
SIAM J. DISCRETE MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 2361–2384

NECESSARY CONDITIONS FOR TRACTABILITY
OF VALUED CSPs∗

JOHAN THAPPER† AND STANISLAV ŽIVNÝ‡

Abstract. The connection between constraint languages and clone theory has been a fruitful
line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen
et al. [SIAM J. Comput., 42 (2013), pp. 915–1939] have characterized a Galois connection between
valued constraint languages and so-called weighted clones. In this paper, we study the structure
of weighted clones. We extend the results of Creed and Živný from [Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Programming, 2011, pp. 210–224] on
types of weightings necessarily contained in every nontrivial weighted clone. This result has imme-
diate computational complexity consequences as it provides necessary conditions for tractability of
weighted clones and thus valued constraint languages. We demonstrate that some of the necessary
conditions are also sufficient for tractability, while others are provably not.

Key words. discrete optimization, valued constraint satisfaction problems, weighted clones,
weighted polymorphisms

AMS subject classifications. 08A70, 68Q25, 68Q17

DOI. 10.1137/140990346

1. Introduction. The constraint satisfaction problem (CSP) is a general frame-
work capturing decision problems arising in many contexts of computer science [1,
16, 21]. The CSP is NP-hard in general, but there has been much success in finding
tractable fragments of the CSP by restricting the types of relation allowed in the
constraints. A set of allowed relations has been called a constraint language [18, 25].
For some constraint languages, the associated constraint satisfaction problems with
constraints chosen from that language are solvable in polynomial-time, while for other
constraint languages this class of problems is NP-hard [18, 26]; these are referred to as
tractable languages and NP-hard languages, respectively. Dichotomy theorems, which
classify each possible constraint language as either tractable or NP-hard, have been
established for constraint languages over two-element domains [40], three-element do-
mains [6], for conservative (containing all unary relations) constraint languages [8],
for maximal constraint languages [5, 9], for graphs (corresponding to languages con-
taining a single binary symmetric relation) [20], and for digraphs without sources
and sinks (corresponding to languages containing a single binary relations without
sources and sinks) [3]. The most successful approach to classifying the complexity of
constraint languages has been the algebraic approach [2, 7, 26].

The valued constraint satisfaction problem (VCSP) is a generalization of the CSP
that captures not only decision problems but also optimization problems [12, 24, 50].
A VCSP instance associates with each constraint a weighted relation, which is a Q-
valued function, where Q = Q∪{∞} is the set of extended rational numbers, and the
goal is to minimize the sum of the weighted relations associated with all constraints.
Tractable fragments of the VCSP have been identified by restricting the types of al-

∗Received by the editors October 7, 2014; accepted for publication (in revised form) October 6,
2015; published electronically December 3, 2015.

http://www.siam.org/journals/sidma/29-4/99034.html
†Université Paris-Est, Marne-la-Vallée, 77454 Paris, France (thapper@u-pem.fr).
‡Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK (standa.zivny@cs.

ox.ac.uk). This author’s research was supported by a Royal Society University Research Fellowship.

2361

http://www.siam.org/journals/sidma/29-4/99034.html
mailto:thapper@u-pem.fr
mailto:standa.zivny@cs.ox.ac.uk
mailto:standa.zivny@cs.ox.ac.uk

2362 JOHAN THAPPER AND STANISLAV ŽIVNÝ

lowed weighted relations that can be used to define the valued constraints. A set of al-
lowed weighted relations has been called a valued constraint language [12]. Classifying
the complexity of all valued constraint languages is a challenging task as it includes as
a special case the classification of {0,∞}-valued languages (i.e., constraint languages),
which would answer the conjecture of Feder and Vardi [18], which asserts that every
constraint language is either tractable or NP-hard, and its algebraic refinement, which
specifies the precise boundary between tractable and NP-hard languages [7]. However,
several nontrivial results are known. Dichotomy theorems, which classify each possi-
ble valued constraint language as either tractable or NP-hard, have been established
for valued constraint languages over two-element domains [12], for conservative (con-
taining all {0, 1}-valued unary cost functions) valued constraint languages [34], and
for minimum-solution languages (containing relations and a single unary injective
weighted relation) [47]. Furthermore, it has been shown that a dichotomy for con-
straint languages implies a dichotomy for valued constraint languages [32]. Moreover,
the power of the basic linear programming relaxation [31, 33, 45] and the power of
the Sherali–Adams relaxations [47] for valued constraint languages have been charac-
terized.

Cohen et al. have recently introduced an algebraic theory of weighted clones [10]
for classifying the computational complexity of valued constraint languages. This
theory establishes a one-to-one correspondence between valued constraint languages
closed under expressibility (which does not change the complexity of the associ-
ated class of optimization problems), called weighted relational clones, and weighted
clones [10]. This is an extension of (part of) the algebraic approach to CSPs which
relies on a one-to-one correspondence between constraint languages closed under pp-
definability (which does not change the complexity of the associated class of decision
problems), called relational clones, and clones [7], thus making it possible to use deep
results from universal algebra.

Creed and Živný initiated the study of weighted clones and have used the theory
of weighted clones to determine certain necessary conditions on nontrivial weighted
clones and thus on tractable valued constraint languages [13]; see also [10]. In partic-
ular, [13] simplifies the NP-hardness part of the complexity classification of Boolean
valued constraint languages from [12].

Contributions. We continue the study of weighted clones started in [10, 13]. After
introducing valued constraint satisfaction problems and all necessary tools in section 2,
we study, in section 3, structural properties of nontrivial weighted clones. Our main
result on weighted clones, Theorem 3.2, is an extension of a result from [10] that
provides a more fine-grained characterization of what conditions on weighted clones
are necessary for tractability. Moreover, we demonstrate that some of the necessary
conditions are also sufficient for tractability, while others are provably not. Overall,
we give a structural result that shows what types of weightings are guaranteed to exist
in nontrivial weighted clones. As a direct consequence, we narrow down the possible
structure of tractable weighted clones. A proof of our main result is presented in
section 4 and is based on an application of Gordan’s theorem, which is a variant
of LP duality. The introduced technique is novel and might prove useful in future
work on weighted clones. Finally, we relate our results to maximal tractable valued
constraint languages, or equivalently, to minimal tractable weighted clones.

Related work. Given the generality of the VCSP, there have been results on the
complexity of special types of VCSPs. Finite-valued CSPs are VCSPs in which all
weighted relations are Q-valued. In other words, finite-valued CSPs are purely opti-
mization problems and thus do not include as a special case (decision) CSPs. The

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2363

authors have recently classified all finite-valued constraint languages on arbitrary fi-
nite domains [46]. Minimum solution (Min-Sol) problems are valued CSPs with one
unary injective Q-valued weighted relation and {0,∞}-valued weighted relations. Min-
Sols generalize Min-Ones [14] and bounded integer linear programs. Min-Sols have
been only very recently classified [47] with respect to computational complexity, thus
improving on previous partial classifications [27, 28, 29, 30, 48]. Minimum cost homo-
morphism (Min-Cost-Hom) problems are Valued CSPs in which all but unary weighted
relations are {0,∞}-valued. Thus, the optimization part of the problem is only given
by a sum of unary terms. This may seem very restrictive, but it is known [11, 39]
that any VCSP is equivalent to a VCSP where only the (not necessarily injective)
unary constraints involve optimization. Min-Cost-Hom problems with all unary cost
functions have been classified in [43]. Also, Min-Cost-Hom problems with all unary
{0,∞}-valued cost functions [44, 48] and on three-element domains [49] have been
classified.

2. Preliminaries.

2.1. Valued CSPs. Throughout the paper, let D be a fixed finite set of size at
least two.

Definition 2.1. An m-ary relation over D is any mapping φ : Dm → {c,∞}
for some c ∈ Q. We denote by R

(m)
D the set of all m-ary relations and let RD =⋃

m≥1 R
(m)
D .

An m-ary relation over D is commonly defined as a subset of Dm. Note that
Definition 2.1 is equivalent to the standard definition, as any subset of Dm can be
associated with the set {x ∈ Dm | φ(x) < ∞}. Consequently, we shall use both
definitions interchangeably.

Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m.
Let Q = Q ∪ {∞} denote the set of rational numbers with (positive) infinity.
Definition 2.2. An m-ary weighted relation1 over D is any mapping φ :

Dm → Q. We denote by Φ
(m)
D the set of all m-ary weighted relations and let

ΦD =
⋃

m≥1 Φ
(m)
D .

From Definition 2.2, we have that relations are a special type of weighted relations.
If needed, we call a weighted relation unweighted to emphasize the fact that φ is a
relation.

Example 2.3. An important example of a (weighted) relation is the binary equality
φ= on D: φ=(x, y) = 0 if x = y and φ=(x, y) =∞ if x �= y.

For any m-ary weighted relation φ ∈ Φ
(m)
D , we denote by Feas(φ) = {x ∈

Dm | φ(x) <∞} ∈ R
(m)
D the underlying feasibility relation.

A weighted relation φ : Dm → Q is called finite-valued if Feas(φ) = Dm.
Definition 2.4. Let V = {x1, . . . , xn} be a set of variables. A valued constraint

over V is an expression of the form φ(x), where φ ∈ Φ
(m)
D and x ∈ Vm. The number

m is called the arity of the constraint, the weighted relation φ is called the constraint
weighted relation, and the tuple x is called the scope of the constraint.

We call D the domain, call the elements of D labels (for variables), and say that
the weighted relation in ΦD take values.

Definition 2.5. An instance of the valued constraint satisfaction problem (VCSP)
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and

1In some papers, weighted relations are called cost functions.

2364 JOHAN THAPPER AND STANISLAV ŽIVNÝ

an objective function I expressed as follows:

(2.1) I(x1, . . . , xn) =

q∑

i=1

φi(xi) ,

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in I.

The goal is to find an assignment (or a labeling) of labels to the variables that
minimizes I.

CSPs are a special case of VCSPs with (unweighted) relations with the goal to
determine the existence of a feasible solution.

