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JOHAN THAPPER, Université Paris-Est Marne-la-Vallée, France
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1. INTRODUCTION
In this paper we study the following problem: what classes of discrete extensionally-
represented functions can be minimised exactly in polynomial time? Such problems
can be readily described as (finite-)valued constraint satisfaction problems. We provide
a complete answer to this question for rational-valued functions defined on arbitrary
finite domains.

The constraint satisfaction problem, or CSP for short, provides a common framework
for many theoretical and practical problems in computer science. Problems that can be
cast in the CSP framework have been studied in several contexts of computer science
including artificial intelligence [Dechter 2003], database theory [Kolaitis and Vardi
2000], and graph theory [Hell and Nešetřil 2004; 2008]. A CSP instance can informally
be described as a set of variables to be assigned values from the domains of the variables
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so that all constraints are satisfied [Montanari 1974]. The CSP is NP-complete in
general and thus we are interested in restrictions which give rise to tractable classes of
problems. Following [Feder and Vardi 1998], we restrict the constraint language, that is,
all constraint relations in a given instance must belong to a fixed, finite set of relations
on the domain. The most successful approach to classifying language-restricted CSPs is
the so-called algebraic approach [Jeavons et al. 1997; Jeavons 1998; Bulatov et al. 2005],
which has led to several complexity classifications [Bulatov 2006; 2011; Barto et al.
2009; Barto 2011] and algorithmic characterisations [Barto and Kozik 2014; Idziak
et al. 2010; Berman et al. 2010] going beyond the seminal work of Schaefer on Boolean
CSPs [Schaefer 1978].

Several natural optimisation variants of CSPs have been studied in the literature
such as Max-CSP, where the goal is to maximise the number of satisfied constraints
(or, equivalently, minimise the number of unsatisfied constraints) [Cohen et al. 2005;
Creignou et al. 2001; Jonsson et al. 2006; Jonsson et al. 2011; Deineko et al. 2008], and
Max-Ones [Creignou et al. 2001; Jonsson et al. 2008] and Min-Cost-Hom [Takhanov
2010a; 2010b; Uppman 2013; 2014], where all constraints have to be satisfied and
some additional function of the assignment is optimised. The most general variant
is the valued constraint satisfaction problem, or VCSP for short, which deals with
both feasibility and optimisation [Cohen et al. 2006a; Živný 2012]. A valued constraint
language Γ is a set of functions on a fixed domain and a VCSP instance over Γ is given
by a sum of functions from Γ with the goal to minimise the sum. The VCSP framework
is very robust and has also been studied under different names such as Min-Sum
problems, Gibbs energy minimisation, Markov Random Fields, Conditional Random
Fields and others in different contexts in computer science [Lauritzen 1996; Wainwright
and Jordan 2008; Crama and Hammer 2011]. The VCSP in its full generality considers
functions with the range being the rationals with positive infinity [Cohen et al. 2006a];
this includes both CSPs (feasibility) and Max-CSPs (optimisation) as special cases
where the range of the functions is {0,∞} and {0, 1}, respectively. In this work we will
focus on finite-valued VCSPs, that is, the range of the functions is the set of rationals.
Finite-valued CSPs capture optimisation problems. (Finite-valued CSPs are called
generalised CSPs in the approximation community [Raghavendra 2008].)

Given the generality of the VCSP, it is not surprising that only few complexity classi-
fications are known. In the general-valued case (that is, when the range of the functions
is the rationals with positive infinity), only constraint languages on a two-element
domain [Cohen et al. 2006a; Creed and Živný 2011] and conservative (containing all
{0, 1}-valued unary functions) constraint languages [Kolmogorov and Živný 2013] have
been completely classified with respect to exact solvability. In the finite-valued case,
constraint languages on two-element domains [Cohen et al. 2006a], three-element
domains [Huber et al. 2014], and conservative constraint languages [Kolmogorov
and Živný 2013] have been completely classified with respect to exact solvability.
In the special case of {0, 1}-valued constraint languages, which correspond to Max-
CSPs, constraint languages on two-element domains [Creignou 1995], three-element
domains [Jonsson et al. 2006], four-element domains [Jonsson et al. 2011], and con-
servative (containing all {0, 1}-valued unary functions) constraint languages [Deineko
et al. 2008] have been classified with respect to exact solvability. Generalising the
algebraic approach to CSPs [Bulatov et al. 2005], algebraic properties called multi-
morphisms [Cohen et al. 2006a], fractional polymorphisms [Cohen et al. 2006b], and
weighted polymorphisms [Cohen et al. 2013] have been invented for the study of the
computational complexity of classes of VCSPs.
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1.1. Contribution
We study the computational complexity of finite-valued constraint languages on arbi-
trary finite domains. We characterise all tractable finite-valued constraint languages
as those admitting a binary symmetric fractional polymorphism. Tractability follows
from the results in [Thapper and Živný 2012; Kolmogorov 2013] (see also [Kolmogorov
et al. 2015], which is an extended version of [Thapper and Živný 2012] and [Kolmogorov
2013]) that show that all instances over such constraint languages are solvable by
the basic linear programming relaxation (BLP). In the other direction, we show that
instances over constraint languages not admitting such a fractional polymorphism are
NP-hard by a reduction from Max-Cut [Garey and Johnson 1979].

THEOREM 1.1. Let D be an arbitrary finite set and let Γ be a finite-valued constraint
language defined on D. VCSP(Γ) is tractable if, and only if, the BLP solves VCSP(Γ).
Otherwise, VCSP(Γ) is NP-hard.

An explicit hardness condition is given in Theorem 3.4.
Our results generalise all previous partial classifications of finite-valued constraint

languages: the classifications of {0, 1}-valued constraint languages on two-element,
three-element, and four-element domains obtained in [Creignou 1995; Creignou et al.
2001], [Jonsson et al. 2006], and [Jonsson et al. 2011], respectively; the classification of
{0, 1}-valued constraint languages containing all unary functions obtained in [Deineko
et al. 2008]; the classifications of finite-valued constraint languages on two-element
and three-element domains obtained in [Cohen et al. 2006a] and [Huber et al. 2014],
respectively; the classification of finite-valued constraint languages containing all {0, 1}-
valued unary functions obtained in [Kolmogorov and Živný 2013]; and the classification
of Min-0-Ext problems obtained in [Hirai 2015].

Our results demonstrate that (i) a binary symmetric fractional polymorphism is
sufficient for characterising tractability, and (ii) only cores and constants are required
for the hardness condition (details are explained in Section 2). This is in contrast
with ordinary CSPs (that is, the decision problems), where the hardness condition also
requires an equivalence relation and the conjectured tractable cases are characterised
by polymorphisms of arity higher than two [Bulatov et al. 2005].

Another problem tackled here is referred to, in [Creignou et al. 2001], as the meta
problem: given a finite-valued constraint language Γ, decide whether it gives rise to a
tractable class VCSP(Γ). We show that the meta problem is solvable in polynomial time
when the constraint language Γ is assumed to be a core. However, we also show that
deciding whether Γ is a core is co-NP-complete and that deciding whether a given Γ′ is
a core of Γ is DP-complete. In particular, all considered meta problems are decidable.

A finite-valued constraint language Γ is called tractable if every finite subset Γ′ ⊆ Γ
gives rise to a tractable class VCSP(Γ′). However, in principle, the algorithms solving
VCSP(Γ′) for different finite subsets of Γ could be quite different. If there exists a
uniform polynomial-time algorithm for VCSP(Γ) then we say that Γ is globally tractable.
In the case of ordinary CSPs (that is, decision problems), in all known cases every
tractable constraint language is also globally tractable. Our results show that this
holds in general for finite-valued constraint languages: all tractable infinite constraint
languages are globally tractable, using the BLP relaxation, and all other constraint
languages are NP-hard. We therefore derive a dichotomy result also for infinite finite-
valued constraint languages.

The proof of our main result is a combination of various techniques. We elaborate on
a slightly different, but equivalent, notion of core for finite-valued constraint languages
from that used in [Huber et al. 2014]. We introduce the idea of studying expressible
unary functions by encoding them in hyperplane arrangements. We also use the idea

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: May 2014.



1:4 J. Thapper and S. Živný

introduced in [Kolmogorov 2013] of working with generalised fractional polymorphisms
but derive the necessary technical machinery using a Markov chain argument. This
also provides natural way to derive the main result from [Kolmogorov 2013] which says
that having a binary symmetric fractional polymorphism implies having symmetric
fractional polymorphisms of all arities.

Since the announcement of our results in the conference version of this article [Thap-
per and Živný 2013], the techniques presented here have proved essential in recent
complexity classifications of Min-Sol problems and Min-Cost-Hom problems, which are
special cases of VCSPs [Uppman 2013; 2014].

1.2. Related work
Apart from language-based restrictions on (V)CSPs, also structure-based restric-
tions [Grohe 2007; Marx 2013; Gottlob et al. 2009; Färnqvist 2012] and hybrid restric-
tions [Cooper and Živný 2011; 2012] have been studied. Not only exact solvability, but
also approximability of Max-CSPs and VCSPs has attracted a lot of attention [Creignou
et al. 2001; Khanna et al. 2001; Håstad 2001; 2008; Guruswami and Raghavendra
2008; Jonsson et al. 2009]. Moreover, the robust approximability of Max-CSPs has
also been studied [Kun et al. 2012; Barto and Kozik 2012; Dalmau and Krokhin 2013].
Under the assumption of the unique games conjecture [Khot 2010], Raghavendra has
shown that the basic semidefinite programming (SDP) relaxation solves all tractable
finite-valued CSPs (without a characterisation of the tractable cases) [Raghavendra
2008]. Moreover, Chapters 6 and 7 of [Raghavendra 2009] imply that if a finite-valued
constraint language Γ admits a cyclic fractional polymorphism of some arity k ≥ 2 then
the basic SDP relaxation solves any VCSP instance over Γ. Our results show, assuming
P 6= NP, that for exact solvability the BLP relaxation suffices.

2. PRELIMINARIES
We use the following notation: any name with a bar denotes a tuple. We denote by xi
the ith component of a tuple x̄. Superscripts are used for collections of tuples; e.g., we
write xji for the ith component of the jth tuple x̄j .

2.1. Valued CSPs
Let D be a finite set called the domain. We denote by Q>0, Q≥0, and Q, respectively, the
set of positive rational numbers, nonnegative rational numbers, and rational numbers.
A (cost) function is any function f : Dm → Q, where m = ar(f) is the arity of f . A valued
constraint language Γ is a set of cost functions. Unless specifically said otherwise, we
assume that all constraint languages under consideration are finite. Valued constraint
languages consisting of Q-valued cost functions that do not take on infinite costs are
called finite-valued constraint languages in the literature and this is the term we used
in the abstract and introduction. Since we exclusively study finite-valued constraint
languages, for simplicity we omit the words “valued” and “finite-valued” and in the rest
of the paper we say simply “constraint language”.

Definition 2.1. An instance I of the valued constraint satisfaction problem, or VCSP
for short, is given by the set V = {x1, . . . , xn} of variables and the objective function
fI(x1, . . . , xn) =

∑q
i=1 wi · fi(x̄i) where, for every 1 ≤ i ≤ q, fi : Dar(fi) → Q, x̄i ∈ V ar(fi),

and wi ∈ Q≥0 is a weight. The functions fi are extensionally represented, i.e., given
by a table of costs for all possible |D|ar(fi) assignments. A solution to I is a function
h : V → D, its measure given by

∑q
i=1 wi · fi(h(x̄i)), where h is applied componentwise.

The goal is to find a solution of minimum measure.
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We denote by VCSP(Γ) the class of all instances in which all functions are from Γ. The
minimum measure of a solution to an instance I ∈ VCSP(Γ) is denoted by OptΓ(I). A
constraint language Γ is called tractable if, for any finite Γ′ ⊆ Γ, VCSP(Γ′) is tractable,
that is, a solution of measure OptΓ(I) can be found for any instance I ∈ VCSP(Γ′) in
polynomial time; Γ is called NP-hard if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ.
Moreover, Γ is called globally tractable if there is a uniform algorithm for VCSP(Γ).

2.2. Expressive power
Definition 2.2. For a constraint language Γ, we let 〈Γ〉 be the set of all func-

tions f(x1, . . . , xm) such that for some instance I ∈ VCSP(Γ) with objective function
fI(x1, . . . , xm, xm+1, . . . , xn), we have

f(x1, . . . , xm) = min
xm+1,...,xn

fI(x1, . . . , xm, xm+1, . . . , xn) .

We then say that Γ expresses f and call 〈Γ〉 the expressive power of Γ.

