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ABSTRACT
Let Γ be a set of rational-valued functions on a fixed finite do-
main; such a set is called a finite-valued constraint language.
The valued constraint satisfaction problem, VCSP(Γ), is the
problem of minimising a function given as a sum of functions
from Γ. We establish a dichotomy theorem with respect to
exact solvability for all finite-valued languages defined on
domains of arbitrary finite size.

We show that every core language Γ either admits a bi-
nary idempotent and symmetric fractional polymorphism in
which case the basic linear programming relaxation solves
any instance of VCSP(Γ) exactly, or Γ satisfies a simple
hardness condition that allows for a polynomial-time reduc-
tion from Max-Cut to VCSP(Γ). In other words, there is a
single algorithm for all tractable cases and a single reason
for intractability. Our results show that for exact solvability
of VCSPs the basic linear programming relaxation suffices
and semidefinite relaxations do not add any power.

Our results generalise all previous partial classifications
of finite-valued languages: the classification of {0, 1}-valued
languages containing all unary functions obtained by Deineko
et al. [JACM’06]; the classifications of {0, 1}-valued languages
on two-element, three-element, and four-element domains
obtained by Creignou [JCSS’95], Jonsson et al. [SICOMP’06],
and Jonsson et al. [CP’11], respectively; the classifications
of finite-valued languages on two-element and three-element
domains obtained by Cohen et al. [AIJ’06] and Huber et al.
[SODA’13], respectively; the classification of finite-valued
languages containing all {0, 1}-valued unary functions ob-
tained by Kolmogorov and Živný [JACM’13]; and the classi-
fication of Min-0-Ext problems obtained by Hirai [SODA’13].
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1. INTRODUCTION
In this paper we study the following problem: what classes

of discrete explicitly-represented functions can be minimised
exactly in polynomial time? Such problems can be readily
described as (finite-)valued constraint satisfaction problems.
We provide a complete answer to this question for rational-
valued functions defined on arbitrary finite domains.

The constraint satisfaction problem, or CSP for short, pro-
vides a common framework for many theoretical and prac-
tical problems in computer science. An instance can be
vaguely described as a set of variables to be assigned values
from the domains of the variables so that all constraints are
satisfied [43]. The CSP is NP-complete in general and thus
we are interested in restrictions which give rise to tractable
classes of problems. Following Feder and Vardi [23], we re-
strict the constraint language, that is, all constraint rela-
tions in a given instance must belong to a fixed, finite set
of relations on the domain. The most successful approach
to classifying language-restricted CSPs is the so-called alge-
braic approach [31, 30, 7], which has led to several complex-
ity classifications [6, 8, 5, 2] and algorithmic characterisa-
tions [3, 29] going beyond the seminal work of Schaefer on
Boolean CSPs [46].

There are several natural optimisation variants of CSPs
that have been studied in the literature such as Max-CSP,
where the goal is to maximise the number of satisfied con-
straints (or, equivalently, minimise the number of unsatis-
fied constraints) [9, 19, 32, 35, 21], and Max-Ones [19, 34]
and Min-Cost-Hom [49], where all constraints have to be
satisfied and some additional function of the assignment is
optimised. The most general variant is the valued constraint
satisfaction problem, or VCSP for short [12]. A valued con-
straint language Γ is a set of functions on a fixed domain
and a VCSP instance over Γ is given by a sum of functions



from Γ with the goal to minimise the sum. The VCSP frame-
work is very robust and has also been studied under different
names such as Min-Sum problems, Gibbs energy minimisa-
tion, Markov Random Fields, Conditional Random Fields
and others in different contexts in computer science [41, 51,
16]. The VCSP in its full generality considers functions with
the range being the rationals with positive infinity [12]; this
includes both CSPs and Max-CSPs as special cases with
functions with the range being {0,∞} and {0, 1}, respec-
tively. In this work we will focus on finite-valued CSPs, that
is, the range of the functions is the set of rationals. (Finite-
valued CSPs are called generalised CSPs in [44].)

Given the generality of the VCSP, it is not surprising
that only few complexity classifications are known. In the
general-valued case (that is, when the range of the func-
tions is the rationals with positive infinity), only languages
on a two-element domain [12, 17] and conservative (contain-
ing all {0, 1}-valued unary functions) languages [39] have
been completely classified with respect to exact solvabil-
ity. In the finite-valued case, languages on two-element
domains [12], three-element domains [28], and conservative
languages [39] have been completely classified with respect
to exact solvability. In the special case of {0, 1}-valued
languages, which correspond to Max-CSPs, languages on
two-element domains [18], three-element domains [32], and
four-element domains [35], and conservative (containing all
{0, 1}-valued unary functions) languages [21] have been clas-
sified with respect to exact solvability. Generalising the alge-
braic approach to CSPs [7], algebraic properties called multi-
morphisms [12], fractional polymorphism [11], and weighted
polymorphisms [13, 10] have been invented for the study of
the computational complexity of classes of VCSPs.

1.1 Contribution
We study the computational complexity of finite-valued

constraint languages on arbitrary finite domains. We char-
acterise all tractable finite-valued languages as those admit-
ting a binary idempotent and symmetric fractional polymor-
phism and we show that this is a polynomial-time checkable
condition. Tractability follows from the results in [50, 38]
that show that all instances over such languages are solv-
able by the basic linear programming relaxation (BLP). In
the other direction, we show that instances over languages
not admitting such a fractional polymorphism are NP-hard
by a reduction from Max-Cut [24].

Theorem 1.1. Let D be an arbitrary finite set and let Γ
be a core finite-valued language defined on D. VCSP(Γ) is
tractable if, and only if, BLP solves VCSP(Γ). Otherwise,
VCSP(Γ) is NP-hard.

The core condition on Γ is defined in Section 2.4 and the
precise statement of the main result is in Section 3.

In the full version of this paper we show that Theorem 1.1
holds without the assumption that Γ is a core.

The proof of our main result is a combination of various
techniques, including the notion of expressibility, the notion
of core, a technique recently introduced by Kolmogorov [38],
a variation of Motzkin’s Transposition Theorem, and hyper-
plane arrangements.

