edges were not classified as
being soft or hard.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:8 V. Kolmogorov and S. Živný

THEOREM 3.4. Suppose language Γ admits an STP on M ′ and an MJN on P −M ′,
for some choice of symmetric M ′ ⊆ P . Then Γ is tractable.

Theorems 3.2-3.4 give the dichotomy result for conservative languages:

THEOREM 3.5. Let Γ be a conservative language and P the set of nodes of GΓ. If
there is a symmetric set M ′ ⊆ P such that Γ admits an STP on M ′ and an MJN on
P −M ′ then Γ is tractable. Otherwise Γ is NP-hard.

PROOF. The first part follows from Theorem 3.4; let us show the second part. Sup-
pose that the precondition of the theorem does not hold, then one of the following cases
must be true (we assume below that M is the set of nodes without self-loops in GΓ):

—GΓ has a soft self-loop. Then Γ is NP-hard by Theorem 3.2(a).
—GΓ does not have soft self-loops and Γ does not admit an STP on M . This is a contra-

diction by Theorem 3.2(b).
—GΓ does not have soft self-loops and Γ does not admit an MJN on M . Then Γ is NP-

hard by Theorem 3.3.

In the finite-valued case, we get a simpler tractability criterion, namely an STP mul-
timorphism, which turns out to be equivalent to the condition of submodularity [Schri-
jver 2000; Iwata et al. 2001].

THEOREM 3.6. Let Γ be a conservative finite-valued language. If Γ is submodular
on some chain on D then Γ is tractable. Otherwise Γ is NP-hard.

PROOF. Consider the graph GΓ associated with Γ. If GΓ contains a soft self-loop,
then, by Theorem 3.2(a), Γ is NP-hard. Suppose that GΓ does not contain soft self-
loops. As Γ is finite-valued, GΓ cannot have hard self-loops. Therefore, M is empty and
M = P . By Theorem 3.2(b), Γ admits an STP and the tractability then follows from
Theorem 3.4.

If a finite-valued language admits an STP multimorphism, it also admits a submod-
ularity multimorphism. This result is implicitly contained in [Cohen et al. 2008]. In
particular, the STP might contain cycles, but [Cohen et al. 2008, Lemma 7.15] tells us
that on cycles we have, in the finite-valued case, only unary cost functions. Since an
acyclic tournament is equivalent to a total order on the domain and unary cost func-
tions are submodular with respect to any total order, it follows that the cost functions
admitting the STP must be submodular with respect to some total order.

A formal proof of this statement (based on a different argument) is given in [Kol-
mogorov 2012, Section 4].

Given a finite language Γ, the meta-problem [Creignou et al. 2001] consists in deciding
whether Γ is tractable. For languages defined on a fixed domain, the meta-problem
is solvable in polynomial time. This follows from the fact that for any fixed domain,
there is only a fixed number of possible sets M and a fixed number of possible binary
multimorphisms that behave as an STP on M and a fixed number of possible ternary
multimorphisms that behave as an MJN on P −M ; each such candidate can be tested
whether it is indeed a multimorphism of Γ.

Our tractability result holds true even in the so-called uniform model [Kolaitis and
Vardi 2000], in which the language is treated as part of the input (and thus the domain
is finite, but not fixed); however, we need to assume that an STP operation on M is also
a part of the input. We do not know what the complexity of the problem without this
assumption is. The complexity of the meta-problem in the uniform case also remains
open.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:9

4. PROOF PRELIMINARIES: STRENGTHENING THE DEFINITION OF CONSERVATIVITY
First, we show that we can strengthen the definition of conservative languages without
loss of generality. More precisely, we prove in this section that it suffices to establish
Theorems 3.2 and 3.3 under the following simplifying assumption:

Assumption 1. Γ contains all general-valued unary cost functions u : D → Q+.

For a language Γ, let Γ̄ be the language obtained from Γ by adding all possible
general-valued unary cost functions u : D → Q+. Note, Γ̄ may be different from Γ
since Γ is only guaranteed to have all possible {0, 1}-valued unary cost functions.

PROPOSITION 4.1. (a) Graphs GΓ and GΓ̄ are the same: if {(a, b), (a′, b′)} is a soft
(hard) edge in GΓ then it is also a soft (hard) edge in GΓ̄, and vice versa. (b) If Γ̄ is
NP-hard then so is Γ.

PROOF. Let Z+ be the set of non-negative integers, and let Z+ = Z+ ∪ {∞}. It is
easy to see that any unary cost function u : D → Z+ can be represented as a sum of at
most maxa∈D u(a) {0, 1}-valued unary cost functions from Γ, and so u ∈ Γ∗; we will use
this fact below.
Part (a) One direction is trivial: if {(a, b), (a′, b′)} ∈ GΓ then {(a, b), (a′, b′)} ∈ GΓ̄, and
if {(a, b), (a′, b′)} is soft in GΓ then it is also soft in GΓ̄. For the other direction we need
to show the following: (i) if {(a, b), (a′, b′)} is an edge in GΓ̄ then it is also an edge in GΓ,
and (ii) if {(a, b), (a′, b′)} is a soft edge in GΓ̄ then it is also soft in GΓ.

Suppose that {(a, b), (a′, b′)} ∈ GΓ̄. Let f ∈ (Γ̄)∗ be the corresponding binary cost
function. If the edge {(a, b), (a′, b′)} is soft in GΓ̄, then we choose f according to the
definition of a soft edge. We have

f(x, y) = min
z∈Dm−2

g(x, y,z) ∀x, y ∈ D

where g : Dm → Q+ is a sum of cost functions from Γ̄. We can assume without loss
of generality that all unary terms present in this sum are Z+-valued. Indeed, this can
be ensured by multiplying g by an appropriate integer R. (More precisely, unary terms
u : D → Q+ in the sum are replaced with terms R ·u ∈ Γ̄, and other terms h in the sum
are replaced by R copies of h.)

Let C be a sufficiently large finite integer constant (namely, C > 2 · max{g(z) | z ∈
domg}), and let gC be the function obtained from g as follows: we take every unary cost
function u : D → Q+ present in g and replace it with function uC(z) = min{u(z), C}.
Clearly, gC ∈ Γ∗. Define

fC(x, y) = min
z∈Dm−2

gC(x, y,z) ∀x, y ∈ D

then fC ∈ Γ∗. It is easy to see that f and fC have the following relationship: (i) if
f(x, y) < ∞ then fC(x, y) = f(x, y) < C; (ii) if f(x, y) = ∞ then fC(x, y) ≥ C. We
have f(a, a′) + f(b, b′) > f(a, b′) + f(b, a′) and (a, b′), (b, a′) ∈ domf ; this implies that
fC(a, a′) + fC(b, b′) > fC(a, b′) + fC(b, a′), and thus {(a, b), (a′, b′)} ∈ GΓ. If the edge
{(a, b), (a′, b′)} is soft in GΓ̄ then at least one of the assignments (a, a′), (b, b′) is in domf
(and thus in domfC), and so {(a, b), (a′, b′)} is soft in GΓ.
Part (b) Suppose that Γ̄ is NP-hard, i.e. there exists a finite language Γ̄′ ⊆ Γ̄ which
is NP-hard. Let Γ′ be the language obtained from Γ̄′ by first removing unary cost func-
tion u : D → Q+ present in Γ̄′, and then adding all possible {0, 1}-valued unary cost
functions u : D → {0, 1}. Clearly, Γ′ ⊆ Γ. We prove below that Γ′ is NP-hard using a
reduction from Γ̄′.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:10 V. Kolmogorov and S. Živný

Let R be a constant integer number such that multiplying unary cost functions from
Γ̄′ by R gives Z+-valued functions. Also let C◦ be a sufficiently large finite integer
constant, namely C◦ > max{R · f(x) | f ∈ Γ̄′,x ∈ domf}. Now consider an instance Ī
from VCSP(Γ̄′) with the cost function

f(x) =
∑
t∈T1

ut

(
xi(t,1)

)
+
∑
t∈T∗

ft

(
xi(t,1), . . . , xi(t,mt)

)
where T1 is the index set of unary cost functions and T∗ is the index set of cost functions
of higher arities. Thus, ut ∈ Γ̄′ for t ∈ T1 and ft ∈ Γ̄′ for t ∈ T∗. For each t ∈ T1 we define
the unary cost function uC

t (z) = min{R · ut(z), C} where C = C◦ · (|T1|+ |T∗|). Note, we
have C > max{R · f(x) | x ∈ domf}.

Let us define instance I with the cost function

fC(x) =
∑
t∈T1

uC
t

(
xi(t,1)

)
+
∑
t∈T∗

R · ft

(
xi(t,1), . . . , xi(t,mt)

)
It can be viewed as an instance from Γ′. Indeed, uC

t can be represented as a sum of
at most C {0, 1}-valued unary cost functions from Γ′, and the multiplication of R and
ft can be simulated by repeating the latter term R times. Then fC contains at most
C|T1|+R|T∗| = C◦(|T1|+ |T∗|)|T1|+R|T∗| terms, so the size of instance I is bounded by
a polynomial function of the size of Ī.

It is easy to see that f and fC have the following relationship: (i) if f(x) < ∞ then
fC(x) = R · f(x) < C; (ii) if f(x) = ∞ then fC(x) ≥ C. Thus, solving I will also solve
Ī.

Proposition 4.1 shows that it suffices to prove Theorems 3.2 and 3.3 for Γ̄. Indeed,
consider Theorem 3.2 for a conservative language Γ. If GΓ has a soft self-loop then by
Proposition 4.1(a) so does GΓ̄. Theorem 3.2(a) for Γ̄ would imply that Γ̄ is NP-hard, and
therefore Γ is also NP-hard by Proposition 4.1(b). If GΓ does not have soft self-loops
then neither does GΓ̄. Theorem 3.2(b) for Γ̄ would imply that Γ̄ admits the appropriate
multimorphism 〈t,u〉 that is an STP on M . (Note, the definition of M is the same for
both Γ and Γ̄ by proposition 4.1(a).) Since Γ ⊆ Γ̄, 〈t,u〉 is also a multimorphism of Γ.

A similar argument holds for Theorem 3.3. If Γ̄ admits an MJN on M then so does Γ.
If Γ̄ does not admit an MJN on M then Theorem 3.3 for Γ̄ and Proposition 4.1(b) would
imply that Γ is NP-hard.

In conclusion, from now on we will assume that Γ satisfies Assumption 1 when prov-
ing Theorems 3.2 and 3.3.

5. PROOF OF THEOREM 3.2
In Section 5.1 we will first prove part (a). Then in Section 5.2 we will prove certain
properties of GΓ assuming that GΓ does not have self-loops. Using these properties, we
will construct an STP on M in Section 5.3.

5.1. NP-hard case
In this section we prove Theorem 3.2(a). From the assumption, there is a binary cost
function f ∈ Γ∗ such that f(a, a) + f(b, b) > f(a, b) + f(b, a), and at least one of the
assignments (a, a), (b, b) is in domf . First, let us assume that both (a, a) and (b, b) are in
domf . Define a binary cost function g as follows: g(x, y) = f(x, y)+f(y, x). Clearly, g ∈ Γ∗
and g has the following properties: g(a, b) = g(b, a) and at least one of {g(a, a), g(b, b)}
is strictly bigger than g(a, b). Let α = g(a, a) and β = g(b, b). If α 6= β, let α < β
(the other case is analogous). Define a binary cost function h as follows: h(x, y) =
g(x, y) + u(x) + u(y), where u(x) = (β − α)/2 if x = a, u(x) = 0 if x = b, and u(x) = ∞
otherwise. Clearly, h ∈ Γ∗ and h satisfies h(a, a) = h(b, b) > h(a, b) = h(b, a). Now if

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:11

h(a, a) = h(b, b) = 1 and h(a, b) = h(b, a) = 0, this would correspond to the Max-Cut
problem, which is NP-hard [Garey and Johnson 1979]. Since adding a constant to all
cost functions and scaling all costs by a constant factor do not affect the difficulty of
solving a VCSP instance, and Γ is conservative, we can conclude that Γ is intractable.

Without loss of generality, let us now assume that (a, a) ∈ domf and (b, b) 6∈ domf .
As above, define g(x, y) = f(x, y) + f(y, x). Clearly, g ∈ Γ∗ and g has the following
properties: g(b, b) = ∞ and g(a, b) = g(b, a). Let α = g(a, a) and β = g(a, b). If α 6= β,
let α < β (the other case is analogous). Define a binary cost function h(x, y) = g(x, y) +
u(x) + u(y), where u(x) = (β − α)/2 if x = a, u(x) = 0 if x = b, and u(x) =∞ otherwise.
Clearly, h ∈ Γ∗ and h satisfies h(a, a) = h(a, b) = h(b, a) = α′ and h(b, b) = ∞, where
α′ is some finite constant. Since adding a constant to h does not affect the difficulty of
solving a VCSP instance, we can assume without loss of generality that α′ = 0. Using h
and unary cost functions, we now reduce from the maximum independent set problem
in graphs, a well-known NP-hard problem [Garey and Johnson 1979]. Given a graph
(V,E), we define a VCSP(Γ) instance I with the set of nodes V , the set of vertices
in G, and with the cost function

∑
{i,j}∈E h(i, j) +

∑
i∈V u{a,b}(i) +

∑
i∈V u

′(i), where
u{a,b}(x) = 0 if x ∈ {a, b} and u{a,b}(x) = ∞ otherwise, and u′(x) = 1 if x = a, u′(x) = 0
if x = b, and u′(x) =∞ otherwise. Intuitively, the domain value a represents “not being
in the independent set” and the domain value b represents “being in the independent
set”. The binary cost functions h ensure that no adjacent vertices are both included
in the independent set. The unary cost functions u enforce the effective domain of
every node to be {a, b}. Finally, the unary cost functions u′ count the number of nodes
assigned the value a. Since minimising the number of variables assigned a is the same
as maximising the number of variables assigned b, a solution to I corresponds to a
maximum independent set in G.

5.2. Properties of graph GΓ

From now on we assume that E does not have soft self-loops. Our goal is to show that
Γ admits an STP on M .

In the lemma below, a path of length k is a sequence of edges
{p0, p1}, {p1, p2}, . . . , {pk−1, pk}, where {pi−1, pi} ∈ E. Note that we allow edge
repetitions. A path is even iff its length is even. A path is a cycle if p0 = pk. If X ⊆ P
then (X,E[X]) denotes the subgraph of (P,E) induced by X.

LEMMA 5.1. Graph GΓ = (P,E) satisfies the following properties:

(a) {p, q} ∈ E implies {p̄, q̄} ∈ E and vice versa. The two edges are either both soft or both
hard.

(b) Suppose that {p, q} ∈ E and {q, r} ∈ E, then {p, r̄} ∈ E. If at least one of the first two
edges is soft then the third edge is also soft.

(c) For each p ∈ P , nodes p and p̄ are either both in M or both in M .
(d) There are no edges from M to M .
(e) Graph (M,E[M ]) does not have odd cycles.
(f) If node p is not isolated (i.e. it has at least one incident edge {p, q} ∈ E) then {p, p̄} ∈ E.
(g) Nodes p ∈M do not have incident soft edges.