Example 2.6. The Max-Cut problem for a graph is to find a cut with the
largest possible size. This problem is NP-hard [19] and equivalent to the Min-

UnCut problem with respect to exact solvability. For a graph (V,E) with V =
{x1, . . . , xn}, this problem can be expressed as the VCSP instance I(x1, . . . , xn) =∑

(i,j)∈E φxor(xi, xj) over the Boolean domain D = {0, 1}, where φxor : {0, 1}2 → Q is

defined by φxor(x, y) = 1 if x = y and φxor(x, y) = 0 if x �= y.
Definition 2.7. Any set Γ ⊆ ΦD is called a valued constraint language2 over

D, or simply a language. We will denote by VCSP(Γ) the class of all VCSP instances
in which the constraint weighted relations are all contained in Γ.

Definition 2.8. A valued constraint language Γ is called tractable if VCSP(Γ′)
can be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ
is called intractable if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ.

A valued constraint language is called finite-valued if every weighted relation φ
from the language is finite-valued. Example 2.6 shows that the finite-valued constraint
language {φxor} is intractable.

We denote by Feas(Γ) = {Feas(φ) | φ ∈ Γ} the set of underlying relations of all
weighted relations from Γ.

2.2. Weighted relational clones.
Definition 2.9. We say that an m-ary weighted relation φ is expressible over

a valued constraint language Γ if there exists a VCSP instance I ∈ VCSP(Γ) with
variables V = {x1, . . . , xn, y1, . . . , ym}, such that

(2.2) φ(y1, . . . , ym) = min
x1∈D,...,xn∈D

I(x1, . . . , xn, y1, . . . , ym) .

A valued constraint language Γ is closed under expressibility if every weighted
relation φ expressible over Γ belongs to Γ.

Definition 2.10. A valued constraint language Γ ⊆ ΦD is called a weighted
relational clone if it contains the binary equality relation φ= on D and is closed under
expressibility, scaling by nonnegative rational constants (where we define 0 · ∞ =∞),
and addition of rational constants.

For any Γ, we define wRelClone(Γ) to be the smallest weighted relational clone
containing Γ.

Note that for any weighted relational clone Γ, if φ ∈ Γ, then Feas(φ) ∈ Γ as
Feas(φ) = 0φ.

2A valued constraint language Γ is sometimes called general-valued to emphasize the fact that
weighted relations from Γ are not necessarily finite-valued.

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2365

Definition 2.11. A relational clone is a weighted relational clone containing
only (unweighted) relations.3 For a set of relations Γ, we denote by RelClone(Γ) the
smallest relational clone containing Γ.

It has been shown that Γ is tractable if and only if wRelClone(Γ) is tractable [10].
Consequently, when trying to identify tractable valued constraint languages, it is
sufficient to consider only weighted relational clones.

2.3. Weighted clones. Any mapping f : Dk → D is called a k-ary operation.
We will apply a k-ary operation f to k m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that
is,

(2.3) f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) .

Definition 2.12. Let φ be an m-ary weighted relation on D and let f be a k-ary
operation on D. Then f is a polymorphism of φ if, for any x1,x2, . . . ,xk ∈ Dm with
xi ∈ Feas(φ) for all 1 ≤ i ≤ k, we have that f(x1,x2, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the set
of all operations on D which are polymorphisms of all φ ∈ Γ. We write Pol(φ) for
Pol({φ}).

A k-ary projection is an operation of the form e
(k)
i (x1, . . . , xk) = xi for some

1 ≤ i ≤ k. Projections are (trivial) polymorphisms of all valued constraint languages.
Definition 2.13. The superposition of a k-ary operation f : Dk → D with k �-

ary operations gi : D
� → D for 1 ≤ i ≤ k is the �-ary function f [g1, . . . , gk] : D

� → D
defined by

(2.4) f [g1, . . . , gk](x1, . . . , x�) = f(g1(x1, . . . , x�), . . . , gk(x1, . . . , x�)) .

Definition 2.14. A clone of operations, C, is a set of operations on D that
contains all projections and is closed under superposition. The k-ary operations in a
clone C will be denoted by C(k).

Example 2.15. For any D, let JD be the set of all projections on D and OD be
the set of all operations on D. By Definition 2.14, both JD and OD are clones.

It is well known that Pol(Γ) is a clone for all valued constraint languages Γ [17].
Definition 2.16. A k-ary weighting of a clone C is a function ω : C(k) → Q

such that ω(f) < 0 only if f is a projection and

(2.5)
∑

f∈C(k)

ω(f) = 0 .

We define supp(ω) = {f ∈ C(k) | ω(f) > 0}.
Definition 2.17. For any clone C, any k-ary weighting ω of C, and any

g1, . . . , gk ∈ C(�), the superposition of ω and g1, . . . , gk is the function ω[g1, . . . , gk] :
C(�) → Q defined by

(2.6) ω[g1, . . . , gk](f
′) =

∑

{f∈C(k) | f [g1,...,gk]=f ′}
ω(f) .

If ω satisfies (2.5), then so does ω[g1, . . . , gk]. If the result of a superposition is a
valid weighting (that is, negative weights are only assigned to projections), then that
superposition will be called a proper superposition.

3Equivalently, it is a set of relations containing the binary equality relation and closed under
conjunction and existential quantification.

2366 JOHAN THAPPER AND STANISLAV ŽIVNÝ

We remark that the superposition (of an operation with other operations) is also
known as composition. On the other hand, the superposition of a k-ary weighting
ω with k �-ary operations g1, . . . , gk can be seen as multiplying ω, seen as a (row)
vector, by a matrix with rows indexed by k-ary operations and columns indexed by �-
ary operations; given a row operation f and a column operation f ′, the corresponding
entry in the matrix is 1 if f [g1, . . . , gk] = f ′ and 0 otherwise. The result of this matrix
multiplication is a vector of weights assigned to �-ary operations.

Definition 2.18. A weighted clone, W , is a nonempty set of weightings of
some fixed clone C, called the support clone of W , which is closed under nonnegative
scaling, addition of weightings of equal arity, and proper superposition with operations
from C. We define supp(W) =

⋃
ω∈W supp(ω).

Example 2.19. Let C be a clone. We give examples of two weighted clones with
support clone C.

1. W0
C is the zero-valued weighted clone, that is, the weighted clone containing,

for each arity k, a weighting ωk ∈W0
C with ωk(f) = 0 for all f ∈ C(k).

2. WC is the weighted clone containing all possible weightings of C.
By Definition 2.19, weighted clones are closed under nonnegative scaling. Con-

sequently, by scaling by zero, any weighted clone W with support clone C contains
W0

C , which is the inclusionwise smallest weighted clone with support clone C. On the
other hand, WC is the inclusionwise largest weighted clone with support clone C.

Example 2.20. It is easy to show that supp(W) ∪ JD is a clone for any weighted
clone W defined on D [10]; see also [35, 47].

We now establish a correspondence between weightings and weighted relations,
which will allow us to link weighted clones and weighted relational clones.

Definition 2.21. Let φ be an m-ary weighted relation on D and let ω be a k-ary
weighting of a clone C of operations on D. We call ω a weighted polymorphism of
φ if C ⊆ Pol(φ) and for any x1,x2, . . . ,xk ∈ Dm with xi ∈ Feas(φ) for all 1 ≤ i ≤ k,
we have

(2.7)
∑

f∈C(k)

ω(f)φ(f(x1,x2, . . . ,xk)) ≤ 0 .

If ω is a weighted polymorphism of φ, we say that φ is improved by ω.
Example 2.22. Consider the class of submodular functions [37]. These are

precisely the functions φ defined on D = {0, 1} satisfying, for every x1 and x2,
φ(min(x1,x2))+φ(max(x1,x2))−φ(x1)−φ(x2) ≤ 0, where min and max are the two
binary operations that return the smaller and larger of its two arguments, respectively,
with respect to the usual order 0 < 1. In other words, the set of submodular functions
is the set of weighted relations with a binary weighted polymorphism ωsub defined by

the following: ωsub(f) = −1 if f ∈ {e(2)1 , e
(2)
2 }, ωsub(f) = +1 if f ∈ {min,max}, and

ωsub(f) = 0 otherwise.
Definition 2.23. For any Γ ⊆ ΦD, we define wPol(Γ) to be the set of all

weightings of Pol(Γ) which are weighted polymorphisms of all weighted relations φ ∈ Γ.
We write wPol(φ) for wPol({φ}).

Definition 2.24. We define WD to be the union of the sets WC over all clones
C on D.

Any W ⊆WD may contain weightings of different clones over D. We can then
extend each of these weightings with zeros, as necessary, so that they are weightings
of the same clone C, where C is the smallest clone containing all the clones associated
with weightings in W .

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2367

Table 1

Sharp ternary operations.

Input Mj S1 S2 S3 P1 P2 P3 Mn

(x,x,y) x x x y x y y y
(x,y,x) x x y x y x y y
(y,x,x) x y x x y y x y

Definition 2.25. We define wClone(W) to be the smallest weighted clone con-
taining this set of extended weightings obtained from W .

For any W ⊆WD, we denote by Imp(W) the set of all weighted relations in ΦD

which are improved by all weightings ω ∈ W .
Example 2.26. Every weighting in W0

JD
is a weighted polymorphism of any

possible weighted relation. Hence, Imp(W0
JD

) = ΦD.
The weighted relations that are improved by all weightings are precisely those

which take at most one value. Hence, Imp(WJD) = RD.
Definition 2.27. A weighted clone W is called tractable if Imp(W) is tractable,

and intractable if Imp(W) is intractable.
The main result in [10] establishes a one-to-one correspondence between weighted

relational clones and weighted clones.
Theorem 2.28 (see [10]).
1. For any finite D and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).
2. For any finite D and any finite W ⊆WD, wPol(Imp(W)) = wClone(W).

Thus, when trying to identify tractable valued constraint languages, it is sufficient
to consider only languages of the form Imp(W) for some weighted clone W .

