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Abstract. We give a precise algebraic characterisation of the power of Sherali-Adams relaxations
for solvability of valued constraint satisfaction problems to optimality. The condition is that of
bounded width which has already been shown to capture the power of local consistency methods for
decision CSPs and the power of semidefinite programming for robust approximation of CSPs.

Our characterisation has several algorithmic and complexity consequences. On the algorithmic
side, we show that several novel and many known valued constraint languages are tractable via
the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly
simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy
theorem for valued constraint languages that can express an injective unary function. This implies
a simple proof of the dichotomy theorem for conservative valued constraint languages established
by Kolmogorov and Živný [JACM’13], and also a dichotomy theorem for the exact solvability of
Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite
domains. Our result improves on several previous classifications by Khanna et al. [SICOMP’00],
Jonsson et al. [SICOMP’08], and Uppman [ICALP’13].
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1. Introduction. Convex relaxations are one of the most powerful techniques
for designing polynomial-time exact and approximation algorithms [17, 3]. The idea
is to formulate the problem at hand as an integer program and relax it to a convex
program which can be solved in polynomial time, such as a linear program (LP) or a
semidefinite program (SDP). A solution to the problem is then obtained by designing
a (possibly randomised) polynomial-time algorithm that converts the solution to such
a relaxation into an integer solution to the original problem.

Convex relaxations can be strengthened by including additional constraints which
are satisfied by an integer solution. This process of generating stronger relaxations by
adding larger (but still local) constraints is captured by various hierarchies of convex
relaxations, including the hierarchy of linear programming relaxations proposed by
Sherali and Adams [60], that by Lovász and Schrijver [55], and their semidefinite
programming versions, including the hierarchy of Lasserre [53] (see also [54] for a nice
comparison of these hierarchies). For an integer program with n variables taking values
in {0, 1}, the convex program obtained by n levels of any of the above-mentioned
hierarchies has integrality gap 1, that is, it gives an exact solution (but the program
may take exponential time to solve). Since the size of a program obtained by k levels
of these hierarchies is nO(k), for a constant k, the program can be solved in polynomial
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time.
In this paper we study constant level Sherali-Adams relaxations for exact solvability

of discrete optimisation problems. We do this within the framework of constraint
satisfaction problems, which captures a large family of both theoretical and practical
problems. An instance of the valued constraint satisfaction problem (VCSP) is given
by a collection of variables that is assigned labels from a given finite domain with
the goal to minimise an objective function given by a sum of weighted relations (cost
functions), each depending on some subset of the variables [20]. The weighted relations
can take on finite rational values and positive infinity.

By varying the codomain of the weighted relations, we get a variety of interesting
problems. When the codomain is {0,∞}, we get the class of decision problems known
as constraint satisfaction problems [30] with the goal to determine whether or not
there is a labelling for all variables that evaluates the objective function to zero. When
the codomain is {0, 1}, we get the class of optimisation problems known as minimum
constraint satisfaction problems [23, 24, 42]. When the codomain is Q, we get the
class of optimisation problems known as finite-valued (or generalised [57]) constraint
satisfaction problems [66]. The special case of having a domain of size two has been
studied extensively under the name of pseudo-Boolean optimisation [8, 22]. Finally,
by allowing a codomain to be both Q and positive infinity, we get the large class of
problems known as valued constraint satisfaction problems [20, 48]. Intuitively, the
infinite value deems certain labellings forbidden and thus all constraints are required to
be satisfied, whereas the rational values model the optimisation aspect of the problem.

We remark that this framework is more general than that of mixed CSPs with hard
and soft constraints used in the approximation community [49], where each constraint
is either hard or soft; hard constraints correspond to {0,∞}-valued weighted relations
in our framework, and a soft constraint corresponds to a {0, w}-valued weighted
relation, where w is the weight of the constraint. Thus, all constraints in mixed CSPs
are 2-valued.

Valued CSPs are sometimes also called general-valued CSPs to emphasise the fact
that (decision) CSPs are a special case of valued CSPs.

For constraint satisfaction problems, an important algorithmic technique is local
consistency methods, i.e. considering a bounded number of variables at a time and
propagating infeasible partial assignments. Problems for which such techniques suffice
to decide satisfiability are said to have bounded width. In an important series of papers,
[56, 52, 10, 5], the property of having bounded width has been shown to be equivalent
to a universal-algebraic condition, now known as the “bounded width condition”. There
is a clear relation between the local propagation in consistency methods for decision
CSPs and the consistent marginals-condition of Sherali-Adams relaxations. In this
paper, we demonstrate the applicability of powerful universal-algebraic techniques,
developed for decisions CSPs, in the study of linear programming hierarchies for valued
CSPs.

Contributions. A set Γ of weighted relations on some fixed finite domain is called
a valued constraint language. We denote by VCSP(Γ) the class of VCSP instances
with all weighted relations from Γ.

In our first result, we give an algebraic [11, 18] characterisation of the power of
Sherali-Adams relaxations for VCSPs. Theorem 3.3, presented in Section 3, shows
that for a valued constraint language Γ of finite size the following three statements
are equivalent: (i) Γ is tractable via a constant level Sherali-Adams relaxation; (ii)
Γ is tractable via the third level Sherali-Adams relaxation; (iii) the support clone of
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Γ contains (not necessarily idempotent) m-ary weak near-unanimity operations for
every m ≥ 3.1 The condition (iii) is precisely that of “bounded width” for constraint
languages with codomain {0,∞} (such languages are known as crisp) [56, 52, 10, 5].
Note that the implication “(ii) =⇒ (i)” is trivial.

The implication “(iii) =⇒ (ii)”, proved in Section 4, is shown via linear pro-
gramming duality and fundamentally relies on [5] and [4]. This result simplifies
and generalises several previously obtained tractability results for valued constraint
languages, as discussed in Section 3.3. For example, valued constraint languages
with a tournament pair multimorphism were previously known to be tractable using
ingenious application of various consistency techniques, advanced analysis of constraint
networks using modular decompositions, and submodular function minimisation [19].
Here, we show that an even less restrictive condition (having a binary conservative
commutative operation in some fractional polymorphism) ensures that the third level
of the Sherali-Adams relaxation solves all instances to optimality.