1.2 Related work
Apart from language-based restrictions on (V)CSPs, also

structure-based restrictions [26, 42, 25, 22] and hybrid re-

strictions [14, 15] have been studied. Not only exact solv-
ability, but also approximability of Max-CSPs and VCSPs
has attracted a lot of attention [19, 36, 33]. Moreover, the ro-
bust approximability of Max-CSPs has also been studied [20,
40, 4]. Under the assumption of the unique games conjec-
ture [37], Raghavendra has shown that the basic SDP re-
laxation solves all tractable finite-valued VCSPs (without
a characterisation of the tractable cases) [44]. Moreover,
Chapters 6 and 7 of [45] imply that if a finite-valued lan-
guage Γ admits a cyclic fractional polymorphism of some
arity k ≥ 2 then the basic SDP relaxation solves any VCSP
instance over Γ. Our results show, assuming P 6= NP, that
for exact solvability the BLP relaxation suffices.

Our results demonstrate that (i) only a binary fractional
polymorphism of a certain type is sufficient for tractability,
and (ii) only cores and constants are required for the hard-
ness condition (details are explained in Section 2). This is
in contrast with the {0,∞}-valued CSPs (that is, decision
problems), where the hardness condition also requires an
equivalence relation and the conjectured tractable cases are
characterised by polymorphisms of arity higher than two [7].

2. PRELIMINARIES
We use the following notation: any name with a bar de-

notes a tuple. We denote by xi the ith component of a
tuple x̄. Superscripts are used for collections of tuples; e.g.,
we write xj

i for the ith component of the jth tuple x̄j .

2.1 Valued CSPs
Let D be a finite set called the domain. The set of non-

negative rational numbers will be denoted by Q≥0. A (cost)
function is any function f : Dm → Q≥0, where m = ar(f)
is the arity of f .1 A valued (constraint) language Γ is a set
of cost functions.2

Definition 1. An instance I of the valued constraint sat-
isfaction problem, or VCSP for short, is given by the set
V = {x1, . . . , xn} of variables and the objective function
fI(x1, . . . , xn) =

Pq

i=1 wi · fi(x̄
i) where, for every 1 ≤ i ≤ q,

fi : Dar(fi) → Q≥0, x̄i ∈ V ar(fi), and wi ∈ Q≥0 is a weight.
A solution to I is a function h : V → D, its measure given by
Pq

i=1 wi · fi(h(x̄i)), where h is applied componentwise. The
goal is to find a solution of minimum measure.

We denote by VCSP(Γ) the class of all instances in which
all functions are from Γ. The minimum measure of an in-
stance I ∈ VCSP(Γ) is denoted by OptΓ(I). A valued lan-
guage Γ is called tractable if, for any finite Γ′ ⊆ Γ, VCSP(Γ′)
is tractable, that is, a solution of measure OptΓ(I) can be
found for any instance I ∈ VCSP(Γ′) in polynomial time;
Γ is called NP-hard if VCSP(Γ′) is NP-hard for some finite
Γ′ ⊆ Γ.

2.2 Expressive power

Definition 2. For a valued language Γ, we let 〈Γ〉 be
the set of all functions f(x1, . . . , xm) such that for some in-
stance I ∈ VCSP(Γ) with objective function fI in variables
1The range of the functions in Γ is Q≥0 for traditional rea-
sons, but all results hold true with Q as well.
2In the abstract and introduction, these were called finite-
valued constraint languages. Since we exclusively study
finite-valued languages, we omit the prefix “finite-” in the
rest of the paper.



x1, . . . , xm, xm+1, . . . , xn, we have

f(x1, . . . , xm) = min
xm+1,...,xn

fI(x1, . . . , xm, xm+1, . . . , xn) .

We then say that Γ expresses f and call 〈Γ〉 the expressive
power of Γ.

In other words, 〈Γ〉 is the closure of Γ under addition, mul-
tiplication by nonnegative constants, and minimisation over
extra variables. For two functions f and f ′, we write f ≡ f ′

if f = a · f ′ + b for some a ∈ Q>0 and b ∈ Q, i.e., if f can be
obtained from f ′ by scaling and translation.) For a valued
language Γ, let Γ≡ = {f | f ≡ f ′ for some f ′ ∈ Γ}. It has
been shown that with respect to exact solvability, we only
need to consider valued languages closed under expressibility
and translation:

Theorem 2.1 ([12, 11]). Let Γ and Γ′ be valued lan-
guages such that Γ′ ⊆ 〈Γ〉≡. Then VCSP(Γ′) polynomial-
time reduces to VCSP(Γ).

We define the following condition:

There exist distinct a, b ∈ D such that 〈Γ〉 contains a bi-
nary function h with argmin h = {(a, b), (b, a)}. (MC)

A slightly different condition3 was formulated in [28]:

There exist distinct a, b ∈ D such that 〈Γ〉 contains a unary
function u with argmin u = {a, b} and a binary function h
with h(a, b) = h(b, a) < h(a, a) = h(b, b). (MC′)

Observe that (MC′) implies (MC). In fact, we will prove in
Section 4 that the two conditions are equivalent.

Lemma 2.2. For any valued language Γ, (MC) holds if,
and only, if (MC ′) holds.

It is known that condition (MC′) and thus, by Lemma 2.2,
condition (MC) implies intractability (via a reduction from
Max-Cut [24]):

Lemma 2.3 ([12]). If a valued language Γ satisfies con-
dition (MC) then Γ is NP-hard.

2.3 Fractional polymorphisms
Let Γ be a valued language defined on D. For an n-ary

function f ∈ Γ and ā1, . . . , ām ∈ Dn, we define fm by
fm(ā1, . . . , ām) = 1

m
(f(ā1) + . . . + f(ām)). An m-ary oper-

ation on D is a function g : Dm → D. Let O
(m)
D denote the

set of all m-ary operations on D. An m-ary fractional opera-

tion is a function ω : O
(m)
D → Q≥0. Define ‖ω‖1 :=

P

g
ω(g).

An m-ary fractional operation ω is called an m-ary fractional
polymorphism [11] of Γ if ‖ω‖1 = 1 and for every function

f ∈ Γ and tuples ā1, . . . , ām ∈ Dar(f), it holds that
X

g∈O
(m)
D

ω(g)f(g(ā1, . . . , ām)) ≤ fm(ā1, . . . , ām), (1)

where the operations g are applied componentwise. The
set {g | ω(g) > 0} of operations is called the support of ω
and is denoted by supp(ω). It is known and easy to show
that expressibility preserves fractional polymorphisms: if ω
is a fractional polymorphism of Γ then ω is also a fractional
polymorphism of 〈Γ〉 [11].

3Condition (MC′) was called (MC) in [28].