Definition 2.29. A weighting is called positive if it assigns positive weight to
at least one operation that is not a projection.

Positive weightings are necessary for tractability: any tractable weighted clone W
contains a positive weighting [10, Corollary 7.4]. Consequently, throughout this paper
we will be only concerned with weighted clones that contain a positive weighting.

2.4. Properties of operations. We finish this section with a discussion of
certain types of operations. For any k ≥ 2, a k-ary operation f is called sharp if f
is not a projection, but the operation obtained by equating any two inputs in f is
a projection [15]. All sharp operations must satisfy the identity f(x, x, . . . , x) = x;
such operations are called idempotent. Ternary sharp operations may be classified
according to their labels on tuples of the form (x, x, y), (x, y, x) and (y, x, x), which
must be equal to either x or y. There are precisely eight possibilities, as listed in
Table 1.

The first column in Table 1 corresponds to operations that satisfy the identities
f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D; such operations are called ma-
jority operations. The last column in the table corresponds to operations that satisfy
the identities f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D; such operations
are called minority operations. Columns 5, 6, and 7 in Table 1 correspond to opera-
tions that satisfy the identities f(y, y, x) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D
(up to permutations of inputs); such operations are called Pixley operations [15]. For
any k ≥ 3, a k-ary operation f is called a semiprojection if it is not a projection,

but there is an index 1 ≤ i ≤ k such that f(x1, . . . , xk) = e
(k)
i for all x1, . . . , xk ∈ D

such that x1, . . . , xk are not pairwise distinct. In other words, a semiprojection is a
particular form of sharp operation where the operation obtained by equating any two

2368 JOHAN THAPPER AND STANISLAV ŽIVNÝ

inputs is always the same projection. Columns 2, 3, and 4 in Table 1 correspond to
semiprojections.

It turns out that the only sharp operations of arity k ≥ 4 are semiprojections.
In other words, given an operation of arity ≥ 4, if every operation arising from the
identification of two variables is a projection, then these projections coincide.

Lemma 2.30 (Świerczkowski’s lemma [41]). The only sharp operations of arity
k ≥ 4 are semiprojections.

We will need a technical lemma. But first we will introduce some notation. We
denote by Cyclk the set of k cyclic permutations on {1, . . . , k}. We denote by ◦
the composition of two permutations, that is, for any σ, π ∈ Cyclk, we have that
σ ◦ π ∈ Cyclk is defined by σ ◦ π(x) = σ(π(x)). For a k-ary operation f and a

permutation π ∈ Cyclk, we will denote by fπ the operation fπ = f [e
(k)
π(1), . . . , e

(k)
π(k)],

that is, fπ(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).
Lemma 2.31. Let W be a weighted clone and ω ∈ W a positive k-ary weighting.

Then there is a positive k-ary weighting μ ∈W with the following properties:
1. supp(μ) =

⋃
f∈supp(ω)

⋃
π∈Cyclk

fπ;

2. μ(e
(k)
i) = −1 for every 1 ≤ i ≤ k;

3. μ(f) = μ(fπ) for every f ∈ supp(μ) and π ∈ Cyclk.
Proof. Let

(2.8) ω′ =
∑

π∈Cyclk

ω[e
(k)
π(1), . . . , e

(k)
π(k)] .

Let f ∈ supp(ω) and π ∈ Cyclk. We have

ω′(f) =
∑

g∈supp(ω)

∑

σ ∈ Cyclk
gσ = f

ω(g) =
∑

g∈supp(ω)

∑

σ ◦ π ∈ Cyclk
gσ◦π = fπ

ω(g)(2.9)

=
∑

g∈supp(ω)

∑

σ′ ∈ Cyclk

gσ′
= fπ

ω(g) = ω′(fπ) .

Thus, ω′ satisfies the first and the third property of the lemma.

Since ω is positive, we have that
∑k

i=1 ω(e
(k)
i) < 0 and thus, by (2.9), we have

ω′(e(k)i) < 0 for every 1 ≤ i ≤ k. Let ω′(e(k)1) = w. By (2.9) again, ω′(e(k)i) = w for
every 1 ≤ i ≤ k. Thus, μ = 1

wω
′ satisfies all three properties of the lemma.

2.5. Cores. We show that with respect to tractability, the only interesting
weighted clones (and thus weighted relational clones) are those whose unary weight-
ings can assign positive weight only to very special operations.

The idea of cores and rigid cores originated in the algebraic approach to CSPs [7,
25] and has also proved useful in the complexity classification of finite-valued CSPs [23,
46].

Definition 2.32. A weighted clone W is a core if for every unary weighting
ω ∈W , every operation f ∈ supp(ω) is bijective. A valued constraint language Γ is a
core if W = wPol(Γ) is a core.

Theorem 2.33. Let Γ be a valued constraint language on D. If Γ is not a core,
then there is a core valued constraint language Γ′ on D′ ⊆ D such that Γ is tractable
if and only if Γ′ is tractable and Γ is intractable if and only if Γ′ is intractable.

Proof. Let ω ∈ wPol(Γ) be a positive unary weighting. By scaling by 1/|ω(e(1)1)|,
we have ω(e

(1)
1) = −1 and thus

∑
f∈supp(ω) ω(f) = 1. For any weighted relation φ ∈ Γ

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2369

of arity m and any m-tuple x ∈ Dm, we have (∗) φ(x) ≥ ∑
f∈supp(ω) ω(f)φ(f(x)).

Suppose that y is a minimal-cost assignment for φ, that is, φ(y) ≤ φ(x) for all x ∈ Dm.
Then for every f ∈ supp(ω), we have that f(y) is also a minimal-cost assignment.
Assume on the contrary that for some f ′ ∈ supp(ω), we have φ(f ′(y)) > φ(y); write
φ(f ′(y)) = φ(y)+ε, where ε > 0. Then we claim that there is an f ∈ supp(ω) such that
φ(f(y)) < φ(y), which contradicts the choice of y. To prove the claim, assume that
φ(f(y)) ≥ φ(y) for every f ∈ supp(ω)\{f ′}. Hence, we get∑f∈supp(ω) ω(f)φ(f(y)) =∑

f∈supp(ω)\{f ′} ω(f)φ(f(y)) + ω(f ′)φ(f ′(y)) ≥ (1 − ω(f ′)φ(y) + ω(f ′)(φ(y) + ε) =

φ(y) + ω(f ′)ε > φ(y), which contradicts (∗).
Consequently, given an instance I ∈ VCSP(Γ) and a solution s to I, we can take

any unary weighting ω ∈ wPol(Γ) and any unary operation f ∈ supp(ω) and get
another solution f(s) to I; the solution f(s) uses only labels from f(D). Consider a
unary nonbijective operation f ∈ supp(ω) with the minimum |f(D)| over all unary
weightings ω ∈ wPol(Γ). We denote by D′ = f(D) the range of f . We denote by Γ′

language containing the restriction of every φ ∈ Γ to D′.
Given any instance I ∈ VCSP(Γ), we can create, by replacing each weighted

relation φ in I by φ′, in polynomial time an instance I ′ ∈ VCSP(Γ′) with the following
properties: any solution to I ′ is also a solution to I, and for any solution s to I we have
that f(s) is a solution to I ′. If Γ′ is not a core, we can repeat the same construction
with Γ′.

Theorem 2.33 was independently obtained in [35], where it was also shown that,
with respect to tractability, it suffices to restrict to rigid cores.

Definition 2.34. A weighted clone W is a rigid core if the only unary operation

in the support clone of W is the unary projection e
(1)
1 . A valued constraint language Γ

is a rigid core if W = wPol(Γ) is a rigid core, that is, if the only unary polymorphism

of Γ is e
(1)
1 .

Theorem 2.35 (see [35]). Let Γ be a valued constraint language on D. If Γ is
not a rigid core, then there is a rigid core valued constraint language Γ′ on D′ ⊆ D
such that Γ is tractable if and only if Γ′ is tractable and Γ is intractable and only if
Γ′ is intractable.

It is not hard to show that a weighted clone W (a valued constraint language Γ)
is a rigid core if and only if all operations in the support clone of W (polymorphisms
of Γ, respectively) are idempotent.

3. Conditions for tractability. In this section, we will present our main re-
sults.

Creed and Živný obtained the following result on the structure of weighted clones
with a positive weighting [13, Theorem 2]; see also [10, Corollary 7.7].

Theorem 3.1 (see [13]). Any weighted clone W containing a positive weighting
contains a weighting whose support is either

1. a set of unary operations that are not projections; or
2. a set of binary idempotent operations that are not projections; or
3. a set of ternary operations that are majority operations, minority operations,

Pixley operations or semiprojections; or
4. a set of k-ary semiprojections (for some k > 3).

Since rigid cores require all unary weightings be zero-valued, case (1) of Theo-
rem 3.1 can be easily eliminated. Moreover, using Gordan’s theorem (a variant of
Farkas’ lemma) we will strengthen Theorem 3.1 by refining the ternary case, thus
obtaining the following result, which is the main result of this paper.

2370 JOHAN THAPPER AND STANISLAV ŽIVNÝ

Table 2

Definition of f from Example 3.4.

f 0 1 2 3
0 0 1 0 1
1 0 1 0 1
2 2 3 2 3
3 2 3 2 3

Theorem 3.2 (main). Any weighted clone W that is a rigid core and contains
a positive weighting also contains a weighting whose support is either

1. a set of binary idempotent operations that are not projections; or
2. a set of ternary operations that are either

(a) a set of majority operations; or
(b) a set of minority operations; or
(c) a set of majority operations with total weight 2 and a set of minority

operations with total weight 1; or
3. a set of k-ary semiprojections (for some k ≥ 3).