The implication “(i) =⇒ (iii)”, proved in Section 5, is shown by proving that, given
a language Γ that violates (iii), Γ can simulate linear equations in some Abelian group.
This result is known for {0,∞}-valued constraint languages [5]. It suffices to show that
linear equations can fool constant level Sherali-Adams relaxations, which is proved
in Section 7, and that the “simulation” preserves bounded level of Sherali-Adams
relaxations for valued constraint languages, which is proved in Section 6. Previously,
it was only known that this “simulation” preserves polynomial-time reducibility. One
immediate corollary of our result is a classification of conservative valued constraint
languages [45] without relying on [61]. In fact we give an alternative and still simple
proof of the complexity classification of conservative valued constraint languages [45],
which implies that tractable conservative valued constraint languages are captured by
a majority operation in the support clone, which was not previously known.

Overall, we give a precise characterisation of the power of Sherali-Adams relaxations
for exact solvability of VCSPs. This rather surprising result demonstrates how robust
the concept of bounded width is, capturing not only the power of local consistency
methods for decision CSPs [10, 5, 13] and the class of decision CSPs that can be
robustly approximated [6], but also the power of Sherali-Adams relaxations for exact
solvability of VCSPs.

Minimum-Solution [40] problems are special types of VCSPs that involve {0,∞}-
valued weighted relations together with a single unary Q-valued weighted relation that
is required to be injective. (The natural encoding of Vertex Cover as a VCSP instance is
of this kind.) Minimum-Solution problems include integer programming over bounded
domains and can be viewed as a generalisation of Min-Ones problems [24, 42] to larger
domains. Compare this to the result [21] that any VCSP instance is equivalent to a
VCSP instance with only binary relations and unary (not necessarily injective) finite-
valued weighted relations. Hence, unless we settle the CSP dichotomy conjecture [30],
some additional requirement on the unary weighted relations (such as injectivity) is
necessary.

As a corollary of our characterisation, we give, in Section 3.4, a complete complexity
classification of exact solvability of Minimum-Solution problems over arbitrary finite
domains, thus improving on previous partial classifications for domains of size two [42]
and three [68], homogeneous and maximal (under a certain algebraic conjecture)
languages [39] and on graphs with few vertices [41]. Theorem 3.19 shows that the
Minimum-Solution problem is NP-hard unless it satisfies the bounded width condition.

1The precise definition of weak near-unanimity operations can be found in Section 2.
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Previous partial results included ad-hoc algorithms for various special cases. Our
result shows that one algorithm, the third level of the Sherali-Adams relaxation, solves
all tractable cases and is thus universal. As a matter of fact, we actually prove a
complexity classification for a larger class of problems that includes Minimum-Solutions
problems as a special case, as described in detail in Section 3.4.

Related work. The first level of the Sherali-Adams hierarchy is known as the
basic linear programming (BLP) relaxation [16]. In [63], the authors gave a precise
algebraic characterisation of Γ for which any instance of VCSP(Γ) is solved to optimality
by BLP, see also [44]. The characterisation proved important not only in the study of
VCSPs [36] and other classes of problems [34], but also in the design of fixed-parameter
algorithms [37]. In [66], it was then shown that for finite-valued CSPs, the BLP solves
all tractable cases; i.e. if BLP fails to solve any instance of some finite-valued constraint
language then this language is NP-hard. The BLP has been considered in the context
of CSPs for robust approximability [50, 27] and constant-factor approximation [29, 26].
Higher levels of Sherali-Adams hierarchy have been considered for (in)approximability
of CSPs [28, 14, 70]. Semidefinite programming relaxations have also been considered in
the context of CSPs for approximability [57] and robust approximability [6]. Concrete
lower bounds on Sherali-Adams and other relaxations include [59, 15, 32, 1]. Whilst
the complexity of valued constraint languages is open, it has been shown that a
dichotomy for constraint languages, conjectured in [30], implies a dichotomy for valued
constraint languages [43]. Our results give a complete complexity classification for a
large class of VCSPs without any dependence on the dichotomy conjecture [30]. Since
the announcement of our results [65], the tractability results obtained in this paper were
shown using different methods (preprocessing combined with an LP relaxation) [43].

One ingredient of our proof is the fact that constant level Sherali-Adams relaxations
cannot solve exactly instances involving equations over a non-trivial Abelian group.
This is known to follow, via [67], from a stronger result of Grigoriev [33], later
rediscovered by Schoenebeck [58], that limits the power of Ω(n) levels of Lasserre
SDP relaxations for approximately solving Max-CSPs involving equations. However, a
formal proof would require the definition of SDP relaxations that are not in the scope
of this article. Rather, we provide here a direct, elementary proof of this fact and
observe that our proof actually gives a gap instance for Sherali-Adams relaxations of
level Θ(

√
n). This also has the advantage of our proof being self-contained.

2. Preliminaries.

2.1. Valued CSPs. We denote by [m] the set {1, 2, . . . ,m}. Let Q = Q ∪ {∞}
denote the set of rational numbers extended with positive infinity. Throughout the
paper, let D be a fixed finite set of size at least two, also called a domain; we call the
elements of D labels.

Definition 2.1. An r-ary weighted relation over D is a mapping φ : Dr → Q.
We write ar(φ) = r for the arity of φ.

A weighted relation φ : Dr → Q is called finite-valued if φ(x) <∞ for all x ∈ Dr.
A weighted relation φ : Dr → {0,∞} can be seen as the (ordinary) relation {x ∈ Dr |
φ(x) = 0}. We will use both viewpoints interchangeably.

For any r-ary weighted relation φ, we denote by Feas(φ) = {x ∈ Dr | φ(x) <∞}
the underlying r-ary feasibility relation, and by Opt(φ) = {x ∈ Feas(φ) | ∀y ∈ Dr :
φ(x) ≤ φ(y)} the r-ary optimality relation, which contains the tuples on which φ is
minimised.
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Definition 2.2. Let V = {x1, . . . , xn} be a set of variables. A valued constraint
over V is an expression of the form φ(x) where φ is a weighted relation and x ∈ V ar(φ).
The tuple x is called the scope of the constraint.

We will use the notational convention to denote by Xi the set of variables occurring
in the scope xi.

Definition 2.3. An instance I of the valued constraint satisfaction problem
(VCSP) is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of
labels, and an objective function φI expressed as follows:

(1) φI(x1, . . . , xn) =
q∑
i=1

φi(xi) ,

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint. Each constraint may appear
multiple times in I. An assignment to I is a map σ : V → D. The goal is to find an
assignment that minimises the objective function.

For a VCSP instance I, we write Val(I, σ) for φI(σ(x1), . . . , σ(xn)), and Opt(I)
for the minimum of Val(I, σ) over all assignments.