PROOF.
(a) Follows from the definition.
(b) Let p = (a1, b1), q = (a2, b2) and r = (a3, b3). From the definition of the graph,
let f, g ∈ Γ∗ be the binary cost functions such that (∗) f(a1, a2) + f(b1, b2) > f(a1, b2) +
f(b1, a2) and g(a2, a3)+g(b2, b3) > g(a2, b3)+g(b2, a3). Without loss of generality, we can

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:12 V. Kolmogorov and S. Živný

assume that
f(a1, a2) = α, f(a1, b2) = f(b1, a2) = γ, f(b1, b2) = α′

g(a2, a3) = β, g(a2, b3) = g(b2, a3) = γ, g(b2, b3) = β′
(4)

This can be achieved as follows. First we show that we can assume that f(a1, b2) =
f(b1, a2). Without loss of generality, let f(a1, b2) < f(b1, a2). Define f ′(x, y) = f(x, y) +
u(x), where u(x) = 0 if x = b1, u(x) = f(b1, a2) − f(a1, b2) if x = a1, and u(x) = ∞ if
x 6∈ {a1, b1}. Clearly, f ′ ∈ Γ∗, f ′(a1, a2)+f ′(b1, b2) > f ′(a1, b2)+f ′(b1, a2), and f ′(a1, b2) =
f ′(b1, a2). Similarly, we can assume that g(a2, b3) = g(b2, a3). Let γ = f(a1, b2) and
γ′ = g(a2, b3). If γ = γ′ we are done. Without loss of generality, let γ < γ′. Define
f ′(x, y) = f(x, y) +u(x), where u(x) = γ′−γ if x ∈ {a1, b1} and u(x) =∞ otherwise. The
cost functions f ′ and g now satisfy (∗) and (4).

From (∗) we get α + α′ > 2γ; thus, by adding unary terms to f we can ensure that
α > γ and α′ > γ. Similarly, we can assume that β > γ and β′ > γ. (Note that γ must
be finite.)

Let h(x, z) = miny∈D{f(x, y)+u{a2,b2}(y)+g(y, z)}, where u{a2,b2}(y) = 0 if y ∈ {a2, b2},
and u{a2,b2}(y) = ∞ otherwise. From the definition of h and (4) we get h(a1, a3) =
h(b1, b3) = 2γ and h(a1, b3) = γ + min{α, β′} > 2γ, h(b1, a3) = γ + min{α′, β} > 2γ.
Therefore, h(a1, b3) + h(b1, a3) > h(a1, a3) + h(b1, b3), and so {p, r̄} ∈ E.

Now suppose that at least one of the edges {p, q}, {q, r} is soft, then we can assume
that at least one of α, α′, β, β′ is finite, and so at least one of h(a1, b3), h(b1, a3) is finite,
and thus {p, r̄} is soft.
(c) Follows from (a).
(d) Suppose {p, q} ∈ E and q ∈M . The latter fact implies {q, q} ∈ E, so by (b) we have
{p, q̄} ∈ E. From (a) we also get {q, p̄} ∈ E. Applying (b) again gives {p, p} ∈ E. Thus
p ∈M .
(e) We prove by induction on k that (M,E[M ]) does not have cycles of length 2k + 1.
For k = 0 the claim is by assumption (nodes of M do not have self-loops). Suppose it
holds for k ≥ 0, and suppose that (M,E[M ]) has a cycle P, {p, q}, {q, r}, {r, s} of length
2k + 3 where P is a path from s ∈ M to p ∈ M of length 2k. Properties (b) and (a) give
respectively {p, r̄} ∈ E and {r̄, s̄} ∈ E. Applying (b) again gives {p, s} ∈ E, therefore
(M,E[M ]) has a cycle P, {p, s} of length 2k + 1. This contradicts the induction hypoth-
esis.
(f) Follows from (b).
(g) Suppose p ∈M (implying E has a hard self-loop {p, p}) and {p, q} is a soft edge in
E. Properties (b) and (a) give respectively {p, q̄} ∈ E and {q̄, p̄} ∈ E, and furthermore
both edges are soft. Applying (b) again gives that {p, p} ∈ E and this edge is soft. This
contradicts the assumption that (P,E) does not have soft self-loops.

5.3. Constructing 〈u,t〉
In this section we complete the proof of Theorem 3.2 by constructing a pair of opera-
tions 〈u,t〉 for Γ that behaves as an STP on M and as a multi-projection (returning its
two arguments in the same order) on M .

LEMMA 5.2. There exists an assignment σ : M → {−1,+1} such that (i) σ(p) =
−σ(q) for all edges {p, q} ∈ E, and (ii) σ(p) = −σ(p̄) for all p ∈M .

PROOF. By Lemma 5.1(e) graph (M,E[M ]) does not have odd cycles. Therefore,
graph (M,E[M ]) is bipartite and there exists an assignment σ : M → {−1,+1} that
satisfies property (i). Let us modify this assignment as follows: for each isolated node
p ∈ M (i.e. a node without incident edges) set σ(p), σ(p̄) so that σ(p) = −σ(p̄) ∈

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:13

{−1,+1}. (Note, if p is isolated then by Lemma 5.1(a) so is p̄). Clearly, property (i)
still holds. Property (ii) holds for each node p ∈M as well: if p is isolated then (ii) holds
by construction, otherwise by Lemma 5.1(f) there exists an edge {p, p̄} ∈ E, and so (ii)
follows from property (i).

Given the assignment σ constructed in Lemma 5.2, we now define operations u,t :
D2 → D as follows:

— a u a = a t a = a for a ∈ D.
— If (a, b) ∈M then aub and atb are the unique elements of D satisfying {aub, atb} =
{a, b} and σ(a u b, a t b) = +1.

— If (a, b) ∈M then a u b = a and a t b = b.

LEMMA 5.3. For any binary cost function f ∈ Γ∗ and any x,y ∈ domf there holds

f(x u y) + f(x t y) ≤ f(x) + f(y) (5)

PROOF. Denote (a, a′) = x u y and (b, b′) = x t y. We can assume without loss of
generality that {x,y} 6= {(a, a′), (b, b′)}, otherwise the claim is straightforward. It is
easy to check that the assumption has two implications: (i) a 6= b and a′ 6= b′; (ii)
{x,y} = {(a, b′), (b, a′)}.

If f(a, a′) + f(b, b′) = f(a, b′) + f(b, a′), then (5) holds trivially. If f(a, a′) + f(b, b′) 6=
f(a, b′)+f(b, a′), then E contains at least one of the edges {(a, b), (a′, b′)}, {(a, b), (b′, a′)}.
By Lemma 5.1(c) and Lemma 5.1(d), the pairs (a, b) and (a′, b′) must either be both inM
or both in M . In the former case, (5) contradicts the above assumptions, so we assume
the latter case.

The definition of u,t and the fact that (a, a′) = x u y and (b, b′) = x t y imply that
σ(a, b) = σ(a′, b′) = +1. Thus, the edge set E does contain {(a, b), (a′, b′)}, and therefore

f(a, a′) + f(b, b′) ≤ f(a, b′) + f(b, a′)

which is equivalent to (5).

In order to proceed, we introduce the following notation. Given a cost function f of
arity m, we denote by V the set of variables corresponding to the arguments of f , with
|V | = m. For two assignments x,y ∈ Dm we denote by ∆(x,y) = {i ∈ V | xi 6= yi} the
set of variables on which x and y differ.

LEMMA 5.4. Condition (5) holds for any cost function f ∈ Γ∗ and assignments x,y ∈
domf with |∆(x,y)| ≤ 2.

PROOF. If |∆(x,y)| ≤ 1 then {x u y,x t y} = {x,y}, so the claim is trivial. We
now prove it in the case |∆(x,y)| = 2 using induction on |V |. The base case |V | = 2
follows from Lemma 5.3; suppose that |V | ≥ 3. Choose k ∈ V −∆(x,y). For simplicity
of notation, let us assume that k corresponds to the first argument of f . Define a cost
function of |V | − 1 variables by

g(z) = min
a∈D
{u(a) + f(a, z)} ∀z ∈ DV−{k} (6)

where u is the following unary cost function: u(a) = 0 if a = xk = yk, and u(a) = ∞
otherwise.

Let x̂ and ŷ be the restrictions of respectively x and y to V − {k}. Clearly, g ∈ Γ∗,
g(x̂) = f(x) <∞ and g(ŷ) = f(y) <∞. By the induction hypothesis

g(x̂ u ŷ) + g(x̂ t ŷ) ≤ g(x̂) + g(ŷ) = f(x) + f(y) (7)

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:14 V. Kolmogorov and S. Živný

This implies that g(x̂u ŷ) <∞, which is possible only if g(x̂u ŷ) = f(a, x̂u ŷ) = f(xuy)
where a = xk = yk. Similarly, g(x̂ t ŷ) = f(a, x̂ t ŷ) = f(x t y). Thus, (7) is equivalent
to (5).

LEMMA 5.5. Condition (5) holds for any cost function f ∈ Γ∗ and any x,y ∈ domf .

PROOF. We use induction on |∆(x,y)|. The base case |∆(x,y)| ≤ 2 follows from
Lemma 5.4; suppose that |∆(x,y)| ≥ 3. Let us partition ∆(x,y) into three sets A,B,C
as follows:

A = {i ∈ ∆(x,y) | (xi, yi) ∈M, (xi u yi, xi t yi) = (xi, yi)}
B = {i ∈ ∆(x,y) | (xi, yi) ∈M, (xi u yi, xi t yi) = (yi, xi)}
C = {i ∈ ∆(x,y) | (xi, yi) ∈M}

Two cases are possible.
Case 1 |A∪C| ≥ 2. Let us choose variable k ∈ A∪C, and define assignments x′,y′ as
follows: x′i = y′i = xi = yi if xi = yi, and for other variables

(x′i, y
′
i) =


(xi, xi) if i = k

(yi, yi) if i ∈ (A ∪ C)− {k}
(xi, yi) if i ∈ B

It can be checked that

x u y′ = x u y x t y′ = x′ x′ u y = y′ x′ t y = x t y

Furthermore, ∆(x,y′) = ∆(x,y) − {k} and ∆(x′,y) = ∆(x,y) − ((A ∪ C) − {k}) so by
the induction hypothesis

f(x u y) + f(x′) ≤ f(x) + f(y′) (8)

assuming that y′ ∈ domf , and

f(y′) + f(x t y) ≤ f(x′) + f(y) (9)

assuming that x′ ∈ domf . Two cases are possible:

— y′ ∈ domf . Inequality (8) implies that x′ ∈ domf . The claim then follows from sum-
ming (8) and (9).

— y′ /∈ domf . Inequality (9) implies that x′ /∈ domf . Assume for simplicity of notation
that k corresponds to the first argument of f . Define cost function of |V | − 1 variables

g(z) = min
a∈D
{u(a) + f(a, z)} ∀z ∈ DV−{k}

where u(a) is the following unary cost function: u(xk) = 0, u(yk) = C and u(a) =∞ for
a ∈ D−{xk, yk}. Here C is a sufficiently large finite constant, namely C > f(x)+f(y).
Let x̂, ŷ, x̂′, ŷ′ be restrictions of respectively x,y,x′,y′ to V −{k}. Clearly, g ∈ Γ∗ and

g(ŷ) = g(ŷ′) = u(yk) + f(yk, ŷ) = f(y) + C (since (xk, ŷ) = y′ /∈ domf )
g(x̂) = f(xk, x̂) = f(x)

By the induction hypothesis

g(x̂ u ŷ) + g(x̂ t ŷ) ≤ g(x̂) + g(ŷ) = f(x) + f(y) + C (10)

We have g(x̂ t ŷ) < ∞, so we must have either g(x̂ t ŷ) = f(xk, x̂ t ŷ) or g(x̂ t ŷ) =
f(yk, x̂t ŷ) +C = f(xt y) +C. The former case is impossible since (xk, x̂t ŷ) = x′ /∈

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:15

domf , so g(x̂ t ŷ) = f(x t y) + C. Combining it with (10) gives

g(x̂ u ŷ) + f(x t y) ≤ f(x) + f(y) (11)

This implies that g(x̂ u ŷ) < C, so we must have g(x̂ u ŷ) = f(xk, x̂ u ŷ) = f(x u y).
Thus, (11) is equivalent to (5).

Case 2 |B| ≥ 2. Let us choose variable k ∈ B, and define assignments x′,y′ as follows:
x′i = y′i = xi = yi if xi = yi, and for other variables

(x′i, y
′
i) =


(yi, yi) if i = k

(xi, yi) if i ∈ A ∪ C
(xi, xi) if i ∈ B − {k}

It can be checked that

x′ u y = x u y x′ t y = y′ x u y′ = x′ x t y′ = x t y

Furthermore, ∆(x′,y) = ∆(x,y) − {k} and ∆(x,y′) = ∆(x,y) − (B − {k}) so by the
induction hypothesis

f(x u y) + f(y′) ≤ f(x′) + f(y) (12)

assuming that x′ ∈ domf , and

f(x′) + f(x t y) ≤ f(x) + f(y′) (13)

assuming that y′ ∈ domf . Using Inequalities 12 and 13, the same argument as in Case
1, distinguishing whether or not x′ ∈ domf , finishes the proof.

6. PROOF OF THEOREM 3.3
For a language Γ let Feas(Γ) be the language obtained from Γ by converting all finite
values of f to 0 for all f ∈ Γ, and let MH(Γ) be the language obtained from Feas(Γ)
by adding all possible integer-valued unary cost functions u : D → Z+. Note, MH(Γ)
corresponds to the minimum-cost homomorphism problem introduced in [Gutin et al.
2006] and recently studied in [Takhanov 2010a]. We will need the following fact which
is a simple corollary of results of Takhanov [Takhanov 2010a].

THEOREM 6.1. (a) If MH(Γ) does not admit a majority polymorphism then MH(Γ) is
NP-hard. (b) If MH(Γ) is NP-hard then so is Γ.

PROOF.
Part (a) Takhanov has studied crisp languages including additionally all integer-
valued unary cost functions [Takhanov 2010a]. For such a language Γ, he considers the
functional clone of all polymorphisms of Γ, denoted by F , and a certain graph denoted
by TF . Takhanov’s Theorem 3.3, Theorem 3.4, and Theorem 5.5 give the following:

— If F does not satisfy the necessary local conditions or TF is not bipartite then Γ is
NP-hard.

— If F satisfies the necessary local conditions and TF is bipartite then F contains a
majority operation.

This implies part (a).
Part (b) Let MH(Γ)′ ⊆ MH(Γ) be a finite language with costs in Z+ = Z+ ∪ {∞}
which is NP-hard. Denote by MH(Γ)′1 and MH(Γ)′∗ the subsets of MH(Γ)′ of arity m = 1
and m ≥ 2 respectively. The definition of MH(Γ) implies that for every f ∈ MH(Γ)′∗
there exists a cost function f◦ ∈ Γ such that f(x) = 0 if f◦(x) < ∞, and f(x) = ∞ if
f◦(x) =∞. Denote C = max{f◦(x) | f ∈MH(Γ)′∗,x ∈ domf◦}+ 1. Construct a language

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:16 V. Kolmogorov and S. Živný

Γ′ as follows:

Γ′ =
{
uC | u ∈ MH(Γ)′1

}
∪ {f◦ | f ∈ MH(Γ)′∗}

where function uC is defined by uC(z) = C · u(z). Clearly, Γ′ ⊆ Γ. We prove below that
Γ′ is NP-hard using a reduction from MH(Γ)′.