An operation g is idempotent if g(x, . . . , x) = x. Let Sm

be the symmetric group on {1, . . . , m}. An m-ary opera-
tion g is symmetric if for every permutation π ∈ Sm, we
have g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)). An m-ary opera-
tion g is cyclic if g(a1, a2, . . . , am) = g(a2, . . . , am, a1) for
every a1, . . . , am ∈ D. Note that in the case of m = 2 both
definitions coincide. A fractional operation is called idempo-
tent, symmetric, or cyclic if all operations in its support are
idempotent, symmetric, or cyclic, respectively.

Let O
(m→k)
D denote the set of all mappings g : Dm → Dk.

A (generalised) fractional operation of arity m → k is a func-

tion ρ : O
(m→k)
D → Q≥0. As for ordinary fractional opera-

tions, we define ‖ρ‖1 :=
P

g
ρ(g). A (generalised) fractional

operation ρ of arity m → k is called a (generalised) frac-
tional polymorphism [38] (of arity m → k) of Γ if ‖ρ‖1 = 1

and for every function f ∈ Γ and tuples ā1, . . . , ām ∈ Dar(f),
it holds that

X

g∈O
(m→k)
D

ρ(g)fk(g(ā1, . . . , ām)) ≤ fm(ā1, . . . , ām). (2)

Note that a fractional polymorphism of arity m is the same
as a generalised fractional polymorphism of arity m → 1. In
fact a generalised fractional operation of arity m → k is
just a sequence of k fractional operations of arity m → 1;
however, this viewpoint, introduced in [38], turns out to
be very useful. For brevity, we will often omit the word
“generalised”.

For an operation g, we denote by χg the fractional oper-
ation that takes the value 1 on the operation g and 0 on
all other operations. For a generalised operation g, χg is
defined analogously.

2.4 Cores
Let S ⊆ D. The sub-language Γ[S] of Γ induced by S is

the valued language defined on domain S and containing the
restriction of every function f ∈ Γ onto S.

Definition 3. A valued language Γ is a core if for ev-
ery unary fractional polymorphism ω of Γ, supp(ω) contains
only injective operations. A valued language Γ′ is a core of
Γ if Γ′ is a core and Γ′ = Γ[h(D)] for some h ∈ supp(ω)
with ω a unary fractional polymorphism of Γ.

Lemma 2.4. If Γ′ is a core of Γ then OptΓ(I) = OptΓ′(I ′)
for all instances I ∈ VCSP(Γ), where I ′ is obtained from I
by substituting each function in Γ for its restriction in Γ′.

By Lemma 2.4, proved in Section 4, we may assume that
Γ is a core valued language.

For a valued language Γ, let Γc denote the language ob-
tained from Γ by adding all functions obtained from func-
tions in Γ by fixing a subset of the variables to domain val-
ues.

We will use the following result, which says that we can
restrict our attention to core valued languages whose expres-
sive power contain certain unary functions.

Proposition 2.5 ([28]). Let Γ be a core valued lan-
guage defined on a finite domain D.

1. For each a ∈ D, 〈Γc〉 contains a unary function ua

such that argmin ua = a.

2. Γ is NP-hard if, and only if, Γc is NP-hard.



Proposition 2.5 is proved for a different definition of a
core in [28] but we will show in Section 4 that Definition 3
coincides with the definition of the core in [28].

It follows readily from Proposition 2.5 that every (gen-
eralised) fractional polymorphism of Γc for a core valued
language Γ is idempotent.

3. RESULTS

3.1 Complexity classification
The computational complexity of valued constraint lan-

guages has attracted a lot of attention in the literature. Par-
tial classifications obtained so far are the following:

• {0, 1}-valued languages on |D| = 2 [18, 19].

• {0, 1}-valued languages on |D| = 3 [32].

• {0, 1}-valued languages on |D| = 4 [35].

• {0, 1}-valued languages containing (special types of)
unary functions [21].

• valued languages on |D| = 2 [12].

• valued languages on |D| = 3 [28].

• valued languages containing {0, 1}-valued unary func-
tions [39].

• valued languages containing unary functions and cer-
tain special binary functions [27].

In all the classifications obtained so far, the tractable cases
were explained by certain specific binary symmetric frac-
tional polymorphisms, and the hardness result essentially
came from the condition (MC).

A recent result of the authors characterised the power of
the basic linear programming (BLP) relaxation [50]. An
equivalent simplified condition was subsequently given by
Kolmogorov [38].

Theorem 3.1 ([50, 38]). Let Γ be a valued language.
Then BLP solves VCSP(Γ) if, and only if, Γ has a binary
symmetric fractional polymorphism.

Using Markov chains as presented in this paper, one can
obtain an alternative proof of Kolmogorov’s result (showing
that a binary symmetric fractional polymorphism implies
symmetric fractional polymorphisms of all arities).

The main technical contribution of this paper is the fol-
lowing result.

Theorem 3.2. Let D be an arbitrary finite set and let Γ
be a core valued language defined on D. If Γc does not satisfy
(MC), then Γ admits a binary idempotent and symmetric
fractional polymorphism.

Theorem 3.2 implies our main result, Theorem 3.3, which
shows that having a binary symmetric fractional polymor-
phism is the only reason for tractability. This provides a
complexity classification of all valued languages defined on
arbitrary finite domains, thus generalising all classifications
mentioned above.

Theorem 3.3 (Main). Let D be an arbitrary finite set
and let Γ be a core valued language defined on D.

• Either Γ has a binary idempotent and symmetric frac-
tional polymorphism and BLP solves VCSP(Γ);

• or (MC) holds for Γc and VCSP(Γ) is NP-hard.

Proof. Assuming that Γ is a core, if Γc satisfies (MC),
then VCSP(Γc) is NP-hard by Lemma 2.3. In this case
VCSP(Γ) is NP-hard by Proposition 2.5(2). Otherwise, by
Theorem 3.2, Γ admits a binary idempotent and symmetric
fractional polymorphism and it follows from Theorem 3.1
that BLP solves VCSP(Γ).

Deciding whether a valued language Γ is a core and de-
ciding the tractability of a VCSP(Γ) instance is discussed in
Section 3.3.

Corollary 3.4 (of Theorem 3.2). Let D be an arbi-
trary finite set and let Γ be a core valued language defined
on D. The following are equivalent:

1. Γc does not satisfy (MC);

2. Γ admits an idempotent and cyclic fractional polymor-
phism of some arity k > 1;

3. Γ admits an idempotent and symmetric fractional poly-
morphism of some arity k > 1;

4. Γ admits a binary idempotent and symmetric fractional
polymorphism;

5. BLP solves VCSP(Γ).

Proof. Theorem 3.1 gives (4) ⇔ (5). The implications
(4) ⇒ (3) ⇒ (2) are trivial, and it is not hard to show
that (2) ⇒ (1). Finally, Theorem 3.2 gives the implication
(1) ⇒ (4).