An assignment σ with Val(I, σ) < ∞ is called satisfying. A VCSP instance I
is called satisfiable if there is a satisfying assignment to I. CSPs are a special case
of VCSPs with (unweighted) relations with the goal to determine the existence of a
satisfying assignment.

A valued constraint language, or just a constraint language, over D is a set of
weighted relations over D. We denote by VCSP(Γ) the class of all VCSP instances in
which the weighted relations are all contained in Γ. A constraint language ∆ is called
crisp if ∆ contains only (unweighted) relations. For a crisp language ∆ we denote
by CSP(∆) the class VCSP(∆) to emphasise the fact that there is no optimisation
involved.

A valued constraint language Γ is called tractable if VCSP(Γ′) can be solved (to
optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called NP-hard
if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ.

2.2. Fractional Polymorphisms. Given an r-tuple x ∈ Dr, we denote its ith
entry by x[i] for 1 ≤ i ≤ r. A mapping f : Dm → D is called an m-ary operation on
D; f is idempotent if f(x, . . . , x) = x. We apply an m-ary operation f to m r-tuples
x1, . . . ,xm ∈ Dr coordinatewise, that is,

(2) f(x1, . . . ,xm) = (f(x1[1], . . . ,xm[1]), . . . , f(x1[r], . . . ,xm[r])) .

Definition 2.4. Let φ be a weighted relation on D and let f be an m-ary operation
on D. We call f a polymorphism of φ if, for any x1, . . . ,xm ∈ Feas(φ), we have that
f(x1, . . . ,xm) ∈ Feas(φ).

For a valued constraint language Γ, we denote by Pol(Γ) the set of all operations
which are polymorphisms of all φ ∈ Γ. We write Pol(φ) for Pol({φ}).

A probability distribution ω over the set of m-ary operations on D is called an
m-ary fractional operation. We define supp(ω) to be the set of operations assigned
positive probability by ω.

The following two notions are known to capture the complexity of valued constraint
languages [18, 47] and will also be important in this paper.
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Definition 2.5. Let φ be a weighted relation on D and let ω be an m-ary fractional
operation on D. We call ω a fractional polymorphism of φ if supp(ω) ⊆ Pol(φ) and
for any x1, . . . ,xm ∈ Feas(φ), we have

(3) E
f∼ω

[φ(f(x1, . . . ,xm))] ≤ avg{φ(x1), . . . , φ(xm)} .

For a valued constraint language Γ, we denote by fPol(Γ) the set of all fractional
operations which are fractional polymorphisms of all weighted relations φ ∈ Γ. We say
that Γ is improved by ω if ω ∈ fPol(Γ). We write fPol(φ) for fPol({φ}).

Example 2.6. Consider the domain D = {0, 1} and the two binary operations min
and max on D that return the smaller and the larger its two arguments, respectively.
A valued constraint language on D is called submodular if it has the fractional
polymorphism ω defined by ω(min) = ω(max) = 1

2 .
Definition 2.7. Let Γ be a valued constraint language on D. We define

(4) supp(Γ) =
⋃

ω∈fPol(Γ)

supp(ω) .

An m-ary projection is an operation of the form π
(m)
i (x1, . . . , xm) = xi for some

1 ≤ i ≤ m. Projections are polymorphisms of all valued constraint languages.
The composition of an m-ary operation f : Dm → D with m n-ary operations

gi : Dn → D for 1 ≤ i ≤ m is the n-ary function f [g1, . . . , gm] : Dn → D defined by

(5) f [g1, . . . , gm](x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) .

A clone of operations is a set of operations on D that contains all projections and
is closed under composition. Pol(Γ) is a clone for any valued constraint language Γ.

Lemma 2.8. For any valued constraint language Γ, supp(Γ) is a clone.
We note that Lemma 2.8 has also been observed in [31] and in [47]. For complete-

ness, we give a proof here. (Our proof is slightly different from the proofs in [31, 47]
as we have defined fractional polymorphisms as probability distributions.)

Proof. Observe that supp(Γ) contains all projections as τm ∈ fPol(Γ) for every
m ≥ 1, where τm is the fractional operation defined by τm(π(m)

i ) = 1
m for every

1 ≤ i ≤ m. Thus we only need to show that supp(Γ) is closed under composition.
Let f ∈ supp(Γ) be an m-ary operation with ω(f) > 0 for some ω ∈ fPol(Γ).

Moreover, let gi ∈ supp(Γ) be n-ary operations with µi(gi) > 0 for some µi ∈ fPol(Γ),
where 1 ≤ i ≤ m. We define an n-ary fractional operation

ω′(p) = Pr
t∼ω
hi∼µi

[t[h1, . . . , hm] = p] .(6)

Since ω(f) > 0 and µi(gi) > 0 for all 1 ≤ i ≤ m, we have ω′(f [g1, . . . , gm]) > 0.
A straightforward verification shows that ω′ ∈ fPol(Γ). Consequently, f [g1, . . . , gm] ∈
supp(Γ).

The following lemma is a generalisation of [66, Lemma 2.9] from arity one to
arbitrary arity and from finite-valued to valued constraint languages, but the proof
is analogous. A special case has also been observed, in the context of Min-Sol
problems [68], by Hannes Uppman [69].
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Lemma 2.9. Let Γ be a valued constraint language of finite size on a domain D
and let f ∈ Pol(Γ). Then, f ∈ supp(Γ) if, and only if, f ∈ Pol(Opt(φI)) for all
instances I of VCSP(Γ).

Proof. Let m be the arity of f . The operation f is in supp(Γ) if, and only if, there
exists a fractional polymorphism ω with f ∈ supp(ω). This is the case if, and only if,
the following system of linear inequalities in the variables ω(g) for m-ary g ∈ Pol(Γ) is
satisfiable:∑

g∈Pol(Γ)

ω(g)φ(g(x1, . . . ,xm)) ≤ avg{φ(x1), . . . , φ(xm)}, ∀φ ∈ Γ,xi ∈ Feas(φ),

∑
g∈Pol(Γ)

ω(g) = 1,

ω(f) > 0,
ω(g) ≥ 0, ∀m-ary g ∈ Pol(Γ).(7)

By Farkas’ lemma (e.g. [66, Lemma 2.8]), the system (7) is unsatisfiable if, and
only if, the following system in variables z(φ,x1, . . . ,xm), for φ ∈ Γ,xi ∈ Feas(φ), is
satisfiable:

∀m-ary g ∈ Pol(Γ)∑
φ∈Γ

xi∈Feas(φ)

z(φ,x1, . . . ,xm) (avg{φ(x1), . . . , φ(xm)} − φ(g(x1, . . . ,xm))) ≤ 0

∀φ ∈ Γ,xi ∈ Feas(φ)∑
φ∈Γ

xi∈Feas(φ)

z(φ,x1, . . . ,xm) (avg{φ(x1), . . . , φ(xm)} − φ(f(x1, . . . ,xm))) < 0,

z(φ,x1, . . . ,xm) ≥ 0,(8)

First, assume that f 6∈ supp(Γ) so that (8) has a feasible solution z. Note that
by scaling we may assume that z is integral. Let V (m) = {vx | x ∈ Dm} and let
v = (v1, . . . , vn) be an enumeration of V (m). Define ι : V (m) → Dm by ι(vx) = x and
let I be the instance of VCSP(Γ) with variables V (m) and objective function:

φI(v) =∑
φ∈Γ

xi∈Feas(φ)

z(φ,x1, . . . ,xm)φ(ι−1(x1[1], . . . ,xm[1]), . . . , ι−1(x1[ar(φ)], . . . ,xm[ar(φ)])),

where the multiplication by z is simulated by taking the corresponding constraint
with multiplicity z. According to (8), every projection π

(m)
i induces an optimal

assignment π(m)
i ◦ι to I. Interpreted as Dm-tuples, we therefore have π(m)

i ∈ Opt(φI)
for 1 ≤ i ≤ m. On the other hand, (8) states that f ◦ ι is not an optimal assignment, so
f(π(m)

1 , . . . , π
(m)
m ) 6∈ Opt(φI). In other words, f 6∈ Pol(Opt(φI)), and I is an instance

of VCSP(Γ).
For the opposite direction, assume that f ∈ supp(Γ), so that (8) is unsatisfiable. Let

I be an instance of VCSP(Γ) with objective function φI(y1, . . . , yn) =
∑
p φp(yp). Let

σ1, . . . , σm ∈ Opt(φI). We will consider σj both as tuples and as assignments V → D.
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In particular, σj(yp) is the projection of σj onto the scope yp. Let z(φ,x1, . . . ,xm) be
the number of indices p for which φ = φp and σj(yp) = xj for every 1 ≤ j ≤ m. Then,∑

φ∈Γ
xi∈Feas(φ)

z(φ,x1, . . . ,xm) avg{φ(x1), . . . , φ(xm)} =
∑
p

avgj{φp(σj(yp))}

= avgj{
∑
p

φp(σj(yp))}

= Opt(I)

and, for all g ∈ Pol(Γ),∑
φ∈Γ

xi∈Feas(φ)

z(φ,x1, . . . ,xm)φ(g(x1, . . . ,xm)) =
∑
p

φp(g(σ1(yp), . . . , σm(yp))).

It follows that all non-strict inequalities in (8) are satisfied by z, and since (8) is
unsatisfiable, this implies that Opt(I) ≤

∑
p φp(f(σ1(yp), . . . , σm(yp)) must hold

with equality so f(σ1, . . . , σm) ∈ Opt(φI). Since the σj were chosen arbitrarily,
f ∈ Pol(Opt(φI)). This establishes the lemma.

2.3. Cores and Constants.
Definition 2.10. Let Γ be a valued constraint language with domain D and let

S ⊆ D. The sub-language Γ[S] of Γ induced by S is the valued constraint language
defined on domain S and containing the restriction of every weighted relation φ ∈ Γ
onto S.

Definition 2.11. A valued constraint language Γ is a core if all unary operations
in supp(Γ) are bijections. A valued constraint language Γ′ is a core of Γ if Γ′ is a core
and Γ′ = Γ[f(D)] for some unary f ∈ supp(Γ).

The following lemma implies that when studying the computational complexity of
a valued constraint language Γ’ we may assume that Γ is a core.

Lemma 2.12. Let Γ be a valued constraint language and Γ′ a core of Γ. Then,
for all instances I of VCSP(Γ) and I ′ of VCSP(Γ′), where I ′ is obtained from I by
substituting each weighted relation in Γ for its restriction in Γ′, the optimum of I and
I ′ coincide.

A special case of Lemma 2.12 for finite-valued constraint languages was proved
by the authors in [66]. Lemma 2.12, proved below using Lemma 2.9, has also been
observed in [47] and in [64], where it was proved in a different way (and without the
use of Lemma 2.9).

Proof. By definition, Γ′ = Γ[f(D)], where D is the domain of Γ and f ∈ supp(ω)
for some unary fractional polymorphism ω. Assume that I is satisfiable, and let σ
be an optimal assignment to I. Now f ◦ σ is a satisfying assignment to I ′, and by
Lemma 2.9, f ◦ σ is also an optimal assignment to I. Conversely, any satisfying
assignment to I ′ is a satisfying assignment to I of the same value.

Let CD = {{(a)} | a ∈ D} be the set of constant unary relations on the set D. It
is known (cf. [47, Proposition 20]), that for a valued constraint language Γ on D and
a core Γ′ of Γ on D′ ⊆ D, the problem VCSP(Γ′ ∪ CD′) polynomial-time reduces to
VCSP(Γ). In Theorem 5.5(5) in Section 5, we present a stronger form of this reduction.

Let Γ be a valued constraint language on D with CD ⊆ Γ. It is well known and
easy to show that any f ∈ Pol(Γ) is idempotent [11].
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2.4. Relational Width. We define relational width which is the basis for our
notion of valued relational width.

Let J be an instance of the CSP with φJ(x1, . . . , xn) =
∑q
i=1 φi(xi), Xi ⊆ V =

{x1, . . . , xn} and φi : Dar(φi) → {0,∞}.
For a tuple t ∈ DX , we denote by πX′(t) its projection onto X ′ ⊆ X. For a

constraint φi(xi), we define πX′(φi) = {πX′(t) | t ∈ Feas(φi)} where X ′ ⊆ Xi.
Let 1 ≤ k ≤ ` be integers. The following definition is equivalent2 to the definition

of (k, `)-minimality [9] for CSP instances given in [4].
Definition 2.13. Let J be a CSP instance with φJ(x1, . . . , xn) =

∑q
i=1 φi(xi),

Xi ⊆ V = {x1, . . . , xn} and φi : Dar(φi) → {0,∞}. Then J is said to be (k, `)-minimal
if:

• For every X ⊆ V , |X| ≤ `, there exists 1 ≤ i ≤ q such that X = Xi.
• For every i, j ∈ [q] such that |Xj | ≤ k and Xj ⊆ Xi, φj = πXj (φi).