In other words, 〈Γ〉 is the closure of Γ under addition, multiplication by nonnegative
constants, and minimisation over extra variables. For two functions f and f ′, we write
f ≡ f ′ if f = a · f ′ + b for some a ∈ Q>0 and b ∈ Q, i.e., if f can be obtained from f ′ by
scaling and translation. For a constraint language Γ, let Γ≡ = {f | f ≡ f ′ for some f ′ ∈
Γ}. It has been shown that with respect to exact solvability, we only need to consider
constraint languages closed under expressibility, scaling, and translation:

THEOREM 2.3 ([COHEN ET AL. 2006A]). Let Γ be a constraint language and Γ′ a
finite set such that Γ′ ⊆ 〈Γ〉≡. Then VCSP(Γ′) polynomial-time reduces to VCSP(Γ).

We define the following condition:

There exist distinct a, b ∈ D such that 〈Γ〉 contains a binary function f with argmin f =
{(a, b), (b, a)}. (MC)

A slightly different condition1 was formulated in [Huber et al. 2014]:

There exist distinct a, b ∈ D such that 〈Γ〉 contains a unary function u with argminu =
{a, b} and a binary function f with f(a, b) = f(b, a) < f(a, a) = f(b, b). (MC′)

Observe that (MC′) implies (MC). In fact, we will now prove that the two conditions are
equivalent.

LEMMA 2.4. For any constraint language Γ, (MC) holds if, and only, if (MC ′) holds.

PROOF. We need to prove that (MC) implies (MC′). Let Γ be a constraint language
with a function f ∈ 〈Γ〉 such that argmin f = {(a, b), (b, a)}. Note that u(x) = miny f(x, y)
is a unary function with argminu = {a, b}. If f(a, a) = f(b, b), then u and f satisfy (MC′).
Otherwise, assume without loss of generality that f(a, b) = f(b, a) = 0, f(x, y) ≥ 1 for
{x, y} 6= {a, b}, and that f(a, a) < f(b, b). Let K = maxx f(a, a) − f(x, x), and define
u′(x) = minyK · u(y) + f(y, y) + f(x, y). Note that u(x) = 0 for x = a, b and u(x) ≥ 1
otherwise. Also note that miny f(y, y) = f(a, a)−K. The three arguments in the following
min-expressions correspond to the cases y 6∈ {a, b}, y = a, and y = b, respectively.

u′(x) ≥ min{K + (f(a, a)−K) + 1, 0 + f(a, a) + 1, 0 + f(b, b) + 1} > f(a, a) (x 6= a, b)

u′(a) ≥ min{K + (f(a, a)−K) + 1, 0 + f(a, a) + f(a, a), 0 + f(b, b) + 0} > f(a, a)

u′(b) ≤ K · f(a, b) + f(a, a) + f(b, a) = f(a, a)

1Condition (MC′) was called (MC) in [Huber et al. 2014].
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Thus argminu′ = {b}.
Now, let δ = f(b, b)− f(a, a) > 0 and define

f ′(x, y) = f(x, y) +
δ

2

u′(x) + u′(y)

u′(a)− u′(b)
.

We now verify that f ′(a, b) = f ′(b, a) < f ′(a, a) = f ′(b, b):

f ′(a, a)− f ′(a, b) = f(a, a) +
δ

2

u′(a) + u′(a)

u′(a)− u′(b)
− f(a, b)− δ

2

u′(a) + u′(b)

u′(a)− u′(b)

= f(a, a) + (f(b, b)− f(a, a))
1

2

u′(a)− u′(b)
u′(a)− u′(b)

=
1

2
(f(a, a) + f(b, b)) > 0,

f ′(a, a)− f ′(b, b) = f(a, a) +
δ

2

u′(a) + u′(a)

u′(a)− u′(b)
− f(b, b)− δ

2

u′(b) + u′(b)

u′(a)− u′(b)

= f(a, a)− f(b, b) + (f(b, b)− f(a, a))
u′(a)− u′(b)
u′(a)− u′(b)

= 0,

f ′(a, b)− f ′(b, a) = f(a, b) +
δ

2

u′(a) + u′(b)

u′(a)− u′(b)
− f(b, a)− δ

2

u′(b) + u′(a)

u′(a)− u′(b)
= 0.

It follows that u and f ′ satisfy (MC′).

It is known that condition (MC′) and thus, by Lemma 2.4, condition (MC) implies
intractability (via a reduction from Max-Cut [Garey and Johnson 1979]):

LEMMA 2.5 ([COHEN ET AL. 2006A]). If a constraint language Γ satisfies condition
(MC) then Γ is NP-hard.

2.3. Fractional polymorphisms
For a cost function f and ā1, . . . , ām ∈ Dar(f), let fm(ā1, . . . , ām) := 1

m (f(ā1)+· · ·+f(ām)).
An m-ary operation on D is a function g : Dm → D. Let O(m)

D denote the set of all m-ary
operations on D. An m-ary fractional operation is a function ω : O(m)

D → Q≥0 such that
‖ω‖1 = 1, where ‖ω‖1 :=

∑
g ω(g).2 The set {g | ω(g) > 0} of operations is called the

support of ω and is denoted by supp(ω). For an operation g, we denote by χg the fractional
operation that takes the value 1 on the operation g and 0 on all other operations.

A fractional operation ω is called an m-ary fractional polymorphism [Cohen et al.
2006b] of f if, for all ā1, . . . , ām ∈ Dar(f), it holds that∑

g∈O(m)
D

ω(g)f(g(ā1, . . . , ām)) ≤ fm(ā1, . . . , ām), (1)

where the operations g are applied componentwise. If ω is a fractional polymorphism of
f then we say that ω improves f and that f admits the fractional polymorphism ω.

If ω is a fractional polymorphism of every cost function in a constraint language Γ,
then ω is called a fractional polymorphism of Γ, and we say that Γ admits the fractional
polymorphism ω.

2In [Thapper and Živný 2013], fractional operations were defined without the requirement ‖ω‖1 = 1 which
was instead added to the definition of fractional polymorphisms. The present definition better matches the
semantics of the qualifier “fractional”.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: May 2014.



The complexity of finite-valued CSPs 1:7

It is known and easy to show that expressibility preserves fractional polymorphisms:
if ω is a fractional polymorphism of Γ then ω is also a fractional polymorphism of
〈Γ〉 [Cohen et al. 2006b].

An operation g is idempotent if g(x, . . . , x) = x. Let Sm be the symmetric group on
{1, . . . ,m}. An m-ary operation g is symmetric if, for every permutation π ∈ Sm, we have
g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)). An m-ary operation g is cyclic if g(x1, x2, . . . , xm) =
g(x2, . . . , xm, x1) for all x1, . . . , xm ∈ D. Note that in the case of m = 2, an operation
is symmetric if, and only if, it is cyclic. A fractional operation is called idempotent,
symmetric, or cyclic if all operations in its support are idempotent, symmetric, or cyclic,
respectively.

A mapping of arity m → k on D is a function g : Dm → Dk. Let O(m→k)
D denote the

set of all mappings of arity m → k on D. A fractional mapping (of arity m → k) is a
function ρ : O(m→k)

D → Q≥0 such that ‖ρ‖1 = 1, where ‖ρ‖1 :=
∑

g ρ(g). A fractional
mapping ρ is called a generalised fractional polymorphism (of arity m→ k) of f if, for
all ā1, . . . , ām ∈ Dar(f), it holds that∑

g∈O(m→k)
D

ρ(g)fk(g(ā1, . . . , ām)) ≤ fm(ā1, . . . , ām). (2)

As for ordinary fractional polymorphisms, we say that ρ is a generalised fractional
polymorphism of a constraint language Γ if ρ is a generalised fractional polymorphism
of every cost function from Γ and say that Γ admits ρ.

The definitions of the fractional mapping χg, given a mapping g, and of the support
supp(ρ) of a fractional mapping ρ are analogous to those for fractional operations.

A mapping g of arity m→ k is symmetric if, for every permutation π ∈ Sm, we have
g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)), and a fractional mapping is called symmetric if all
mappings in its support are symmetric.

Note that a fractional polymorphism of arity m is the same as a generalised fractional
polymorphism of arity m → 1. In fact a fractional mapping of arity m → k is just a
tuple of k fractional operations of arity m → 1; however, this viewpoint, introduced
in [Kolmogorov 2013], turns out to be very useful. For brevity, we will often omit the
word “generalised” when no ambiguity can arise.

2.4. Cores
Let S ⊆ D. The sub-language Γ[S] of Γ induced by S is the constraint language defined
on domain S and containing the restriction of every function f ∈ Γ onto S.

Definition 2.6. A constraint language Γ is a core if for every unary fractional poly-
morphism ω of Γ, supp(ω) contains only injective operations. A constraint language Γ′ is
a core of Γ if Γ′ is a core and Γ′ = Γ[g(D)] for some g ∈ supp(ω) with ω a unary fractional
polymorphism of Γ.

The following lemma implies that we may always assume that Γ is a core constraint
language. It is an immediate consequence of Lemma 2.9 below.

LEMMA 2.7. If Γ′ is a core of Γ then OptΓ(I) = OptΓ′(I ′) for all instances I ∈
VCSP(Γ), where I ′ is obtained from I by substituting each function in Γ for its restriction
in Γ′.

We will need the following variation of Motzkin’s transposition theorem.

LEMMA 2.8. For any A ∈ Qm×n, B ∈ Qp×n, exactly one of the following holds:

—Ay > 0, By ≥ 0, for some y ∈ Qn≥0; or
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—A>z1 +B>z2 ≤ 0, for some 0 6= z1 ∈ Qm≥0, z2 ∈ Qp≥0.

PROOF. The following variation of Motzkin’s transposition theorem is from [Schrijver
1986, Corollary 7.1k] with b = c = 0 and the matrices multiplied by −1: For any
A′ ∈ Qm

′×n′
, B′ ∈ Qp

′×n′
, exactly one of the following holds:

(1) A′y′ > 0, B′y′ ≥ 0, for some y′ ∈ Qn
′
; or

(2) A′>z′1 +B′>z′2 = 0, for some 0 6= z′1 ∈ Qm
′

≥0, z
′
2 ∈ Qp

′

≥0.

Given A and B as in the statement of the lemma, set n′ = n, m′ = m, p′ = p + n,

A′ = A and B′ =

(
B
In×n

)
, where In×n ∈ Qn×n is the identity matrix.

Firstly, observe that (1), i.e., the existence of some y′ ∈ Qn
′

satisfying A′y > 0 and
B′y ≥ 0, is equivalent to the first case of the lemma, i.e., the existence of some y ∈ Qn≥0

satisfying Ay > 0 and By ≥ 0. Secondly, observe that (2), i.e., the existence of some
0 6= z′1 ∈ Qm

′

≥0, z
′
2 ∈ Qp

′

≥0 satisfying A′>z′1 +B′>z′2 = 0, is equivalent to the second case of
the lemma, i.e., the existence of some 0 6= z1 ∈ Qm≥0, z2 ∈ Qp≥0 satisfying A>z1 +B>z2 ≤ 0.
To see this, note that the last n coordinates of z′2 can be independently chosen, and
therefore set to satisfy A′>z′1+B′>z′2 = 0 as long as A>z1+B>z2 ≤ 0. This shows that (2)
is implied by the second case of the lemma, and the other direction holds trivially.

LEMMA 2.9. For a constraint language Γ, and a unary operation g ∈ O(1)
D , the

following are equivalent:

(1) Γ admits a unary fractional polymorphism ω with g ∈ supp(ω).
(2) For all instances I of VCSP(Γ) and all optimal solutions s to I, g◦s is also an optimal

solution to I.

PROOF. The first condition of the lemma holds if and only if the following system of
linear inequalities is satisfiable:∑

h∈O(1)
D

ω(h)f(h(x̄)) ≤ ‖ω‖1f(x̄) ∀f ∈ Γ, x̄ ∈ Dar(f)

ω(g) > 0

ω(h) ≥ 0 ∀h ∈ O(1)
D .

(3)

According to Lemma 2.8, this is true if, and only if, the following system is unsatisfiable:∑
f∈Γ,x̄∈Dar(f)

z2(f, x̄)(f(x̄)− f(h(x̄))) ≤ 0, ∀h ∈ O(1)
D ,

z1 +
∑

f∈Γ,x̄∈Dar(f)

z2(f, x̄)(f(x̄)− f(g(x̄))) ≤ 0,

z1 > 0,

z2(f, x̄) ≥ 0, ∀f ∈ Γ, x̄ ∈ Dar(f).

(4)

Let VD = {va | a ∈ D} and define ι : VD → D by ι(va) = a. Then, (4) is unsatisfiable if,
and only if, there is no instance J of VCSP(Γ), with variables V (J) = VD and objective
function fJ =

∑
f,x̄ z2(f, x̄)f(ι−1(x̄)) such that g ◦ ι is a non-optimal solution.

It is clear that the second condition of the lemma implies that (4) is unsatisfiable.
It remains to show the reverse implication. Let I be any instance of VCSP(Γ) and
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s : V (I) → D any optimal solution to I. Construct an instance J of VCSP(Γ) with
variables V (J) = VD by replacing each term wi ·fi(x̄i) in fI by the term wi ·fi(ι−1 ◦s(x̄i))
in fJ . Since (4) is unsatisfiable, it follows that g ◦ ι is an optimal solution to J , and hence
that g ◦ s is an optimal solution to I. As I and s were chosen arbitrarily, this establishes
the lemma.