Corollary 3.4 answers Problem 1 from [28] that asked
about the relationship between the complexity of a valued
language Γ and the existence of various types of fractional
polymorphisms of Γ. Note that Corollary 3.4 holds uncondi-
tionally. Problem 1 from [28] also involved the solvability by
the basic SDP relaxation [44], which at the time was known
to be implied by (2) and imply (1), provided that P 6= NP.
Under the same assumption, we conclude that solvability by
the basic SDP relaxation is also characterised by any of the
equivalent statements of Corollary 3.4.

3.2 Proof overview
In order to prove Theorem 3.2, we proceed as follows. Us-

ing a variant of Motzkin’s Transposition Theorem, we prove,
in Section 5, the following:

Lemma 3.5. If Γ does not satisfy (MC) then Γ has a bi-
nary fractional polymorphism ω such that for each {a, b} ⊆
D, there exists g ∈ supp(ω) with {g(a, b), g(b, a)} 6= {a, b}.

Therefore, if Γc does not satisfy (MC), we know that Γc

has a fractional polymorphism ω with the properties given
in the lemma. Furthermore, by Proposition 2.5(1), we may
always assume that 〈Γc〉 contains a unary function ua for
each a ∈ D such that argmin ua = {a}. This means that ω
is idempotent. To finish the proof, we will massage ω into
a binary symmetric fractional polymorphism. We will use a
technique introduced by Kolmogorov [38], based on a graph
of generalised operations.



For a binary operation g ∈ O
(2)
D , define ḡ by ḡ(x, y) =

g(y, x). For a mapping g ∈ O
(2→2)
D , where g = (g, ḡ), and a

binary operation h ∈ O
(2)
D , let gh(x, y) = (h◦(g, ḡ), h◦(ḡ, g)).

Let 1 be the identity mapping in O
(2→2)
D . Let V = {1h1...hk |

hi ∈ supp(ω), k ≥ 0}. Note that all g ∈ V are of the form
g = (g, ḡ).

Let G = (V, E) be the directed graph with

• V = V;

• E = {(g,gh) | g ∈ V, h ∈ supp(ω)}.

Let R ⊆ V denote the set of all vertices g with the prop-
erty that for any other vertex g′ ∈ V, if there is a path from
g to g′, then there is a path from g′ to g. The following re-
sult is proved in Section 7. A very similar result was proved
in [38] using a different proof technique.

Theorem 3.6. There exists a 2 → 2 fractional polymor-
phism ρ of Γc with support contained in R.

Let f be an arbitrary function from Γ and let n = ar(f).
Let Rangen(g) = {g(x̄1, x̄2) | x̄1, x̄2 ∈ Dn}. The following
lemma establishes the main result:

Lemma 3.7 (Key lemma). For any g ∈ supp(ρ) and
(x̄1, x̄2) ∈ Rangen(g) and any 1 ≤ i ≤ n, f2(x̄1, x̄2) is
invariant under exchanging x1

i and x2
i .

Corollary 3.8. For any g ∈ supp(ρ) and (x̄1, x̄2) ∈

Rangen(g) and any p such that p ∈ O
(2→2)
D acts as a per-

mutation on all inputs, we have f2(x̄1, x̄2) = f2(p(x̄1, x̄2)).

Corollary 3.9. Let p ∈ O
(2→2)
D be a mapping that or-

ders its inputs according to some fixed total order on D.
Then ρ′ =

P

g
ρ(g)χp◦g is a binary symmetric fractional

polymorphism of Γc of arity 2 → 2.

Since ρ′ is a fractional polymorphism of Γc of arity 2 → 2,
it follows that

X

g=(g1,g2)∈O
(2→2)
D

ρ′(g)
1

2
(χg1 + χg2)

is a binary fractional polymorphism of Γc, and hence of Γ.
This finishes the proof of Theorem 3.2.

We now sketch how to derive a proof of Lemma 3.7; the
details are in Sections 6 and 7. Let ρ be a 2 → 2 fractional
polymorphism of Γc as given by Theorem 3.6.

Definition 4. Let wa =
P

g:g(a,b)=(a,a) ρ(g) and wb =
P

g:g(a,b)=(b,b) ρ(g). We say that ρ is submodular on the

pair {a, b} ⊆ D if wa = wb = 1
2
.

Let S = (V (S), E(S)) be the undirected graph with:

• V (S) = D;

• E(S) = {{a, b} | ρ is submodular on {a, b}}.

To establish Lemma 3.7, we need the following two results,
which are proved in Section 6 and 7, respectively.

Lemma 3.10. S is connected.

Lemma 3.11. Assume that ρ is submodular on {a1, a2}
and that (x̄1, x̄2) ∈ Rangen−1(g) for some g ∈ supp(ρ).
Then f2((a1, x̄

1), (a2, x̄
2)) = f2((a2, x̄

1), (a1, x̄
2)).

We are now ready to prove Lemma 3.7

Proof (of Lemma 3.7). Without loss of generality, as-
sume that i = 1 and let ((a, x̄1), (b, x̄2)) ∈ Rangen(g). We
need to show that f2((a, x̄1), (b, x̄2)) = f2((b, x̄1), (a, x̄2)).
Let a = a0, a1, . . . , al = b be a path from a to b in the graph
S. By Lemma 3.11, we have

f2((ai, x̄
1), (ai+1, x̄

2)) = f2((ai+1, x̄
1), (ai, x̄

2)), (3)

for all 0 ≤ i < l.
Summing (3) over 0 ≤ i < l, we obtain

X

0≤i<l

f2((ai, x̄
1), (ai+1, x̄

2)) =
X

0≤i<l

f2((ai+1, x̄
1), (ai, x̄

2)).

(4)
Finally, by cancelling terms in (4),

1

2
f((a0, x̄

1)) +
1

2
f((al, x̄

2)) =
1

2
f((al, x̄

1)) +
1

2
f((a0, x̄

2)),

which establishes the result.

3.3 Meta problems
Let Γ be a valued language defined on D. In this section,

we study two meta problems relevant to our classification.
The first is to determine whether Γ is a core, and if not, to
find a core of Γ. The second is to decide whether VCSP(Γ) is
tractable or NP-hard. We show that both of these problems
are decidable.