The proof of Theorem 3.2 can be found in section 4.
Note that compared to Theorem 3.1 the inequality in case (3) of Theorem 3.2 is

not strict, as it includes one of the ternary cases.
We remark that Theorem 3.2 holds for any weighted clone W with any support

clone C as long as W contains a positive weighting.
Theorem 3.2 tells us that (i) Pixley operations are not necessary for tractability,

(ii) semiprojections can be separated from the other types of ternary operations, and
(iii) there is only one possible interplay between majority and minority operations, as
described in case (2c) of Theorem 3.2.

We now focus on the weighted clones containing one of the weightings described
in Theorem 3.2.

Case (1) of Theorem 3.2. A weighting described in Theorem 3.2(1) can lead both
to tractable and intractable weighted clones, as the next two examples demonstrate,
but the precise boundary of tractability is currently unknown.

Example 3.3. A binary operation f : D2 → D is called conservative if f(x, y) ∈
{x, y} for all x, y ∈ D and commutative if f(x, y) = f(y, x) for all x, y ∈ D. Moreover,
f is called a tournament operation if f is both conservative and commutative. Let
W be a weighted clone such that supp(W) contains a tournament operation. Then,
by a recent result of the authors [47], W is tractable.

Example 3.4. Let D = {0, 1, 2, 3} and let f be a binary operation defined by
Table 2. Note that f is an idempotent operation but not a projection. In fact, f is
an example of a rectangular band [36], which is an idempotent and associative binary
operation f : D2 → D satisfying f(x, f(y, z)) = f(x, z) for all x, y, z ∈ D. Let W be

the weighted clone generated by the weighting ω defined by ω(e
(2)
1) = ω(e

(2)
2) = −1

and ω(f) = +2. It is known that W is intractable [26, 38].
Case (2a) of Theorem 3.2. A weighting as described in Theorem 3.2(2a) implies

tractable weighted clones, as we will now show.
A weighted relational clone that contains only relations (and thus is a relational

clone) is called crisp. A weighted clone W is called crisp if Imp(W) is a crisp weighted
relational clone.

Proposition 3.5. Let W be a weighted clone with a positive ternary weighting
ω ∈ W such that all operations f ∈ supp(ω) are majority operations. Then W is
crisp.

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2371

In order to prove Proposition 3.5, we prove a more general result. A k-ary op-
eration f : Dk → D, where k ≥ 3, is called a near-unanimity operation if for all
x, y ∈ D,

(3.1) f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = · · · = f(x, x, . . . , x, y) = x .

Note that a ternary near-unanimity operation is a majority operation.
Proposition 3.6. Let W be a weighted clone with a positive weighting ω ∈ W

such that all operations f ∈ supp(ω) are near-unanimity operations. Then W is
crisp.

Proof. Let ω be k-ary. Note that if f is a k-ary near-unanimity operation, then
so is the ternary operation g defined by g(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) for any
permutation π on {1, . . . , k}. Thus, by Lemma 2.31, we can assume that ω assigns
weight −1 to each of the k projections (and still every f ∈ supp(ω) is a near-unanimity
operation).

Let φ ∈ Imp(W) be an m-ary weighted relation and let x,y ∈ Dm be such that
x,y ∈ Feas(φ). Since ω ∈ wPol(φ), we have, by (2.7) with x1 = y and xi = x for all
2 ≤ i ≤ k, and by (3.1), −φ(y) − (k − 1)φ(x) + kφ(x) ≤ 0, which gives φ(x) ≤ φ(y).
By swapping x and y in (2.7), we get −φ(x) − (k − 1)φ(y) + kφ(y) ≤ 0, which gives
φ(y) ≤ φ(x). Together, φ(x) = φ(y) for all x,y ∈ Feas(φ).

Since crisp weighted relational clones with a near-unanimity polymorphism are
tractable [26], we get the following.

Corollary 3.7. A weighted clone containing a positive weighting ω with all
operations in supp(ω) being near-unanimity operations is tractable.

Case (2b) of Theorem 3.2. A weighting as described in Theorem 3.2(2b) also
implies tractable weighted clones, as we will now show.

Proposition 3.8. Let W be a weighted clone with a positive ternary weighting
ω ∈ W such that all operations f ∈ supp(ω) are minority operations. Then W is
crisp.

Proof. Note that if f is a minority operation, then so is g defined by g(x1, x2, x3) =
f(xπ(1), xπ(2), xπ(3)) for any permutation π on {1, 2, 3}. Thus, by Lemma 2.31, we
can assume that ω assigns weight −1 to each of the three projections (and still every
f ∈ supp(ω) is a minority operation).

Let φ ∈ Imp(W) be an m-ary weighted relation and let x,y ∈ Dm be such that
x,y ∈ Feas(φ). Since ω ∈ wPol(φ), we have, by (2.7) with x1 = x and x2 = x3 = y,
−φ(x)− 2φ(y) + 3φ(x) ≤ 0, which gives φ(x) ≤ φ(y). By swapping x and y in (2.7),
we get −φ(y) − 2φ(x) + 3φ(y) ≤ 0, which gives φ(y) ≤ φ(x). Together, φ(x) = φ(y)
for all x,y ∈ Feas(φ).

Since crisp weighted relational clones with a minority polymorphism are known
to be tractable [26], we get the following.

Corollary 3.9. A weighted clone containing a positive weighting ω with all
operations in supp(ω) being minority operations is tractable.

Case (2c) of Theorem 3.2. In a recent paper, the authors have shown [47] that
any weighting described in Theorem 3.2(2c) implies tractability. This is a corollary
of the following result.

Theorem 3.10 (see [47]). Let W be a weighted clone. If there is a weighting
ω ∈W such that supp(ω) contains a majority operation, then W is tractable.

Previously, only a special type of the weightings described in Theorem 3.2(2c) has
been known to imply tractability.

Example 3.11. A k-ary weighting ω is a multimorphism if ω(f) ∈ N for all

f ∈ supp(ω) and ω(e
(k)
i) = −1 for all 1 ≤ i ≤ k [12]. It has been shown that if a

2372 JOHAN THAPPER AND STANISLAV ŽIVNÝ

weighted clone W contains a weighting ω described in Theorem 3.2 (2c) such that ω
is a multimorphism, then W is tractable [34].

Case (3) of Theorem 3.2. We now show that the weightings described in Theo-
rem 3.2 (3) alone are not sufficient for tractability. As in case (1), the precise boundary
of tractability is currently unknown.

Example 3.12. Let D be a fixed set with |D| > 2. Fix two distinct labels from
D, say, 0, 1 ∈ D. Let φ be the following ternary weighted relation: φ(x, y, z) = ∞
if {x, y, z} = {0}, or {x, y, z} = {1}, or {x, y, z} �= {0, 1}; and φ(x, y, z) = 0 oth-
erwise. The weighted relation φ corresponds to the Not-All-Equal Satisfiabil-

ity problem [19], which is NP-hard [40]. It is easy to show that every semiprojec-
tion on D is a polymorphism of φ. Take a k-ary semiprojection f for some k ≥ 3
and x1, . . . ,xk ∈ Feas(φ). From the definition of φ, we have xi ∈ {0, 1}3 for every
1 ≤ i ≤ k. Since there are at most two distinct labels in each coordinate, f(x1, . . . ,xk)
reduces to a projection (from the definition of semiprojections) and thus f is a poly-
morphism of φ as f(x1, . . . ,xk) = xi for some 1 ≤ i ≤ k.

Let C be the clone of operations on D generated by all semiprojections on D. Let
W = WC be the weighted clone containing all possible weightings of C. In particular,
W contains all possible weightings whose support contains only semiprojections. Since
C ⊆ Pol(φ) and φ is a relation, we have that φ ∈ Imp(W). Consequently, W is
intractable.

Finite-valued weighted clones. Recall that valued constraint languages capture
both decision and optimization problems. Clones, which capture crisp valued con-
straint languages and thus purely decision problems, have been studied extensively
in universal algebra [22, 42]. We now focus on an important special type of weighted
clones that correspond to valued constraint languages that capture purely optimiza-
tion problems. Such valued constraint languages are called finite-valued, as they only
contain finite-valued weighted relations.

Weighted clones corresponding to finite-valued constraint languages (together
with the binary equality relation φ=) are those with support clone OD. To see this, we
denote, for a clone C, by Inv(C) the relational clone that consists of relations R with
f ∈ Pol(R) for every f ∈ C. Then, it is well known that Inv(OD) = RelClone({φ=})
and observe that Feas(Imp(W)) ⊆ Inv(OD) for any weighted clone W with support
clone OD.4

However, as we have limited our scope to rigid cores (which, by Theorem 2.35,
does not change tractability), we will define a weighted clone W to be finite-valued if
its support clone is equal to ID, the clone of all idempotent operations on D.

Definition 3.13. A weighted clone W on D is called finite-valued if the support
clone of W is ID.

For any d ∈ D, the unary constant relation φd is defined by φd(x) = 0 if x = d
and φd(x) = ∞ otherwise. Let R = RelClone({φ=} ∪ ∪d∈D{φd}). It is known that
Inv(ID) = R [7].

The weighted relational clones corresponding to finite-valued weighted clones are
those that are subsets of the weighted relational clone generated byR and finite-valued
weighted relations.

4More generally, we have Feas(Imp(W)) = Inv(C) for any nonempty weighted clone W with
support clone C. On the one hand, if φ ∈ Imp(W), then, by Definition 2.21, C ⊆ Pol(φ), which
implies Feas(φ) ∈ Inv(Pol(φ)) ⊆ Inv(C). On the other hand, if R ∈ Inv(C) then C ⊆ Pol(R). Since
R satisfies (2.7), we have R ∈ Imp(W).

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2373

We already know that weighted clones containing any of the weightings described
in Theorem 3.2(2a–c) are tractable. In fact, in the finite-valued case, the correspond-
ing weighted relational clones are rather trivial, as we will now show.

Let W be a finite-valued weighted clone on D. Then for any weighted relation
φ ∈ Imp(W), we have Feas(φ) ∈ R.