There is a straightforward polynomial-time algorithm for finding an equivalent
(k, `)-minimal instance [4]. This leads to the notion of relational width:

Definition 2.14. A constraint language ∆ has relational width (k, `) if, for every
instance J of CSP(∆), an equivalent (k, `)-minimal instance is non-empty if, and only
if, J has a solution.

An m-ary idempotent operation f : Dm → D is called a weak near-unanimity
(WNU) operation if, for all x, y ∈ D,

(9) f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = f(x, x, . . . , x, y) .

Definition 2.15. We say that a clone of operations satisfies the bounded width
condition (BWC) if it contains a (not necessarily idempotent) m-ary operation satisfy-
ing the identities (9), for every m ≥ 3.

The following result is known as the “bounded width theorem” as it characterises
constraint languages of bounded relational width, that is, constraint languages that
are tractable via the (k, `)-minimality algorithm for some k ≤ `.

Theorem 2.16 ([5, 10, 52]). Let ∆ be a constraint language of finite size con-
taining all constant unary relations. Then, ∆ has bounded relational width if, and only
if, Pol(∆) satisfies the BWC.

Moreover, a collapse of relational width is known.
Theorem 2.17 ([4, 10]). Let ∆ be a constraint language of finite size containing

all constant unary relations. If ∆ has bounded relational width, then it has relational
width (2, 3).

Remark 2.18. We remark that most of the papers cited above use a different
bounded width condition, namely that of having WNU operations of all but finitely
many arities [56, Theorem 1.2]. By [46, Theorem 1.6 (4)], this is equivalent to
Definition 2.15. Also note that our definition of the BWC does not require idempotency
of the operations. The reason is that we prove our main result, Theorem 3.3 below,
without the requirement of including the constant unary relations, which is often
assumed in the algebraic papers on the CSP.

2The two requirements in [4] are: for every X ⊆ V with |X| ≤ ` we have X ⊆ Xi for some
1 ≤ i ≤ q; and for every set X ⊆ V with |X| ≤ k and every 1 ≤ i, j ≤ q with X ⊆ Xi and X ⊆ Xj

we have πX(φi) = πX(φj).
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3. The Power of Sherali-Adams Relaxations. In this section, we state our
main result on the power of the Sherali-Adams linear programming relaxation [60] to
VCSPs. We also give a number of applications of this result. The Sherali-Adams linear
programming relaxation is defined in Section 3.1 and the characterisation of its power
is stated in Section 3.2. In Section 3.3, we give a number of algorithmic consequences
of our result and Section 3.4 show how it can be used to derive complete complexity
classifications for large families of valued constraint languages. In Section 3.5, we
compare our result to the characterisation of valued relational width 1 which we
obtained in previous work. Finally, in Section 3.6, we address the problem of finding
an actual solution and of determining whether or not a valued constraint language has
bounded valued relational width.

3.1. Valued Relational Width. Let I be an instance of the VCSP with
φI(x1, . . . , xn) =

∑q
i=1 φi(xi), Xi ⊆ V = {x1, . . . , xn} and φi : Dar(φi) → Q. A

null constraint is a constraint that has a weighted relation identical to 0. Ensure that
for every non-empty X ⊆ V with |X| ≤ ` there is some constraint φi(xi) with Xi = X,
possibly by adding null constraints.

The Sherali-Adams relaxation with parameters (k, `), henceforth called the SA(k, `)-
relaxation of I, is given by the following linear program. The variables are λi(σ) for
every i ∈ [q] and assignment σ : Xi → D. We slightly abuse notation by writing
σ ∈ Feas(φi) for σ : Xi → D such that σ(xi) ∈ Feas(φi).

min
q∑
i=1

∑
σ∈Feas(φi)

λi(σ)φi(σ(xi))

λj(τ) =
∑

σ : Xi→D
σ|Xj=τ

λi(σ) ∀i, j ∈ [q] : Xj ⊆ Xi, |Xj | ≤ k, τ : Xj → D(10)

∑
σ : Xi→D

λi(σ) = 1 ∀i ∈ [q](11)

λi(σ) = 0 ∀i ∈ [q] , σ : Xi → D,σ(xi) 6∈ Feas(φi)(12)
λi(σ) ≥ 0 ∀i ∈ [q] , σ : Xi → D(13)

The relaxation SA(k, k) is often referred to as “k rounds of Sherali-Adams”.
We write ValLP(I, λ) for the value of the LP-solution λ to the SA(k, `)-relaxation

of I, and OptLP(I) for its optimal value.
Definition 3.1. We say that a valued constraint language Γ has valued relational

width (k, `) if, for every instance I of VCSP(Γ), Opt(I) = OptLP(I) (i.e. the optimum
of I coincides with the optimum of the SA(k, `)-relaxation of I).

When Γ has valued relational width (k, k) we also say that Γ has valued relational
width k. When Γ has valued relational width k for some fixed k ≥ 1, then we say that
Γ has bounded valued relational width.

We say that an instance I of VCSP(Γ) is a gap instance for SA(k, `), if its
SA(k, `) optimum is strictly smaller than its VCSP optimum. Then, Γ having bounded
valued relational width is equivalent to saying that there is some constant level of the
Sherali-Adams hierarchy for which there are no gap instances in VCSP(Γ).

Definition 3.2. Let Γ and ∆ be two valued constraint languages. We write
∆≤SA Γ if there is a polynomial-time reduction from VCSP(∆) to VCSP(Γ) that
preserves bounded valued relational width.
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By Definition 3.2, ≤SA reductions compose. Let ∆≤SA Γ. By Definition 3.2, (i) if
Γ has bounded valued relational width then so does ∆; (ii) if ∆ does not have bounded
valued relational width then neither does Γ.

3.2. A Characterisation of Bounded Valued Relational Width. The fol-
lowing characterisation of bounded valued relational width is our main result. It
precisely captures the power of Sherali-Adams relaxations for exact optimisation of
VCSPs.

Theorem 3.3 (Main). Let Γ be a valued constraint language of finite size. The
following are equivalent:

(i) Γ has bounded valued relational width.
(ii) Γ has valued relational width (2, 3).

(iii) supp(Γ) satisfies the BWC.
The proof of Theorem 3.3 is based on the following two theorems which show that

the BWC is a sufficient and necessary condition, respectively, for a constraint language
to have bounded valued relational width.

Theorem 3.4. Let Γ be a valued constraint language of finite size containing all
constant unary relations. If supp(Γ) satisfies the BWC, then Γ has valued relational
width (2, 3).