To check whether Γ is a core, it suffices to verify that the
following system of linear inequalities is unsatisfiable:

X

g∈O
(1)
D

ω(g)f(g(x̄)) ≤ ‖ω‖1f(x̄) ∀f ∈ Γ, x̄ ∈ Dar(f)

X

g∈Ω

ω(g) > 0

ω(g) ≥ 0 ∀g ∈ O
(1)
D , (5)

where Ω is the set of non-injective operations in O
(1)
D . Note

that for any such solution ω, ω/‖ω‖1 is a unary fractional
polymorphism with non-empty support on Ω. To find a core
of Γ, we determine an inclusion-minimal subset S ⊆ D such
that Γ[S] is a core.

To check whether VCSP(Γ) is tractable, it suffices, by
Theorem 3.3, to check whether it has a binary idempotent
and symmetric fractional polymorphism. This is the case
if, and only if, the following system of linear inequalities is
satisfiable

X

g∈Ω

ω(g)f(g(x̄, ȳ)) ≤ ‖ω‖1f
2(x̄, ȳ), ∀f ∈ Γ, x̄, ȳ ∈ Dar(f)

ω(g) ≥ 0, ∀g ∈ Ω,

where Ω is the set of binary operations g ∈ O
(2)
D on D that

are idempotent and symmetric.

4. EQUIVALENCE OF HARDNESS CONDI-
TIONS AND EQUIVALENCE OF CORES

We begin by proving Lemma 2.4.

Proof (of Lemma 2.4). Clearly OptΓ(I) ≤ OptΓ′(I ′). For
the other direction, let ω be a unary fractional polymor-
phism of Γ with h′ ∈ supp(ω) such that Γ′ = Γ[h′(D)]. Let



V = V (I) be the set of variables of I and let s : V → D be
an optimal solution to I. Then,

X

i

wi · fi(s(x̄
i)) ≥

X

i

wi

X

h∈O
(1)
D

ω(h)fi(h(s(x̄i)))

=
X

h∈O
(1)
D

ω(h)
X

i

wi · fi((h ◦ s)(x̄i)).

It follows that h ◦ s must also be an optimal solution to
I, for each h ∈ supp(ω). So h′ ◦ s is a solution to I of
measure OptΓ(I). But h′ ◦ s is also a solution to I ′, so
OptΓ(I) ≥ OptΓ′(I ′).

In [28], a valued language Γ is defined to be a core if, for
each a ∈ D, there is an instance Ia of VCSP(Γ) such that a
appears in every optimal solution to Ia. We now show that
this condition is equivalent to Definition 3. We will use the
following variation of Motzkin’s Transposition Theorem [47].

Lemma 4.1. For any A ∈ Qm×n, B ∈ Qp×n, exactly one
of the following holds:

• Ay > 0, By ≥ 0, for some y ∈ Qn
≥0; or

• A⊤z1 + B⊤z2 ≤ 0, for some 0 6= z1 ∈ Qm
≥0, z2 ∈ Q

p

≥0.

Lemma 4.2. For a valued language Γ, the following are
equivalent:

1. All unary fractional polymorphisms of Γ are injective.

2. There is an instance I of VCSP(Γ) such that every
a ∈ D appears in every optimal solution to I.

3. For each a ∈ D, there is an instance Ia of VCSP(Γ)
such that a appears in every optimal solution to Ia.

Proof. The system (5) is unsatisfiable if, and only if, h ∈
supp(ω) is injective for every unary fractional polymorphism
ω of Γ. According to Lemma 4.1, this is true if, and only if,
the following system is satisfiable:

X

f∈Γ,x̄∈Dar(f)

z2(f, x̄)(f(x̄) − f(g(x̄))) ≤ 0, ∀g ∈ O
(1)
D ,

z1 +
X

f∈Γ,x̄∈Dar(f)

z2(f, x̄)(f(x̄) − f(g(x̄))) ≤ 0, ∀g ∈ Ω,

z1 > 0,

z2(f, x̄) ≥ 0, ∀f ∈ Γ, x̄ ∈ Dar(f).

That is, if, and only if, there exists an instance I of VCSP(Γ),
with variables D and objective function

P

f,x̄
z2(f, x̄)f(x̄),

for which every non-injective g is non-optimal. This can be
the case if, and only if, every a ∈ D appears in every optimal
solution to I. Hence, conditions (1) and (2) are equivalent.
Clearly, condition (2) implies condition (3). Finally, given
instances Ia, a ∈ D, such that a appears in every optimal
solution, we can take the disjoint union of the variable sets
of Ia as the variable set of I, and the sum of the objective
function of Ia as the objective function of I. Then I satisfies
condition (2). This establishes the lemma.

Finally we prove the equivalence of condition (MC) and
condition (MC′).

Proof (of Lemma 2.2). We need to prove that (MC)
implies (MC′). Let Γ be a valued language with a func-
tion h ∈ 〈Γ〉 such that argmin h = {(a, b), (b, a)}. Note that
u(x) = miny h(x, y) is a unary function with argmin u =
{a, b}. If h(a, a) = h(b, b), then u and h satisfy (MC′).
Otherwise, assume without loss of generality that h(a, b) =
h(b, a) = 0, h(x, y) ≥ 1 for {x, y} 6= {a, b}, and that h(a, a) <
h(b, b). Let C = maxx h(a, a) − h(x, x), and define u′(x) =
miny C ·u(y)+h(y, y)+h(x, y). Note that u(x) = 0 for x =
a, b and u(x) ≥ 1 otherwise. Also note that miny h(y, y) =
h(a, a) − C. The three arguments in the following min-
expressions correspond to the cases y 6= a, b, y = a, and
y = b, respectively.

u′(x) ≥ min{C + (h(a, a) − C) + 1, 0 + h(a, a) + 1,

0 + h(b, b) + 1} > h(a, a) (x 6= a, b)

u′(a) ≥ min{C + (h(a, a) − C) + 1, 0 + h(a, a) + h(a, a),

0 + h(b, b) + 0} > h(a, a)

u′(b) ≤ C · h(a, b) + h(a, a) + h(b, a) = h(a, a)

Thus argmin u′ = {b}.
Now, let δ = h(b, b) − h(a, a) > 0 and define

h′(x, y) = h(x, y) +
δ

2

u′(x) + u′(y)

u′(a) − u′(b)
.

It is straightforward to verify that h′(a, b) = h′(b, a) <
h′(a, a) = h′(b, b), so u and h′ satisfy (MC′).

5. PROOF OF LEMMA 3.5

Proof (of Lemma 3.5). Let π1(x, y) = x and π2(x, y) =
y be the two binary projections on D. Let Ω(a, b) be the set

of operations g ∈ O
(2)
D for which {g(a, b), g(b, a)} 6= {a, b}.