In [Huber et al. 2014], a constraint language Γ is defined to be a core if, for each
a ∈ D, there is an instance Ia of VCSP(Γ) such that a appears in every optimal solution
to Ia. We now show that this condition is equivalent to Definition 2.6.

LEMMA 2.10. For a constraint language Γ, the following are equivalent:

(1) All unary fractional polymorphisms of Γ are injective.
(2) For each a ∈ D, there is an instance Ia of VCSP(Γ) such that a appears in every

optimal solution to Ia.

PROOF. First we show the implication (2)⇒ (1). Assume that (1) does not hold and
let ω be a unary fractional polymorphism of Γ with a non-injective g ∈ supp(ω); that is,
there is an a ∈ D such that a 6∈ g(D). Then, Lemma 2.9 implies that every instance of
VCSP(Γ) has a solution where a does not appear, so (2) does not hold.

We now show (1)⇒ (2). By Lemma 2.9, condition (1) holds if, and only if, for every
non-injective unary operation g ∈ O(1)

D , there exists an instance Ig of VCSP(Γ) and
an optimal solution sg to Ig such that g ◦ sg is not an optimal solution to Ig. Let
fIg =

∑
i wi · fi(x̄i) be the objective function of Ig, and, as in the proof of Lemma 2.9,

construct an instance Jg with variables VD = {va | a ∈ D} and objective function
fJg =

∑
i wi · fi(ι−1(x̄i)), where ι : VD → D given by ι(va) = a. Then, ι is an optimal

solution to Jg, but g ◦ ι is not. Let I be the instance with variables VD and fI =
∑
g fJg ,

where the sum is over all non-injective unary operations. Let s be an optimal solution
to I. Note that s must also be an optimal solution to each instance Jg. Since s ◦ ι−1 is a
unary operation on D, it follows that s must be injective, hence for every a ∈ D, there is
a v ∈ VD such that s(v) = a. We can therefore let Ia := I for each a ∈ D.

For a constraint language Γ, let Γc denote the set of all functions obtained from
functions in Γ by fixing a (possibly empty) subset of the variables to domain values.
We will use the following result, which says that we can restrict our attention to core
constraint languages whose expressive powers contain certain unary functions.

PROPOSITION 2.11 ([HUBER ET AL. 2014]). Let Γ be a core constraint language
defined on a finite domain D.

(1) For each a ∈ D, 〈Γc〉 contains a unary function ua such that argminua = a.
(2) Γ is NP-hard if, and only if, Γc is NP-hard.

It follows readily from Proposition 2.11 that every (generalised) fractional polymor-
phism of Γc for a core constraint language Γ is idempotent.

3. COMPLEXITY CLASSIFICATION
The computational complexity of constraint languages has attracted a lot of attention
in the literature. The partial classifications obtained before the results of this paper
can be summarised as follows:

— {0, 1}-valued constraint languages on |D| = 2 [Creignou 1995; Creignou et al. 2001].
— {0, 1}-valued constraint languages on |D| = 3 [Jonsson et al. 2006].
— {0, 1}-valued constraint languages on |D| = 4 [Jonsson et al. 2011].
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1:10 J. Thapper and S. Živný

— {0, 1}-valued constraint languages containing all {0, 1}-valued unary func-
tions [Deineko et al. 2008].

— constraint languages on |D| = 2 [Cohen et al. 2006a].
— constraint languages on |D| = 3 [Huber et al. 2014].
— constraint languages containing {0, 1}-valued unary functions [Kolmogorov and Živný

2013].
— constraint languages containing unary functions and certain special binary func-

tions [Hirai 2015].

In all of these classifications, the hardness reductions essentially came from the con-
dition (MC) and tractable cases were characterised by certain specific binary symmetric
fractional polymorphisms including the concepts of submodularity [Jonsson et al. 2006;
Deineko et al. 2008; Cohen et al. 2006a], skew bisubmodularity [Huber et al. 2014],
1-defect [Jonsson et al. 2011], and others [Hirai 2015].

3.1. The basic linear programming relaxation
Every VCSP instance has a natural linear programming relaxation, proposed indepen-
dently by a number of authors [Shlezinger 1976; Koster et al. 1998; Chekuri et al. 2004;
Wainwright et al. 2005; Kingsford et al. 2005; Cooper 2008; Cooper et al. 2010; Kun
et al. 2012]. This relaxation is referred to as the basic LP relaxation (BLP) as it is the
first level in the Sherali-Adams hierarchy [Sherali and Adams 1990]. It can be defined
as follows.

Let Γ be a constraint language defined on D and let I be a VCSP(Γ) instance given
by the set V = {x1, . . . , xn} of variables and the objective function fI(x1, . . . , xn) =∑q
i=1 wi · fi(x̄i) where, for every 1 ≤ i ≤ q, fi : Dar(fi) → Q, x̄i ∈ V ar(fi), and wi ∈ Q≥0 is

a weight. For a tuple x̄, let {x̄} denote the set of elements in x̄. The BLP has variables
λi,σi , for 1 ≤ i ≤ q and σi : {x̄i} → D; and variables µx,a, for x ∈ V and a ∈ D.

min

q∑
i=1

wi
∑

σi:{x̄i}→D

fi(σi(x̄
i)) · λi,σi

s.t.
∑

σi:{x̄i}→D
σi(x)=a

λi,σi
= µx,a ∀1 ≤ i ≤ q,∀x ∈ {x̄i},∀a ∈ D

∑
a∈D

µx,a = 1 ∀x ∈ V

0 ≤ λ, µ ≤ 1

Since Γ is fixed, this relaxation has polynomial size in I. Requiring λi,σi
and µx,a to be

in {0, 1} provides an integer programming formulation of I with the meaning µx,a = 1
if, and only if, variable x is assigned value a.

For any VCSP instance I, the BLP gives a lower bound on the measure of an optimal
solution to I. Denote this lower bound by BLP(I). We will say that the BLP solves
VCSP(Γ) if BLP(I) = OptΓ(I) for every I ∈ VCSP(Γ). It can be shown that when the
BLP solves VCSP(Γ), then a solution attaining the optimum can also be obtained in
polynomial time [Kolmogorov et al. 2015].

A result of the authors characterised the constraint languages for which the BLP re-
laxation solves VCSP(Γ) in terms of symmetric fractional polymorphisms [Thapper and
Živný 2012]. An equivalent simplified condition was subsequently given in [Kolmogorov
2013], see also [Kolmogorov et al. 2015].
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THEOREM 3.1 ([THAPPER AND ŽIVNÝ 2012; KOLMOGOROV 2013]). Let Γ be a
constraint language. Then BLP solves VCSP(Γ) if, and only if, Γ admits a binary
symmetric fractional polymorphism.

3.2. Main classification
The main technical contribution of this paper is the following result.

THEOREM 3.2. Let D be an arbitrary finite set and let Γ be a constraint language
defined on D. If Γ is a core such that Γc does not satisfy (MC), then Γ admits a binary
idempotent and symmetric fractional polymorphism.

We will also need the following lemma which is proved in Section 5.2.

LEMMA 3.3. Let Γ be a constraint language defined on D and let Γ′ be a core of Γ. If
Γ′ admits a binary symmetric fractional polymorphism, then so does Γ.

Theorem 3.2 implies our main result, Theorem 3.4, which shows that having a binary
symmetric fractional polymorphism is the only reason for tractability, and conversely,
that the condition (MC) is the only reason for intractability. This provides a complexity
classification of all constraint languages defined on arbitrary finite domains, thus
generalising all previous classifications mentioned above.

THEOREM 3.4 (MAIN). LetD be an arbitrary finite set, let Γ be a constraint language
defined on D, and let Γ′ be a core of Γ.

— Either Γ has a binary symmetric fractional polymorphism and BLP solves VCSP(Γ);
— or (MC) holds for Γ′c and VCSP(Γ) is NP-hard.

PROOF. If Γ′c satisfies (MC), then VCSP(Γ′c) is NP-hard by Lemma 2.5. In this case
VCSP(Γ) is NP-hard by Proposition 2.11(2) and Lemma 2.7. Otherwise, by Theorem 3.2,
Γ′c and hence Γ′ admit a binary symmetric fractional polymorphism. By Lemma 3.3, Γ
admits a binary symmetric fractional polymorphism and it follows from Theorem 3.1
that BLP solves VCSP(Γ).

Theorem 1.1 follows immediately from Theorem 3.4. We remark that the dichotomy
classification holds in the special case of {0, 1}-valued constraint languages, that is,
for (weighted) maximum constraint satisfaction problems (Max-CSPs) [Creignou et al.
2001].3

The problem of deciding whether a constraint language Γ is a core and that of deciding
whether the tractability condition of Γ is met are discussed in Section 4.

We discuss constraint languages of infinite size in Appendix A.

COROLLARY 3.5 (OF THEOREM 3.2). Let D be an arbitrary finite set and let Γ be a
core constraint language defined on D. The following are equivalent:

(1) Γc does not satisfy (MC);
(2) Γ admits an idempotent and cyclic fractional polymorphism of some arity k > 1;
(3) Γ admits an idempotent and symmetric fractional polymorphism of some arity k > 1;
(4) Γ admits a binary idempotent and symmetric fractional polymorphism;
(5) BLP solves VCSP(Γ).

PROOF. Theorem 3.1 gives (4) ⇔ (5). The implications (4) ⇒ (3) ⇒ (2) are trivial.
Theorem 3.2 gives the implication (1)⇒ (4). Finally, we will show that (2)⇒ (1). Let

3We consider Max-CSPs as Min-CSPs to fit in the VCSP framework; that is, rather than maximising the
(weighted) sum of satisfied constraints the goal is to minimise the (weighted) sum of unsatisfied constraints.
Note that this kind of construction does not necessarily preserve approximability properties.
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ω be a k-ary cyclic fractional polymorphism of Γ. Suppose that Γc satisfies (MC). By
Lemma 2.4, Γc satisfies (MC′); that is, there are distinct a, b ∈ D, a unary cost function
u ∈ 〈Γc〉 with argminu = {a, b}, and a binary cost function f ∈ 〈Γc〉 with f(a, b) =
f(b, a) < f(a, a) = f(b, b). Consider the tuples ā1 = (a, b), ā2 = (b, a), and āi = (a, a) for
3 ≤ i ≤ k. Note that for every (cyclic) operation g ∈ supp(ω) we have g(ā1, . . . , āk) =
(xg, xg) for some xg ∈ D. Using the fact that ω is a fractional polymorphism of u, we first
show that xg ∈ {a, b}. Observe that

∑
g ω(g)u(g(a1

1, . . . , a
k
1)) ≤ uk(a1

1, . . . , a
k
1) = k−1

k u(a) +
1
ku(b) = u(a) = u(b), where the inequality follows from (1). Hence, we must have
xg = g(a1

1, . . . , a
k
1) ∈ {a, b} for all g ∈ supp(ω). Furthermore,

∑
g ω(g)f(g(ā1, . . . , āk)) =

f(a, a) = f(b, b), but fk(ā1, . . . , āk) = 2
kf(a, b) + k−2

k f(a, a) < f(a, a). Thus, inequality (1)
does not hold for f and ω. Consequently, ω is not a fractional polymorphism of f , which
is a contradiction.

Corollary 3.5 answers Problem 1 from [Huber et al. 2013] that asked about the
relationship between the complexity of a constraint language Γ and the existence of
various types of fractional polymorphisms of Γ. Note that Corollary 3.5 holds uncondi-
tionally. Problem 1 from [Huber et al. 2013] also involved the solvability by the basic
SDP relaxation [Raghavendra 2008], which at the time was known to be implied by (2)
and imply (1), provided that P 6= NP. Under the same assumption, we conclude that
solvability by the basic SDP relaxation is also characterised by any of the equivalent
statements of Corollary 3.5.

4. META PROBLEMS
Let Γ be a constraint language defined on D. In this section, we study three meta
problems relevant to our classification. The first problem is core recognition: Given a Γ,
is Γ a core? The second problem is core identification: Given Γ and Γ′, is Γ′ a core of Γ?
The third problem is tractability recognition: Given Γ, is Γ tractable?

We show that all three problems are decidable. The first two problems are co-NP-
complete and DP-complete, respectively. On the other hand, if Γ is assumed to be a core,
then the tractability of Γ can be decided in polynomial time.

LEMMA 4.1. Given Γ and g ∈ O(1)
D , the problem of deciding whether Γ has a unary

fractional polymorphism ω with g ∈ supp(ω) is in NP.