Let Î be an instance from MH(Γ)′ with the cost function

f(x) =
∑
t∈T1

ut

(
xi(t,1)

)
+
∑
t∈T∗

ft

(
xi(t,1), . . . , xi(t,mt)

)
where T1 is the index set of unary cost functions and T∗ is the index set of cost functions
of higher arities. Note, ut ∈ MH(Γ)′1 for t ∈ T1 and ft ∈ MH(Γ)′∗ for t ∈ T∗. Now define
instance I with the cost function

fC(x) =
∑
t∈T1

N · uC
t

(
xi(t,1)

)
+
∑
t∈T∗

f◦t
(
xi(t,1), . . . , xi(t,mt)

)
where N = |T∗|. It can be viewed as an instance from Γ′, if we simulate multiplication
of N and uC

t by repeating the latter term N times; the size of the expression grows only
polynomially. For any x ∈ domf we have

fC(x) ≥
∑
t∈T1

N · uC
t

(
xi(t,1)

)
= N · C · f(x)

fC(x) <
∑
t∈T1

N · uC
t

(
xi(t,1)

)
+
∑
t∈T∗

C = N · C · (f(x) + 1)

Furthermore, f(x) =∞ iff fC(x) =∞. Function f have values in Z+, therefore solving
I will also solve Î.

Suppose that Γ does not admit a majority polymorphism. Clearly, this implies that
MH(Γ) also does not admit a majority polymorphism. By Theorem 6.1, Γ is NP-hard,
and so Theorem 3.3 holds in this case. Hence without loss of generality we can assume:

Assumption 2. Γ admits a majority polymorphism.

By Theorem 3.2(a), if GΓ has a soft self-loop then Γ is NP-hard. Hence without loss
of generality we can assume:

Assumption 3. GΓ does not have soft self-loops.

Note, a recent paper [Chen et al. 2012] states that our Assumptions 1 and 3 actually
imply Assumption 2; their proof also uses results from [Takhanov 2010a]. This would
be an alternative way to justify Assumption 2.

We will prove Theorem 3.3 by showing the existence of an MJN multimorphism on
M under Assumptions 1-3. We denote by 〈u,t〉 an STP multimorphism on M with the
properties given in Theorem 3.2(b).

6.1. Constructing 〈Mj1, Mj2, Mn3〉
Let us introduce function µ which maps every set B ⊆ D with |B| ≤ 3 to a subset of
B. If |B| ≤ 2 then we define µ(B) = ∅. If |B| = 3 then µ(B) is the set of labels c ∈ B
that satisfy the following condition: if B − {c} = {a, b} then there exists a binary cost
function f ∈ Γ∗ and a pair (a′, b′) ∈M such that

domf = {(a, a′), (b, a′), (c, b′)}

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:17

If c ∈ µ(B) where B = {a, b, c} then we will illustrate this fact using the following
diagram:

��HH
HH

a

b

c

LEMMA 6.2. Consider set B = {a, b, c} ⊆ D. (a) Set µ(B) contains at most one label.
(b) If µ(B) = {c} then (a, c) ∈M and (b, c) ∈M .

PROOF. Part (a) Suppose that a, c ∈ µ({a, b, c}) where a 6= c, then there exist
binary functions f, g ∈ Γ∗ and pairs (a′, b′), (a′′, b′′) ∈M such that

domf = {(a′, a), (b′, b), (b′, c)} domg = {(a, a′′), (b, a′′), (c, b′′)}
Consider function

h(x′, x′′) = min
x∈D
{f(x′, x) + g(x, x′′)} (14)

Clearly, domh = {(a′, a′′), (b′, a′′), (b′, b′′)}, so (a′, b′) ∈ M has an incident soft edge
{(a′, b′), (b′′, a′′)} in GΓ - a contradiction with Lemma 5.1(g).
Part (b) Suppose that µ({a, b, c}) = {c}. There exists a binary function f ∈ Γ∗

with domf = {(a, a′), (b, a′), (c, b′)} and (b′, a′) ∈ M (by Lemma 5.1(c)). Therefore, graph
GΓ contains edges {(a, c), (b′, a′)} and {(b, c), (b′, a′)}. Lemma 5.1(d) now implies that
(a, c) ∈M and (b, c) ∈M .

We are now ready to construct operation MJN = 〈Mj1, Mj2, Mn3〉. Given a tuple (a, b, c) ∈
D3, we define

MJN(a, b, c) =


(x, x, y) if {{a, b, c}} = {{x, x, y}}, {x, y} ∈M (15a)
(b u c, b t c, a) if µ({a, b, c}) = {a} (15b)
(a u c, a t c, b) if µ({a, b, c}) = {b} (15c)
(a u b, a t b, c) in any other case (15d)

where {{. . .}} denotes a multiset, i.e. elements’ multiplicities are taken into account. It
is straightforward to check that the triple 〈Mj1, Mj2, Mn3〉 is conservative.

THEOREM 6.3. If f ∈ Γ∗ and x,y, z ∈ domf then

f(Mj1(x,y, z)) + f(Mj2(x,y, z)) + f(Mn3(x,y, z)) ≤ f(x) + f(y) + f(z) (16)

The remainder of Section 6 is devoted to the proof of this statement.

6.2. Proof of Theorem 6.3: preliminaries
We say that an instance (f,x,y, z) is valid if f ∈ Γ∗ and x,y, z ∈ domf . It is non-
violating if (16) holds, and violating otherwise. For a triple x,y, z ∈ DV denote
δ(x,y, z) =

∑
i∈V |{xi, yi, zi}|, ∆(x,y, z) = {i ∈ V | xi 6= yi} and ∆M (x,y, z) = {i ∈

∆(x,y, z) | {xi, yi, zi} = {a, b} ∈M}.
Suppose that a violating instance exists. From now on we assume that (f,x,y, z) is

a lowest violating instance with respect to the partial order � defined as the lexico-

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:18 V. Kolmogorov and S. Živný

graphical order with components

( δ(x,y, z), |∆(x,y, z)|, |∆M (x,y, z)|, |{i ∈ V | µ({xi, yi, zi}) = {xi}}| ) (17)

(the first component is more significant). We denote δmin = δ(x,y, z). Thus, we have

Assumption 4. All valid instances (f,x′,y′, z′) with (x′,y′, z′) ≺ (x,y, z) (and in
particular with δ(x′,y′, z′) < δmin) are non-violating, while the instance (f,x,y, z) is
violating.

We will assume without loss of generality that for any u ∈ domf there holds ui ∈
{xi, yi, zi} for all i ∈ V . Indeed, this can be achieved by adding unary cost functions
gi(ui) to f with domgi = {xi, yi, zi}; this does not affect the “violatedness” of (f,x,y, z).

The following cases can be easily eliminated:

PROPOSITION 6.4. The following cases are impossible: (a) |V | = 1; (b) |{xi, yi, zi}| =
1 for some i ∈ V .

PROOF. If |V | = 1 then (16) is a trivial equality contradicting the choice of
(f,x,y, z). Suppose that xi = yi = zi = a, i ∈ V . Consider function

g(u) = min
d∈D

f(d,u) ∀u ∈ DV̂

where V̂ = V − {i} and we assumed for simplicity of notation that i corresponds to the
first argument of f . For an assignment w ∈ V we denote by ŵ the restriction of w to
V̂ . Clearly, g ∈ Γ∗, g(x̂) = f(x), g(ŷ) = f(y), g(ŷ) = f(y) and (x̂, ŷ, ẑ) ≺ (x,y, z), so
Assumption 4 gives

g(Mj1(x̂, ŷ, ẑ))+g(Mj2(x̂, ŷ, ẑ))+g(Mn3(x̂, ŷ, ẑ)) ≤ g(x̂)+g(ŷ)+g(ẑ) = f(x)+f(y)+f(z)

This implies that Mj1(x̂, ŷ, ẑ) ∈ domg and thus g(Mj1(x̂, ŷ, ẑ)) = f(a, Mj1(x̂, ŷ, ẑ)) =
f(Mj1(x,y, z)). Similarly, g(Mj2(x̂, ŷ, ẑ)) = f(Mj2(x,y, z)) and g(Mn3(x̂, ŷ, ẑ)) =
f(Mn3(x,y, z)), so the inequality above is equivalent to (16).

It is also easy to show the following fact.

PROPOSITION 6.5. There exists node i ∈ V for which operation MJN(xi, yi, zi) is de-
fined by equation (15a), (15b) or (15c), i.e. either {xi, yi, zi} = {a, b} ∈M , µ({xi, yi, zi}) =
{xi}, or µ({xi, yi, zi}) = {yi}.

PROOF. If such a node does not exist then MJN(xi, yi, zi) is defined by equation (15d)
for all nodes i ∈ V , i.e. MJN(x,y, z) = (x u y,x t y, z). The fact that 〈u,t〉 is a multi-
morphism of f then implies inequality (16), contradicting the choice of (f,x,y, z).

In the next section we show that case (15a) is impossible, while the remaining two
cases (15b), (15c) are analysed in section 6.4.

The following equalities are easy to verify; they will be useful for verifying various
identities:

α u (α t β) = α u (β t α) = (α u β) t α = (β u α) t α = α ∀α, β ∈ D (18a)
MJN(α, α, β) = (α, α, β) ∀α, β ∈ D (18b)

{{Mj1(α, β, γ), Mj2(α, β, γ), Mn3(α, β, γ)}} = {{α, β, γ}} ∀α, β, γ ∈ D (18c)

6.3. Eliminating case (15a)
We will need the following result.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:19

LEMMA 6.6. Suppose that i ∈ V is a node with {{xi, yi, zi}} = {{a, b, b}}where {a, b} ∈
M . Let w ∈ {x,y, z} be the labelling with wi = a, and let w′ be the labelling obtained
from w by setting w′i = b. Then w′ ∈ domf .

PROOF. Assume that w = x (the cases w = y and w = z will be entirely analogous).
Accordingly, we denote x′ = w′. By Assumption 2, f admits a majority polymorphism.
This implies [Baker and Pixley 1975] that domf is decomposable into unary and binary
relations, i.e. there holds

u ∈ domf ⇔ [ui ∈ ρi ∀i ∈ V and (ui, uj) ∈ ρij ∀i, j ∈ V, i 6= j]

where unary relations ρi ⊆ D for i ∈ V and binary relations ρij ⊆ D ×D for distinct
i, j ∈ V are defined as

ρi = {ui | u ∈ domf} ρij = {(ui, uj) | u ∈ domf}
Suppose that x′ /∈ domf , then there exists a node j ∈ V − {i} such that (x′i, x

′
j) =

(b, xj) /∈ ρij . We must have (a, xj), (b, yj), (b, zj) ∈ ρij since x,y, z ∈ domf . This implies,
in particular, that yj 6= xj and zj 6= xj . Furthermore, (a, yj), (a, zj) /∈ ρij , otherwise pair
(a, b) ∈M would have an incident soft edge in GΓ. Two cases are possible:

— yj = zj . The edge {(a, b), (yj , xj)} belongs to GΓ, therefore (xj , yj) ∈M .
— yj 6= zj . We have ρij = {(a, xj), (b, yj), (b, zj)}, therefore µ({xj , yj , zj}) = {xj}.

In each case Mj1(xj , yj , zj) 6= xj , Mj2(xj , yj , zj) 6= xj and Mn3(xj , yj , zj) = xj . Now let us
“minimise out” variable xi, i.e. define function

g(u) = min
d∈D

f(d,u) ∀u ∈ DV̂ (19)

where V̂ = V − {i} and we assumed that i corresponds to the first argument of f . For
an assignment u ∈ V we denote by û the restriction of u to V̂ . Due to the presence of
relation ρij we have

g(x̂) = f(x) g(Mj1(x̂, ŷ, ẑ)) = f(Mj1(x,y, z))
g(ŷ) = f(y) g(Mj2(x̂, ŷ, ẑ)) = f(Mj2(x,y, z))
g(ẑ) = f(z) g(Mn3(x̂, ŷ, ẑ)) = f(Mn3(x,y, z))

Indeed, let us show, for example, that g(x̂) = f(x). From (19) we get g(x̂) =
min{f(a, x̂), f(b, x̂)}. We have (b, x̂) 6= domf (since (b, xj) /∈ ρij), and therefore g(x̂) =
f(a, x̂) = f(x). The 5 other equalities above are proved in a similar way.

Since δ(x̂, ŷ, ẑ) < δ(x,y, z), Assumption 4 gives

g(Mj1(x̂, ŷ, ẑ)) + g(Mj2(x̂, ŷ, ẑ)) + g(Mn3(x̂, ŷ, ẑ)) ≤ f(x) + f(y) + f(z)

which is equivalent to (16). Thus, the instance (f,x,y, z) is non-violating; this contra-
dicts Assumption 4.

Let us denote

V M = {i ∈ V | {xi, yi, zi} = {a, b} ∈M}

V M = {i ∈ V | {xi, yi, zi} = {a, b} ∈M}

V M
1 = {i ∈ V M | (xi, yi, zi) = (a, b, b)} ⊆ ∆(x,y, z)

V M
2 = {i ∈ V M | (xi, yi, zi) = (b, a, b)} ⊆ ∆(x,y, z)

V M
3 = {i ∈ V M | (xi, yi, zi) = (b, b, a)}

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:20 V. Kolmogorov and S. Živný

The goal of this subsection is to prove that set V M = V M
1 ∪ V M

2 ∪ V M
3 is empty (and

so the case (15a) is never used).

PROPOSITION 6.7. Suppose that i ∈ V M .

(a) If (xi, yi, zi)=(a, b, b) then ∆(x,y, z)={i} and consequently V M
1 ={i}, ∆M (x,y, z)=∅.

(b) If (xi, yi, zi)=(b, a, b) then ∆(x,y, z)={i} and consequently V M
2 ={i}, ∆M (x,y, z)=∅.

(c) If (xi, yi, zi)=(b, b, a) then V M
3 ={i}, |{xj , yj , zj}| ≤ 2 for all j ∈ V and ∆M (x,y, z) = ∅.