Assume that there exist rational values y(f, x̄) ≥ 0, for

f ∈ Γ, x̄ ∈ (D × D)ar(f), such that for i = 1, 2,
X

f,x̄

y(f, x̄)f(g(x̄)) ≥
X

f,x̄

y(f, x̄)f(πi(x̄)), ∀g ∈ O
(2)
D , (6)

X

f,x̄

y(f, x̄)f(g(x̄)) >
X

f,x̄

y(f, x̄)f(πi(x̄)), ∀g ∈ Ω(a, b). (7)

Let x1, . . . , xn be an enumeration of D×D with x1 = (a, b)
and x2 = (b, a). Let I be the instance of VCSP(Γ) with
variables x1, . . . , xn and objective function fI(x1, . . . , xn) =
P

f,x̄
y(f, x̄)f(x̄).

Define h(x, y) = minx3,...,xn fI(x, y, x3, . . . , xn). The equa-
tions (6) imply that π1 and π2 are among the optimal solu-
tions to I, and equations (7) imply that π1 and π2 have
strictly smaller measure than any solution g ∈ Ω(a, b), so
h(a, b) = h(b, a) < h(x, y) for all {x, y} 6= {a, b}.

We conclude that if (MC) cannot be satisfied, then there
is no solution to the system (6)+(7). By Lemma 4.1, there
is a solution z1(g), z2(g) ≥ 0 to the following system of equa-
tions:

X

g∈Ω(a,b)

z1(g)(2f(g(x̄)) − f(π1(x̄)) − f(π2(x̄))) +

X

g∈O
(2)
D

z2(g)(2f(g(x̄)) − f(π1(x̄)) − f(π2(x̄))) ≤ 0,

∀f ∈ Γ, x̄ ∈ (D × D)ar(f), (8)



with z1(g) 6= 0 for some g ∈ Ω(a, b). Now let z = z1 + z2 (let
z1(g) = 0 for g 6∈ Ω(a, b)) and normalise so that ‖z‖1 = 1.
A solution to (8) then implies a solution to the following
system of inequalities:

X

g∈O
(2)
D

z(g)f(g(x̄)) ≤ f2(π1(x̄), π2(x̄)), ∀f, x̄,

with z(g) ≥ 0 and z(g) > 0 for some g ∈ Ω(a, b). Denote
this solution by za,b(g). Now, if (MC) cannot be satisfied
for any distinct a, b ∈ D, then we have solutions za,b(g) for
all a 6= b ∈ D. The lemma follows with ω(g) = (|D|2 −
|D|)−1 P

a6=b
za,b(g).

6. PROOF OF LEMMA 3.10
The aim of this section is to prove that the graph S of sub-

modular pairs is connected. In order to do so, we introduce
yet another graph T that records the “definable 2-subsets of
D”. We then show that T is a subgraph of S and that T is
connected.

Let T = (V (T ), E(T )) be the undirected graph with:

• V (T ) = D;

• E(T ) = {{a, b} | there exists a unary function u ∈ 〈Γc〉
such that argmin u = {a, b}}.

Lemma 6.1. E(T ) ⊆ E(S).

Proof. Take an arbitrary edge {a, b} ∈ E(T ) and let ua,
ub, and uab be unary functions in 〈Γc〉 such that argmin ua =
{a}, argmin ub = {b}, and argmin uab = {a, b}, respectively.
Since uab minimizes on {a, b} and is invariant under both ω
and ρ, we have g(a, b), g(b, a) ∈ {a, b} for every g ∈ supp(ω)
and every g = (g, ḡ) ∈ supp(ρ). By construction of ω, there
is an operation h ∈ supp(ω) for which (h(a, b), h(b, a)) 6∈
{(a, b), (b, a)}, so by our previous observation, we must have
either h(a, b) = h(b, a) = a or h(a, b) = h(b, a) = b. Suppose
that g(a, b) ∈ {(a, b), (b, a)} for some g ∈ supp(ρ). Then
gh(a, b) = (h(a, b), h(b, a)) or (h(b, a), h(a, b)). In either case,
gh is symmetric on {a, b}. So gh is reachable from g in the
graph G and every g′ reachable from gh is symmetric on
{a, b}. Therefore g cannot be in R ⊇ supp(ρ), a contradic-
tion. We conclude that every g ∈ supp(ρ) is symmetric on
{a, b} and maps (a, b) to either (a, a) or (b, b).

Let wa =
P

g:g(a,b)=(a,a) ρ(g) and wb =
P

g:g(a,b)=(b,b) ρ(g).
By the previous argument, we have wa + wb = 1. By the
fractional polymorphism inequality applied to ua, we have

1

2
(ua(a) + ua(b)) ≥ waua(a) + wbua(b). (9)

Since ua(a) < ua(b), we have wa ≥ wb. But inequality
(9) holds for ub as well, hence wa ≤ wb, and therefore wa =
wb = 1

2
.

Lemma 6.2. T is connected.

To prove this lemma, we will introduce some terminology
from the study of hyperplane arrangements which will facil-
itate our reasoning about the edges of T . For a more thor-
ough treatment of this subject, see Abramenko and Brown [1]
and Stanley [48].

Definition 5. Let {v̄i}i∈I be a finite set of vectors in Rn.
The set of hyperplanes A = {Hi}i∈I , where Hi = {x̄ ∈ Rn |
v̄i · x̄ = 0}, is called a (linear) hyperplane arrangement.

To each vector x̄ ∈ Rn, we associate a sign vector, σ(x̄) ∈
{−1, 0, +1}I , where the ith component is given by the sign
of v̄i · x̄ for each i ∈ I. For a sign vector v̄ ∈ {−1, 0, +1}I , a
non-empty set A = σ−1(v̄) = {x̄ ∈ Rn | σ(x̄) = v̄} is called
a cell of A. We denote the defining sign vector, v̄ of A, by
σ(A).

A cell C with σ(C)i 6= 0 for all i ∈ I is called a chamber.
The chambers are the connected full-dimensional regions of
Rn \

S

i∈I
Hi. A cell P with σ(P )i = 0 for exactly one i ∈ I

is called a panel. We say that P is a panel of a chamber C
if the panel P is contained in the topological closure cl(C)
of C. Each panel is a panel of precisely two chambers.

The chamber graph of A is the undirected graph with the
chambers of A as vertices and an edge between two chambers
C1 and C2 if σ(C1) and σ(C2) differ by a single sign change,
or equivalently, if C1 and C2 share a common panel. We will
use the following properties of the chamber graph that can
be found in [1, Proposition 1.54].