If W contains a weighting described in Theorem 3.2(2a), then, by Proposition 3.5,
Imp(W) is crisp and thus every φ ∈ Imp(W) can be written as the addition of a
rational constant to a weighted relation in R. Hence, Imp(W) is tractable. Similarly,
if W contains a weighting described in Theorem 3.2(2b), then, by Proposition 3.8,
Imp(W) is crisp and thus every φ ∈ Imp(W) can be written as the addition of a
rational constant to a weighted relation in R. Hence, Imp(W) is tractable.

The next result shows that a weighting described in Theorem 3.2(2c) also suffices
for tractability in the finite-valued case.

Proposition 3.14. Let W be a finite-valued weighted clone. If W contains
a positive weighting described in Theorem 3.2(2c), then every weighted relation φ ∈
Imp(W) can be expressed as a sum of unary weighted relations and the binary equality
relation φ=.

Proof. By Lemma 2.31, we can assume the weighting assigns weight −1 to each
of the three projections and still is as described in Theorem 3.2(2c).

An m-ary relation R on D is called trivial if R = Dm. First, we show than any
relation R ∈ R can be expressed as a sum of unary relations, trivial relations, and
φ=. The claim holds true for the generators of R, that is, for φ= and φd for all d ∈ D.
Next, if R = R1 ∧ R2 and the claim holds true for both R1 and R2, then it also
holds true for R. Finally, let R = ∃xR′ and assume that R′ satisfies the claim. If
x appears in some φ= in R′, say, φ=(x, x

′), then we can replace all occurrences of
x by x′. Otherwise, x appears only in constant and trivial relations in R′. If the
conjunction of the unary relations that x appears in is empty, then the claim holds
trivially. Otherwise, we can replace x by any other variable.

Consequently, for any φ ∈ Imp(W), Feas(φ) can be written as a sum of unary
relations, trivial relations, and φ=. Observe that any φ with Feas(φ) = φ= can be
written as a sum of φ= and the unary weighted relation φ′(x) = φ(x, x). Thus, it
remains to show that any φ ∈ Imp(W) with Feas(φ) being a trivial relation can be
written as a sum of unary weighted relations.

For any m-tuple x ∈ Dm, we will write x[i ← d] to denote the tuple with d ∈ D
substituted at position i. In other words, x[i← d] is the m-tuple identical to x except
(possibly) at position i, where it is equal to d.

We will use [12, Lemma 6.23], which says that a weighted relation φ : Dm → Q

can be expressed as a sum of unary weighted relations if and only if, for all x,y ∈ Dm

and all 1 ≤ i ≤ m, we have

(3.2) φ(x) + φ(y) = φ(x[i← y[i]]) + φ(y[i← x[i]]) .

Take any x,y ∈ Dm and 1 ≤ i ≤ m. Let a = x[i] and b = y[i]. Now consider the
tuples x, x[i ← b], and y[i ← a]. By applying the weighting from the statement of
the proposition as in (2.7), we get φ(x) + φ(x[i ← b]) + φ(y[i ← a]) ≥ 2φ(x) + φ(y)
and thus φ(x[i ← b]) + φ(y[i ← a]) ≥ φ(x) + φ(y). Now consider the tuples x, y,
and y[i ← a]. By applying the weighting from the statement of the proposition as
in (2.7), we get φ(x) + φ(y) + φ(y[i ← a]) ≥ 2φ(y[i ← a]) + φ(x[i ← b]) and thus
φ(x) + φ(y) ≥ φ(y[i ← a]) + φ(x[i← b]).

Corollary 3.15. A finite-valued weighted clone containing a positive weighting
ω described in Theorem 3.2(2c) is tractable.

2374 JOHAN THAPPER AND STANISLAV ŽIVNÝ

Table 3

Definition of ω.

f {0,1} {0,2} {1,2} ω(f)

f1 e
(2)
1 e

(2)
1 e

(2)
1 −0.5

f2 e
(2)
2 e

(2)
2 e

(2)
2 −0.5

f3 e
(2)
1 min e

(2)
1 0.5

f4 e
(2)
2 min e

(2)
2 0.5

Table 4

Definition of φ.

φ 0 1 2
0 1 0 1
1 0 1 1
2 1 1 1

The only remaining finite-valued weighted clones contain a weighting that is ei-
ther as described in Theorem 3.2(1) or as described in Theorem 3.2(3). We have
seen an example of a (tractable) weighted clone with a weighting as described in
Theorem 3.2(1) in Example 3.3.

We now give an example of an intractable finite-valued weighted clone with a
weighting as described in Theorem 3.2(1). (We note that the intractability of the
weighted clone W from Example 3.4, which contains a weighting as described in The-
orem 3.2(1), relies on the fact that W is not finite-valued and thus is not immediately
applicable here.)

Example 3.16. Let D = {0, 1, 2}. Recall from Example 3.3 that a binary op-
eration f : D2 → D is conservative if f(x, y) ∈ {x, y} for all x, y ∈ D. For any
conservative binary operation f : D2 → D and any 2-element subdomain {a, b} ⊆ D,

the restriction f |{a,b} of f onto {a, b} behaves either as e(2)1 , e
(2)
2 , min, or max, where

min and max are the two operations that return the smaller (larger) of its two argu-
ments with respect to the usual order 0 < 1 < 2, respectively. Consider the operations
in Table 3 described by their behavior on the various 2-element subdomains.

Note that f1 = e
(2)
1 and f2 = e

(2)
2 . The weighting ω is defined by the last column

of Table 3. Note that ω is not commutative. It can be checked that ω is a weighted
polymorphism of the finite-valued weighted relation φ : {0, 1, 2} → Q defined in
Table 4.

Now since argminφ = {(0, 1), (1, 0)}, we have that φ satisfies the (MC) condi-
tion [46] and thus can be used to reduce from Max-Cut [12]. Thus, W = wClone({ω})
is intractable.

Thus, weightings described in Theorem 3.2(1) can lead to both tractable and in-
tractable finite-valued weighted clones. The authors have recently shown that with re-
spect to tractability of finite-valued constraint languages, the necessary and sufficient
condition is having a binary weighting ω that assigns positive weight to idempotent
commutative operations only; that is, for every f ∈ supp(ω) we have f(x, y) = f(y, x)
for all x, y ∈ D [46].5 However, the precise interplay of case (1) and case (3) of
Theorem 3.2 is currently unknown.

5The result from [46] extends from finite-valued constraint languages to finite-valued weighted
relational clones, as adding the binary equality relation and unary constant relations does not affect
tractability in the presence of a binary commutative weighted polymorphism.

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2375

Minimal weighted clones. Any weighted relational clone Γ ⊆ ΦD satisfying
wRelClone(Γ) = ΦD is NP-hard. A weighted relational clone on D is called max-
imal if it is as large as possible but wRelClone(Γ) �= ΦD.6

Definition 3.17. A weighted relational clone Γ ⊆ ΦD is called maximal if
wRelClone(Γ) �= ΦD but for any φ �∈ Γ we have wRelClone(Γ ∪ {φ}) = ΦD.

It follows that a valued constraint language Γ is maximal if and only if the
weighted relational clone wRelClone(Γ) is maximal.

As a special case of Definition 3.17, we get that a relational clone Γ is maximal if
Γ �= RD but for any R ∈ RD we have RelClone(Γ ∪ {R}) = RD.

A weighted clone is called minimal if it is not zero-valued but the only weighted
clone properly included in it is the zero-valued weighted clone.

Definition 3.18. A weighted clone W with support clone C is called minimal if
W �= W0

C and every positive weighting ω ∈W satisfies wClone(ω) = W .
Maximal weighted relational clones correspond, via the Galois correspondence

given in Theorem 2.28, to minimal weighted clones.
We will be interested in maximal tractable weighted relational clones and thus

minimal tractable weighted clones. Maximal crisp weighted relational clones have
been classified with respect to tractability in [5, 9]. We now show that that there are
no tractable maximal noncrisp weighted relational clones.

Theorem 3.19. All maximal non-crisp weighted relational clones are intractable.
Proof. If Γ contains all finite-valued weighted relations, then it is intractable.

Otherwise, there is a finite-valued weighted relation φ �∈ Γ. Since φ is finite-valued,
we have Feas(Γ) = Feas(wRelClone(Γ ∪ {φ})). But then either Feas(Γ) = RD, in
which case Γ is intractable, or Feas(Γ) = Feas(wRelClone(Γ ∪ {φ})) �= RD, in which
case Γ is not maximal.

4. Proof of Theorem 3.2. In this section, we will prove the following theorem,
which is our main result.

Theorem 3.2 (restated). Any weighted clone W that is a rigid core and contains
a positive weighting also contains a weighting whose support is either

1. a set of binary idempotent operations that are not projections; or
2. a set of ternary operations that are either

(a) a set of majority operations; or
(b) a set of minority operations; or
(c) a set of majority operations with total weight 2 and a set of minority

operations with total weight 1; or
3. a set of k-ary semiprojections (for some k ≥ 3).

We will use the following variant of Farkas’s lemma.
Theorem 4.1 (Gordan). Let A ∈ Qn×m be a matrix. Either Ax = 0, where

x ∈ Qm with x ≥ 0 and x �= 0, or ∃y ∈ Qn with yᵀA > 0.
By Definition 2.18, only proper superpositions are allowed within a weighted clone.

However, the following result from [10] shows that any weighted sum of arbitrary
superpositions of a pair of weightings ω1 and ω2 can be obtained by taking a weighted
sum of superpositions of ω1 and ω2 with projection operations and then taking a
superposition of the result. Given that superpositions with projections are always
proper [10], this result implies that any weighting which can be expressed as a weighted

6A (tractable) valued constraint language Γ is called maximal in [12] if for any φ �∈ Γ, Γ ∪ {φ}
is intractable. We require wRelClone(Γ ∪ {φ}) = ΦD , which implies the intractability of Γ ∪ {φ},
thus borrowing the concept of maximality from [4, 5, 9, 27] and extending it from relational clones
to weighted relational clones.