PROOF. By Lemma 2.9, (Γ, g) is a yes-instance if, and only if, the system of linear
inequalities in (3) is satisfiable. Since the number of inequalities is polynomial in the
size of Γ, this system is satisfiable if, and only if, it has a solution with a polynomial
number of non-zero variables. The NP certificate consists of a polynomially large subset
of the variables. Writing down the restriction of (3) to this subset and verifying the
satisfiability of the resulting system can then be done in polynomial time.

To every {0, 1}-valued cost function f on domain D corresponds a relation R defined
by x̄ ∈ R if, and only if, f(x̄) = 0. A unary operation g : D → D is said to be an
endomorphism of R if x̄ ∈ R implies g(x̄) ∈ R.

LEMMA 4.2. Let f be a {0, 1}-valued cost function and let R be the corresponding
relation. The constraint language {f} has a unary fractional polymorphism with support
Ψ if, and only if, Ψ is a set of endomorphisms of R.

PROOF. Let Ψ be a set of endomorphisms of R and let g ∈ Ψ, i.e., x̄ ∈ R implies g(x̄) ∈
R, for all x̄ ∈ Dar(f). Then, f(x̄) ≥ f(g(x̄)), so χ{g} is a unary fractional polymorphism
of {f}. It follows that |Ψ|−1χΨ is also a unary fractional polymorphism of {f}.

For the opposite direction, let ω be a unary fractional polymorphism of {f}. Then,
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f(x̄) ≥
∑

g∈supp(ω)

ω(g)f(g(x̄)),

for each x̄ ∈ Dar(f). Fix an operation g ∈ supp(ω). If x̄ ∈ R, then f(x̄) = 0 and so clearly
f(g(x̄)) = 0, i.e., g(x̄) ∈ R. It follows that g is an endomorphism of R. Since g ∈ supp(ω)
was chosen arbitrarily, the result follows.

PROPOSITION 4.3. Testing whether a given constraint language Γ is a core is co-NP-
complete.

PROOF. We show that testing whether a given constraint language Γ is not a core
is NP-complete. Containment in NP follows from Lemma 4.1 by first guessing a non-
injective unary operation g.

A graph G is a core if all endomorphisms of its edge relation are injective [Hell
and Nešetřil 2004]. It has been shown in [Hell and Nešetřil 1992] that the problem
of checking whether a given graph G is not a core is NP-hard, i.e., it is NP-hard to
determine whether G has a non-injective endomorphism. By Lemma 4.2, this is the
case if, and only if, the cost function f corresponding to the adjacency relation of G has
a unary fractional polymorphism with a non-injective operation in its support, i.e., if,
and only if, {f} is not a core. Therefore, the problem of determining whether Γ is not
a core is NP-hard, even if Γ is only allowed to contain a single binary and symmetric
{0, 1}-valued cost function.

The complexity class DP consists of all decision problems that can be written as the
intersection of an NP-problem and a co-NP-problem; equivalently, DP consists of all
decision problems that can be written as the difference of two NP-problems [Papadim-
itriou and Yannakakis 1984]. Next we show that the core identification problem is
DP-complete.

PROPOSITION 4.4. Given two constraint languages Γ and Γ′, testing whether Γ′ is a
core of Γ is DP-complete.

PROOF. The problem can be described as the intersection between the problem of
verifying that Γ′ is a core, which is in co-NP by Proposition 4.3, and the problem of
verifying that Γ′ = Γ[g(D)] for some g contained in the support of a unary fractional
polymorphism of Γ. The latter problem is seen to be in NP by first guessing the operation
g, and then using Lemma 4.1. Containment in DP follows.

To show DP-hardness, we will reduce from the following problem: Given two graphs,
G and G′, with G′ a subgraph of G, test whether G′ is a core (all endomorphisms of
G′ are injective) and whether there is a homomorphism from G to G′. This problem
has been shown to be DP-hard [Fagin et al. 2005], thus improving a previously known
NP-hardness result on the same problem [Chandra and Merlin 1977]. We may in fact
assume that G′ is an induced subgraph of G since otherwise, it is easy to see that G′
cannot be a core of G. Let f and f ′ be the cost functions corresponding to the adjacency
relations of G and G′ respectively. Let Γ = {f} and Γ′ = {f ′}. By Lemma 4.2, G′ is a core
if, and only if, every unary fractional polymorphism of Γ′ has only injective operations
in its support. By Definition 2.6, this is the case if, and only if, Γ′ is a core. There is a
homomorphism from G to G′ if, and only if (since G′ is a subgraph of G), there is an
endomorphism g : G → G so that g(V (G)) = V (G′). By Lemma 4.2, this is the case if,
and only if, there is a unary fractional polymorphism ω of Γ with g ∈ supp(ω) so that
Γ′ = Γ[g(D)]. Hence, G′ is a core of G if, and only if, Γ′ is a core of Γ. It follows that the
latter problem is DP-hard, even for the specific case when both Γ and Γ′ contains a
single binary and symmetric {0, 1}-valued cost function.
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Now we turn our attention to the problem of tractability recognition. Let X =
{(f, x̄, ȳ) | f ∈ Γ, x̄, ȳ ∈ Dar(f)}. To test whether a finite constraint language Γ is
tractable, it suffices, by Theorem 3.2, to test whether it has a binary symmetric fractional
polymorphism. This is the case if, and only if, the following system of linear inequalities
is satisfiable:

∑
g∈Ω

ω(g)f(g(x̄, ȳ)) ≤ f2(x̄, ȳ), ∀(f, x̄, ȳ) ∈ X,

‖ω‖1 = 1,

ω(g) ≥ 0, ∀g ∈ Ω,

(5)

where Ω is the set of binary operations g ∈ O(2)
D on D that are symmetric. It follows that

the tractability recognition problem is decidable for any finite Γ. Since the number of
variables in the system (5) is exponential in |D|, this does not lead to a polynomial-time
algorithm. However, when Γ is a core, it turns out that we can solve the system in
polynomial time. This reflects a well-known phenomenon for the CSP decision problem,
where the problem of deciding whether a constraint language admits various types of
polymorphisms is known to have a polynomial-time algorithm only when the language
is a core.

For a core Γ, we can restrict Ω to the set of binary operations on D that are symmetric
and idempotent. The linear programming dual of minimising the objective function 0
subject to (5) (i.e., of determining whether this system is satisfiable) is the problem of
maximising δ subject to the following system of inequalities:

∑
f,x̄,ȳ

z(f, x̄, ȳ)
(
f2(x̄, ȳ)− f(g(x̄, ȳ))

)
+ δ ≤ 0, ∀g ∈ Ω,

z(f, x̄, ȳ) ≥ 0, ∀(f, x̄, ȳ) ∈ X.
(6)

The solution to (6) that assigns 0 to all variables is always feasible, so the dual
optimum is always at least 0. If the dual optimum is 0, then the primal optimum is also
0, so (5) is satisfiable. Otherwise, (6) has a solution of measure greater than 0, so it has
solutions of unbounded measure. In this case, (5) is unsatisfiable. The system (6) has a
polynomial number of variables, but an exponential number of inequalities.

Assuming that Γ is a core constraint language, we can solve (6) in polynomial time
using the ellipsoid method. In fact, we can do even better. We can find a dual solution
with support on a polynomial number of variables. This means that we can find a binary
idempotent and symmetric fractional polymorphism represented by its values on a
support of size linear in the size of X and thus in the size of Γ. For a thorough treatment
of the ellipsoid algorithm, including Lemma 4.6, we refer to [Grötschel et al. 1988].

Definition 4.5. A strong separation oracle for a polyhedron P is given an input p̄ ∈ Qn
and either returns “p̄ ∈ P”, or a vector ā ∈ Qn such that ā>x̄ < ā>p̄ for all x̄ ∈ P .

LEMMA 4.6 (LEMMA 6.5.15 IN [GRÖTSCHEL ET AL. 1988]). Let c̄ ∈ Qn and let
P ⊆ Qn be a polyhedron defined by Ax̄ ≤ b̄, where the encoding sizes of the coefficients
of A and b̄ are bounded by φ. Given a strong separation oracle SEP for P where every
output has encoding size at most φ, we can, in time polynomial in n, φ, and the encoding
size of c̄, and using a polynomial number of oracle queries to SEP, either

— find a basic optimum dual solution with oracle inequalities, or
— assert that the dual problem is unbounded or has no solution.
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In Lemma 4.6, a basic optimum dual solution with oracle inequalities means a
set of inequalities (ā1)>x̄ ≤ α1, . . . , (ā

k)>x̄ ≤ αk, valid for P , where ā1, . . . , āk are
linearly independent outputs of SEP, and dual variables λ1, . . . , λk ∈ Q≥0 such that
λ1ā

1 + · · ·+ λkā
k = c̄ and λ1α1 + · · ·+ λkαk = maxx̄∈P c̄

>x̄.

PROPOSITION 4.7. There is a polynomial-time algorithm that, given a core con-
straint language Γ, either

— finds a binary idempotent and symmetric fractional polymorphism ω of Γ, represented
by a subset Ω′ ⊆ Ω with supp(ω) ⊆ Ω′ together with the restriction of ω to Ω′, or

— asserts that none exists.

PROOF. Let P denote the polyhedron defined by (6). We will give a polynomial-time
algorithm that, given a point (z, δ) ∈ QX ×Q as input, does one of three things:

— answers “unbounded optimum”;
— answers “(z, δ) ∈ P ”; or
— returns ā ∈ QX ×Q such that ā>(x, δ′) < ā>(z, δ) for all (x, δ′) ∈ P .

The algorithm can be seen as a strong separation oracle with an escape clause. We can
use it as a strong separation oracle for the polyhedron P , as long as the answer is not
“unbounded optimum”.

Let c̄ be the vector with components c(f,x̄,ȳ) = 0 for (f, x̄, ȳ) ∈ X and cδ = 1. By
Lemma 4.6, we can either find a dual solution to (6) given by inequalities returned by
the oracle, or we can assert that the dual, (5), has no solution. If the ellipsoid algorithm
asserts that the dual has no solution, or if the answer from the separation oracle is ever
“unbounded optimum”, then we can conclude that (5) is unsatisfiable. Otherwise, an
optimum dual solution is described using valid inequalities of the following form:∑

(f,x̄,ȳ)∈X

z(f, x̄, ȳ)(f2(x̄, ȳ)− f(g(x̄, ȳ))) + δ ≤ αg, ∀g ∈ Ω′,

−z(f, x̄, ȳ) ≤ α(f,x̄,ȳ), ∀(f, x̄, ȳ) ∈ Υ,

for some constants αg, α(f,x̄,ȳ) ∈ Q and subsets Ω′ ⊆ Ω and Υ ⊆ X.
The corresponding dual variables are ω′ : Ω′ → Q≥0 and υ : Υ → Q≥0, and they

satisfy the following equalities:∑
g∈Ω′

ω′(g)(f2(x̄, ȳ)− f(g(x̄, ȳ)))− υ(f, x̄, ȳ) = 0, ∀(f, x̄, ȳ) ∈ X, (7)

∑
g∈Ω′

ω′(g) = 1, (8)

where we define υ(f, x̄, ȳ) = 0 for (f, x̄, ȳ) ∈ X \Υ. The dual variables are non-negative,
so (7) and (8) imply f2(x̄, ȳ) ≥

∑
g∈Ω′ ω′(g)f(g(x̄, ȳ)), for all (f, x̄, ȳ) ∈ X. Since the

inequalities correspond to vectors that are linearly independent, the size of Ω′ is bounded
by the number of variables of (6), i.e., polynomial in the input size. Clearly, ω′ can be
extended to a fractional polymorphism of Γ by assigning weight 0 to every operation
outside of Ω′.

The separation oracle is given by Algorithm 1. It is based on the observation that
in order to verify whether (z, δ) belongs to P , it suffices to find an operation g ∈ Ω
that minimises

∑
f,x̄,ȳ z(f, x̄, ȳ)f(g(x̄, ȳ)). If (z, δ) satisfies the inequality with respect to

this g, then (z, δ) satisfies all inequalities. Otherwise, the vector ā given by a(f,x̄,ȳ) =

f2(x̄, ȳ)− f(g(x̄, ȳ)) and aδ = 1 defines a separating hyperplane.
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Algorithm 1: Separate(z, δ)

Input: (z, δ) ∈ QX ×Q
Output: “unbounded optimum”, “(z, δ) ∈ P ”, or a separating hyperplane

1 if z(f, x̄, ȳ) < 0 for some (f, x̄, ȳ) ∈ X then
2 Let a(f,x̄,ȳ) := −1 and set all other components of ā to 0
3 return ā
4 end
5
6 Let V := {[x, y] | x, y ∈ D} /* Construct the VCSP instance I */
7 Let fI(V ) :=

∑
(f,v̄)∈X′ z′(f, v̄)f(v̄)

8 /* Self reduce using the BLP relaxation */
9 Let g′ : V → D ∪ {⊥} be given by g′(v) = ⊥ for all v

10 while ∃v ∈ V : g′(v) = ⊥ do
11 if ∃d ∈ D : BLP (I[g′ ∪ {v 7→ d}]) = BLP (I) then
12 g′ := g′ ∪ {v 7→ d}
13 else
14 return “unbounded optimum”
15 end
16 end
17 /* Test whether (z, δ) ∈ P */
18 Let g ∈ Ω be the operation (x, y) 7→ g′([x, y])
19 if

∑
(f,x̄,ȳ)∈X z(f, x̄, ȳ)(f2(x̄, ȳ)− f(g(x̄, ȳ))) + δ ≤ 0 then

20 return “(z, δ) ∈ P ”
21 else
22 Let a(f,x̄,ȳ) := f2(x̄, ȳ)− f(g(x̄, ȳ)), for all (f, x̄, ȳ) ∈ X, and aδ := 1
23 return ā
24 end

Let [x, y] denote the multiset of the elements x and y, and let V = {[x, y] | x, y ∈ D}.
Let X ′ = {(f, v̄) | f ∈ Γ, v̄ ∈ V ar(f)}. For (f, v̄) ∈ X ′, define

z′(f, v̄) =
∑
x̄,ȳ s.t.

vi=[xi,yi]

z(f, x̄, ȳ).