Proposition 6.3. The chamber graph of A is connected
and the minimal length of a path between C1 and C2 in the
chamber graph is equal to the number of positions at which
σ(C1) and σ(C2) differ.

We are now ready to prove Lemma 6.2.

Proof (of Lemma 6.2). For each a ∈ D, we have a
unary function ua ∈ 〈Γc〉 with argmin ua = {a}. For x̄ ∈
RD, with components xc, consider the linear combination
fx̄ =

P

c∈D
xcuc. Note that if x̄ is rational and nonnegative,

then fx̄ ∈ 〈Γc〉. The inequality fx̄(a) < fx̄(b) is equiva-
lent to

P

c∈D
xc(uc(a) − uc(b)) < 0, i.e., fx̄ takes a strictly

smaller value on a than on b precisely when the vector x̄ is
on the negative side of the hyperplane Hab defined by the
normal v̄ab with components vab

c = uc(a) − uc(b). Hence,
by determining the sign of x̄ · v̄ab, we can decide whether
fx̄(a) < fx̄(b) or fx̄(a) > fx̄(b). If x̄ lies on the hyperplane,
then fx̄(a) = fx̄(b).

For each a ∈ D, let Ha be the hyperplane defined by the
unit vector ēa, i.e., ea

a = 1 and ea
c = 0 for a 6= c. Fix a strict

total order <D on D. Let A = {Hab | a <D b} ∪ {Ha |
a ∈ D} be a hyperplane arrangement in RD. Let C be the
set of chambers C that has a positive sign for each Ha, i.e.,
each C ∈ C is contained in the positive (open) orthant of RD.
Since all remaining components of C ∈ C are also nonzero,
they determine a strict order on the values of the functions
fx̄, x̄ ∈ C. For each a ∈ D, let Ua = {C ∈ C | ∀x̄ ∈ C :
argmin fx̄ = {a}}. Each Ua is non-empty since the vector x̄
given by xc = ǫ for c 6= a and xa = 1 determines a function
minimizing on a when ǫ > 0 is chosen small enough.

Fix a, b ∈ D and pick any Ca ∈ Ua, Cb ∈ Ub. Let Ca =
C0, C1, . . . , Cl = Cb be a minimal-length path from Ca to
Cb in the chamber graph. Consider the sign vectors along
this path: σ(C0), σ(C1), . . . , σ(Cl). By Proposition 6.3 the
sign of a fixed component changes at most once along this
sequence. In particular, since Ca and Cb both have positive
signs for the hyperplanes Ha, it follows that Ci is contained
in the positive orthant for every i. Hence, for each i, there
is a ai ∈ D such that Ci ∈ Uai . For each i with ai 6= ai+1,
the path moves from a chamber where fx̄ minimizes on ai to
a chamber where it minimizes on ai+1. This means that Ci

and Ci+1 share a panel Pi with a sign vector σ(Pi) obtained
from either σ(Ci) or σ(Ci+1) by setting the component cor-
responding to Haiai+1 to 0 (assuming ai <D ai+1). Since



all other components of σ(Pi) have the same sign as in σ(Ci)
and σ(Ci+1), we have fx̄(ai) = fx̄(ai+1) < fx̄(c), for every
x̄ ∈ Pi and c 6= ai, ai+1. For a hyperplane arrangement,
such as A, that is defined in terms of rational normal vec-
tors, each cell is defined as the solutions to a set of linear
equalities and inequalities with rational coefficients. Every
cell therefore contains at least one rational vector. In partic-
ular, there exists a nonnegative rational vector x̄ ∈ Pi with
argmin fx̄ = {ai, ai+1}, so {ai, ai+1} ∈ E(T ). This holds for
all 0 ≤ i < l with ai 6= ai+1, so we conclude that a subse-
quence of a = a0, a1, . . . , al = b is a path in T from a to
b.

7. PROOFS OF THEOREM 3.6
AND LEMMA 3.11

A (time-homogeneous) finite-state Markov chain M is given
by a set of states and conditional probabilities p(i, j) for M
to be in state j at time t + 1 given that it was in state i
at time t. Let p(k)(i, j) denote the probability that M pro-
ceeds from state i to state j in exactly k transitions. M
is called irreducible if, for every pair of states (i, j), there

exists r ≥ 1 with p(r)(i, j) > 0. A state i is called transient
if, for some state j, there is a path from i to j but not from
j to i. A state that is not transient is called recurrent. A
state has periodicity r if r = gcd{k | p(k)(i, i) > 0}. M is
called aperiodic if all states have periodicity 1. A stationary
distribution of M is a probability distribution λ on the set
of states of M such that λ(i) =

P

j
λ(j)p(j, i) for all states

i. The following is well known.

Theorem 7.1. For any finite-state Markov chain M :

1. If M is irreducible, then there is a unique stationary
distribution λ of M with λ(i) > 0 for all states i.

2. If M is aperiodic, then for any initial distribution π,
there is a stationary distribution λ of M with
P

j
π(j)p(k)(j, i) → λ(i) as k → ∞, for all states i.

3. If i is transient, then p(k)(j, i) → 0 as k → ∞, for all
states j.

We now define a Markov chain M on G. Let w(g,g′) =
P

h∈supp(ω):g′=gh ω(h). The transition probabilities are given
by

p(g,g′) =

(

1
2
w(g,g′) + 1

2
if g = g′, and

1
2
w(g,g′) otherwise.

Note that the set R ⊆ V, defined in Section 3.2, is pre-
cisely the set of recurrent states of M . Let H be a strongly
connected component of G[R]. Then, M(H), the restriction
of M to H, is also a Markov chain.

Lemma 7.2. The Markov chains M and M(H) are aperi-
odic and each M(H) is irreducible.

Proof. Aperiodicity follows by construction as p(g,g) ≥
1
2

> 0 for all g ∈ V. Irreducibility follows since each H is a
strongly connected component of G[R].

Lemma 7.3. Let σ and λ be probability distributions on
V and assume that M converges to λ when starting in σ.
Then, for every x̄1, x̄2 ∈ Dn,

X

g∈V

σ(g)f2(g(x̄1, x̄2)) ≥
X

g∈V

λ(g)f2(g(x̄1, x̄2)).