2376 JOHAN THAPPER AND STANISLAV ŽIVNÝ

Table 1 (restated)

Sharp ternary operations.

Input Mj S1 S2 S3 P1 P2 P3 Mn
(x,x,y) x x x y x y y y
(x,y,x) x x y x y x y y
(y,x,x) x y x x y y x y

Table 5

Types of ternary sharp operations superposed with cyclic permutations of projections

Permutation Mj S1 S2 S3 P1 P2 P3 Mn

e
(3)
1 , e

(3)
2 , e

(3)
3 Mj S1 S2 S3 P1 P2 P3 Mn

e
(3)
2 , e

(3)
3 , e

(3)
1 Mj S2 S3 S1 P3 P1 P2 Mn

e
(3)
3 , e

(3)
1 , e

(3)
2 Mj S3 S1 S2 P2 P3 P1 Mn

sum of arbitrary (i.e., possibly improper) superpositions can also be expressed as a
superposition of a weighted sum of proper superpositions.

Lemma 4.2 (see [10, Lemma 6.4]). Let C be a clone, and let ω1 and ω2 be
weightings of C, of arity k and �, respectively. For any g1, . . . , gk ∈ C(m) and any
g′1, . . . , g′� ∈ C(m),

c1 ω1[g1, . . . , gk] + c2 ω2[g
′
1, . . . , g

′
�] = ω[g1, . . . , gk, g

′
1, . . . , g

′
�] ,

where ω = c1 ω1[e
(k+�)
1 , . . . , e

(k+�)
k] + c2 ω2[e

(k+�)
k+1 , . . . , e

(k+�)
k+�].

Before proving Theorem 3.2, we introduce the following useful notion. For the
reader’s convenience, we repeat here Table 1 from section 2. We call (ternary) op-
erations corresponding to columns 5, 6, and 7 in Table 1 Pixley operations of type
1, 2, and 3, respectively, and will denote by P1 (P2 and P3) the Pixley operations
of type 1 (2 and 3, respectively). We call (ternary) semiprojections corresponding to
columns 2, 3, and 4 in Table 1 semiprojections of type 1, 2, and 3, respectively, and
will denote by S1 (S2 and S3) the semiprojections of type 1 (2 and 3, respectively).
More generally, a k-ary semiprojection f is called of type 1 ≤ i ≤ k if equating any

two inputs of f results in e
(k)
i .

For any Pixley operation f of type i ∈ {1, 2, 3}, we can obtain, by (cyclically)
permuting the arguments of f , Pixley operations of the other two types. For instance,

if f ∈ P1, then we have g ∈ P2 and h ∈ P3, where g(x, y, z) = f [e
(3)
3 , e

(3)
1 , e

(3)
2] =

f(z, x, y) and h(x, y, z) = f [e
(3)
2 , e

(3)
3 , e

(3)
1] = f(y, z, x). Two Pixley operations f and

g of different types are called related if there is a permutation π ∈ Cycl3 such that
f = gπ. (Note that the requirement of f and g being of different types excludes
the identity permutation (1, 2, 3) and there are only other two permutations in Cycl3,
namely, (2, 3, 1) and (3, 1, 2).)

Similarly, two semiprojections f and g of different types are called related if there
is a permutation π ∈ Cycl3 such that f = gπ.

The following table, which can be verified using the definitions above, will be
useful in the proof of Theorem 3.2. It lists the types of ternary sharp operations
obtained by superposing a ternary sharp operation of an arbitrary type (columns in
Table 5) with any of the three cyclic permutations of the three ternary projections
(rows in Table 5).

Note that taking a semiprojection f of type i and a Pixley operation g of type i,
fπ and gπ can be of different types, e.g., if f is a semiprojection of type 1 and g is

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2377

a Pixley operation of type 1 and π = (2, 3, 1), then fπ is a semiprojection of type 2
and gπ is a Pixley operation of type 3.

Proof of Theorem 3.2. It suffices to consider the ternary case as the rest of the
theorem follows from (the proof of) Theorem 3.1 and the fact that W is a rigid core,
which eliminates the first case of Theorem 3.1.

Let W be a weighted clone containing a ternary positive weighting ω such that
every f ∈ supp(ω) is sharp. (If some f ∈ supp(ω) were not sharp, then we could show,
as in the proof of Theorem 3.1, that the case (1) holds.) We denote by C the support
clone of W . We assume that none of the cases (2a), (2b), (2c), (3) (with k = 3) of
the theorem apply, as we would be done in any of these cases.

By Lemma 2.31, we can assume that ω assigns weight −1 to each of the three
ternary projections and thus

(4.1)
∑

f∈supp(ω)

ω(f) = 3 .

Let Pi ⊆ C be the Pixley operations of type i ∈ {1, 2, 3} from C. Since C is a
clone, we have

(4.2) |P1| = |P2| = |P3| .

By Lemma 2.31, we have for any three related Pixley operations p1 ∈ P1, p2 ∈ P2,
and p3 ∈ P3,

(4.3) ω(p1) = ω(p2) = ω(p3)

and

(4.4)
∑

p∈P1

ω(p) =
∑

p∈P2

ω(p) =
∑

p∈P3

ω(p) .

We set P = P1 ∪ P2 ∪ P3 to be the set of all Pixley operations from C and
w(P) =

∑
p∈P ω(p).

By Lemma 2.31, the same holds for the three types of ternary semiprojections.
In particular, we denote by Si ⊆ C the operations from C that are semiprojections of
type i ∈ {1, 2, 3}. Since C is a clone, we have

(4.5) |S1| = |S2| = |S3| .

For any three related semiprojections s1 ∈ S1, s2 ∈ S2, and s3 ∈ S3,

(4.6) ω(s1) = ω(s2) = ω(s3)

and

(4.7)
∑

s∈S1

ω(s) =
∑

s∈S2

ω(s) =
∑

s∈S3

ω(s) .

We set S = S1 ∪ S2 ∪ S3 to be the set of all semiprojections from C and w(S) =∑
s∈S ω(s).

To simplify the presentation, we use the same notation for weightings, index sets,
etc., in the following three steps since the steps are similar (but independent). Thus,

2378 JOHAN THAPPER AND STANISLAV ŽIVNÝ

for example, when one reads J in Step II, it refers to J defined in Step II and not in
Step I.

Step I: Eliminating Pixley operations. We now show how to eliminate Pixley
operations if needed, that is, assume w(P) > 0 and thus some operations from P are
assigned positive weight.

First assume that ω assigns positive weight to only Pixley operations, that is,
supp(ω) ⊆ P . Hence, w(P) = 3. Take arbitrary p1, p

′
1 ∈ P1, p2, p

′
2 ∈ P2, and

p3, p
′
3 ∈ P3. The following claims can be verified from the definitions: p1[e

(3)
1 , e

(3)
2 , p′1] is

a majority operation, p2[e
(3)
1 , e

(3)
2 , p′1] = e

(3)
1 , and p3[e

(3)
1 , e

(3)
2 , p′1] = e

(3)
2 . Consequently,

ω[e
(3)
1 , e

(3)
2 , p′1] assigns weight −1 to p′1, +1 to majority operations, and 0 otherwise.

Similarly, ω[e
(3)
1 , p′2, e

(3)
3] assigns weight −1 to p′2, +1 to majority operations, and 0

otherwise. Finally, ω[p′3, e
(3)
2 , e

(3)
3] assigns weight −1 to p′3, +1 to majority operations,

and 0 otherwise. Overall, the weighting

(4.8) μ = ω+
∑

p∈P1

ω(p)ω[e
(3)
1 , e

(3)
2 , p]+

∑

p∈P2

ω(p)ω[e
(3)
1 , p, e

(3)
3]+

∑

p∈P3

ω(p)ω[p, e
(3)
2 , e

(3)
3]

assigns weight −1 to each of the three ternary projections and weight 3 to majority
operations. By Lemma 4.2, the intermediate superpositions in (4.8) can be improper
as long as the resulting weighting μ is indeed a weighting. Thus, μ ∈ W and case (2a)
of the theorem holds.

Assume that supp(ω) �⊆ P , that is, ω assigns positive weight not only to Pixley
operations. Let J = {(p1, p2, p3) ∈ P1 × P2 × P3 | p1, p2, p3 are related} and J̄ =

{(e(3)1 , e
(3)
2 , e

(3)
3)} ∪ J .

We consider the following linear system: for all Pixley operations p ∈ P ,

(4.9)
∑

(f,g,h)∈J̄

xf,g,hω[f, g, h](p) = 0 .

By Gordan’s theorem, (4.9) has a nonzero nonnegative solution if and only if the
following system of strict inequalities is unsatisfiable: for all (f, g, h) ∈ J̄ ,

(4.10)
∑

p∈P

ypω[f, g, h](p) > 0 .

Consider the case (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3). Then ω[f, g, h] = ω and thus

ω[f, g, h](p) = ω(p) > 0 for all p ∈ supp(ω) ∩ P , by the definition of P . Moreover,
by (4.4)

(4.11)
∑

p∈P

ypω(p) =
∑

p1∈P1

(yp1 + yp2 + yp3)ω(p1) ,

where we denoted (with a slight abuse of notation) by p2 and p3 the related operations
of p1.

For (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3) the left-hand side of (4.10) is equal to (4.11). Thus,

for (4.10) to hold in this case we must have at least one triple of related operations
(p1, p2, p3) ∈ J with yp1 + yp2 + yp3 > 0.

Suppose that (p1, p2, p3) ∈ J is chosen to maximize yp1 + yp2 + yp3 . The left-hand
side of (4.10) when (f, g, h) = (p1, p2, p3) is equal to

(4.12) −yp1 − yp2 − yp3 +
∑

s∈S

ys[p1,p2,p3]ω(s) ,

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2379

since o[p1, p2, p3] is equal to a Pixley operation only when o is one of the three projec-
tions, which give the first three terms in (4.12), or a semiprojection, which gives the
last term of (4.12), the sum over S.