The algorithm starts by creating an instance I of VCSP(Γ) over the variables V with
fI(V ) =

∑
(f,v̄)∈X′ z′(f, v̄)f(v̄). For an operation g ∈ Ω, define the function g′ : V → D by

[x, y] 7→ g(x, y). Note that this defines a bijection between Ω and the set of all functions
from V to D.

For every g ∈ Ω, we have∑
(f,x̄,ȳ)∈X

z(f, x̄, ȳ)f(g(x̄, ȳ)) =
∑

(f,v̄)∈X′

∑
x̄,ȳ s.t.

vi=[xi,yi]

z(f, x̄, ȳ)f(g(x̄, ȳ)) = fI(g
′(V )). (9)

Instead of optimising the left-hand side of (9) over all g ∈ Ω, we can optimise fI(g′(V ))
over all g′ : V → D, i.e., we can try to solve the VCSP(Γ) instance I. Note that, since
Γ ⊆ Γc (Section 2.4), I can also be seen as an instance of VCSP(Γc). For a (partial)
assignment g′ : V → D ∪ {⊥}, we let I[g′] denote the VCSP(Γc)-instance obtained by
adding the constant unary relations v = g′(v) for v ∈ V such that g′(v) 6= ⊥.
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On lines 1–4, the algorithm checks that all components of z are non-negative. Other-
wise, a simple separating hyperplane is returned.

On lines 6–7, the algorithm constructs the instance I.
On lines 9–16, it then tries to solve this instance using the BLP relaxation and

self-reduction. This is accomplished by fixing the variables one by one to a value that
maintains the BLP optimum (lines 10–12). If this succeeds for all variables, then by (9)
and the initial observation, we can determine whether the point is contained in P by
verifying a single inequality (line 19).

Otherwise, the instance I[g′] of VCSP(Γc) has an optimum that is strictly greater
than the BLP optimum. By Theorem 3.1, it follows that Γc does not have a binary
symmetric fractional polymorphism. Since Γ is a core, the same must then be true for Γ.
In this case (6) has a non-zero solution, and therefore an unbounded optimum, so the
algorithm gives the correct answer on line 14.

Finally, we argue that Algorithm 1 runs in polynomial time. The BLP relaxation of
I has size that is polynomial in the size of z and Γ, so the call to BLP(I[g′ ∪ {v 7→ d}])
takes polynomial time. The number of calls to BLP is at most |V | · |D| = O(|D|3), again
polynomial in the size of Γ.

5. PROOF OF THEOREM 3.2
In this section, we prove Theorem 3.2, which we restate here for the reader’s conve-
nience:

THEOREM 3.2. Let D be an arbitrary finite set and let Γ be a constraint language
defined on D. If Γ is a core such that Γc does not satisfy (MC), then Γ admits a binary
idempotent and symmetric fractional polymorphism.

5.1. Proof overview
We will need to introduce several important concepts and establish some auxiliary
results. First, using Lemma 2.8, we prove, in Section 5.3, the following:

LEMMA 5.1. Let ∆ be an arbitrary constraint language defined on a finite set D(∆).
If ∆ does not satisfy (MC) then ∆ has a binary fractional polymorphism ω such that for
each {a, b} ⊆ D(∆), there exists g ∈ supp(ω) with {g(a, b), g(b, a)} 6= {a, b}.

Let 1 be the identity mapping in O(m→m)
D . For a fractional mapping σ of arity m→ m,

let

V(σ) = {gk ◦ · · · ◦ g1 ◦ 1 | gi ∈ supp(σ), k ≥ 0} .
Let G = G(σ) = (V (G), E(G)) be the directed graph with

— V (G) = V(σ);
—E(G) = {(g,h ◦ g) | g ∈ V(σ),h ∈ supp(σ)}.

A vertex g in V (G) is called recurrent if, for every other vertex h ∈ V (G), there is
a path from h to g whenever there is a path from g to h. Let R(σ) denote the set of
maximal strongly connected components of recurrent vertices of V (G). Note that R(σ)
is a partition of the set of recurrent vertices.

If ρ is a generalised fractional polymorphism of a cost function f , then we say that ρ
improves f . The set of all cost functions that are improved by ρ is denoted by Imp(ρ).
The following result is proved in Section 5.5.

THEOREM 5.2. Let σ be a fractional mapping of arity m→ m. There exists a proba-
bility distribution w on R(σ) with the following property: if ρ is any fractional mapping
of arity m→ m with

∑
g∈C ρ(g) = w(C) for all C ∈ R(σ), then Imp(σ) ⊆ Imp(ρ).
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As the first step in our proof of Theorem 3.2, we apply Lemma 5.1 to Γc. By assumption,
Γc does not satisfy (MC), so we conclude that it has a fractional polymorphism ω̂ with
the properties given in the lemma. Furthermore, by Proposition 2.11(1), we know that
〈Γc〉 contains a unary function ua for each a ∈ D such that argminua = {a}. This implies
that ω̂ is idempotent. To finish the proof, we will massage ω̂ into a binary symmetric
fractional polymorphism using Theorem 5.2.

For a binary operation g ∈ O(2)
D , define ḡ by ḡ(x, y) = g(y, x). We denote by (g, ḡ) ∈

O(2→2)
D the mapping defined by (g, ḡ)(x, y) = (g(x, y), ḡ(x, y)). Recall that χ(g,ḡ) denotes

the fractional mapping that that takes the value 1 on the mapping (g, ḡ) and 0 on all
other mappings. Let σ̂ =

∑
g ω̂(g)χ(g,ḡ). As the second step, we apply Theorem 5.2 to

σ̂. Note that Γc ⊆ Imp(σ̂) and that all g ∈ V(σ̂) are of the form g = (g, ḡ). Let w be the
probability distribution in Theorem 5.2 when applied to σ̂. Fix an arbitrary mapping
gC ∈ C, for every C ∈ R(σ̂), and let ρ̂ =

∑
C w(C)χgC

.
A mapping p ∈ O(m→m)

D is called permuting if it acts as a permutation on every tuple
in Dm. The following lemma finishes the proof of Theorem 3.2:

LEMMA 5.3 (KEY LEMMA). For every f ∈ Imp(ρ̂), x̄1, x̄2 ∈ Dar(f), g ∈ supp(ρ̂), and
permuting mapping p ∈ O(2→2)

D , we have f2(g(x̄1, x̄2)) = f2(g ◦ p(x̄1, x̄2)).

COROLLARY 5.4. For every permuting mapping p ∈ O(2→2)
D , we have Imp(ρ̂) ⊆

Imp(ρ̂ ◦ p), where ρ̂ ◦ p :=
∑

g∈supp(ρ̂) ρ(g)χg◦p.

Let p ∈ O(2→2)
D be a mapping that orders its inputs according to some fixed total order

on D. By Theorem 5.2 and Corollary 5.4, we have

Γ ⊆ Γc ⊆ Imp(σ̂) ⊆ Imp(ρ̂) ⊆ Imp(ρ̂ ◦ p),

so Γ admits ρ̂ ◦ p. For every a, b ∈ D, p(a, b) = p(b, a) so for every g ∈ supp(ρ̂), we have
g ◦ p(a, b) = g ◦ p(b, a). It follows that ρ̂ ◦ p is symmetric. Consequently,∑

(g1,g2)∈supp(ρ̂◦p)

ρ̂ ◦ p((g1, g2))
1

2
(χg1

+ χg2
)

is a binary idempotent and symmetric fractional polymorphism of Γ which proves
Theorem 3.2.

It remains to prove Lemma 5.3. For this we need two additional results that are
stated here and are proved in Sections 5.4 and 5.6.

Definition 5.5. Let wa =
∑

g:g(a,b)=(a,a) ρ̂(g) and wb =
∑

g:g(a,b)=(b,b) ρ̂(g). We say that
ρ̂ is submodular on the pair {a, b} ⊆ D if wa = wb = 1

2 .

Let S = (V (S), E(S)) be the undirected graph with:

— V (S) = D;
—E(S) = {{a, b} | ρ̂ is submodular on {a, b}}.

LEMMA 5.6. The graph S is connected.

LEMMA 5.7. Assume that ρ̂ is submodular on {a1, a2}. Let f ∈ Imp(ρ̂) and (ȳ1, ȳ2) =
g(x̄1, x̄2) for some g ∈ supp(ρ̂) and x̄1, x̄2 ∈ Dar(f)−1. Then f2((a1, ȳ

1), (a2, ȳ
2)) =

f2((a2, ȳ
1), (a1, ȳ

2)).

PROOF (OF LEMMA 5.3). By construction, (g, ḡ)(y, x) = (ḡ, g)(x, y) for all (g, ḡ) ∈
V(σ̂). Therefore, it suffices to show that interchanging the two elements of g(x̄1, x̄2) at
any subset of the coordinates does not alter the value of f2(g(x̄1, x̄2)). We show this
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for the case when only the elements of the first coordinate are interchanged: with
g(x̄1, x̄2) = ((a, ȳ1), (b, ȳ2)), we show that f2((a, ȳ1), (b, ȳ2)) = f2((b, ȳ1), (a, ȳ2)). The full
result follows by applying the same argument to each coordinate. By Lemma 5.6, there
exists a path a = a0, a1, . . . , a` = b from a to b in the graph S, and by Lemma 5.7, we
have

f2((ai, ȳ
1), (ai+1, ȳ

2)) = f2((ai+1, ȳ
1), (ai, ȳ

2)), (10)

for all 0 ≤ i < `. Summing (10) over 0 ≤ i < `, we obtain∑
0≤i<`

f2((ai, ȳ
1), (ai+1, ȳ

2)) =
∑

0≤i<`

f2((ai+1, ȳ
1), (ai, ȳ

2)). (11)

Finally, by cancelling terms in (11),
1

2
f((a0, ȳ

1)) +
1

2
f((a`, ȳ

2)) =
1

2
f((a`, ȳ

1)) +
1

2
f((a0, ȳ

2)),

which establishes the result.

5.2. Proof of Lemma 3.3
Here, we use Theorem 5.2 to prove Lemma 3.3.

PROOF (OF LEMMA 3.3). Let ω′ be a binary symmetric fractional polymorphism of
Γ′. LetD′ ⊆ D be the domain of the core Γ′, and let µ be a unary fractional polymorphism
of Γ with g ∈ supp(µ) such that Γ′ = Γ[g(D)] and thus D′ = g(D). Consider the graph
G(µ), and define the fractional operation µ′ as follows: for each component C ∈ R(µ),
pick any unary operation h ∈ C, note that g ◦ h ∈ C, and let µ′(g ◦ h) = w(C). Then,
by Theorem 5.2, µ′ is a unary fractional polymorphism of Γ with the property that
h′(D) ⊆ g(D) = D′ for every h′ ∈ supp(µ′).

Now define the following fractional operation:

ω :=
∑

g′∈supp(ω′)

ω′(g′)
∑

h′∈supp(µ′)

µ′(h′)χg◦(h′,h′).

Let f ∈ Γ and x̄1, x̄2 ∈ Dar(f). Then,

f2(x̄1, x̄2) ≤
∑

h′∈supp(µ′)

µ′(h′)f2(h′(x̄1), h′(x̄2))

≤
∑

h′∈supp(µ′)

µ′(h′)
∑

g′∈supp(ω′)

ω′(g′)f2(g′(h′(x̄1), h′(x̄2)))

=
∑

g∈supp(ω)

ω(g)f2(g(x̄1, x̄2)),

where the first inequality follows since Γ admits µ, and the second inequality follows
since Γ′ admits ω, and h′(x̄1), h′(x̄2) ∈ (D′)ar(f) for every h′ ∈ supp(µ′). Hence, ω is a
binary symmetric fractional polymorphism of Γ, which proves the lemma.