Proof. By k times applying the 2 → 2 fractional poly-
morphism 1

2
χ1 + 1

2

P

h
ω(h)χ(h,h̄), (where 1 is the identity

in O
(2→2)
D ) to the left-hand side, we have

X

g∈V

σ(g)f2(g(x̄1, x̄2)) ≥
X

g∈V

σ(g)
1

2

“

f2(g(x̄1, x̄2)) +

X

h∈O
(2)
D

ω(h)f2(gh(x̄1, x̄2))
”

=
X

g∈V

X

g′∈V

σ(g′)p(g′,g)f2(g(x̄1, x̄2))

≥ · · · ≥
X

g∈V

σ(k)(g)f2(g(x1, x2)),

where σ(k)(g) =
P

g′∈V σ(g′)p(k)(g′,g). By assumption,

σ(k)(g) → λ(g) as k → ∞. Since the right-hand side is a lin-

ear function in σ(k)(g), the lemma follows by continuity.

We are now ready to prove Theorem 3.6.

Proof (of Theorem 3.6). Let σ be the 2 → 2 frac-
tional polymorphism of Γc defined by σ =

P

h
ω(h)χ(h,h̄).

Note that σ is a probability distribution on V. By The-
orem 7.1(2), there exists a stationary distribution ρ of M
such that

X

g′

σ(g′)p(k)(g′,g) → ρ(g)

as k → ∞, for all g. By Theorem 7.1(3), ρ(g) = 0 for
g 6∈ R, hence supp(ρ) ⊆ R. Finally, ρ is a 2 → 2 fractional
polymorphism of Γc by Lemma 7.3.

In order to prove Lemma 3.11, we will need an additional
observation.

Lemma 7.4. Let x1, . . . , xm, c1, . . . , cm ∈ Q≥0 be such that
ci > 0 for all i,

P

i
ci = 1, and xj ≥

P

i
cixi for all j. Then

x1 = x2 = · · · = xm.

Proof. Let C =
P

i
cixi. We have xj ≥ C for all j. If

xj > C for some j, then cjxj > cjC, so C =
P

i
cixi >

P

i
ciC = C, a contradiction. So, for all j, xj ≤ C, and

hence xj = C.

Proof (of Lemma 3.11). Let H be the strongly connected
component of G containing g. By Theorem 7.1 and Lemma 7.2,
M(H) has a unique stationary distribution λ, with λ(h) > 0
for all h ∈ H. Let (ȳ1, ȳ2) be such that (x̄1, x̄2) = g(ȳ1, ȳ2),
and for any ĝ, let (ȳĝ1 , ȳĝ2) = ĝ(ȳ1, ȳ2). For i = 1, 2, let
Ωi = {g ∈ V | g(a1, a2) = (ai, ai)}. For each ĝ ∈ H, we



have

f2((a1, ȳ
ĝ1), (a2, ȳ

ĝ2)) (10)

≥
X

g′∈V

ρ(g′)f2(g′((a1, ȳ
ĝ1), (a2, ȳ

ĝ2))) (11)

=
X

g′∈Ω1

ρ(g′)f2(g′ ◦ ĝ((a1, ȳ
1), (a1, ȳ

2)))

+
X

g′∈Ω2

ρ(g′)f2(g′ ◦ ĝ((a2, ȳ
1), (a2, ȳ

2))) (12)

=
1

2

X

h∈H

σ1(h)f2(h((a1, ȳ
1), (a1, ȳ

2)))

+
1

2

X

h∈H

σ2(h)f2(h((a2, ȳ
1), (a2, ȳ

2))) (13)

≥
1

2

X

h∈H

λ(h)f2(h((a1, ȳ
1), (a1, ȳ

2)))

+
1

2

X

h∈H

λ(h)f2(h((a2, ȳ
1), (a2, ȳ

2))) (14)

=
1

2

X

h∈H

λ(h)
`

f2((a1, ȳ
h1), (a2, ȳ

h2))

+ f2((a1, ȳ
h2), (a2, ȳ

h1))
´

, (15)

where (11) follows by applying ρ and (12) follows from
ρ being idempotent and submodular on {a1, a2}. To get
(13), define the probability distributions σi on V by σi(h) =
2 ·

P

g′∈Ωi:g′◦ĝ=h
ρ(g′) and remember that g′ = 1h1...hk ,

for some hi ∈ supp(ω), so g′ ◦ ĝ = ĝh1...hk ∈ H, i.e.,
supp(σi) ⊆ H. From (13), one obtains (14) by two appli-
cations of Lemma 7.3 and (15) by rearranging the terms.

Also, f2((a1, ȳ
ĝ2), (a2, ȳ

ĝ1)) = f2((a2, ȳ
ĝ1), (a1, ȳ

ĝ2)) ≥
P

g′ ρ(g′)f2(g′((a2, ȳ
ĝ1), (a1, ȳ

ĝ2))) which is equal to (11)

since ρ is submodular on {a1, a2}. Hence,

f2((a1, ȳ
ĝ2), (a2, ȳ

ĝ1)) ≥
1

2

X

h∈H

λ(h)
`

f2((a1, ȳ
h1), (a2, ȳ

h2))

+ f2((a1, ȳ
h2), (a2, ȳ

h1))
´

, (16)

in the same way as before.
For h = (h1, h2) ∈ V, define h̄ = (h2, h1), and H̄ = {h̄ |

h ∈ H}. For ĝ ∈ H ∪ H̄, let xĝ = f2((a1, ȳ
ĝ1), (a2, ȳ

ĝ2))
and cĝ = 1

2
(λ(ĝ) + λ(¯̂g)). It then follows from (10–15),

(16), and Lemma 7.4 that xĝ is constant on H ∪ H̄. Since
g, ḡ ∈ H ∪ H̄, we have f2((a1, x̄

1), (a2, x̄
2)) = xg = xḡ =

f2((a1, x̄
2), (a2, x̄

1)), as required.

8. CONCLUSIONS
In this work we have completely answered the question of

which (finite-)valued constraint languages on finite domains
are solvable exactly in polynomial time. In particular, we
have characterised the tractable languages as those that ad-
mit a binary idempotent and symmetric fractional polymor-
phism, which we have shown to be a polynomial-time check-
able condition. Moreover, all tractable languages are solv-
able by the basic linear programming relaxation. Thus, we
have demonstrated that the basic linear programming (BLP)
relaxation suffices for exact solvability of (finite-)valued con-
straint languages and that, in this context, semidefinite pro-
gramming relaxations do not add any power.

An intriguing open question is the precise boundary of
the tractability of the minimisation problem in the value
oracle model; that is, for objective functions that are not
given explicitly as a sum of fixed-arity functions but only by
an oracle. In particular, do the tractable cases (solvable by
combinatorial algorithms) coincide or not?
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