We have

∑

s∈S

ys[p1,p2,p3]ω(s) =
∑

s1∈S1

ys1[p1,p2,p3]ω(s1) +
∑

s2∈S2

ys2[p1,p2,p3]ω(s2)

+
∑

s3∈S3

ys3[p1,p2,p3]ω(s3)

=
∑

(s1,s2,s3)∈S1×S2×S3

s1,s2,s3 related

(ys1[p1,p2,p3] + ys2[p1,p2,p3] + ys3[p1,p2,p3])ω(s1)

≤ ω(S)

3
(yp1 + yp2 + yp3),

(4.13)

where the first equality follows from the definition of S; the second equality follows
from fact that s[p1, p2, p3] is a Pixley operation of type i given s is a semiprojection
of type i, where i ∈ {1, 2, 3}, and hence (s1[p1, p2, p3], s2[p1, p2, p3], s3[p1, p2, p3]) is a
triple of related Pixley operations given that (s1, s2, s3) is a triple of related semipro-
jections; and the last inequality follows from the definition of w(S) and the choice of
(p1, p2, p3).

Combining (4.12) and (4.13), we have
(4.14)

−yp1−yp2−yp3+
∑

s∈S

ys[p1,p2,p3]ω(s) ≤ −yp1−yp2−yp3+
w(S)

3
(yp1 +yp2 +yp3) < 0 ,

where the last strict inequality follows from w(S) < 3 since w(P) > 0 and (4.1).
Hence, (4.10) is unsatisfiable and, by Gordan’s theorem, (4.9) must have a nonzero

nonnegative solution x∗. We finish Step I by using x∗ to prove the existence of a
weighting in W that assigns zero weight to all Pixley operations.

Let

(4.15) μ′ =
∑

(f,g,h)∈J̄

x∗
f,g,hω[f, g, h]

be a weighted sum of superpositions of ω.
By the choice of x∗, μ′ assigns zero weight to all Pixley operations. From the

definition of J̄ ,

(4.16) μ′ = x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

ω[e
(3)
1 , e

(3)
2 , e

(3)
3] +

∑

(f,g,h)∈J

x∗
f,g,hω[f, g, h] .

We know that x∗ is nonzero and nonnegative. Note that x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and

x∗
f,g,h = 0 for all (f, g, h) ∈ J would contradict that μ′ assigns zero weight to all

Pixley operations.
Let (f, g, h) ∈ J and i ∈ {1, 2, 3}. Then o[f, g, h] is a Pixley operation of type i if

o is a semiprojection of type i, o[f, g, h] is a semiprojection of type i if o is a Pixley
operation of type i, o[f, g, h] is a majority operation if o is a minority operation,
and finally o[f, g, h] is a minority operation if o is a majority operation. It follows

2380 JOHAN THAPPER AND STANISLAV ŽIVNÝ

that x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

= 0 would contradict that μ′ assigns zero weight all Pixley operations

since Pixley operations of type i would be assigned negative weight since w(S)−3 < 0
as w(P) > 0. Thus x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗
f,g,h > 0 for at least one (f, g, h) ∈

J . Consequently, μ′ is a nonzero weighting that assigns zero weight to all Pixley
operations. By Lemma 4.2, μ′ ∈ W .

Step II: Eliminating semiprojections. We now show how to eliminate semiprojec-
tions if needed. If μ′ obtained in Step I assigns positive weight to only semiprojections,
then we are in case (3) (with k = 3) of the theorem. Thus, assume that μ′ assigns
positive weight to semiprojections and at least one majority or minority operation.

By Lemma 2.31, we can assume the existence of a ternary weighting ω ∈W which
assigns weight −1 to all three projections (and thus assigns total positive weight 3).
We will use the same notation for S, S1, S2, and S3 as before, although noting that
the weighting ω is now different from the one we had before and throughout Step I.
We have w(S) < 3, and (4.6), (4.5), (4.7) still hold for ω.

We again use Gordan’s theorem to show that there exists a nonzero ternary weight-
ing in W that assigns positive weight to majority and minority operations only.

Let J = {(s1, s2, s3) ∈ S1 × S2 × S3 | s1, s2, s3 are related}. Moreover, let J̄ =

{(e(3)1 , e
(3)
2 , e

(3)
3)} ∪ J .

We consider the following linear system: for all semiprojections s ∈ S,

(4.17)
∑

(f,g,h)∈J̄

xf,g,hω[f, g, h](s) = 0 .

By Gordan’s theorem, (4.17) has a nonzero nonnegative solution if and only if
the following system of strict inequalities is unsatisfiable: for all (f, g, h) ∈ J̄ ,

(4.18)
∑

s∈S

ysω[f, g, h](s) > 0 .

As in Step I, we can argue that (4.18) is unsatisfiable. Consider the case (f, g, h) =

(e
(3)
1 , e

(3)
2 , e

(3)
3). Then ω[f, g, h] = ω and thus ω[f, g, h](s) = ω(s) > 0 for all s ∈

supp(ω) ∩ S, by the definition of S. Moreover, by (4.7)

(4.19)
∑

s∈S

ω(s)ys =
∑

s1∈S1

(ys1 + ys2 + ys3)ω(s1) ,

where we denoted by s2 and s3 the related operations of s1.

Therefore, for (4.18) to hold when (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3), we must have at

least one triple of related semiprojections (s1, s2, s3) ∈ J with ys1 + ys2 + ys3 > 0.
Suppose that (s1, s2, s3) ∈ J is chosen to maximize ys1 + ys2 + ys3 . The left-hand

side of (4.18) when (f, g, h) = (s1, s2, s3) is equal to

(4.20) −ys1 − ys2 − ys3 +
∑

s∈S

ys[s1,s2,s3]ω(s) ,

since o[s1, s2, s3] is equal to a semiprojection only when o is one of the three projections,
which give the first three terms in (4.20), or a semiprojection, which gives the last
term of (4.20), the sum over S.

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2381

We have

∑

s∈S

ys[s1,s2,s3]ω(s) =
∑

s1∈S1

ys1[s1,s2,s3]ω(s1) +
∑

s2∈S2

ys2[s1,s2,s3]ω(s2)

+
∑

s3∈S3

ys3[s1,s2,s3]ω(s3)

=
∑

(s1,s2,s3)∈S1×S2×S3

s1,s2,s3related

(ys1[s1,s2,s3] + ys2[s1,s2,s3] + ys3[s1,s2,s3])ω(s1)

≤ ω(S)

3
(ys1 + ys2 + ys3),

(4.21)

where the first equality follows from the definition of S; the second equality follows
from fact that s[s1, s2, s3] is a semiprojection of type i given s is a semiprojection of
type i, where i ∈ {1, 2, 3}, and hence (s1[s1, s2, s3], s2[s1, s2, s3], s3[s1, s2, s3]) is a triple
of related semiprojections given that (s1, s2, s3) is a triple of related semiprojections;
and the last inequality follows from the definition of w(S) and the choice of (s1, s2, s3).

Combining (4.20) and (4.21), we have
(4.22)

−ys1−ys2−ys3 +
∑

s∈S

ys[s1,s2,s3]ω(s) ≤ −ys1−ys2−ys3 +
w(S)

3
(ys1 +ys2 +ys3) < 0 ,

where the last strict inequality follows from w(S) < 3.
Hence, (4.18) is unsatisfiable and, by Gordan’s theorem, (4.17) must have a

nonzero nonnegative solution x∗. We finish Step II by using x∗ to prove the exis-
tence of a weighting in W that assigns zero weight to all semiprojections.

Let

(4.23) μ =
∑

(f,g,h)∈J

ω[f, g, h]x∗
f,g,h

be a weighted sum of superpositions of ω. By the choice of x∗, μ assigns zero weight
to all semiprojections.

From the definition of J̄ ,

(4.24) μ = x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

ω[e
(3)
1 , e

(3)
2 , e

(3)
3] +

∑

(f,g,h)∈J

x∗
f,g,hω[f, g, h] .

We know that x∗ is nonzero and nonnegative. Note that x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and

x∗
f,g,h = 0 for all (f, g, h) ∈ J would contradict that μ′ assigns zero weight to all

semiprojections.
Let (s1, s2, s3) ∈ J and i ∈ {1, 2, 3}. Then o[s1, s2, s3] is a semiprojection of

type i if o is a semiprojection of type i, o[s1, s2, s3] is a majority operation if o is a
majority operation, and finally o[s1, s2, s3] is a minority operation if o is a minority
operation. (Note that we do not need to consider the case when f is a Pixley opera-
tion, as ω assigns zero weight to all Pixley operations.) It follows that x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

= 0

would contradict that μ assigns zero weight to all semiprojections since semiprojec-
tions of type i would be assigned negative weight since w(S) − 3 < 0, as ω assigns
positive weight to some majority or minority (or possibly both) operations. Thus,

2382 JOHAN THAPPER AND STANISLAV ŽIVNÝ

x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗
f,g,h for at least one (f, g, h) ∈ J . Consequently, μ is a nonzero

weighting that assigns zero weight to all semiprojections. By Lemma 4.2, μ ∈W .
Step III: Majority and minority operations. In Steps I and II, we have shown that

any weighted clone W with a positive ternary weighting contains a ternary weighting
that assigns nonzero weight to semiprojections alone (case (3) of the theorem with
k = 3), or a mix of majority and minority operations. Finally, we will show that if W
contains a weighting ω that assigns weight to majority and minority operations alone,
then W also contains a weighting of one of the three types described in cases (2a), (2b),
and (2c) of the theorem.

LetM1 andM2 denote the sets of majority and minority operations in the support
of ω. Suppose that ω assigns total weight 2 + a to M1 and total weight 1 − a to M2

for some a > 0. For each f ∈M2, we define μf = ω[e
(3)
1 , e

(3)
1 , f], so μf assigns weight

a to e
(3)
1 and weight −a to f . Note that μf is not a proper weighting, since a > 0.

We obtain a weighting μ ∈ W which assigns positive weight to majority operations
only as follows:

(4.25) μ = ω +
∑

f∈M2

ω(f)

a
μf .