5.3. Proof of Lemma 5.1
We remark that after the announcement of our work in [Thapper and Živný 2013],
the idea in the following proof has been used to prove a generalisation of Lemma 5.1
in [Uppman 2014, Lemma 28], where it has been used to analyse the complexity of
certain Min-Cost-Hom problems.
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PROOF (OF LEMMA 5.1). Let π1(x, y) = x and π2(x, y) = y be the two binary pro-
jections on D(∆). Let Ω(a, b) be the set of operations g : D(∆) × D(∆) → D(∆) for
which {g(a, b), g(b, a)} 6= {a, b}. Assume that there exist rational values y(f, x̄) ≥ 0, for
f ∈ ∆, x̄ ∈ (D(∆)×D(∆))ar(f), such that∑

f,x̄

y(f, x̄)f(g(x̄)) ≥
∑
f,x̄

y(f, x̄)f(πi(x̄)), ∀g ∈ O(2)
D(∆), i = 1, 2, (12)

∑
f,x̄

y(f, x̄)f(g(x̄)) >
∑
f,x̄

y(f, x̄)f(πi(x̄)), ∀g ∈ Ω(a, b), i = 1, 2. (13)

Let V = {v(x,y) | (x, y) ∈ D(∆) × D(∆)} and let v1, . . . , vn be an enumeration of V
with v1 = v(a,b) and v2 = v(b,a). Define ι : V → D(∆)×D(∆) by ι(v(x,y)) = (x, y) and let
I be the instance of VCSP(∆) with variables V and objective function fI(v1, . . . , vn) =∑
f,x̄ y(f, x̄)f(ι−1(x̄)). Define f(x, y) = minv3,...,vn∈D fI(x, y, v3, . . . , vn) ∈ 〈∆〉. The equa-

tions (12) imply that π1 ◦ ι and π2 ◦ ι are among the optimal solutions to I, and the
equations (13) imply that π1◦ι and π2◦ι have strictly smaller measure than any solution
g ∈ Ω(a, b), so f(a, b) = f(b, a) < f(x, y) for all {x, y} 6= {a, b}.

We conclude that if (MC) cannot be satisfied, then there is no solution to the system
(12)+(13). By Lemma 2.8, there is a solution z1(g, i), z2(g, i) ≥ 0 to the following system
of equations:

2∑
i=1

∑
g∈Ω(a,b)

z1(g, i)(f(g(x̄))− f(πi(x̄)))

+

2∑
i=1

∑
g∈O(2)

D(∆)

z2(g, i)(f(g(x̄))− f(πi(x̄))) ≤ 0, ∀f ∈ ∆, x̄ ∈ (D(∆)×D(∆))ar(f),

(14)

with z1(g, i) 6= 0 for some g ∈ Ω(a, b) and i ∈ {1, 2}. Define z1(g, i) = 0 for g 6∈ Ω(a, b)
and let z(g) = ‖z1 + z2‖−1(z1(g, 1) + z1(g, 2) + z2(g, 1) + z2(g, 2)). A solution to (14) then
implies a solution to the following system of inequalities:∑

g∈O(2)

D(∆)

z(g)f(g(x̄)) ≤ f2(π1(x̄), π2(x̄)), ∀f ∈ ∆, x̄ ∈ (D(∆)×D(∆))ar(f),

with ‖z‖1 = 1, z(g) ≥ 0, and z(g) > 0 for some g ∈ Ω(a, b). Denote this solution by
za,b(g). Now, if (MC) cannot be satisfied for any distinct a, b ∈ D(∆), then we have
solutions za,b(g) for all a 6= b ∈ D(∆). The lemma follows with ω defined by ω(g) =
(|D(∆)|2 − |D(∆)|)−1

∑
a 6=b za,b(g).

5.4. Proof of Lemma 5.6
The aim of this section is to prove that the graph S of submodular pairs is connected. In
order to do so, we introduce yet another graph T that records the “definable 2-subsets
of D in 〈Γc〉”. We then show that T is a subgraph of S and that T is connected. Since S
and T are defined on the same set of vertices, it then follows that S is connected.

Let T = (V (T ), E(T )) be the undirected graph with:

— V (T ) = D;
—E(T ) = {{a, b} | there exists a unary function u ∈ 〈Γc〉 such that argminu = {a, b}}.

LEMMA 5.8. E(T ) ⊆ E(S).

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: May 2014.



The complexity of finite-valued CSPs 1:21

PROOF. Take an arbitrary edge {a, b} ∈ E(T ) and let ua, ub, and uab be unary
cost functions in 〈Γc〉 such that argminua = {a}, argminub = {b}, and argminuab =
{a, b}, respectively. Since uab minimises on {a, b} and is improved by both ω̂ and ρ̂, we
have g(a, b), g(b, a) ∈ {a, b} for every g ∈ supp(ω̂) and every g = (g, ḡ) ∈ supp(ρ̂). By
construction of σ̂, there is a mapping h ∈ supp(σ̂) for which h(a, b) 6∈ {(a, b), (b, a)}, so by
our previous observation, we must have either h(a, b) = (a, a) or h(a, b) = (b, b). Suppose
that g(a, b) ∈ {(a, b), (b, a)} for some g ∈ supp(ρ̂). Then h ◦ g(a, b) = (a, a) or (b, b). So
h ◦ g is reachable from g in G, it is symmetric on {a, b}, and every g′ reachable from
h ◦ g is symmetric on {a, b}. Therefore g cannot be recurrent. But supp(ρ̂) is contained
in the set of recurrent states, a contradiction. We conclude that every g ∈ supp(ρ̂) is
symmetric on {a, b} and maps (a, b) to either (a, a) or (b, b).

Let wa =
∑

g:g(a,b)=(a,a) ρ(g) and wb =
∑

g:g(a,b)=(b,b) ρ̂(g). By the previous argument,
we have wa +wb = 1. By the fractional polymorphism inequality applied to ρ̂ and ua, we
have

1

2
(ua(a) + ua(b)) ≥ waua(a) + wbua(b). (15)

Since ua(a) < ua(b), we have wa ≥ wb. But inequality (15) holds for ub as well, hence
wa ≤ wb, and therefore wa = wb = 1

2 .

LEMMA 5.9. T is connected.

To prove this lemma, we will introduce some terminology from the study of hyperplane
arrangements which will facilitate our reasoning about the edges of T . For a more
thorough treatment of this subject, see [Abramenko and Brown 2008] and [Stanley
2007].

Definition 5.10. Let {v̄i}i∈I be a finite set of vectors in Rn. The set of hyperplanes
A = {Hi}i∈I , where Hi = {x̄ ∈ Rn | v̄i · x̄ = 0}, is called a (linear) hyperplane arrange-
ment.

To each vector x̄ ∈ Rn, we associate a sign vector, sgn(x̄) ∈ {−1, 0,+1}I , where the ith
component is given by the sign of v̄i · x̄ for each i ∈ I. For a sign vector v̄ ∈ {−1, 0,+1}I ,
a non-empty set A = sgn−1(v̄) = {x̄ ∈ Rn | sgn(x̄) = v̄} is called a cell of A. We denote
the defining sign vector, v̄ of A, by sgn(A).

A cell A with sgn(A)i 6= 0 for all i ∈ I is called a chamber. The chambers are the
connected full-dimensional regions of Rn \

⋃
i∈I Hi. A cell P with sgn(P )i = 0 for exactly

one i ∈ I is called a panel. We say that P is a panel of a chamber A if the panel P is
contained in the topological closure cl(A) of A. Each panel is a panel of precisely two
chambers.

The chamber graph of A is the undirected graph with the chambers of A as vertices
and an edge between two chambers A1 and A2 if sgn(A1) and sgn(A2) differ by a single
sign change, or equivalently, if A1 and A2 share a common panel. We will use the
following properties of the chamber graph that can be found in [Abramenko and Brown
2008, Proposition 1.54].

PROPOSITION 5.11. The chamber graph of A is connected and the minimal length
of a path between A1 and A2 in the chamber graph is equal to the number of positions at
which sgn(A1) and sgn(A2) differ.

We are now ready to prove Lemma 5.9.

PROOF (OF LEMMA 5.9). For each a ∈ D, we have a unary function ua ∈ 〈Γc〉 with
argminua = {a}. For x̄ ∈ RD, with components xc, consider the linear combination
fx̄(z) =

∑
c∈D xcuc(z). Note that if x̄ is rational and nonnegative, then fx̄ ∈ 〈Γc〉. The
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inequality fx̄(a) < fx̄(b) is equivalent to
∑
c∈D xc(uc(a) − uc(b)) < 0, i.e., fx̄ takes a

strictly smaller value on a than on b precisely when the vector x̄ is on the negative side
of the hyperplane Hab defined by the normal v̄ab with components vabc = uc(a)− uc(b).
Hence, by determining the sign of x̄ · v̄ab, we can decide whether fx̄(a) < fx̄(b) or
fx̄(a) > fx̄(b). If x̄ lies on the hyperplane, then fx̄(a) = fx̄(b).

For each a ∈ D, let Ha be the hyperplane defined by the unit vector ēa, i.e., eaa = 1 and
eac = 0 for a 6= c. Fix a strict total order <D on D. Let A = {Hab | a <D b} ∪ {Ha | a ∈ D}
be a hyperplane arrangement in RD. Let C be the set of chambers A that have a positive
sign for each Ha, i.e., each A ∈ C is contained in the positive (open) orthant of RD.
Since all remaining components of A ∈ C are also nonzero, they determine a strict order
on the values of the functions fx̄, x̄ ∈ A. For each a ∈ D, let Ua = {A ∈ C | ∀x̄ ∈ A :
argmin fx̄ = {a}}. Each Ua is non-empty since the vector x̄ given by xc = ε for c 6= a and
xa = 1 determines a function minimizing on a when ε > 0 is chosen small enough.

Fix a, b ∈ D and pick any Aa ∈ Ua, Ab ∈ Ub. Let Aa = A0, A1, . . . , A` = Ab be a
minimal-length path from Aa to Ab in the chamber graph. Consider the sign vectors
along this path: sgn(A0), sgn(A1), . . . , sgn(A`). By Proposition 5.11 the sign of a fixed
component changes at most once along this sequence. In particular, since Aa and Ab
both have positive signs for the hyperplanes Ha, it follows that Ai is contained in the
positive orthant for every i. Hence, for each i, there is a ai ∈ D such that Ai ∈ Uai . For
each i with ai 6= ai+1, the path moves from a chamber where fx̄ minimises on ai to a
chamber where it minimises on ai+1. This means that Ai and Ai+1 share a panel Pi with
a sign vector sgn(Pi) obtained from either sgn(Ai) or sgn(Ai+1) by setting the component
corresponding to Haiai+1 to 0 (assuming ai <D ai+1). Since all other components of
sgn(Pi) have the same sign as in sgn(Ai) and sgn(Ai+1), we have fx̄(ai) = fx̄(ai+1) <
fx̄(c), for every x̄ ∈ Pi and c 6= ai, ai+1. For a hyperplane arrangement, such as A, that
is defined in terms of rational normal vectors, each cell is defined as the solutions to a
set of linear equalities and inequalities with rational coefficients. Every cell therefore
contains at least one rational vector. In particular, there exists a nonnegative rational
vector x̄ ∈ Pi with argmin fx̄ = {ai, ai+1}, so {ai, ai+1} ∈ E(T ). This holds for all 0 ≤ i < `
with ai 6= ai+1, so we conclude that a subsequence of a = a0, a1, . . . , a` = b is a path in T
from a to b.

5.5. Proof of Theorem 5.2
A (time-homogeneous) finite-state Markov chain M is given by a set of states and
conditional probabilities p(i, j) for M to be in state j at time t+ 1 given that it was in
state i at time t. Let p(k)(i, j) denote the probability that M proceeds from state i to
state j in exactly k transitions. M is called irreducible if, for every pair of states (i, j),
there exists r ≥ 1 with p(r)(i, j) > 0. A state i is called transient if, for some state j,
there is a path (in the graph whose vertices are the states of M and with and edge (i, j)
from state i to state j if p(i, j) > 0) from i to j but not from j to i. A state that is not
transient is called recurrent. A state i has periodicity r if r = gcd{k | p(k)(i, i) > 0}. M
is called aperiodic if all states have periodicity 1. A stationary distribution of M is a
probability distribution λ on the set of states of M such that λ(i) =

∑
j λ(j)p(j, i) for all

states i. The following is well known.

THEOREM 5.12.
For any finite-state Markov chain M :

(1) If M is irreducible, then there is a unique stationary distribution λ of M with λ(i) > 0
for all states i.

(2) If M is aperiodic, then for any initial distribution π, there is a stationary distribution
λ of M with

∑
j π(j)p(k)(j, i)→ λ(i) as k →∞, for all states i.
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(3) If i is transient, then p(k)(j, i)→ 0 as k →∞, for all states j.