PROOF. Note, in all three cases {a, b} ∈M .
Part (a) Suppose that (xi, yi, zi) = (a, b, b) and ∆(x,y, z) is a strict superset of {i}. Let
us define u = Mn3(x,y, z). It can be checked that Mj1(x,x,u) = Mj2(x,x,u) = x and
Mn3(x,x,u) = u. Therefore, if we define x′ = x and u′ = u then the following identities
will hold:

Mj1(x′,y, z) = Mj1(x,y, z) Mj1(x,x′,u′) = x′

Mj2(x′,y, z) = Mj2(x,y, z) Mj2(x,x′,u′) = x′

Mn3(x′,y, z) = u′ Mn3(x,x′,u′) = Mn3(x,y, z)

Let us modify x′ and u′ by setting x′i = u′i = b. Using the definition of the MJN operation,
it can be checked that the identities above still hold. By Lemma 6.6, x′ ∈ domf . We also
have δ(x′,y, z) < δ(x,y, z), so Assumption 4 gives

f(Mj1(x,y, z)) + f(Mj2(x,y, z)) + f(u′) ≤ f(x′) + f(y) + f(z) (20)

This implies, in particular, that u′ ∈ domf . We have (x,x′,u′) ≺ (x,y, z) since
δ(x,x′,u′) ≤ δ(x,y, z), ∆(x,x′,u′) = {i} and we assumed that ∆(x,y, z) is a strict
superset of {i}. Therefore, Assumption 4 gives

f(x′) + f(x′) + f(Mn3(x,y, z)) ≤ f(x) + f(x′) + f(u′) (21)

Summing (20) and (21) gives (16).
Part (b) Suppose that (xi, yi, zi) = (b, a, b) and ∆(x,y, z) is a strict superset of {i}.
Let u = Mn3(x,y, z). If we define y′ = y and u′ = u then the following identities will
hold:

Mj1(x,y′, z) = Mj1(x,y, z) Mj1(y,y′,u′) = y′

Mj2(x,y′, z) = Mj2(x,y, z) Mj2(y,y′,u′) = y′

Mn3(x,y′, z) = u′ Mn3(y,y′,u′) = Mn3(x,y, z)

Let us modify y′ and u′ by setting y′i = u′i = b. It can be checked that the identities
above still hold. The rest of the proof is analogous to the proof for part (a).
Part (c) Suppose that (xi, yi, zi) = (b, b, a) and (c) does not hold. Let u = Mn3(x,y, z).
If we define z′ = z and u′ = u then the following identities will hold:

Mj1(x,y, z′) = Mj1(x,y, z) Mj1(z, z′,u′) = z′

Mj2(x,y, z′) = Mj2(x,y, z) Mj2(z, z′,u′) = z′

Mn3(x,y, z′) = u′ Mn3(z, z′,u′) = Mn3(x,y, z)

Let us modify z′ and u′ by setting z′i = u′i = b. It can be checked that the identities
above still hold.

We claim that (∗) (z, z′,u′) ≺ (x,y, z). Indeed, since (c) does not hold we must have
one of the following:

— V M
3 contains another node j besides i. Then (∗) holds since |{zj , z

′
j , u
′
j}| = 1 <

|{xj , yj , zj}| = 2.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:21

— |{xj , yj , zj)| = 3 for some j ∈ V . Then (∗) holds since |{zj , z
′
j , u
′
j}| ≤ 2.

— |∆M (x,y, z)| ≥ 1. Then (∗) holds since |∆(z, z′,u′)| = 1 ≤ |∆M (x,y, z)| ≤ |∆(x,y, z)|
and |∆M (z, z′,u′)| = 0.

The rest of the proof is analogous to the proof for part (a).

Next, we show that if V M is non-empty then V M is empty. To prove this, assume
that V M 6= ∅, then by Proposition 6.7 we know that ∆M (x,y, z) is empty. Thus, if
i ∈ V M then we must have (xi, yi, zi) = (b, b, a). This case is eliminated by the following
proposition.

PROPOSITION 6.8. For a node i ∈ V the following situations are impossible:

S1 (xi, yi, zi) = (b, b, a), (a, b) ∈M , a t b = b.
S2 (xi, yi, zi) = (b, b, a), (a, b) ∈M , a u b = b.

PROOF.
Case S1 Let us define u = Mn3(x,y, z). By inspecting each case (15a)-(15d) and using
equations (18) one can check that u t z = z and consequently u u z = u. Therefore, if
we define z′ = z and u′ = u then the following identities will hold:

Mj1(x,y, z′) = Mj1(x,y, z) u′ u z = Mn3(x,y, z)
Mj2(x,y, z′) = Mj2(x,y, z) u′ t z = z′

Mn3(x,y, z′) = u′

Let us modify z′ and u′ by setting z′i = u′i = b, so that we have

— a = zi = ui = Mn3(xi, yi, zi)
— b = z′i = u′i = Mj1,2(xi, yi, zi) (= xi = yi)

{a, b} ∈M , a t b = b

It can be checked that the identities above still hold. We have δ(x,y, z′) < δ(x,y, z), so
Assumption 4 gives

f(Mj1(x,y, z)) + f(Mj2(x,y, z)) + f(u′) ≤ f(x) + f(y) + f(z′) (22)

assuming that z′ ∈ domf , and the fact that 〈u,t〉 is a multimorphism of f gives

f(Mn3(x,y, z)) + f(z′) ≤ f(u′) + f(z) (23)

assuming that u′ ∈ domf . If z′ ∈ domf then (22) implies that u′ ∈ domf ; summing (22)
and (23) gives (16). We thus assume that z′ /∈ domf , then (23) implies that u′ /∈ domf .

Let C be a sufficiently large constant, namely C > f(x) + f(y) + f(z). Consider
function

g(u) = min
d∈D
{[d = a] · C + f(d,u)} ∀u ∈ DV̂ (24)

where V̂ = V − {i}, [·] is the Iverson bracket (it is 1 if its argument is true, and 0
otherwise) and we assumed for simplicity of notation that i corresponds to the first
argument of f . For an assignment w ∈ V we denote by ŵ the restriction of w to V̂ . We
can write

g(ẑ) = f(z) + C g(x̂) = f(x) g(ŷ) = f(y) g(û) = f(u) + C

where the first equation holds since (b, ẑ) = z′ /∈ domf and the last equation holds since
(b, û) = u′ /∈ domf . Assumption 4 gives

g(Mj1(x̂, ŷ, ẑ)) + g(Mj2(x̂, ŷ, ẑ)) + g(Mn3(x̂, ŷ, ẑ)) ≤ g(x̂) + g(ŷ) + g(ẑ)
g(Mj1(x̂, ŷ, ẑ)) + g(Mn3(x̂, ŷ, ẑ)) + [(f(u) + C] ≤ f(x) + f(y) + [f(z) + C]

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:22 V. Kolmogorov and S. Živný

Therefore, g(Mj1(x̂, ŷ, ẑ)) < C, and thus g(Mj1(x̂, ŷ, ẑ)) = f(b, Mj1(x̂, ŷ, ẑ)) =
f(Mj1(x,y, z)). Similarly, g(Mj2(x̂, ŷ, ẑ)) = f(b, Mj2(x̂, ŷ, ẑ)) = f(Mj2(x,y, z)), and hence
the inequality above is equivalent to (16).
Case S2 Let us define u = Mn3(x,y, z). It can be checked that z u u = z and con-
sequently z t u = u. Therefore, if we define z′ = z and u′ = u then the following
identities will hold:

Mj1(x,y, z′) = Mj1(x,y, z) z u u′ = z′

Mj2(x,y, z′) = Mj2(x,y, z) z t u′ = Mn3(x,y, z)
Mn3(x,y, z′) = u′

Let us modify z′ and u′ by setting z′i = u′i = b, so that we have

— a = zi = ui = Mn3(xi, yi, zi)
— b = z′i = u′i = Mj1,2(xi, yi, zi) (= xi = yi)

{a, b} ∈M , a u b = b

It can be checked that the identities above still hold. The rest of the proof proceeds
analogously to the proof for the case S1.

We are now ready to prove the main result of this subsection.

PROPOSITION 6.9. Set V M is empty.

PROOF. Suppose that V M 6= ∅. As we just showed, we must have V M = ∅. For
each i ∈ V we also have |{xi, yi, zi}| 6= 1 by Proposition 6.4 and |{xi, yi, zi}| 6= 3 by
Proposition 6.7. Therefore, V = V M . Proposition 6.7 implies that each of the sets V M

1 ,
V M

2 , V M
3 contains at most one node, and furthermore |V M

1 ∪ V M
2 | ≤ 1. Since |V | ≥ 2 by

Proposition 6.4, we conclude that V = {i, j} where i ∈ V M
3 and j ∈ V M

1 ∪ V M
2 .

Suppose that j ∈ V M
1 , then we have x = (b, a′), y = (b, b′), z = (a, b′) where

{a, b}, {a′, b′} ∈M . Inequality (16) reduces to

f(b, b′) + f(b, b′) + f(a, a′) ≤ f(b, a′) + f(b, b′) + f(a, b′) (25)

We claim that f(a, a′)+f(b, b′) = f(a, b′)+f(b, a′). Indeed, if f(a, a′)+f(b, b′) > f(a, b′)+
f(b, a′) then {(a, b), (a′, b′)} is a soft edge in GΓ, and if f(a, a′)+f(b, b′) < f(a, b′)+f(b, a′)
then {(a, b), (b′, a′)} is a soft edge in GΓ; both case cases contradict Lemma 5.1(g). We
thus showed that (25) is an equality, and so instance (f,x,y, z) is non-violating; this
contradicts Assumption 4. The case j ∈ V M

2 is completely analogous. Proposition 6.9 is
proved.

6.4. Eliminating cases (15b) and (15c)
Propositions 6.5 and 6.9 show that there must exist node i ∈ V with µ({xi, yi, zi}) =
{xi} or µ({xi, yi, zi}) = {yi}. In this section we show that this leads to a contradiction,
thus proving Theorem 6.3.

Consider a variable i ∈ V with µ({xi, yi, zi}) 6= ∅. Let us define a transformation
that produces a new instance (f̄ , x̄, ȳ, z̄) from (f,x,y, z); this transformation will be
called the i-expansion of (f,x,y, z). The set of variables of the new instance will be
V̄ = V ∪ {j} where j /∈ V . The cost function will be

f̄(u) = f(û) + g(ui, uj) ∀u ∈ DV̄

where g is a binary function taken from the definition of the set µ({xi, yi, zi}) and û is
the restriction of u to V . Finally, labellings x̄, ȳ, z̄ are obtained by extending x,y, z to
V̄ in the unique way so that (f̄ , x̄, ȳ, z̄) is a valid instance.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:23

It is easy to check that if (f,x,y, z) is non-violating then so is (f̄ , x̄, ȳ, z̄). In the
proofs below we will use the following approach: after constructing the i-expansion, we
will add some unary function for node i and then “minimise out” variable xi, obtaining
another instance (g, x̂, ŷ, ẑ) with δ(x̂, ŷ, ẑ) = (δ(x,y, z) + 2)− 3 = δmin− 1. We will then
invoke Assumption 4 for the new instance obtaining a contradiction.

For simplicity, we will not change the notation when applying the i-expansion op-
eration to (f,x,y, z), i.e. the new instance (f̄ , x̄, ȳ, z̄) will be denoted as (f,x,y, z).
Variable j introduced by the i-expansion will be called the control variable for i. It is
easy to check the following.

PROPOSITION 6.10. Let j be a control variable for i ∈ V with µ({xi, yi, zi}) 6= ∅ in
an instance (f,x,y, z). Let u, v, w be a permutation of x,y, z such that µ({xi, yi, zi}) =
{ui}. Then

— Any labelling obtained from one of the labellings in {u, Mn3(x,y, z)} by changing the
label of i from ui to vi or wi does not belong to domf .

— Any labelling obtained from one of the labellings in {v,w, Mj1(x,y, z), Mj2(x,y, z)} by
changing the label of i from {vi, wi} to ui does not belong to domf .

Recall that the following diagram illustrates the fact that µ({α, β, γ}) = {γ}:

��
HH
HH

α

β

γ

PROPOSITION 6.11. For a node i ∈ V the following situations are impossible:

T1 µ({xi, yi, zi}) = {yi}, (xi, zi) ∈M , xi u zi = zi.
T2 µ({xi, yi, zi}) = {yi}, (xi, zi) ∈M , xi t zi = zi.
T3 µ({xi, yi, zi}) = {xi}, (yi, zi) ∈M , yi t zi = zi.
T4 µ({xi, yi, zi}) = {xi}, (yi, zi) ∈M , yi u zi = zi.

PROOF. We will analyse cases T1-T4 separately, and will derive a contradiction in
each case.
Case T1 Let us define u = Mj2(x,y, z). It can be checked that x u u = x and con-
sequently x t u = u. Therefore, if we define x′ = x and u′ = u then the following
identities will hold:

Mj1(x′,y, z) = Mj1(x,y, z) x u u′ = x′

Mj2(x′,y, z) = u′ x t u′ = Mj2(x,y, z) = u
Mn3(x′,y, z) = Mn3(x,y, z)

(26)

Let us modify x′,u′ by setting x′i = u′i = Mj1(xi, yi, zi) so that we have

��HH
HH

a = xi = ui = Mj2(xi, yi, zi)
c = x′i = u′i = Mj1(xi, yi, zi) (= zi)
b = Mn3(xi, yi, zi) (= yi)

{a, c} ∈M , a u c = c

where we denoted (a, b, c) = (xi, yi, zi). It can be checked that identities (26) still hold,
and furthermore δ(x′,y, z) < δ(x,y, z). Assumption 4 gives

f(Mj1(x,y, z)) + f(u′) + f(Mn3(x,y, z)) ≤ f(x′) + f(y) + f(z) (27)

assuming that x′ ∈ domf , and the fact that 〈u,t〉 is a multimorphism of f gives

f(x′) + f(Mj2(x,y, z)) ≤ f(x) + f(u′) (28)

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:24 V. Kolmogorov and S. Živný

assuming that u′ ∈ domf . If x′ ∈ domf then (27) implies that u′ ∈ domf ; summing (27)
and (28) gives (16). We thus assume that x′ /∈ domf , then (28) implies that u′ /∈ domf .

Let us apply the i-expansion transformation to instance (f,x,y, z). For simplicity, we
do not change the notation, so we assume that V now contains a control variable for i
and x,y, z,u,x′,u′ have been extended to the new set accordingly. We have δ(x,y, z) =
δmin + 2.

Let C be a sufficiently large constant, namely C > f(x) + f(y) + f(z). Consider
function

g(w) = min
d∈D
{[d = a] · C + f(d,w)} ∀w ∈ DV̂ (29)

where V̂ = V − {i}, [·] is the Iverson bracket (it returns 1 if its argument is true and
0 otherwise) and we assumed for simplicity of notation that i corresponds to the first
argument of f . For an assignment w ∈ V we denote by ŵ the restriction of w to V̂ . We
can write

g(x̂) = f(x) + C g(ŷ) = f(y) g(ẑ) = f(z) g(û) = f(u) + C (30)

To show the first equation, observe that the minimum in (29) cannot be achieved at
d = c since (c, x̂) = x′ /∈ domf , and also the minimum cannot be achieved at d = b by
Proposition 6.10. Therefore, g(x̂) = g(a, x̂) = f(x) +C. Other equations can be derived
similarly.