Theorem 3.5. Let Γ be a valued constraint language of finite size containing
all constant unary relations. If Γ has bounded valued relational width, then supp(Γ)
satisfies the BWC.

We prove Theorems 3.4 and 3.5 in Section 4 and 5, respectively. In order to finish
the proof of Theorem 3.3, we must reduce to the case when the language Γ is assumed
to contain all constants. This is done by taking a core Γ′ of Γ on a domain D′ ⊆ D
and adding CD′ to Γ’. We need the following two lemmas to ensure that this can be
carried out. Lemma 3.6 is proved in Section 6 (as Lemma 6.7). Lemma 3.7 is proved
in Section 8.

Lemma 3.6. Let Γ be a valued constraint language of finite size on domain D. If
Γ′ is a core of Γ on domain D′ ⊆ D, then Γ′ ∪ CD′ ≤SA Γ.

Lemma 3.7. Let Γ be a valued constraint language of finite size on domain D and
Γ′ a core of Γ on domain D′ ⊆ D. Then, supp(Γ) satisfies the BWC if, and only if,
supp(Γ′ ∪ CD′) satisfies the BWC.

Proof of Theorem 3.3. The implication (ii) =⇒ (i) is trivial. We first prove the
implication (iii) =⇒ (ii). Suppose that supp(Γ) satisfies the BWC. We start by
going to a core of Γ and adding constant unary relations with the goal of applying
Theorem 3.4. Let Γ′ be a core of Γ on domain D′ ⊆ D and let Γ′c = Γ′ ∪ CD′ . By
Lemma 3.7, supp(Γ′c) also satisfies the BWC. By Theorem 3.4, Γ′c has valued relational
width (2, 3), so clearly Γ′ has valued relational width (2, 3) as well. Every feasible
solution to the SA(2, 3)-relaxation of an instance I ′ of VCSP(Γ′) is also a feasible
solution to the SA(2, 3)-relaxation of the corresponding instance I of VCSP(Γ). The
result now follows from Lemma 2.12 as the optimum of I ′ and I coincide.

It remains to prove the implication (i) =⇒ (iii). Suppose that supp(Γ) does not
satisfy the BWC. We start by going to a core of Γ and adding constant unary relations
with the goal of applying Theorem 3.5. Let Γ′ be a core of Γ on domain D′ ⊆ D and
let Γ′c = Γ′∪CD′ . By Lemma 3.7, supp(Γ′c) does not satisfy the BWC. By Theorem 3.5,
Γ′c does not have bounded valued relational width. Finally, by Lemma 3.6, Γ does not
have bounded valued relational width either.
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3.3. Algorithmic Consequences. We now give examples of previously studied
valued constraint languages and show that, as a corollary of Theorem 3.3, they all
have, as well as their generalisations, valued relational width (2, 3).

Example 3.8. Let ω be a ternary fractional operation defined by ω(f) = ω(g) =
ω(h) = 1

3 for some (not necessarily distinct) majority operations f , g, and h. Cohen
et al. proved the tractability of any language improved by ω by a reduction to CSPs
with a majority polymorphism [20].

Example 3.9. Let ω be a ternary fractional operation defined by ω(f) = 2
3 and

ω(g) = 1
3 , where f : {0, 1}3 → {0, 1} is the Boolean majority operation and g :

{0, 1}3 → {0, 1} is the Boolean minority operation. Cohen et al. proved the tractability
of any language improved by ω by a simple propagation algorithm [20].

Example 3.10. Generalising Example 3.9 from Boolean to arbitrary domains, let
ω be a ternary fractional operation such that ω(f) = 1

3 , ω(g) = 1
3 , and ω(h) = 1

3
for some (not necessarily distinct) conservative majority operations f and g, and a
conservative minority operation h; such an ω is called an MJN. Kolmogorov and Živný
proved the tractability of any language improved by ω by a 3-consistency algorithm and
a reduction, via Example 3.12, to submodular function minimisation [45].

The following corollary of Theorem 3.3 generalises Examples 3.8-3.10.
Corollary 3.11. Let Γ be a valued constraint language of finite size such that

supp(Γ) contains a majority operation. Then, Γ has valued relational width (2, 3).
Proof. Let f be a majority operation in supp(Γ). Then, for every k ≥ 3, f generates

a WNU gk of arity k: gk(x1, . . . , xk) = f(x1, x2, x3). By Lemma 2.8, supp(Γ) is a
clone, so gk ∈ supp(Γ) for all k ≥ 3. Therefore, supp(Γ) satisfies the BWC and the
result follows from Theorem 3.3.

Example 3.12. Let ω be a binary fractional operation defined by ω(f) = ω(g) = 1
2 ,

where f and g are conservative and commutative operations and f(x, y) 6= g(x, y) for
every x and y; such an ω is called a symmetric tournament pair (STP). Cohen et al.
proved the tractability of any language improved by ω by a 3-consistency algorithm and
an ingenious reduction to submodular function minimisation [19]. Such languages were
shown to be the only tractable languages among conservative finite-valued constraint
languages [45].

The following corollary of Theorem 3.3 generalises Example 3.12.
Corollary 3.13. Let Γ be a valued constraint language of finite size such that

supp(Γ) contains two symmetric tournament operations (that is, binary operations f
and g that are both conservative and commutative and f(x, y) 6= g(x, y) for every x
and y). Then, Γ has valued relational width (2, 3).

Proof. It is straightforward to verify that h(x, y, z) = f(f(g(x, y), g(x, z)), g(y, z))
is a majority operation, as observed in [19, Corollary 5.8]. The claim then follows from
Corollary 3.11.

Example 3.14. Generalising Example 3.12, let ω be a binary fractional operation
defined by ω(f) = ω(g) = 1

2 , where f and g are conservative and commutative
operations; such an ω is called a tournament pair. Cohen et al. proved the tractability
of any language improved by ω by a consistency-reduction relying on Bulatov’s result [9],
which in turn relies on 3-consistency, to the STP case from Example 3.12 [19].

The following corollary of Theorem 3.3 generalises Example 3.14.
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Corollary 3.15. Let Γ be a valued constraint language of finite size such that
supp(Γ) contains a tournament operation (that is, a binary conservative and commu-
tative operation). Then, Γ has valued relational width (2, 3).

Proof. Let f be a tournament operation from supp(Γ). We claim that f is
a 2-semilattice; that is, f is idempotent, commutative, and satisfies the restricted
associativity law f(x, f(x, y)) = f(f(x, x), y). To see that, notice that f(x, f(x, y)) = x
if f(x, y) = x and f(x, f(x, y)) = y if f(x, y) = y; together, f(x, f(x, y)) = f(x, y).
On the other hand, trivially f(f(x, x), y) = f(x, y).