PROOF. Part (1) follows from [Kemeny and Snell 1976, Theorem 5.1.1 and 5.1.2],
where an irreducible chain is called ergodic. (The definition in [Kemeny and Snell 1976]
of an ergodic chain differs from the more common one which defines an ergodic chain as
an irreducible and aperiodic chain.)

[Kemeny and Snell 1976, Theorem 4.1.4] proves the claim of part (2) for irreducible
aperiodic chains. This result can be extended to any aperiodic chain by considering
what happens for an initial distribution concentrated on a single state i. Let R denote
the set of maximal strongly connected components in the directed graph that has the
recurrent states of M as vertices and an edge from i to j if p(i, j) > 0. If i is recurrent,
then the restriction of M to the component C ∈ R containing i is irreducible, so the
chain converges to a stationary distribution on C with the desired properties. Let λi be
the trivial extension of this distribution to a stationary distribution on M . If instead i
is transient, then for each component C ∈ R, there is some probability that i reaches C.
The stationary distribution λi is then defined as the unique stationary distribution of
each irreducible component, weighted by the probability that i reaches this component.
Finally, the full statement of part (2) follows by taking λ =

∑
i π(i)λi.

Part (3) follows from [Kemeny and Snell 1976, Theorem 3.1.1].

Given an m→ m fractional mapping σ, we define a Markov chain M(σ) on G(σ). Let
w(g,g′) =

∑
h∈supp(σ):g′=h◦g σ(h). The transition probabilities are given as follows:

p(g,g′) =

{
1
2w(g,g′) + 1

2 if g = g′, and
1
2w(g,g′) otherwise.

Note that the set of recurrent vertices in V(σ), defined in Section 5.1, is precisely the
set of recurrent states of M(σ). Let C be a component in R(σ). Define M(C) to be the
restriction of M(σ) to C ⊆ V(σ). Then, M(C) is also a Markov chain.

LEMMA 5.13. The Markov chains M(σ) and M(C) are aperiodic and each chain
M(C) is irreducible.

PROOF. Aperiodicity follows by construction as p(g,g) ≥ 1
2 > 0 for all g ∈ V(σ).

Irreducibility follows since each C is a maximal strongly connected component of
recurrent states.

LEMMA 5.14. Let ρ and λ be probability distributions on V(σ) and assume that M(σ)
converges to λ when starting in ρ. Then, for every f ∈ Imp(σ), and x̄1, . . . , x̄m ∈ Dar(f),∑

g∈V(σ)

ρ(g)fm(g(x̄1, . . . , x̄m)) ≥
∑

g∈V(σ)

λ(g)fm(g(x̄1, . . . , x̄m)).
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PROOF. By k times applying the m→ m fractional polymorphism 1
2 (χ1 + σ) to the

left-hand side, we have∑
g∈V(σ)

ρ(g)fm(g(x̄1, . . . , x̄m)) ≥
∑

g∈V(σ)

ρ(g)
1

2

(
fm(g(x̄1, . . . , x̄m))

+
∑

h∈supp(σ)

σ(h)fm(h ◦ g(x̄1, . . . , x̄m))
)

=
∑

g∈V(σ)

∑
g′∈V(σ)

ρ(g′)p(g′,g)fm(g(x̄1, . . . , x̄m))

≥ · · · ≥
∑

g∈V(σ)

ρ(k)(g)fm(g(x1, . . . , xm)),

where ρ(k)(g) =
∑

g′∈V(σ) ρ(g′)p(k)(g′,g). By assumption, ρ(k)(g) → λ(g) as k → ∞.
Since the right-hand side is a linear function in ρ(k)(g), the lemma follows by continu-
ity.

LEMMA 5.15. Let c1, . . . , cm ∈ Q>0 and x1, . . . , xm ∈ Q be such that
∑
i ci = 1, and

xj ≥
∑
i cixi for all j. Then, xj =

∑
i cixi for all j.

PROOF. Let C =
∑
i cixi. We have xj ≥ C for all j. If xj > C for some j, then

cjxj > cjC, so C =
∑
i cixi >

∑
i ciC = C, a contradiction. So, for all j, xj ≤ C, and

hence xj = C.

LEMMA 5.16. Let σ be an m → m fractional mapping and let C ∈ R(σ). Then, for
all f ∈ Imp(σ), x̄1, . . . , x̄m ∈ Dar(f), and g ∈ C,

fm(g(x̄1, . . . , x̄m)) =
∑
h∈C

λ(h)fm(h(x̄1, . . . , x̄m)),

where λ is the unique stationary distribution on M(C).

PROOF. For g ∈ C, let χg be the distribution on V that assigns probability 1 to g
and 0 to all other mappings in V. By Theorem 5.12(2), M(σ) converges to a stationary
distribution λ when starting in χg. By Lemma 5.14,

fm(g(x̄1, . . . , x̄m)) =
∑
h∈V

χg(h)fm(h(x̄1, . . . , x̄m)) ≥
∑
h∈V

λ(h)fm(h(x̄1, . . . , x̄m)).

Note that the chain M(σ) stays within the component C when starting in χg.
Therefore,

∑
h∈V λ(h)fm(h(x̄1, . . . , x̄m)) =

∑
h∈C λ(h)fm(h(x̄1, . . . , x̄m)), and M(C) con-

verges to the restriction of λ to C when starting in the restriction of χg to C. Hence,
by Theorem 5.12(1), λ(g) > 0 for all g ∈ C. It now follows from Lemma 5.15
with cg = λ(g) and xg = fm(g(x̄1, . . . , x̄m)), for g ∈ C, that fm(g(x̄1, . . . , x̄m)) =∑

h∈C λ(h)fm(h(x̄1, . . . , x̄m)).

We are now ready to prove Theorem 5.2 and Lemma 5.7.

PROOF (OF THEOREM 5.2). By Theorem 5.12(2), there exists a stationary distribu-
tion λ of M(σ) such that

∑
g′ σ(g′)p(k)(g′,g) → λ(g) as k → ∞, for all g ∈ V(σ). For

C ∈ R(σ), define w(C) =
∑

g∈C λ(g). By Theorem 5.12(3), λ(g) = 0 for g 6∈ R(σ), hence
w is a probability distribution on R(σ).

Let ρ be such that
∑

g∈C ρ(g) = w(C). Arbitrarily pick f ∈ Imp(σ) and x̄1, . . . , x̄m ∈
Dar(f). Note that, by Lemma 5.14, f ∈ Imp(λ). Define λ′ to be the distribution on C
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given by λ′(g) = λ(g)/w(C), for g ∈ C. Then, λ′ is a stationary distribution on M(C),
and by Theorem 5.12(1), it is unique. Therefore, by Lemma 5.16, we have∑

g∈C
ρ(g)fm(g(x̄1, . . . , x̄m)) =

∑
g∈C

ρ(g)
∑
h∈C

λ′(h)fm(h(x̄1, . . . , x̄m))

= w(C)
∑
h∈C

λ′(h)fm(h(x̄1, . . . , x̄m))

=
∑
h∈C

λ(h)fm(h(x̄1, . . . , x̄m)).

As this holds for every C ∈ R(σ), it follows that f ∈ Imp(ρ).

5.6. Proof of Lemma 5.7
PROOF (OF LEMMA 5.7). Let C ∈ R(σ̂) be the component containing g, and for

i = 1, 2, let Ωi = {h ∈ supp(ρ̂) | h(a1, a2) = (ai, ai)}.

f2((a1, ȳ
1), (a2, ȳ

2)) ≥
∑

h∈supp(ρ̂)

ρ̂(h)f2(h((a1, ȳ
1), (a2, ȳ

2))) (16)

=
∑
h∈Ω1

ρ̂(h)f2(h((a1, ȳ
1), (a1, ȳ

2)))

+
∑
h∈Ω2

ρ̂(h)f2(h((a2, ȳ
1), (a2, ȳ

2))) (17)

=
1

2
f2((a1, ȳ

1), (a1, ȳ
2)) +

1

2
f2((a2, ȳ

1), (a2, ȳ
2)) (18)

=
1

2
f2((a1, ȳ

1), (a2, ȳ
2)) +

1

2
f2((a1, ȳ

2), (a2, ȳ
1)), (19)

where (16) follows by applying ρ̂ and (17) follows from ρ̂ being idempotent and submod-
ular on {a1, a2}. To obtain (18), note that h ◦ g ∈ C, so by the first part of Lemma 5.16,
f2(h ◦ g((ai, x̄

1), (ai, x̄
2))) = f2(g((ai, x̄

1), (ai, x̄
2))) = f2((ai, ȳ

1), (ai, ȳ
2)) for all h ∈ Ωi

and i = 1, 2. Finally, (19) follows by rearranging the terms.
This shows the inequality f2((a1, ȳ

1), (a2, ȳ
2)) ≥ f2((a1, ȳ

2), (a2, ȳ
1)). The reverse

inequality follows analogously.

6. SYMMETRIC FRACTIONAL POLYMORPHISMS OF ALL ARITIES
An important step in the proof of Theorem 3.1 is showing that a binary symmetric
fractional polymorphism “generates” symmetric fractional polymorphisms of all higher
arities. This was proved in [Kolmogorov 2013]. In this section, we demonstrate the
power of the Markov chain machinery set up in Section 5.5 by giving an alternative
proof of this theorem. The proof idea is the same as that of [Kolmogorov 2013], but the
proof is substantially shortened.

THEOREM 6.1 ([KOLMOGOROV 2013]). Suppose Γ is a constraint language with a
symmetric fractional polymorphism of arity 2. Then Γ has symmetric fractional polymor-
phisms of all arities.

PROOF. It suffices to prove that if Γ has a symmetric fractional polymorphism of
arity m− 1 ≥ 2, then it has one of arity m. Let ω be an (m− 1)-ary symmetric fractional
polymorphism of Γ. For 1 ≤ k ≤ m, let δk ∈ O(m→m−1)

D denote the mapping obtained by
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omitting the kth operation from the identity mapping in O(m→m)
D . Define

σ :=
∑

h∈supp(ω)

ω(h)χ(h◦δ1,...,h◦δm).

Then, σ is a fractional polymorphism of Γ. Let ρ be a fractional polymorphism of Γ
of arity m→ m as given by Theorem 5.2 applied to σ, and let p be any symmetric and
permuting mapping of arity m→ m. For example, let p be a mapping that orders its m
inputs according to some fixed total order on D. We claim that ρ′ = ρ ◦ p is a fractional
polymorphism of Γ, from which the theorem follows as ρ′ is clearly symmetric.

Let f ∈ Γ and x̄1, . . . , x̄m ∈ Dar(f). It suffices to show that for every g ∈ supp(ρ),
fm(g(x̄1, . . . , x̄m)) = fm(g ◦ p(x̄1, . . . , x̄m)). We do this by showing that for any 1 ≤
i ≤ ar(f) and 1 ≤ j1, j2 ≤ m, interchanging xj1i and xj2i does not alter the value of
fm(g(x̄1, . . . , x̄m)). The result then follows by repeatedly interchanging such pairs of
elements in (x̄1, . . . , x̄m) to obtain p(x̄1, . . . , x̄m).

For 1 ≤ k ≤ m, let πk ∈ O(m)
D denote the projection on the kth component. Since

m ≥ 3, we can pick k ∈ {1, . . . ,m} \ {j1, j2}. Let h ∈ supp(σ) and let τ be a permutation
on {1, . . . ,m} that interchanges j1 and j2. By definition of σ,

πk ◦ h(x1, . . . , xm) = πk ◦ h(xτ(1), . . . , xτ(m)), (20)

for x1, . . . , xm ∈ D. Furthermore, this identity is seen to hold for any h = h` ◦ · · · ◦ h1 ∈
V(σ) by induction over `.

Let C ∈ R(σ) be the component containing g and let λ be the unique stationary
distribution on M(C). Then we have∑

h∈C

λ(h)fm−1(δk ◦ h(x̄1, . . . , x̄m)) ≥
∑
h∈C

λ(h)
∑

h∈supp(ω)

ω(h)f(h ◦ δk ◦ h(x̄1, . . . , x̄m)

=
∑
h∈C

λ(h)
∑

h′∈supp(σ)

σ(h′)f(πk ◦ h′ ◦ h(x̄1, . . . , x̄m))

=
∑
h∈C

λ(h) · 2
∑
h′∈C

p(h,h′)f(πk ◦ h′(x̄1, . . . , x̄m))

−
∑
h∈C

λ(h)f(πk ◦ h(x̄1, . . . , x̄m)),

=
∑
h∈C

λ(h)f(πk ◦ h(x̄1, . . . , x̄m)), (21)

where the inequality follows from applying (1) to ω, the first equality follows from
the definition of σ, the second equality follows from the definition of the transition
probabilities for M(C):∑

h′∈C

p(h,h′)f(πk ◦ h′(x̄1, . . . , x̄m)) =
1

2

∑
h′∈supp(σ)

σ(h′)f(πk ◦ h′ ◦ h(x̄1, . . . , x̄m))

+
1

2
f(πk ◦ h(x̄1, . . . , x̄m)),

and the third equality follows by interchanging the order of summation in the first
part and then using the fact that λ is the stationary distribution of M(C). By (21)
and Lemma 5.15 with ck = 1

m and xk = −
∑

h∈C λ(h)f(πk ◦ h(x̄1, . . . , x̄m)), we have∑
h∈C λ(h)fm(h(x̄1, . . . , x̄m)) =

∑
h∈C λ(h)f(πk ◦ h(x̄1, . . . , x̄m), so by Lemma 5.16, it
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follows that

fm(g(x̄1, . . . , x̄m)) =
∑
h∈C

λ(h)f(πk ◦ h(x̄1, . . . , x̄m)). (22)

By (20), interchanging xj1i and xj2i does not alter the value of the right-hand side of (22)
and hence it does not alter the value of fm(g(x̄1, . . . , x̄m)). The result follows.