Clearly, (g, x̂, ŷ, ẑ) is a valid instance and δ(x̂, ŷ, ẑ) = δmin− 1, so Assumption 4 gives

g(Mj1(x̂, ŷ, ẑ)) + g(Mj2(x̂, ŷ, ẑ)) + g(Mn3(x̂, ŷ, ẑ)) ≤ g(x̂) + g(ŷ) + g(ẑ)
g(Mj1(x̂, ŷ, ẑ)) + [f(u) + C] + g(Mn3(x̂, ŷ, ẑ)) ≤ [f(x) + C] + f(y) + f(z)

Therefore, g(Mj1(x̂, ŷ, ẑ)) < C, and thus g(Mj1(x̂, ŷ, ẑ)) = f(c, Mj1(x̂, ŷ, ẑ)) =
f(Mj1(x,y, z)). (Note, labelling (b, Mj1(x̂, ŷ, ẑ)) is not in domf by Proposition 6.10.) Sim-
ilarly, g(Mn3(x̂, ŷ, ẑ)) = f(b, Mn3(x̂, ŷ, ẑ)) = f(Mn3(x,y, z)), and hence the inequality
above is equivalent to (16).
Case T2 Let us define u = Mj1(x,y, z). It can be checked that u t x = x and con-
sequently u u x = u. Therefore, if we define x′ = x and u′ = u then the following
identities will hold:

Mj1(x′,y, z) = u′ u′ u x = Mj1(x,y, z) = u
Mj2(x′,y, z) = Mj2(x,y, z) u′ t x = x′

Mn3(x′,y, z) = Mn3(x,y, z)

Let us modify x′,u′ by setting x′i = u′i = Mj2(xi, yi, zi) so that we have

��HH
HH

a = xi = ui = Mj1(xi, yi, zi)
c = x′i = u′i = Mj2(xi, yi, zi) (= zi)
b = Mn3(xi, yi, zi) (= yi)

{a, c} ∈M , a t c = c

It can be checked that the identities above still hold. The rest of the proof proceeds
analogously to the proof for the case T1.
Case T3 Let us define u = Mj1(x,y, z). It can be checked that u t y = y and con-
sequently u u y = u. Therefore, if we define y′ = y and u′ = u then the following
identities will hold:

Mj1(x,y′, z) = u′ u′ u y = Mj1(x,y, z) = u
Mj2(x,y′, z) = Mj2(x,y, z) u′ t y = y′

Mn3(x,y′, z) = Mn3(x,y, z)

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:25

Let us modify y′,u′ by setting y′i = u′i = Mj2(xi, yi, zi) so that we have

��
HH
HH

b = yi = ui = Mj1(xi, yi, zi)
c = y′i = u′i = Mj2(xi, yi, zi) (= zi)
a = Mn3(xi, yi, zi) (= xi)

{b, c} ∈M , b t c = c

It can be checked that the identities above still hold. The rest of the proof proceeds
analogously to the proof for the case T1.
Case T4 Let us define u = Mj2(x,y, z). It can be checked that y u u = y and con-
sequently y t u = u. Therefore, if we define y′ = y and u′ = u then the following
identities will hold:

Mj1(x,y′, z) = Mj1(x,y, z) y u u′ = y′

Mj2(x,y′, z) = u′ y t u′ = Mj2(x,y, z) = u
Mn3(x,y′, z) = Mn3(x,y, z)

Let us modify y′,u′ by setting y′i = u′i = Mj1(xi, yi, zi) so that we have

��HH
HH

b = yi = ui = Mj2(xi, yi, zi)
c = y′i = u′i = Mj1(xi, yi, zi) (= zi)
a = Mn3(xi, yi, zi) (= xi)

{b, c} ∈M , b u c = c

It can be checked that the identities above still hold. The rest of the proof proceeds
analogously to the proof for the case T1.

There are two possible cases remaining: µ({xi, yi, zi}) = {yi}, {xi, zi} ∈ M or
µ({xi, yi, zi}) = {xi}, {yi, zi} ∈ M . They are eliminated by the next two propositions;
we use a slightly different argument.

PROPOSITION 6.12. For a node i ∈ V the following situation is impossible:

T5 µ({xi, yi, zi}) = {yi}, {xi, zi} ∈M .

PROOF. For a labelling w ∈ DV let ŵ be the restriction of w to V − {i}. Two cases
are possible.
Case 1 (Mj2(x̂, ŷ, ẑ), ŷ, ẑ) ≺ (x̂, ŷ, ẑ). Let us define u = Mj2(x,y, z) and v =
Mj2(u,y, z). It can be checked that MJN(u,v, z) = (u,v, z). 2 Therefore, if we define
z′ = z and u′ = u then the following identities will hold:

Mj1(x,y, z′) = Mj1(x,y, z) Mj1(u′,v, z) = Mj2(x,y, z) = u v = Mj2(u′,y, z)
Mj2(x,y, z′) = u′ Mj2(u′,v, z) = v
Mn3(x,y, z′) = Mn3(x,y, z) Mn3(u′,v, z) = z′

Let us modify z′ and u′ according to the following diagram:

��
HH
HH

c = zi = ui = Mj2(xi, yi, zi) (= vi)
a = z′i = u′i = Mj1(xi, yi, zi) (= xi)
b = Mn3(xi, yi, zi) (= yi)

{a, c} ∈M

It can be checked that the identities above still hold. The assumption of Case 1 gives
(u′,y, z) ≺ (x,y, z) (note that u′i = xi). Therefore, the fact that v = Mj2(u′,y, z) and
Assumption 4 give the following relationship: (∗) if u′ ∈ domf then v ∈ domf .

2If uj = vj then obviously MJN(uj , vj , zj) = (uj , vj , zj); suppose that uj 6= vj . This implies uj 6= xj and
uj 6= yj (if uj = yj then we would have vj = Mj2(uj , uj , zj) = uj ). Therefore, uj = zj . We must have
vj = Mj2(zj , yj , zj) = yj since vj 6= uj = zj . Thus, MJN(uj , vj , zj) = MJN(zj , yj , zj) = (α, yj , β). We have
{{zj , yj , zj}} = {{α, yj , β}}, and so α = β = zj .

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:26 V. Kolmogorov and S. Živný

We have δ(x,y, z′) < δ(x,y, z) (since xi = z′i) and δ(u′,v, z) < δ(x,y, z) (since
vi = zi), so Assumption 4 gives

f(Mj1(x,y, z)) + f(u′) + f(Mn3(x,y, z)) ≤ f(x) + f(y) + f(z′) (31)

assuming that z′ ∈ domf , and

f(Mj2(x,y, z)) + f(v) + f(z′) ≤ f(u′) + f(v) + f(z) (32)

assuming that u′,v ∈ domf . If z′ ∈ domf then (31) implies that u′ ∈ domf , and so (∗)
implies that v ∈ domf . Summing (31) and (32) gives (16). We thus assume that z′ /∈
domf , then we have u′ /∈ domf . (If u′ ∈ domf then (∗) gives v ∈ domf , and equation (32)
then gives z′ ∈ domf - a contradiction.)

The rest of the argument proceeds similarly to that for the case T1. Let us apply
the i-expansion transformation to (f,x,y, z) (again, without changing the notation).
Consider function

g(w) = min
d∈D
{[d = c] · C + f(d,w)} ∀w ∈ DV̂

where V̂ = V − {i} and C > f(x) + f(y) + f(z) is a sufficiently large constant. We can
write

g(ẑ) = f(z) + C g(x̂) = f(x) g(ŷ) = f(y) g(û) = f(u) + C

Clearly, (g, x̂, ŷ, ẑ) is a valid instance and δ(x̂, ŷ, ẑ) = δmin− 1, so Assumption 4 gives

g(Mj1(x̂, ŷ, ẑ)) + g(Mj2(x̂, ŷ, ẑ)) + g(Mn3(x̂, ŷ, ẑ)) ≤ g(x̂) + g(ŷ) + g(ẑ)
g(Mj1(x̂, ŷ, ẑ)) + [f(u) + C] + g(Mn3(x̂, ŷ, ẑ)) ≤ f(x) + f(y) + [f(z) + C]

Therefore, g(Mj1(x̂, ŷ, ẑ)) < C, and thus g(Mj1(x̂, ŷ, ẑ)) = f(a, Mj1(x̂, ŷ, ẑ)) =
f(Mj1(x,y, z)). Similarly, g(Mn3(x̂, ŷ, ẑ)) = f(b, Mn3(x̂, ŷ, ẑ)) = f(Mn3(x,y, z)), and hence
the inequality above is equivalent to (16).
Case 2 (Mj2(x̂, ŷ, ẑ), ŷ, ẑ) ⊀ (x̂, ŷ, ẑ). This implies, in particular, the following condi-
tion:

(∗) if |{xj , yj , zj}| = 3 for j ∈ V − {i} then Mj2(xj , yj , zj) = xj .

It is easy to check that ∆(Mj2(x̂, ŷ, ẑ), ŷ, ẑ) ⊆ ∆(x̂, ŷ, ẑ). Indeed, consider a node j ∈
V − {i} with Mj2(xj , yj , zj) 6= yj ; we need to show that xj 6= yj . If |{xj , yj , zj}| = 3 then
the claim is trivial, so it remains to consider the case when MJN(xj , yj , zj) is defined
via (15d) (case (15a) was eliminated by Proposition 6.9). We then have Mj2(xj , yj , zj) =
xj t yj , and so xj t yj 6= yj clearly implies xj 6= yj .

We thus must have ∆(Mj2(x̂, ŷ, ẑ), ŷ, ẑ) = ∆(x̂, ŷ, ẑ), otherwise the assumption of
Case 2 would not hold. This implies the following:

(∗∗) if xj 6= yj for j ∈ V − {i} then Mj2(xj , yj , zj) 6= yj .

Let us define u = Mj1(x,y, z), and let x′,u′ be the labellings obtained from x,u by
setting x′i = u′i = zi, so that we have

��HH
HH

a = xi = ui = Mj1(xi, yi, zi)
c = x′i = u′i = Mj2(xi, yi, zi) (= zi)
b = Mn3(xi, yi, zi) (= yi)

{a, c} ∈M

We claim that the following identities hold:

Mj1(x′,y, z) = u′ x u u′ = Mj1(x,y, z) = u
Mj2(x′,y, z) = Mj2(x,y, z) x t u′ = x′

Mn3(x′,y, z) = Mn3(x,y, z)

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:27

Indeed, we need to show that xj t uj = xj for j ∈ V − {i}. If MJN(xj , yj , zj) was defined
via (15b) then Mj2(xj , yj , zj) = yj t zj 6= xj contradicting condition (∗). Similarly, if
it was defined via (15c) then Mj2(xj , yj , zj) = xj t zj = zj 6= xj again contradicting
condition (∗). (Note, in the latter case xj t zj = zj since by Proposition 6.11 we cannot
have {xj , zj} ∈ M .) We showed that MJN(xj , yj , zj) must be determined via (15d), so
uj = Mj1(xj , yj , zj) = xj u yj and Mj2(xj , yj , zj) = xj t yj . If xj = yj then the claim
xjtuj = xj is trivial. If xj 6= yj then condition (∗∗) implies xjtyj 6= yj , and consequently
xj t yj = xj , uj = xj u yj = yj and xj t uj = xj t yj = xj , as claimed.

The rest of the proof proceeds analogously to the proof for the case T1.

PROPOSITION 6.13. For a node i ∈ V the following situation is impossible:

T6 µ({xi, yi, zi}) = {xi}, {yi, zi} ∈M .

PROOF. Let us define u = Mj2(x,y, z) and v = Mj2(u,x, z). It can be checked that
MJN(v,u, z) = (v,u, z). 3 Therefore, if we define z′ = z and u′ = u then the following
identities will hold:
Mj1(x,y, z′) = Mj1(x,y, z) Mj1(v,u′, z) = v v = Mj2(u′,x, z)
Mj2(x,y, z′) = u′ Mj2(v,u′, z) = Mj2(x,y, z) = u
Mn3(x,y, z′) = Mn3(x,y, z) Mn3(v,u′, z) = z′

Let us modify z′ and u′ according to the following diagram:

��
HH
HH

c = zi = ui = Mj2(xi, yi, zi) (= vi)
b = z′i = u′i = Mj1(xi, yi, zi) (= yi)
a = Mn3(xi, yi, zi) (= xi)

{b, c} ∈M

It can be checked that the identities above still hold. Two cases are possible.
Case 1 (u′,x, z) ≺ (x,y, z). This case is analogous to the Case 1 of T5. Namely,
the fact that v = Mj2(u′,x, z) and Assumption 4 give the following relationship: (∗) if
u′ ∈ domf then v ∈ domf . We have δ(x,y, z′) < δ(x,y, z) (since yi = z′i) and δ(v,u′, z) <
δ(x,y, z) (since vi = zi), so Assumption 4 gives

f(Mj1(x,y, z)) + f(u′) + f(Mn3(x,y, z)) ≤ f(x) + f(y) + f(z′) (33)

assuming that z′ ∈ domf , and

f(v) + f(Mj2(x,y, z)) + f(z′) ≤ f(v) + f(u′) + f(z) (34)

assuming that u′,v ∈ domf . If z′ ∈ domf then (33) implies that u′ ∈ domf , and so (∗)
implies that v ∈ domf . Summing (33) and (34) gives (16). We thus assume that z′ /∈
domf , then we have u′ /∈ domf . (If u′ ∈ domf then (∗) gives v ∈ domf , and equation (34)
then gives z′ ∈ domf - a contradiction.)

The rest of the argument proceeds similarly to that for the case T1.
Case 2 (u′,x, z) ⊀ (x,y, z). Let us show that each node j ∈ V − {i} satisfies the
following:

(a) If j ∈ ∆(u′,x, z) then j ∈ ∆(x,y, z). In other words, if u′j 6= xj then yj 6= xj .

3If uj = vj then obviously MJN(vj , uj , zj) = (vj , uj , zj); suppose that uj 6= vj . This implies uj 6= xj

(otherwise we would have vj = Mj2(uj , uj , zj) = uj ). If MJN(xj , yj , zj) is determined via (15b) then {yj , zj} ∈
M by Proposition 6.11 and so uj = zj and vj = zj . It remains to consider the case when it is determined
via (15d) (cases (15a) and (15c) have been eliminated).

We have uj = xj t yj = yj since uj 6= xj , and so vj = Mj2(yj , xj , zj) = yj t xj = xj since vj 6= uj =
yj (clearly, Mj2(yj , xj , zj) is also determined via (15d)). We thus have MJN(vj , uj , zj) = MJN(xj , yj , zj) =
(α, uj , zj). Condition {{vj , uj , zj}} = {{α, uj , zj}} implies that α = vj .

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:28 V. Kolmogorov and S. Živný

(b) If j ∈ ∆M (u′,x, z) then j ∈ ∆M (x,y, z). Namely, if (u′j , xj , zj) = (α, β, β) or
(u′j , xj , zj) = (β, α, β) where {α, β} ∈M then u′j = yj and thus (xj , yj , zj) = (β, α, β) or
(xj , yj , zj) = (α, β, β) respectively.

(c) µ({u′j , xj , zj}) 6= {u′j}.

If MJN(xj , yj , zj) is determined via (15b) then we must have {yj , zj} ∈ M by Proposi-
tion 6.11, and so u′j = Mj2(xj , yj , zj) = zj . Checking (a-c) is then straightforward.