Similarly, suppose that ω assigns total weight 2− a to M1 and total weight 1+ a

to M2 for some a > 0. For each f ∈ M1, we define μf = ω[e
(3)
1 , f, f], so μf assigns

weight a to e
(3)
1 and weight −a to f . We obtain a weighting μ ∈ W which assigns

positive weight to minority operations only as follows:

(4.26) μ = ω +
∑

f∈M1

ω(f)

a
μf .

In both cases, μ ∈ W by Lemma 4.2.

5. Conclusions. We have presented new results on the structure of weighted
clones that delimit the possibilities for tractable valued constraint languages. In or-
der to establish our results, we have presented a novel technique for ruling out certain
types of operations from the support of a given weighting. The method considers cer-
tain extreme cases of the dual of the linear program that demonstrates the existence
of a weighted sum of superpositions that assigns zero weight to the forbidden opera-
tions. We believe that our results and techniques will prove useful in further studies
of the structure of weighted clones. However, understanding the structure of weighted
clones appears a difficult problem in general. For instance, while the computational
complexity of finite-valued constraint languages is well understood [46], the structure
of the corresponding weighted clones is not, as discussed in section 3.

In recent work on the tractability of valued constraint languages, it has been
shown that a necessary condition for tractability is the existence of a cyclic weighted
polymorphism [35].7 Moreover, it has been also shown that, under the assumption of
the dichotomy conjecture of Feder and Vardi for the decision problem, this condition
is also sufficient [32].

Acknowledgment. The authors are grateful to Páid́ı Creed and Peter Fulla for
valuable discussions.

7A k-ary operation if cyclic if f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1) for every x1, . . . , xk. A
weighting ω is cyclic if every operation f ∈ supp(ω) is cyclic.

CONDITIONS FOR TRACTABILITY OF VALUED CSPs 2383

REFERENCES

[1] K. Apt, Principles of Constraint Programming, Cambridge University Press, Cambridge, 2003.
[2] L. Barto and M. Kozik, Constraint satisfaction problems solvable by local consistency meth-

ods, J. ACM, 61 (2014).
[3] L. Barto, M. Kozik, and T. Niven, The CSP dichotomy holds for digraphs with no sources

and no sinks (a positive answer to a conjecture of Bang–Jensen and Hell), SIAM J. Com-
put., 38 (2009), pp. 1782–1802.

[4] M. Bodirsky, H. Chen, J. Kára, and T. von Oertzen, Maximal infinite-valued constraint
languages, Theoret. Comput. Sci., 410 (2009), pp. 1684–1693.

[5] A. Bulatov, A graph of a relational structure and constraint satisfaction problems, in Pro-
ceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS’04), IEEE
Computer Society, 2004, pp. 448–457.

[6] A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set, J.
ACM, 53 (2006), pp. 66–120.

[7] A. Bulatov, A. Krokhin, and P. Jeavons, Classifying the complexity of constraints using
finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742.

[8] A. A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM Trans. Com-
put. Log., 12 (2011).

[9] A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons, The complexity of maximal con-
straint languages, in Proceedings of the 33rd ACM Symposium on Theory of Computing
(STOC’01), 2001, pp. 667–674.

[10] D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, and S. Živný, An algebraic theory of
complexity for discrete optimisation, SIAM J. Comput., 42 (2013), pp. 915–1939.

[11] D. A. Cohen, M. C. Cooper, P. Jeavons, and S. Živný, Dualisation via binarisation for
valued constraints, in Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), AAAI Press, Palo Alto, CA, 2015.

[12] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin, The complexity of soft
constraint satisfaction, Artificial Intelligence, 170 (2006), pp. 983–1016.

[13] P. Creed and S. Živný, On minimal weighted clones, in Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming (CP’11), Lecture Notes
in Comput. Sci. 6876, Springer, New York, 2011, pp. 210–224.

[14] N. Creignou, S. Khanna, and M. Sudan, Complexity Classification of Boolean Constraint
Satisfaction Problems, SIAM Monogr. Discrete Math. Appl. 7, SIAM, Philadelphia, 2001.

[15] B. Csákány, Minimal clones—a minicourse, Algebra Universalis, 54 (2005), pp. 73–89.
[16] R. Dechter, Constraint Processing, Morgan Kaufmann, Burlington, MA, 2003.
[17] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer

Science, Chapman and Hall/CRC Press, Boca Raton, FL, 2002.
[18] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and

constraint satisfaction: A study through datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco, 1979.

[20] P. Hell and J. Nešetřil, On the Complexity of H-coloring, J. Combin. Theory Ser. B, 48
(1990), pp. 92–110.

[21] P. Hell and J. Nešetřil, Colouring, constraint satisfaction, and complexity, Comput. Sci.
Rev., 2 (2008), pp. 143–163.

[22] D. Hobby and R. N. McKenzie, The Structure of Finite Algebras, Contemp. Math. 76, AMS,
Providence, RI, 1988.

[23] A. Huber, A. Krokhin, and R. Powell, Skew bisubmodularity and valued CSPs, SIAM J.
Comput., 43 (2014), pp. 1064–1084.

[24] P. Jeavons, A. Krokhin, and S. Živný, The complexity of valued constraint satisfaction, Bull.
Eur. Assoc. Theor. Comput. Sci. EATCS, 113 (2014), pp. 21–55.

[25] P. G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204.

[26] P. G. Jeavons, D. A. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM,
44 (1997), pp. 527–548.

[27] P. Jonsson, F. Kuivinen, and G. Nordh, MAX ONES generalized to larger domains, SIAM
J. Comput., 38 (2008), pp. 329–365.

[28] P. Jonsson and G. Nordh, Introduction to the maximum solution Problem, in Complexity of
Constraints, Lecture Notes in Comput. Sci. 5250, Springer, New York, 2008, pp. 255–282.

2384 JOHAN THAPPER AND STANISLAV ŽIVNÝ

[29] P. Jonsson, G. Nordh, and J. Thapper, The maximum solution problem on graphs, in
Proceedings of the 32nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS’07), Lecture Notes in Comput. Sci. 4708, Springer, New York, 2007,
pp. 228–239.

[30] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson, The approximability of constraint
satisfaction problems, SIAM J. Comput., 30 (2001), pp. 1863–1920.

[31] V. Kolmogorov, The power of linear programming for finite-valued CSPs: A constructive
characterization, in Proceedings of the 40th International Colloquium on Automata, Lan-
guages and Programming (ICALP’13), Lecture Notes in Comput. Sci. 7965, Springer, New
York, 2013, pp. 625–636.

[32] V. Kolmogorov, A. A. Krokhin, and M. Roĺınek, The Complexity of General-Valued CSPs,
Technical report, 2015, arXiv:1502.07327.

[33] V. Kolmogorov, J. Thapper, and S. Živný, The power of linear programming for general-
valued CSPs, SIAM J. Comput., 44 (2015), pp. 1–36.

[34] V. Kolmogorov and S. Živný, The complexity of conservative valued CSPs, J. ACM, 60
(2013).

[35] M. Kozik and J. Ochremiak, Algebraic properties of valued constraint satisfaction problem,
in Proceedings of the 42nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP’15), Lecture Notes in Comput. Sci. 9134, Springer, Berlin, 2015.

[36] R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, Lattices and Varieties, Vol. I,
Wadsworth and Brooks, Monterey, CA, 1987.

[37] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley
& Sons, New York, 1988.

[38] J. K. Pearson and P. G. Jeavons, A Survey of Tractable Constraint Satisfaction Problems,
Technical report CSD-TR-97-15, Royal Holloway, University of London, Surrey, UK, 1997.

[39] R. Powell and A. A. Krokhin, A Reduction from Valued CSP to Min Cost Homomorphism
Problem for Digraphs, Technical report, arXiv:1507.01776, 2015.

[40] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual
ACM Symposium on Theory of Computing (STOC’78), ACM, New York, 1978, pp. 216–
226.

[41] S. Świerczkowski, Algebras which are independently generated by every n elements, Fund.
Math., 49 (1960), pp. 93–104.

[42] A. Szendrei, Clones in Universal Algebra, Sem. Math. Super., University of Montreal, Mon-
treal, 1986.

[43] R. Takhanov, A dichotomy theorem for the general minimum cost homomorphism problem,
in Proceedings of the 27th International Symposium on Theoretical Aspects of Computer
Science (STACS’10), 2010, pp. 657–668.

[44] R. Takhanov, Extensions of the minimum cost homomorphism problem, in Proceedings of
the 16th International Computing and Combinatorics Conference (COCOON’10), Lecture
Notes in Comput. Sci. 6196, Springer, New York, 2010, pp. 328–337.

[45] J. Thapper and S. Živný, The power of linear programming for valued CSPs, in Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12),
IEEE, New York, 2012, pp. 669–678.

[46] J. Thapper and S. Živný, The complexity of finite-valued CSPs, in Proceedings of the 45th
ACM Symposium on the Theory of Computing (STOC’13), ACM, New York, 2013, pp. 695–
704.

[47] J. Thapper and S. Živný, Sherali–Adams relaxations for valued CSPs, in Proceedings of the
42nd International Colloquium on Automata, Languages and Programming (ICALP’15),
Lecture Notes in Comput. Sci. 9134, Springer, New York, 2015, pp. 1058–1069.

[48] H. Uppman, The complexity of three-element min-sol and conservative min-cost-hom, in Pro-
ceedings of the 40th International Colloquium on Automata, Languages, and Programming
(ICALP’13), Lecture Notes in Comput. Sci. 7965, Springer, New York, 2013, pp. 804–815.

[49] H. Uppman, Computational complexity of the extended minimum cost homomorphism prob-
lem on three-element domains, in Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS’14), Vol. 25, 2014, pp. 651–662.

[50] S. Živný, The Complexity of Valued Constraint Satisfaction Problems, Cogn. Technol.,
Springer, New York, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