Also note that f(x, f(y, x)) = f(x, f(x, y)) = f(x, y). For every k ≥ 3, f generates
a WNU gk of arity k: gk(x1, . . . , xk) = f(f(. . . (f(x1, x2), x3), . . .), xk). By Lemma 2.8,
supp(Γ) is a clone, so gk ∈ supp(Γ) for all k ≥ 3. Therefore, supp(Γ) satisfies the
BWC so the result follows from Theorem 3.3.

Example 3.16. In this example we denote by {{. . .}} a multiset. Let ω be a
binary fractional operation on D defined by ω(f) = ω(g) = 1

2 and let µ be a
ternary fractional operation on D defined by µ(h1) = µ(h2) = µ(h3) = 1

3 . Sup-
pose that, for every x and y, {{f(x, y), g(x, y)}} = {{x, y}} and, for every x, y, and
z, {{h1(x, y, z), h2(x, y, z), h3(x, y, z)}} = {{x, y, z}}. Moreover, suppose that for every
two-element subset {a, b} ⊆ D, either ω|{a,b} is an STP or µ|{a,b} is an MJN. Let
Γ be a language on D improved by a fractional polymorphism ω as described above.
Kolmogorov and Živný proved the tractability of Γ by a 3-consistency algorithm and a
reduction, via Example 3.12, to submodular function minimisation [45]. Such languages
were shown to be the only tractable languages among conservative valued constraint
languages [45]. We will discuss conservative valued constraint languages in more detail
in Section 3.4.

The following corollary of Theorem 3.3 covers Example 3.16.
Corollary 3.17. Let Γ be a valued constraint language of finite size with frac-

tional polymorphisms ω and µ as described in Example 3.16. Then, Γ has valued
relational width (2, 3).

Proof. Let P be the set of 2-element subsets of D such that ω|{a,b} is an STP
for {a, b} ∈ P and µ|{a,b} is an MJN for {a, b} 6∈ P . Let P ve defined by p(x, y, z) =
f(f(g(y, x), g(x, z)), g(y, z)). Observe that p|{a,b} is a majority for {a, b} ∈ P , and
p|{a,b} is either π(3)

1 or π(3)
2 for {a, b} 6∈ P (possibly different projections for different

2-element subsets from P ). Now let q(x, y, z) = p(h1(x, y, z), h2(x, y, z), h3(x, y, z)).
For x, y ∈ {a, b} ∈ P , q(x, x, y) = q(x, y, x) = q(y, x, x) = p({{x, x, y}}) = x. For
x, y ∈ {a, b} 6∈ P , q(x, x, y) = q(x, y, x) = q(y, x, x) = p(x, x, y) = x as p is either the
first or the second projection. Thus, q is a majority operation. The claim then follows
from Corollary 3.11.

3.4. Complexity Consequences. We now give some computational complexity
consequences of Theorem 3.3. First, we obtain a new and simpler proof (in fact two
proofs) of the complexity classification of conservative valued constraint languages [45].
Second, we obtain a complexity classification of (generalisation of) Minimum-Solution
problems over arbitrary finite domains.

Minimum-Solution (Min-Sol) problems [40], studied under the name of Min-Ones
on Boolean domains [24, 42], constitute a large and interesting subclass of VCSPs
including, for instance, integer linear programming over bounded domains.

Definition 3.18. A valued constraint language Γ on finite domain D is called a
Min-Sol language if Γ = ∆ ∪ {ν}, where ∆ is a crisp constraint language on D and
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ν : D → Q is an injective finite-valued weighted relation.
In other words, in Min-Sol problems the optimisation part of the objective function

is a sum of unary terms involving an injective finite-valued weighted relation.
As our main result in this section, we give a complexity classification of all Min-

Sol languages on arbitrary finite domains, thus improving on previous classifications
obtained for Min-Sol languages on domains with two elements [42], three elements [68],
and other special cases [41, 40, 39].

By Lemma 3.6, we can, without loss of generality, restrict our attention to languages
that include constants.

Theorem 3.19. Let D be an arbitrary finite domain and let Γ = ∆ ∪ {ν} be an
arbitrary Min-Sol language of finite size on D with CD ⊆ Γ. Then, either supp(Γ)
satisfies the BWC, in which case Γ has valued relational width (2, 3), or VCSP(Γ) is
NP-hard.

In order to prove Theorem 3.19, we prove a more general result classifying valued
constraint languages that can express an injective unary finite-valued weighted relation.
Theorem 3.19 is then a simple corollary of the following result.

Theorem 3.20. Let D be an arbitrary finite domain and let Γ be an arbitrary
valued constraint language of finite size on D with CD ⊆ Γ. Assume that Γ expresses a
unary finite-valued weighted relation ν that is injective on D. Then, either supp(Γ)
satisfies the BWC, in which case Γ has valued relational width (2, 3), or VCSP(Γ) is
NP-hard.

We now define conservative valued constraint languages [45].
Definition 3.21. A valued constraint language Γ on D is called conservative if Γ

contains all {0, 1}-valued unary weighted relations.
We remark that for crisp constraint languages a different definition is used [12].
Note that any conservative language Γ is a core and by Lemma 3.6 we can assume

that CD ⊆ Γ.
Theorem 3.20 implies the following dichotomy theorem, first established in [45]

with the help of [61].
Theorem 3.22. Let D be an arbitrary finite domain and let Γ be an arbitrary

conservative valued constraint language on D. Then, either supp(Γ) satisfies the BWC,
in which case Γ has valued relational width (2, 3), or VCSP(Γ) is NP-hard.

We now give a different proof classifying conservative valued constraint languages
that relies on [61] but has the advantage of giving a more specific tractability criterion
than the BWC that is different from the STP/MJN criterion established in [45] and
discussed in Example 3.16.

The following theorem was proved by Takhanov [61] with a small strengthening
in [45].

Theorem 3.23 ([45, 61]). Let Γ be a conservative valued constraint language. If
Pol(Γ) does not contain a majority polymorphism, then VCSP(Γ) is NP-hard.

We can strengthen Theorem 3.23 to show NP-hardness of VCSP(Γ) for a conserva-
tive valued constraint language Γ which lacks a majority operation in the support clone
of Γ. Consequently, we obtain an alternative tractability criterion for conservative
valued constraint languages to the original criterion [45] that involved a binary STP
multimorphism and a ternary MJN multimorphism (cf. Example 3.16).
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Theorem 3.24. Let Γ be a conservative valued constraint language. Either
VCSP(Γ) is NP-hard, or supp(Γ) contains a majority operation and hence Γ has
valued relational width (2, 3).