It remains to consider the case when MJN(xj , yj , zj) is determined via (15d) - all other
cases have been eliminated. Condition (c) then clearly holds, and u′j = Mj2(xj , yj , zj) =
xj t yj . If u′j = xj then (a,b) are trivial since their preconditions do not hold. It is also
straightforward to check that (a,b) hold if u′j = yj 6= xj .

We proved that (a-c) hold for each j ∈ V − {i}. This implies that (u′,x, z) ≺ (x,y, z)
(contradicting the assumption of Case 2) due to the fourth component in (17) which is
zero for the triple (u′,x, z). (Note that at node i we have (u′i, xi, zi) = (yi, xi, zi) and so
µ({u′i, xi, zi} = {xi} 6= {u′i}).

7. PROOF OF THEOREM 3.4
In this section we present an algorithm for minimising instances from VCSP(Γ). The
idea for the algorithm and some of the proof techniques have been influenced by the
techniques used by Takhanov [Takhanov 2010a] for proving the absence of arithmeti-
cal deadlocks in certain instances. However, the algorithm itself is very different from
Takhanov’s approach. (The latter does not rely on submodular minimization algo-
rithms; instead, it performs a reduction to an optimization problem in a perfect graph).

Let f : D → Q+ be the function to be minimised that admits an STP on M and
an MJN on P − M , for some symmetric M ⊆ P . (We no longer assume that M is
determined by the language; instead, it is an arbitrary symmetric set.) Let V be the
set of variables of function f (which we will also call nodes), and Di be the domain of
variable i ∈ V with D = ×i∈V Di. In the beginning all domains are the same (Di =
D), but as the algorithm progresses we will allow Di to become different for different
i ∈ V . Similarly, operations u,t may act differently on different components of vectors
x,y ∈ D. We denote by ui,ti : Di × Di → Di the i-th operations of 〈u,t〉. We also
denote by Mj1i, Mj2i, Mn3i : Di ×Di ×Di → Di the i-th operations of 〈Mj1, Mj2, Mn3〉. The
definition of a binary multimorphism (Definition 2.4) naturally extends to our setting
where operations u,t may act differently on different components of vectors x,y ∈ D.
In particular, a collection 〈u,t〉 of pairs of operations is called a (binary multi-sorted)
multimorphism of f if

f(x u y) + f(x t y) ≤ f(x) + f(y) ∀x,y ∈ domf (35)

where x u y = (x1 u1 y1, . . . , xn un yn) and x t y = (x1 t1 y1, . . . , xn tn yn) with
x = (x1, . . . , xn), y = (y1, . . . , yn), and n is the arity of f . (The term multi-sorted comes
from the study of crisp VCSPs with operations acting differently on different compo-
nents [Bulatov and Jeavons 2003].)

We denote by P the collection of sets P = (Pi)i∈V where Pi = {{a, b} |a, b ∈ Di, a 6= b}.
We denote by M a collection of subsets M = (Mi)i∈V , Mi ⊆ Pi, and M = (M i)i∈V ,
M i = Pi −Mi. We now extend Definition 3.1 as follows.

Definition 7.1. Let 〈u,t〉 be a collection of pairs of binary operations and
〈Mj1, Mj2, Mn3〉 be a collection of triples of ternary operations.

— 〈u,t〉 is an STP on M if for all i ∈ V the pair 〈ui,ti〉 is an STP on Mi.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:29

— 〈Mj1, Mj2, Mn3〉 is an MJN on M if for all i ∈ V the triple 〈Mj1i, Mj2i, Mn3i〉 is an MJN
on M i.

We assume that multimorphisms 〈ui,ti〉 for all i ∈ V are given as a part of the
input. (We can make this assumption since in Theorem 3.4 the language is fixed. To
repeat, in the beginning multimorphisms 〈ui,ti〉 are same for all nodes i, but they will
change as the algorithm progresses.)

We are now ready to present the algorithm; it will consist of three stages.

Stage 1: Decomposition into binary relations
We will need the following fact.

PROPOSITION 7.2. Function f admits a majority polymorphism.

PROOF. We use an argument from [Takhanov 2010a]. Define

µ̄(x,y, z) = [(y t x) u (y t z)] u (x t z)
µ(x,y, z) = Mj1(µ̄(x,y, z), µ̄(y, z,x), µ̄(z,x,y))

Suppose that {x, y, z} = {a, b} ∈ P . It can be checked that µ̄(x, y, z) acts as the majority
operation if 〈u,t〉 is commutative on {a, b}, and µ̄(x, y, z) = x otherwise. This implies
that µ acts as the majority operation on P .

Since the instance admits a majority polymorphism, domf can be decomposed [Baker
and Pixley 1975] into unary relations ρi ⊆ Di, i ∈ Di and binary relations ρij ⊆ Di×Dj ,
i, j ∈ V , i 6= j such that

x ∈ domf ⇔ [xi ∈ ρi ∀i ∈ V ] and [(xi, xj) ∈ ρij ∀i, j ∈ V, i 6= j] (36)

We will always assume that (x, y) ∈ ρij ⇔ (y, x) ∈ ρji. We use the following notation
for relations:

— If ρij ∈ Di ×Dj , X ⊆ Di and Y ⊆ Dj then

ρij(X, ·) = {y | ∃x ∈ X s.t. (x, y) ∈ ρij} ρij(·, Y ) = {x | ∃y ∈ Y s.t. (x, y) ∈ ρij}
If X = {x} and Y = {y} then these two sets will be denoted as ρij(x, ·) and ρij(·, y)
respectively.

— If ρ ∈ D1 ×D2 and ρ′ ∈ D2 ×D3 then we define their composition as

ρ ◦ ρ′ = {(x, z) ∈ D1 ×D3 | ∃y ∈ D2 s.t. (x, y) ∈ ρ, (y, z) ∈ ρ′}
In the first stage we establish arc- and path-consistency using the standard constraint-
processing techniques [Cooper 1989] so that the resulting relations satisfy

(arc-consistency) {x | (∃y)(x, y) ∈ ρij} = ρi ∀ distinct i, j ∈ V
(path-consistency) ρik(x, ·) ∩ ρjk(y, ·) 6= ∅ ∀ distinct i, j, k ∈ V, (x, y) ∈ ρij

It is well known that for instances with unary and binary relations establishing arc-
and path-consistency is equivalent to establishing strong 3-consistency, which is de-
fined as the following property: for any three variables i, j, k ∈ V and any solution to
the subproblem on variables i and j, defined as the projection of the problem onto i and
j, can be extended to a solution to the subproblem on variables i, j, and k [Cooper 1989].
It is known that in the presence of a majority polymorphism strong 3-consistency is
equivalent to global consistency [Jeavons et al. 1998], that is, domf is empty iff all ρi

and ρij are empty. Moreover, the relations ρi, ρij are uniquely determined by f via

ρi = {xi | x ∈ domf} ρij = {(xi, xj) | x ∈ domf}

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:30 V. Kolmogorov and S. Živný

The second equation implies that any polymorphism of f is also a polymorphism of ρij .
From now on we will assume that Di = ρi for all i ∈ V . This can be achieved by

reducing sets Di if necessary. We will also assume that all sets Di are non-empty.

Stage 2: Modifying M and 〈u,t〉
At this point we have the following data: function f on the set of variables V , relations
ρi, ρij (with ρi = Di), and a multi-sorted multimorphism 〈u,t〉. For each i ∈ V let us
set Mi to be the set of pairs {a, b} ∈ Pi on which 〈ui,ti〉 is commutative.

The second stage of the algorithm works by iteratively growing sets Mi and simul-
taneously modifying operations 〈ui,ti〉 so that (i) 〈ui,ti〉 is still a conservative pair
which is commutative on Mi and non-commutative on M i, and (ii) 〈u,t〉 is a multi-
sorted multimorphism of f . It stops when we get Mi = Pi for all i ∈ V . Thus, the output
of Stage 2 is a new multi-sorted operation 〈u,t〉 which is an STP multimorphism of f .
Note that the function f is never modified.

We now describe one iteration. First, we identify subset U ⊆ V and subsets Ai, Bi ⊆
Di for each i ∈ U using the following algorithm:

1: pick node k ∈ V and pair {a, b} ∈Mk.
(If they do not exist, terminate and go to Stage 3.)

2: set U = {k}, Ak = {a}, Bk = {b}
3: while there exists i ∈ V − U such that ρki(Ak, ·) ∩ ρki(Bk, ·) = ∅ do
4: add i to U , set Ai = ρki(Ak, ·), Bi = ρki(Bk, ·)

// compute “closure” of sets Ai for i ∈ U
5: while there exists a ∈ Dk −Ak s.t. a ∈ ρki(·, Ai) for some i ∈ U − {k} do
6: add a to Ak, set Aj = ρkj(Ak, ·) for all j ∈ U − {k}
7: end while

// compute “closure” of sets Bi for i ∈ U
8: while there exists b ∈ Dk −Bk s.t. b ∈ ρki(·, Bi) for some i ∈ U − {k} do
9: add b to Bk, set Bj = ρkj(Bk, ·) for all j ∈ U − {k}

10: end while
// done

11: end while
12: return set U ⊆ V and sets Ai, Bi ⊆ Di for i ∈ U

LEMMA 7.3. Sets U and Ai, Bi for i ∈ U produced by the algorithm have the follow-
ing properties:

(a) Sets Ai and Bi for i ∈ U are disjoint.
(b) {a, b} ∈M i for all i ∈ U , a ∈ Ai, b ∈ Bi.
(c) ρki(Ak, ·) = Ai, ρki(Bk, ·) = Bi, ρki(·, Ai) = Ak, ρki(·, Bi) = Bk for all i ∈ U − {k} where

k is the node chosen in line 1.
(d) Suppose that i ∈ U and j ∈ U ≡ V − U . If (c, x) ∈ ρij where c ∈ Ai ∪ Bi and x ∈ Dj

then (d, x) ∈ ρij for all d ∈ Ai ∪Bi.

To complete the iteration, we modify sets Mi and operations ui,ti for each i ∈ U as
follows:

— add all pairs {a, b} to Mi where a ∈ Ai, b ∈ Bi.
— redefine a ui b = b ui a = a, a ti b = b ti a = b for all a ∈ Ai, b ∈ Bi

LEMMA 7.4. The new collection 〈u,t〉 of pairs of operations is a (multi-sorted) mul-
timorphism of f .

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:31

A proof of Lemmas 7.3 and 7.4 is given in the next section. They imply that all steps
are well-defined, and upon termination the algorithm produces a pair 〈u,t〉 which is
a multi-sorted STP multimorphism of f . Clearly, the number of iterations is at most
|V | · |D|(|D|−1)

2 where D is the initial domain, and so Stage 2 takes a polynomial time.

Stage 3: Reduction to submodular minimisation
At this stage we have an instance that admits a multi-sorted STP multimorphism.
Theorem 2.5 applies to VCSP instances with cost functions admitting a (non-multi-
sorted) STP multimorphism. However, the proof of Theorem 2.5 [Cohen et al. 2008,
Theorem 8.2] also works in our case. In particular, the proof of Theorem 2.5 consists
of (i) establishing strong 3-consistency and (ii) finding a total order on the domains of
the variables (both the domains and the orders are allowed to be different for different
variables) that renders the objective function submodular [Schrijver 2000]. The same
argument as in [Cohen et al. 2008] shows that the objective function f is submodular
and thus minimisable in polynomial time [Schrijver 2000]. (The tractability of min-
imising submodular functions with different variables having different (distributive
lattice) orders was first studied in [Krokhin and Larose 2008].)

7.1. Algorithm’s correctness: proof of Lemmas 7.3 and 7.4
First, we show that the following holds at any moment during Stage 2.

PROPOSITION 7.5. If {a, b} ∈ M i, {a′, b′} ∈ Pj and (a, a′), (b, b′) ∈ ρij , where i, j are
distinct nodes in V , then exactly one of the following holds:

(i) (a, b′), (b, a′) ∈ ρij

(ii) (a, b′), (b, a′) /∈ ρij and {a′, b′} ∈M j

PROOF. First, suppose that {a′, b′} ∈Mj . We need to show that case (i) holds. Oper-
ations ui,ti are non-commutative on {a, b}, while uj ,tj are commutative on {a′, b′}. It
is easy to check that

{(a, a′)u (b, b′), (b, b′)u (a, a′), (a, a′)t (b, b′), (b, b′)t (a, a′)} = {(a, a′), (a, b′), (a′, b), (a′, b′)}
Since u, t are polymorphisms of ρij , all assignments involved in the equation above
belong to ρij . Thus, (i) holds.

Now suppose {a′, b′} ∈M j . We then have

Mn3((a, a′), (b, b′), (a, b′)) = (b, a′) Mn3((a, a′), (b, b′), (b, a′)) = (a, b′)

Mn3 is a polymorphism of ρij , therefore if one of the assignments (a, b′), (b, a′) belongs
to ρij then the other one also belongs to ρij . This proves the proposition.

7.1.1. Proof of Lemma 7.3(a-c). It follows from construction that during all stages of the
algorithm there holds

ρki(Ak, ·) = Ai , ρki(Bk, ·) = Bi ∀i ∈ U − {k} (37)

Strong 3-consistency also implies that sets Ai, Bi for i ∈ U are non-empty. Clearly,
properties (a) and (b) of Lemma 7.3 hold after initialization (line 2). Let us prove that
each step of the algorithm preserves these two properties. Note, property (a) together
with (37) imply that (a, b′) /∈ ρki if a ∈ Ak, b′ ∈ Bi, and (b, a′) /∈ ρki if b ∈ Bk, a′ ∈ Ai,
where i ∈ U − {k}.

First, consider line 4, i.e. adding i to U with Ai = ρki(Ak, ·), Bi = ρki(Bk, ·). Property
(a) for node i follows from the precondition of line 3; let us show (b) for node i. Suppose

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:32 V. Kolmogorov and S. Živný

that a′ ∈ Ai, b′ ∈ Bi, then there exist a ∈ Ak, b ∈ Bk such that (a, a′), (b, b′) ∈ ρki. We
have (a, b′) /∈ ρki, so by Proposition 7.5 we get {a′, b′} ∈M .

Now consider line 6, i.e. adding a to Ak and updating Aj for j ∈ U − {k} accordingly.
(The analysis of line 9 will be symmetrical, and we omit it.) We denote by A◦j and Aj

respectively the old and the new set for node j ∈ U . There must exist node i ∈ U − {k}
and element a′ ∈ A◦i such that (a, a′) ∈ ρki. We prove below that properties (a) and (b)
are preserved for nodes k, i and all nodes j ∈ U − {k, i}.
Node k It is clear that a /∈ Bk, otherwise we would have a′ ∈ ρki(Bk, ·) = Bi contra-
dicting condition A◦i ∩Bi = ∅. Thus, property (a) for node k holds. Consider an element
b ∈ Bk. By arc-consistency there exists an element b′ ∈ ρki(b, ·) ⊆ Bi. From property (b)
we get {a′, b′} ∈ M i. We also have (b, a′) /∈ ρki since A◦i ∩ ρki(Bk, ·) = A◦i ∩ Bi = ∅. By
Proposition 7.5 we get {a, b} ∈Mk. Thus, property (b) holds for node k.
Node i Let us prove that Ai ∩ Bi = ∅. Suppose not, then (a, b′) ∈ ρki for some
b′ ∈ Bi. There must exist b ∈ Bk with (b, b′) ∈ ρki. We have ρki ∩ ({a, b} × {a′, b′}) =
{(a, a′), (b, b′), (a, b′)} and {a′, b′} ∈ M i, which is a contradiction by Proposition 7.5.
This proves property (a) for node i.