7. CONCLUSIONS
In this work we have completely answered the question of which finite-valued constraint
languages on finite domains are solvable exactly in polynomial time. In particular, we
have characterised the tractable constraint languages as those that admit a binary
symmetric fractional polymorphism. We have also shown tractability to be a polynomial-
time checkable condition, assuming that the constraint language is a core. By previous
results, this implies that all tractable constraint languages are solvable by the basic
linear programming relaxation. Thus, we have demonstrated that the basic linear
programming (BLP) relaxation suffices for exact solvability of finite-valued constraint
languages and that, in this context, semidefinite programming relaxations do not add
any power.
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BERMAN, J., IDZIAK, P., MARKOVIĆ, P., MCKENZIE, R., VALERIOTE, M., AND WILLARD, R. 2010. Varieties
with few subalgebras of powers. Transactions of the American Mathematical Society 362, 3, 1445–1473.

BULATOV, A. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of
the ACM 53, 1, 66–120.

BULATOV, A., KROKHIN, A., AND JEAVONS, P. 2005. Classifying the Complexity of Constraints using Finite
Algebras. SIAM Journal on Computing 34, 3, 720–742.

BULATOV, A. A. 2011. Complexity of conservative constraint satisfaction problems. ACM Transactions on
Computational Logic 12, 4. Article 24.

CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in relational
data bases. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing (STOC’77). ACM,
77–90.

CHEKURI, C., KHANNA, S., NAOR, J., AND ZOSIN, L. 2004. A linear programming formulation and ap-
proximation algorithms for the metric labeling problem. SIAM Journal on Discrete Mathematics 18, 3,
608–625.

COHEN, D., COOPER, M., JEAVONS, P., AND KROKHIN, A. 2005. Supermodular Functions and the Complexity
of MAX-CSP. Discrete Applied Mathematics 149, 1-3, 53–72.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: May 2014.



1:28 J. Thapper and S. Živný
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COOPER, M. C., DE GIVRY, S., SÁNCHEZ, M., SCHIEX, T., ZYTNICKI, M., AND WERNER, T. 2010. Soft arc
consistency revisited. Artificial Intelligence 174, 7–8, 449–478.
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A. INFINITE CONSTRAINT LANGUAGES
The main result of this article, Theorem 3.4, establishes a dichotomy for finite-valued
constraint languages of finite size. The finiteness is important when passing from the
primal to the dual linear programme, and thus could be considered an artefact of our
proof techniques. However, our algorithm, the BLP, only depends on the instance and
not in some exponential way on the constraint language. We are therefore able to extend
our results to finite-valued constraint languages of infinite size; that is, the setting
when the cost functions are still represented extensionally.

To state the dichotomy for infinite constraint languages, we need to allow the frac-
tional polymorphisms to take on real values. Hence for the rest of this section, an m-ary
fractional operation is a function ω : O(m)

D → R≥0, ‖ω‖1 = 1. Fractional polymorphisms
are defined by inequality (1), using real-valued fractional operations. Note however
that the constraint languages, although infinite, still consist of rational-valued cost
functions only.

THEOREM A.1. LetD be an arbitrary finite set, let Γ be a (possibly infinite) constraint
language defined on D, and let Γ′ be a core of Γ.
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— Either Γ has a binary symmetric real-valued fractional polymorphism and BLP solves
VCSP(Γ);

— or (MC) holds for Γ′c and VCSP(Γ) is NP-hard.

It follows from [Thapper and Živný 2012; Kolmogorov 2013; Kolmogorov et al. 2015]
that for a (possibly infinite) constraint language Γ with a binary symmetric real-valued
fractional polymorphism, Γ is not only tractable but also globally tractable. Conversely,
we need to show that if Γ does not have a binary symmetric fractional polymorphism,
then the same holds for some finite subset of Γ. We can then apply Theorem 1.1 to
conclude that Γ is NP-hard. This direction is a consequence of the following result, when
Ω is taken as the set of symmetric m-ary operations on D. A similar result for countably
infinite constraint languages is proved in [Kolmogorov et al. 2015].

LEMMA A.2. Let Γ be a (possibly infinite) constraint language. Let Ω ⊆ O(m)
D and

assume that every finite subset Γ′ ⊆ Γ has a fractional polymorphism with support in Ω.
Then Γ has a fractional polymorphism with support in Ω.

PROOF. Note that |Ω| is finite and let n = |Ω|. Let Y be the set of fractional operations
ω : Ω → R≥0, ‖ω‖1 = 1. Then Y is a compact set in Rn. Assume, for the sake of
contradiction, that Γ does not have a fractional polymorphism with support in Ω. Then,
for every y ∈ Y , there is some fy ∈ Γ and x̄1, . . . , x̄k ∈ Dar(fy) such that∑

g∈Ω

y(g)fy(g(x̄1, . . . , x̄k)) > fmy (x̄1, . . . , x̄k).

Furthermore, this inequality holds in an open neighbourhood Uy ⊆ Y of y, so {Uy}y∈Y
is an open cover of Y . Since every open cover of a compact set has a finite subcover, this
provides us with a finite subset of Γ that does not have a fractional polymorphism with
support in Ω. This is a contradiction, hence Γ must have a fractional polymorphism
with support in Ω.

The proof of Lemma A.2 relies on real-valued fractional polymorphisms, and the
obvious question to ask is then whether real values are necessary for Theorem A.1 to
hold, or whether it is an artefact of our proof techniques. Perhaps unsurprisingly, we
can demonstrate that real-valued fractional polymorphisms are necessary in some cases.
The following construction is based on a language from [Huber et al. 2014], where it
was used for a different result; we will use the same notation as in [Huber et al. 2014].

Let D = {−1, 0, 1} and fix the partial order −1 > 0 < 1 on D. For a ∈ {−1, 1}, define
binary operations ∨a and ∧0 as follows:

1 ∨a −1 = −1 ∨a 1 = a and x ∨a y = max(x, y) wrt the above order if {x, y} 6= {−1, 1};

1 ∧0 −1 = −1 ∧0 1 = 0 and x ∧0 y = min(x, y) wrt the above order if {x, y} 6= {−1, 1}.
Let α ∈ (0, 1] be an arbitrary real constant, and define the fractional operation ω

as follows: ω(∧0) = 1/2, ω(∨0) = α/2, and ω(∨1) = (1 − α)/2. A cost function is called
α-bisubmodular if it admits the fractional polymorphism ω.

For an arbitrary rational α ∈ (0, 1], write α = p/q with p, q ≥ 1, p and q coprime. Define
the unary cost functions e, uα, vα : D → Q and the binary cost function f : D2 → Q as
follows:

−1 0 1
e 1 0 1
uα p+ q q 0
vα 0 p p+ q

f −1 0 1
−1 3 2 1

0 2 0 0
1 1 0 0
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Note that uα and vα are uniquely defined given α.

PROPOSITION A.3. Fix an arbitrary irrational value x ∈ (0, 1) and define

Γx := {vα | α ∈ Q ∩ (0, x)} ∪ {uα | α ∈ Q ∩ (x, 1]} ∪ {e, f}.
(1) Γx is x-bisubmodular and BLP solves VCSP(Γx), but
(2) Γx does not admit any rational-valued binary symmetric fractional polymorphism.

PROOF. We first show part (1). It follows from the definition that unary function u is
x-bisubmodular if, and only if,

(1 + x) · u(0) ≤ u(−1) + x · u(1). (23)

For the cost function e, condition (23) becomes (1+x)·0 ≤ 1+x·1, so e is x-bisubmodular.
For the cost function uα, since x < α = p/q, we have (1 + x)q < p+ q, so (23) holds and
uα is x-bisubmodular. Similarly, one shows that vα is x-bisubmodular for x > α.

It remains to show that f is x-bisubmodular. By an alternative characterisation [Hu-
ber et al. 2014, Proposition 2], f is x-bisubmodular if and only if (i) the unary cost
functions obtained from f by fixing one argument are x-bisubmodular, and (ii) f is
submodular in every orthant; this means that for every c̄ ∈ {−1, 1}2, the fractional poly-
morphism inequality (1) holds for x-bisubmodularity for all ā1, ā2 ∈ D2 with ā1, ā2 ≤ c̄
(here we used the componentwise order on D).

First we verify that the unary cost functions f(−1, x), f(0, x), and f(1, x) are x-
bisubmodular. The inequality (23) becomes (1 + x) · 2 ≤ 3 + x, (1 + x) · 0 ≤ 2 + 0 · x, and
(1 + x) · 0 ≤ 1 + x, respectively. Since x ∈ (0, 1), all three inequalities hold, so all three
cost functions are x-bisubmodular. By symmetry, f(x,−1), f(x, 0), and f(x, 1) are also
x-bisubmodular.

Next, we verify that f is submodular in every orthant:

— f is constant 0 and hence trivially submodular in the orthant (1, 1).
— In the orthant (−1,−1), the only nontrivial case to verify is ā1 = (0,−1) and ā2 =

(−1, 0). We have, after multiplying by 2, f(0,−1) + f(−1, 0) = 2 + 2 ≥ 1 · f(0, 0) +
x · f(−1,−1) + (1 − x) · fα(−1,−1) = f(−1,−1) = 3, which holds true. Hence, f is
submodular in the orthant (−1,−1).

— Finally, the two cases c̄ = (1,−1) and c̄ = (−1, 1) are symmetric. In the orthant
(1,−1), the only nontrivial case to verify is ā1 = (0,−1) and ā2 = (1, 0). Here, we have
f(0,−1) + fα(1, 0) = 2 + 0 ≥ f(0, 0) + xf(1,−1) + (1 − x) · f(1,−1) = fα(1,−1) = 1,
which holds true. Hence, f is submodular in the orthants (1,−1) and (−1, 1).

We conclude that Γx is x-bisubmodular, and hence solved by the BLP relaxation.
We now show part (2). Let ω be an arbitrary binary symmetric fractional polymor-

phism of Γx. For a ∈ {−1, 0, 1}, define wa =
∑
g∈O(2)

D | g(−1,1)=a
ω(g). Clearly, 0 ≤ wa ≤ 1

and w−1 + w0 + w1 = 1. It suffices to show that at least one of the wa is irrational,
a ∈ {−1, 0, 1}, which implies the existence of a binary operation g with ω(g) 6∈ Q.

Let α = p/q with α < x. Applying the fractional polymorphism inequality (1) to
vα ∈ Γx, we have (p + q)/2 = (vα(−1) + vα(1))/2 ≥ w0vα(0) + w1vα(1) + w−1vα(−1) =
w0p + w1(p + q) + w−10, which is equivalent to w0 ≤ (1 + 1/α)(1/2 − w1). Since this
inequality holds for all rational α < x, we have, in the limit as α→ x from below,

w0 ≤ (1 + 1/x)(1/2− w1). (24)

A similar argument for the cost function uα ∈ Γx, for α > x, leads to the inequality
w0 ≤ (1 + α)(1/2− w−1) and, in the limit as α→ x from above,

w0 ≤ (1 + x)(1/2− w−1). (25)
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Add x times the inequality (24) to the inequality (25) to obtain (1 + x)w0 ≤ (1 + x)(1−
w1 − w−1). Since w−1 + w0 + w1 = 1, this inequality must hold with equality, and hence
the inequalities (24) and (25) can be replaced by the equalities w0 = (1 + 1/x)(1/2− w1)
and w0 = (1 + x)(1/2 − w−1). Since x is irrational, it follows that either w0 = 0 and
w−1 = w1 = 1/2, or at least one of w−1, w0, and w1 is irrational. We demonstrate
that the latter holds by showing that w−1 < 1/2. Applying the fractional polymorphism
inequality (1) to f ∈ Γx, we have 1 = (1+1)/2 = (f(−1, 1)+f(1,−1))/2 ≥ w−1f(−1,−1)+
w0f(0, 0) + w1f(1, 1) = w−1 · 3, which gives w−1 ≤ 1/3 < 1/2, and the claim follows.
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