Property (b) for node i follows from property (a) for nodes k, i, property (b) for node
k, and Proposition 7.5.
Node j ∈ U − {k, i} Let us prove that Aj ∩ Bj = ∅. Suppose not, then (a, y) ∈ ρkj for
some y ∈ Bj . There must exist b ∈ Bk with (b, y) ∈ ρkj , and b′ ∈ Bi with (b, b′) ∈ ρki. We
also have a′ ∈ A◦i = ρki(A◦k, ·), therefore there must exist c ∈ A◦k with (c, a′) ∈ ρki, and
x ∈ A◦j with (c, x) ∈ ρkj . It can be seen that

ρki ∩ ({a, b, c} × {a′, b′}) = {(a, a′), (c, a′), (b, b′)}
ρkj ∩ ({a, b, c} × {x, y}) = {(a, y), (c, x), (b, y)}

Indeed, all listed assignments belong to ρki or ρkj by construction; we need to show that
remaining assignments do not belong to these relations. We have (a, b′), (c, b′), (b, a′) /∈
ρki since we have already established property (a) for nodes k and i. We also have
(c, y), (b, x) /∈ ρkj since A◦k ∩ Bk = ∅ and A◦j ∩ Bj = ∅. Combining it with the fact that
{x, y} ∈M and using Proposition 7.5 gives that (a, x) /∈ ρkj .

Consider relation βij = ρ′ik ◦ ρkj where ρ′ik = {(d′, d) ∈ ρik | d ∈ {a, b, c}}. It is easy
to check that (a′, x), (a′, y), (b′, y) ∈ βij and (b′, x) /∈ βij . We have {a′, b′} ∈ M i and
{x, y} ∈ M j , so Mn3((a′, x), (a′, y), (b′, y)) = (b′, x). Clearly, Mn3 is a polymorphism of ρ′ik
and βij , therefore we must have (b′, x) ∈ βij - a contradiction. This proves property (a)
for node j.

Property (b) for node j follows from property (a) for nodes k, j, property (b) for node
k, and Proposition 7.5.
Concluding remark We showed that throughout the algorithm sets U,Ai, Bi satisfy
properties (a,b) and equation (37). It is easy to see that after running lines 5-7 we
also have ρki(·, Ai) = Ak, and after running lines 8-10 we have ρki(·, Bi) = Bk. Thus,
property (c) holds upon termination, which concludes the proof of Lemma 7.3(a-c).

7.1.2. Proof of Lemma 7.3(d). First, we will prove the following claim:

PROPOSITION 7.6. Suppose that (a, x), (b, x), (c, y) ∈ ρij where i ∈ U , j ∈ U , a ∈ Ai,
b ∈ Bi, c ∈ Ai ∪Bi, x, y ∈ Dj . Then (a, y), (b, y), (c, x) ∈ ρij .

PROOF. We claim that there exists a relation γii ⊆ Di × Di with the following
properties:

(i) γii is an equivalence relation on Di such that Ai and Bi are among its classes.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:33

(ii) Operation Mn3i is a polymorphism of γii.

Indeed, for i = k such relation can be constructed as follows. Let us set γkk = {(a, a)|a ∈
Dk} and iteratively update it via γkk := γkk ◦ ρki ◦ ρik for i ∈ U − {k}. Set γii will never
shrink; we stop when no such operation can change γkk. Clearly, at this point γii is
an equivalence relation. By comparing this scheme with lines 5-10 of the algorithm
we conclude that (i) holds. Finally, (ii) follows from the fact that polymorphisms are
preserved under compositions. If i ∈ U − {k} then we take γii = ρik ◦ γkk ◦ ρki; (i)-(ii)
then follow from property (c) of Lemma 7.3.

We are now ready to prove Proposition 7.6. We can assume that x 6= y, otherwise
the claim is trivial. Assume that c ∈ Ai (the case c ∈ Bi is analogous). Suppose that
(b, y) /∈ ρij . We have {b, c} ∈ M , so Proposition 7.5 implies that {x, y} ∈ M . Consider
relation γ′ii = {(x′, y′) ∈ γii | y′ /∈ Bi − {b})}. Operation Mn3i is conservative, therefore
it is a polymorphism of γ′ii as well. Define relation βij = γ′ii ◦ ρij ⊆ Di × Dj , then Mn3

is a polymorphism of βij . It is easy to check that (a, y), (a, x), (b, x) ∈ βij . Operation
Mn3 is a polymorphism of βij and it acts as the minority operation on {a, b} ∈ M and
{x, y} ∈M , therefore Mn3((a, y), (a, x), (b, x)) = (b, y) ∈ βij . This implies that (b, y) ∈ ρij ,
contradicting the assumption made earlier. We showed that we must have (b, y) ∈ ρij .
The fact that {a, b} ∈ M and Proposition 7.5 then imply that (a, y) ∈ ρij . Finally,
the fact that {c, b} ∈ M and Proposition 7.5 imply that (c, x) ∈ ρij . Proposition 7.6 is
proved.

We can now prove Lemma 7.3(d) under the following assumption:

(∗) Sets ρij(Ai, ·) and ρij(Bi, ·) have a non-empty intersection.

(This assumption clearly holds if i = k, otherwise the algorithm wouldn’t have termi-
nated; we will later show that (∗) holds for nodes i ∈ U − {k} as well.)

First, let us prove that ρij(Ai, ·) = ρij(Bi, ·). Suppose that y ∈ ρij(Ai, ·), then (c, y) ∈
ρij for some c ∈ Ai. From assumption (∗) we get that there exist a ∈ Ai, b ∈ Bi, x ∈ Dj

such that (a, x), (b, x) ∈ ρij . Proposition 7.6 implies that (b, y) ∈ ρij , and thus ρij(Ai, ·) ⊆
ρij(Bi, ·). By symmetry we also have ρij(Bi, ·) ⊆ ρij(Ai, ·), implying ρij(Ai, ·) = ρij(Bi, ·).

Second, let us prove that if (a, x) ∈ ρij where a ∈ Ai, x ∈ Dj then (c, x) ∈ ρij for all
c ∈ Bi. (We call this claim [AB]). As we showed in the previous paragraph, there exists
b ∈ Bi such that (b, x) ∈ ρij . We can also select y ∈ Dj such that (c, y) ∈ ρij . Proposition
7.6 implies that (c, x) ∈ ρij , as desired.

A symmetrical argument shows that if (b, x) ∈ ρij where b ∈ Bi, x ∈ Dj then (c, x) ∈
ρij for all c ∈ Ai [BA]. By combining facts [AB] and [BA] we obtain that if (a, x) ∈ ρij

where a ∈ Ai, x ∈ Dj then (c, x) ∈ ρij for all c ∈ Ai [AA], and also that if (b, x) ∈ ρij

where b ∈ Bi, x ∈ Dj then (c, x) ∈ ρij for all c ∈ Bi [BB].
We have proved Lemma 7.3(d) assuming that (∗) holds (and in particular, for i = k).

It remains to show that (∗) holds for i ∈ U − {k}. Let us select (a′, x) ∈ ρij where
a′ ∈ Ai, x, y ∈ Dj . By strong 3-consistency there exists a ∈ Dk such that (a, a′) ∈ ρki

and (a, x) ∈ ρkj . By Lemma 7.3(c) we get that a ∈ Ak. As we have just shown, there
exists b ∈ Bk such that (b, x) ∈ ρkj . By strong 3-consistency there exists b′ ∈ Di such
that (b, b′) ∈ ρki and (b′, x) ∈ ρij . By Lemma 7.3(c) we get that b′ ∈ Bi. We have shown
that x ∈ ρij(Ai, ·) and x ∈ ρij(Bi, ·), which proves (∗).

7.1.3. Proof of Lemma 7.4. Suppose we have an arc- and path-consistent instance with
an STP on M and MJN on M and non-empty subset U with Ai, Bi ⊆ Di for i ∈ U that
satisfy properties (a-d) of Lemma 7.3 (where node k ∈ U is fixed). Let us denote by M◦
and M the set before and after the update respectively. Similarly, 〈u◦,t◦〉 and 〈u,t〉
denote operations before and after the update. We need to show that

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:34 V. Kolmogorov and S. Živný

f(x u y) + f(x t y) ≤ f(x) + f(y) if x,y ∈ domf (38)

For a vector z ∈ D and subset S ⊆ V we denote by zS the restriction of z to S. Given
x,y ∈ D, denote

δ(x,y) =
{

0 if xU u yU = xU u◦ yU

1 otherwise
∆(x,y) = {i ∈ U | xi 6= yi}

Let us introduce a partial order � on pairs (x,y) as the lexicographical order on vector
(|∆(x,y)|, δ(x,y)) (the first component is more significant than the second). We use
induction on this order. The base of the induction is given by the following lemma.

LEMMA 7.7. Suppose that x,y ∈ domf and either |∆(x,y)| ≤ 1 or δ(x,y) = 0. Then
condition (38) holds.

PROOF. If δ(x,y) = 0 then x u y = x u◦ y and x t y = x t◦ y, so the claim is trivial.
Suppose that |∆(x,y)| ≤ 1 and δ(x,y) = 1.

There exists node i ∈ U such that either xi ∈ Ai, yi ∈ Bi or xi ∈ Bi, yi ∈ Ai.
Lemma 7.3(c) implies that either xi ∈ Ai, yi ∈ Bi for all i ∈ U or xi ∈ Bi, yi ∈ Ai for
all i ∈ U . Therefore, from the definition of operations u,t we get {xU u yU ,xU t yU} =
{xU ,yU}. Also, we have x u◦ y,x t◦ y ∈ domf , so Lemma 7.3(c) gives {xU u◦ yU ,xU t◦
yU} = {xU ,yU}.

If |∆(x,y)| = 0 then {x u y,x t y} = {x,y} and so the claim holds trivially. Let us
assume that ∆(x,y) = {j}. We will write x = (xU , xj , z) and y = (yU , yj , z) where
z = xU−{j} = yU−{j}. Denote z01 = (xU , yj , z) and z10 = (yU , xj , z). Clearly, we have
either {x u y,x t y} = {x,y} or {x u y,x t y} = {z01, z10}. We can assume that the
latter condition holds, otherwise (38) is a trivial equality. We claim that z01, z10 ∈ domf .
Indeed, let us show the first claim (the second one is analogous). Labelling z01 differs
from x ∈ domf only at node j; thus, it suffices to show that (z01

s , z01
j ) ≡ (xs, yj) ∈ ρsj

for all s ∈ V − {j}, and then use (36). For s ∈ U the fact (xs, yj) ∈ ρsj follows from
Lemma 7.3(d), and for s /∈ U the fact (xs, yj) ≡ (ys, yj) ∈ ρsj holds since y ∈ domf .

We also observe that (xi, yi) ∈ M for all i ∈ U by Lemma 7.3(b). We now consider
two possible cases:
Case 1 {xj , yj} ∈ Mj , so u◦j ,t◦j are commutative on {xj , yj}. Thus, we must have
either {x u◦ y,x t◦ y} = {z01, z10} or {y u◦ x,y t◦ x} = {z01, z10}. Using the fact that
〈u◦,t◦〉 is a multimorphism of f , we get in each case the desired inequality:

f(z01) + f(z01) ≤ f(x) + f(y)

Case 2 {xj , yj} ∈ M j . It can be checked that applying operations 〈Mj1, Mj2, Mn3〉 to
(x,y, z01) gives (z01, z01, z10), therefore

f(z01) + f(z01) + f(z10) ≤ f(x) + f(y) + f(z01)

which is equivalent to (38).

PROPOSITION 7.8. If x,y ∈ domf and δ(x,y) = 1 then either δ(x t y,y) = 0 or
δ(x,x t y) = 0.

PROOF. Using the same argument as in the proof of Lemma 7.7 we conclude that
{xUuyU ,xUtyU} = {xU ,yU}. If xUtyU = yU then δ(xty,y) = 0, and if xUtyU = xU

then δ(x,x t y) = 0.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:35

We now proceed with the induction argument. Suppose that ∆(x,y) ≥ 2 and
δ(x,y) = 1. Denote

X = {i ∈ ∆(x,y) | (xi u yi, xi t yi) = (xi, yi)}
Y = {i ∈ ∆(x,y) | (xi u yi, xi t yi) = (yi, xi)}

We have |X ∪ Y | ≥ 2, so by Proposition 7.8 at least one of the following holds:
(1) |X| ≥ 2;
(2) |Y | ≥ 2;
(3) |X| = |Y | = 1, δ(x t y,y) = 0;
(4) |X| = |Y | = 1, δ(x,x t y) = 0.
These cases are analysed below.
Cases 1,3 It can be checked that (x t y) u y = y. Therefore, if we define x′ = x t y,
y′ = y then the following identities hold:

x u y′ = x u y x t y′ = x′ x′ u y = y′ x′ t y = x t y (39)

Let us select node s ∈ X and modify x′,y′ by setting (x′s, y
′
s) = (xs, xs). It can be

checked that (39) still holds. We have

— (x,y′) ≺ (x,y) since ∆(x,y′) = ∆(x,y)− {s}, and
— (x′,y) ≺ (x,y) since ∆(x′,y) = ∆(x,y) − (X − {s}); if X − {s} is empty (i.e. Case

3 holds) then δ(x′,y) = 0 < δ(x,y) = 1. Indeed, we have δ(x t y,y) = 0 (by the
assumption of Case 3) and (x t y)U = (x′)U (since s /∈ U ), and therefore δ(x′,y) = 0.

Thus, by the induction hypothesis

f(x u y) + f(x′) ≤ f(x) + f(y′) (40)

assuming that y′ ∈ domf , and

f(y′) + f(x t y) ≤ f(x′) + f(y) (41)

assuming that x′ ∈ domf . If y′ ∈ domf then Inequality (40) implies that x′ ∈ domf , and
the claim then follows from summing (40) and (41). We now assume that y′ /∈ domf ;
Inequality (41) then implies that x′ /∈ domf .

Assume for simplicity of notation that s corresponds to the first argument of f . De-
fine instance Î with the set of nodes V̂ = V − {s} and cost function

g(z) = min
a∈Ds

{u(a) + f(a, z)} ∀z ∈ D̂ ≡ ×i∈V̂ Di

where u(a) is the following unary cost function: u(xs) = 0, u(ys) = C and u(a) = 2C for
a ∈ D − {xs, ys}. Here C is a sufficiently large constant, namely C > f(x) + f(y). We
denote 〈û◦, t̂◦〉 and 〈û, t̂〉 to be the restrictions of respectively 〈u◦,t◦〉 and 〈u,t〉 to V̂ .

LEMMA 7.9. If u,v ∈ domg and (u,v) ≺ (x,y) then g(u ûv) + g(u t̂v) ≤ g(u) + g(v)
(assuming that the induction hypothesis holds).

PROOF. It is straightforward to check that unary relations Di, i ∈ V̂ and binary
relations ρij , i, j ∈ V̂ , i 6= j are the unique arc- and path-consistent relations for g, i.e.

ρi = {zi | z ∈ domg} ∀i ∈ V̂ , ρij = {(zi, zj) | z ∈ domg} ∀i, j ∈ V̂ , i 6= j

This implies that set U ⊆ V̂ and sets Ai, Bi for i ∈ U satisfy conditions (a-d) of
Lemma 7.3 for instance Î. The appropriate restrictions of 〈u◦,t◦〉 and 〈Mj1, Mj2, Mn3〉
are multimorphisms of functions u (since they are conservative) and f (by assump-
tion), therefore they are also multimorphisms of g. Furthermore, if the modification in

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:36 V. Kolmogorov and S. Živný

Stage 2 had been applied to instance Î and sets U,Ai, Bi then the pair 〈û◦, t̂◦〉 would
be changed to the pair 〈û, t̂〉.

Thus, the conditions stated in the first paragraph of Section 7.1.3 hold for instance
Î, and so the induction hypothesis applies. The lemma is proved.

Let x̂, ŷ, x̂′, ŷ′ be restrictions of respectively x,y,x′,y′ to V̂ . We can write

g(ŷ) = g(ŷ′) = u(ys) + f(ys, ŷ) = f(y) + C (since (xs, ŷ) = y′ /∈ domf )
g(x̂) = f(xs, x̂) = f(x)

We have (x̂, ŷ) ≺ (x,y) (since |∆(x̂, ŷ)| < |∆(x,y)|), so Lemma 7.9 gives

g(x̂ û ŷ) + g(x̂ t̂ ŷ) ≤ g(x̂) + g(ŷ) = f(x) + f(y) + C (42)

We have g(x̂ t̂ ŷ) < 2C, so we must have either g(x̂ t̂ ŷ) = f(xs, x̂ t̂ ŷ) or g(x̂ t̂ ŷ) =
f(ys, x̂ t̂ ŷ) + C = f(x t y) + C. The former case is impossible since (xs, x̂ t̂ ŷ) = x′ /∈
domf , so g(x̂ t̂ ŷ) = f(x t y) + C. Combining it with (42) gives

g(x̂ û ŷ) + f(x t y) ≤ f(x) + f(y) (43)

This implies that g(x̂ û ŷ) < C, so we must have g(x̂ û ŷ) = f(xs, x̂ û ŷ) = f(x u y).
Thus, (43) is equivalent to (38).
Cases 2,4 It can be checked that x u (x t y) = x. Therefore, if we define x′ = x,
y′ = x t y then the following identities hold:

x′ u y = x u y x′ t y = y′ x u y′ = x′ x t y′ = x t y (44)

Let us select node s ∈ Y and modify x′, y′ by setting (x′s, y
′
s) = (ys, ys). It can be checked

that (44) still holds. We have

— (x′,y) ≺ (x,y) since ∆(x′,y) = ∆(x,y)− {s}, and
— (x,y′) ≺ (x,y) since ∆(x,y′) = ∆(x,y) − (Y − {s}); if Y − {s} is empty (i.e. case

4 holds) then δ(x,y′) = 0 < δ(x,y) = 1. Indeed, we have δ(x,x t y) = 0 (by the
assumption of Case 4) and (x t y)U = (y′)U (since s /∈ U ), and therefore δ(x,y′) = 0.

Thus, by the induction hypothesis

f(x u y) + f(y′) ≤ f(x′) + f(y) (45)

assuming that x′ ∈ domf , and

f(x′) + f(x t y) ≤ f(x) + f(y′) (46)

assuming that y′ ∈ domf . The rest of the proof proceeds analogously to the proof for
the Cases 1,3, distinguishing whether or not x′ belongs to domf .

Acknowledgements
We thank the anonymous referees for careful proofreading of the manuscript and
catching typos and mistakes.

REFERENCES
BAKER, K. AND PIXLEY, A. 1975. Polynomial Interpolation and the Chinese Remainder Theorem. Mathe-

matische Zeitschrift 143, 2, 165–174.
BARTO, L. 2011. The dichotomy for conservative constraint satisfaction problems revisited. In Proceedings

of the 26th IEEE Symposium on Logic in Computer Science (LICS’11). IEEE Computer Society, 301–310.
BARTO, L. AND KOZIK, M. 2009. Constraint Satisfaction Problems of Bounded Width. In Proceedings of

the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09). IEEE Computer
Society, 461–471.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:37

BARTO, L. AND KOZIK, M. 2010. New Conditions for Taylor Varieties and CSP. In Proceedings of the 25th
IEEE Symposium on Logic in Computer Science (LICS’10). 100–109.

BARTO, L., KOZIK, M., MARÓTI, M., AND NIVEN, T. 2009a. CSP dichotomy for special triads. Proceedings
of the American Mathematical Society 137, 9, 2921–2934.

BARTO, L., KOZIK, M., AND NIVEN, T. 2009b. The CSP dichotomy holds for digraphs with no sources and no
sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM Journal on Computing 38, 5,
1782–1802.

BERMAN, J., IDZIAK, P., MARKOVIĆ, P., MCKENZIE, R., VALERIOTE, M., AND WILLARD, R. 2010. Varieties
with few subalgebras of powers. Transactions of the American Mathematical Society 362, 3, 1445–1473.

BERTELÉ, U. AND BRIOSHI, F. 1972. Nonserial dynamic programming. Academic Press.
BISTARELLI, S., MONTANARI, U., AND ROSSI, F. 1997. Semiring-based Constraint Satisfaction and Opti-

misation. Journal of the ACM 44, 2, 201–236.
BULATOV, A. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of

the ACM 53, 1, 66–120.
BULATOV, A. AND JEAVONS, P. 2003. An Algebraic Approach to Multi-sorted Constraints. In Proceedings of

the 9th International Conference on Principles and Practice of Constraint Programming (CP’03). Lecture
Notes in Computer Science Series, vol. 2833. Springer, 183–198.

BULATOV, A., KROKHIN, A., AND JEAVONS, P. 2005. Classifying the Complexity of Constraints using Finite
Algebras. SIAM Journal on Computing 34, 3, 720–742.

BULATOV, A. A. 2003. Tractable Conservative Constraint Satisfaction Problems. In Proceedings of the 18th
IEEE Symposium on Logic in Computer Science (LICS’03). 321–330.

BULATOV, A. A. 2011. Complexity of conservative constraint satisfaction problems. ACM Transactions on
Computational Logic 12, 4. Article 24.

CHEN, H. 2006. A rendezvous of logic, complexity, and algebra. SIGACT News 37, 4, 85–114.
CHEN, X., DYER, M. E., GOLDBERG, L. A., JERRUM, M., LU, P., MCQUILLAN, C., AND RICHERBY, D. 2012.

The complexity of approximating conservative counting CSPs. In Proceedings of the 30th International
Symposium on Theoretical Aspects of Computer Science (STACS’13).

COHEN, D. A., COOPER, M. C., AND JEAVONS, P. G. 2008. Generalising submodularity and Horn clauses:
Tractable optimization problems defined by tournament pair multimorphisms. Theoretical Computer
Science 401, 1-3, 36–51.

COHEN, D. A., COOPER, M. C., JEAVONS, P. G., AND KROKHIN, A. A. 2006. The Complexity of Soft Con-
straint Satisfaction. Artificial Intelligence 170, 11, 983–1016.

COOPER, M. 1989. An Optimal k-consistency Algorithm. Artificial Intelligence 41, 1, 89–95.
COOPER, M. C. AND ŽIVNÝ, S. 2011. Hybrid tractability of valued constraint problems. Artificial Intelli-

gence 175, 9-10, 1555–1569.
COOPER, M. C. AND ŽIVNÝ, S. 2012. Tractable triangles and cross-free convexity in discrete optimisation.

Journal of Artificial Intelligence Research 44, 455–490.
CREIGNOU, N. 1995. A dichotomy theorem for maximum generalized satisfiability problems. Journal of

Computer and System Sciences 51, 3, 511–522.
CREIGNOU, N., KHANNA, S., AND SUDAN, M. 2001. Complexity Classification of Boolean Constraint Satis-

faction Problems. SIAM Monographs on Discrete Mathematics and Applications Series, vol. 7. SIAM.
CREIGNOU, N., KOLAITIS, P. G., AND ZANUTTINI, B. 2008. Structure identification of Boolean relations and

plain bases for co-clones. Journal of Computer and System Sciences 74, 7, 1103–1115.
DALMAU, V., KOLAITIS, P. G., AND VARDI, M. Y. 2002. Constraint Satisfaction, Bounded Treewidth, and

Finite-Variable Logics. In Proceedings of the 8th International Conference on Principles and Practice
of Constraint Programming (CP’02). Lecture Notes in Computer Science Series, vol. 2470. Springer,
310–326.

DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann.
DECHTER, R. AND PEARL, J. 1988. Network-based Heuristics for Constraint Satisfaction Problems. Artifi-

cial Intelligence 34, 1, 1–38.
DECHTER, R. AND PEARL, J. 1992. Structure Identification in Relational Data. Artificial Intelligence 58, 1-3,

237–270.
DEINEKO, V., JONSSON, P., KLASSON, M., AND KROKHIN, A. 2008. The approximability of Max CSP with

fixed-value constraints. Journal of the ACM 55, 4. Article 16.
FEDER, T. AND VARDI, M. Y. 1998. The Computational Structure of Monotone Monadic SNP and Constraint

Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Computing 28, 1, 57–104.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



1:38 V. Kolmogorov and S. Živný

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman.

GOTTLOB, G., GRECO, G., AND SCARCELLO, F. 2009. Tractable Optimization Problems through
Hypergraph-Based Structural Restrictions. In Proceedings of the 36th International Colloquium on Au-
tomata, Languages and Programming (ICALP’09), Part II. Lecture Notes in Computer Science Series,
vol. 5556. Springer, 16–30.

GROHE, M. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. Journal of the ACM 54, 1, 1–24.

GROHE, M. AND MARX, D. 2006. Constraint solving via fractional edge covers. In Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06). 289–298.

GUTIN, G., RAFIEY, A., YEO, A., AND TSO, M. 2006. Level of Repair Analysis and Minimum Cost Homo-
morphisms of Graphs. Discrete Applied Mathematics 154, 6, 881–889.

HELL, P. AND NEŠETŘIL, J. 2008. Colouring, constraint satisfaction, and complexity. Computer Science
Review 2, 3, 143–163.

IDZIAK, P. M., MARKOVIC, P., MCKENZIE, R., VALERIOTE, M., AND WILLARD, R. 2010. Tractability and
learnability arising from algebras with few subpowers. SIAM Journal on Computing 39, 7, 3023–3037.

IWATA, S., FLEISCHER, L., AND FUJISHIGE, S. 2001. A combinatorial strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM 48, 4, 761–777.

JEAVONS, P., COHEN, D., AND COOPER, M. C. 1998. Constraints, Consistency and Closure. Artificial Intel-
ligence 101, 1–2, 251–265.

JEAVONS, P. G. 1998. On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Sci-
ence 200, 1-2, 185–204.

JEAVONS, P. G., COHEN, D. A., AND GYSSENS, M. 1997. Closure Properties of Constraints. Journal of the
ACM 44, 4, 527–548.

JONSSON, P., KUIVINEN, F., AND THAPPER, J. 2011. Min CSP on Four Elements: Moving Beyond Submod-
ularity. In Proceedings of the 17th International Conference on Principles and Practice of Constraint
Programming (CP’11). Lecture Notes in Computer Science Series, vol. 6876. Springer, 438–453.

KHANNA, S., SUDAN, M., TREVISAN, L., AND WILLIAMSON, D. 2001. The approximability of constraint
satisfaction problems. SIAM Journal on Computing 30, 6, 1863–1920.

KOLAITIS, P. G. AND VARDI, M. Y. 2000. Conjunctive-Query Containment and Constraint Satisfaction.
Journal of Computer and System Sciences 61, 2, 302–332.

KOLMOGOROV, V. 2012. The power of linear programming for valued CSPs: a constructive characterization.
Tech. rep. July. arXiv:1207.7213.

KROKHIN, A. AND LAROSE, B. 2008. Maximizing Supermodular Functions on Product Lattices, with Appli-
cation to Maximum Constraint Satisfaction. SIAM Journal on Discrete Mathematics 22, 1, 312–328.

KUN, G. AND SZEGEDY, M. 2009. A New Line of Attack on the Dichotomy Conjecture. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC’09). 725–734.

LAURITZEN, S. L. 1996. Graphical Models. Oxford University Press.
MARX, D. 2010a. Approximating fractional hypertree width. ACM Transactions on Algorithms 6, 2. Article

29.
MARX, D. 2010b. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In

Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10). 735–744.
MONTANARI, U. 1974. Networks of Constraints: Fundamental properties and applications to picture pro-

cessing. Information Sciences 7, 95–132.
RAGHAVENDRA, P. 2008. Optimal algorithms and inapproximability results for every CSP? In Proceedings

of the 40th Annual ACM Symposium on Theory of Computing (STOC’08). 245–254.
RAGHAVENDRA, P. AND STEURER, D. 2009. How to Round Any CSP. In Proceedings of the 50th Annual

IEEE Symposium on Foundations of Computer Science (FOCS’09). 586–594.
SCHAEFER, T. J. 1978. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM

Symposium on Theory of Computing (STOC’78). ACM, 216–226.
SCHIEX, T., FARGIER, H., AND VERFAILLIE, G. 1995. Valued Constraint Satisfaction Problems: Hard and

Easy Problems. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJ-
CAI’95). 631–637.

SCHRIJVER, A. 2000. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial
Time. Journal of Combinatorial Theory, Series B 80, 2, 346–355.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.



The complexity of conservative valued CSPs 1:39

TAKHANOV, R. 2010a. A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem.
In Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS’10). 657–668.

TAKHANOV, R. 2010b. Extensions of the Minimum Cost Homomorphism Problem. In Proceedings of the 16th
International Computing and Combinatorics Conference (COCOON’10). Lecture Notes in Computer Sci-
ence Series, vol. 6196. Springer, 328–337.

THAPPER, J. AND ŽIVNÝ, S. 2012. The power of linear programming for valued CSPs. In Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE.

THAPPER, J. AND ŽIVNÝ, S. 2013. The complexity of finite-valued CSPs. To appear in Proceedings of the
45th ACM Symposium on the Theory of Computing (STOC’13).

ULLMAN, J. D. 1989. Principles of Database and Knowledge-Base Systems. Vol. 1 & 2. Computer Science
Press.

WAINWRIGHT, M. J. AND JORDAN, M. I. 2008. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning 1, 1-2, 1–305.

Received October 2011; revised October 2012; accepted January 2013

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: October 2011.