3.5. Related Work on BLP and Relational Width. The SA(1, 1) relaxation
is also known as the basic linear programming relaxation (BLP). The following result
capturing the power of BLP has been established.3

An m-ary operation f : Dm → D is called symmetric if f(x1, . . . , xm) =
f(xπ(1), . . . , xπ(m)) for every permutation π of {1, . . . ,m}.

Definition 3.25. We say that a clone of operation satisfies the SYM condition if
it contains an m-ary symmetric operation, for every m ≥ 2.

Theorem 3.26 ([44]). Let Γ be a valued constraint language of finite size. Then
the following are equivalent:

1. Γ has valued relational width 1.
2. supp(Γ) satisfies the SYM.

By definition, the SA(1, `)-relaxation is at least as tight as the SA(1, 1)-relaxation;
i.e., any solution to the SA(1, `)-relaxation gives a solution to the SA(1, 1)-relaxation
of the same value. Hence any language with valued relational width 1 has valued
relational width (1, `). We now show that for any fixed `, SA(1, 1) and SA(1, `) have
the same power.

Proposition 3.27. Let Γ be a valued constraint language of finite size and let
` > 1 be fixed. If Γ has valued relational width (1, `) then Γ has valued relational width
1.

Proof. Let I be an instance of VCSP(Γ). Assume that Opt(I) = OptLP(I) for the
SA(1, `)-relaxation of I. For the sake of contradiction, suppose that Opt(I) > OptLP(I)
for the SA(1, 1)-relaxation of I and let λ∗ be an optimal solution to SA(1, 1) of value
OPT ∗. Define λ′ as follows. If λi(σ) is a variable of SA(1, 1) then λ′i(σ) = λ∗i (σ).
Otherwise, let λi(σ) correspond to the ith valued constraint φi(xi) with variables
{x1, . . . , xr}. We define λ′i(σ) as the product of the λ∗’s corresponding to σ(xj),
1 ≤ j ≤ r. More formally, if φj(xj) are the valued constraints with the scope xj ,
for 1 ≤ j ≤ r, then we define λ′i(σ) =

∏r
j=1 λ

∗
j (σ(xj)). By the definition of λ′,

λ′ is a feasible solution to SA(1, `). By the definition of the SA relaxations, the
extra valued constraints present in SA(1, `) but missing in SA(1, 1) are null and thus
ValLP(I, λ′) = OPT ∗ < Opt(I). But this contradicts Γ having valued relational width
(1, `).

Corollary 3.28. Let Γ be a valued constraint language of finite size. Then, the
valued relational width of Γ is either 1, or 2, or (2, 3), or unbounded.

Proof. If the valued relational width of Γ is bounded then it is (2, 3), by Theo-
rem 3.3. If the valued relational width of Γ is (1, `) for some ` > 1 then it is 1, by
Proposition 3.27.

There are valued constraint languages that have valued relational width (2, 3) but
not 1. For example, languages improved by a tournament pair fractional polymor-
phism [19], discussed in detail in Example 3.14 in Section 3.3, have valued relational
width (2, 3) by the results in this paper, but do not have valued relational width in 1
as shown [44, Example 5] using Theorem 3.26.

3Theorem 3.26 as stated here follows from [44, Corollary 3] using Lemma 2.8.
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It could be that either SA(1) and SA(2), or SA(2) and SA(2, 3) have the same
power. The former happens in case of relational width. Dalmau proved that if a crisp
language has relational width 2 then it has relational width 1 [25]. Together with
Theorem 2.17 and the analogue of Proposition 3.27 for relational width established
in [30], this gives a trichotomy for relational width.

Theorem 3.29 ([30, 25, 4]). Let ∆ be a crisp constraint language of finite size.
Then precisely one of the following is true:

1. ∆ has relational width 1.
2. ∆ has relational width (2, 3) and does not have relational width 2, nor (1, `)

for any ` ≥ 1.
3. ∆ does not have bounded relational width.

Remark 3.30. It follows from the definitions that if a crisp constraint language
∆ has relational width (k, `) then ∆ also has valued relational width (k, `). However,
the converse does not hold. There exists a constraint language on a three-element
domain with two relations that has valued relational width 1 but not relational width
1[51, Example 99].

3.6. Obtaining a Solution and the Meta Problem. We now address two
questions related to our main result.

Firstly, we show that for any VCSP instance over a language of valued relational
width (2, 3) we can not only compute the value of an optimal solution but we can also
find an optimal assignment in polynomial time.

Proposition 3.31. Let Γ be a valued constraint language of finite size and I an
instance of VCSP(Γ). If supp(Γ) satisfies the BWC, then an optimal assignment to I
can be found in polynomial time.

Proof. Let Γ′ be a core of Γ on domain D′, and let Γc = Γ′∪{CD′}. By Lemma 3.7,
supp(Γc) satisfies the BWC, so by Theorem 3.4 we can obtain the optimum of I by
solving a linear programming relaxation. Now, we can use self-reduction to obtain
an optimal assignment. It suffices to modify the instance I to successively force each
variable to take on each value of D′. Whenever the optimum of the modified instance
matches that of the original instance, we can move on to assign the next variable.
This means that we need to solve at most 1 + |V | |D′| linear programming relaxations
before finding an optimal assignment, where V is the set of variables of I.

Secondly, we show that testing for the BWC is a decidable problem. We rely on
the following result that was proved in [46], and also follows from results in [4].

Theorem 3.32 ([46]). An idempotent clone of operations satisfies the BWC if,
and only if, it contains a ternary WNU f and a quaternary WNU g with f(y, x, x) =
g(y, x, x, x) for all x and y.

Proposition 3.33. Testing whether a valued constraint language of finite size
satisfies the BWC is decidable.

Proof. Let Γ be a valued constraint language of finite size on domain D. Let Γ′
be a core of Γ defined on domain D′ ⊆ D. Finding D′ and Γ′ can be done via linear
programming [66, Section 4]. By Lemma 3.7, supp(Γ) satisfies the BWC if, and only
if, supp(Γ′ ∪ CD′) satisfies the BWC. As constant unary relations enforce idempotency,
by Theorem 3.32, supp(Γ′ ∪ CD′) satisfies the BWC if, and only if, supp(Γ′ ∪ CD′)
contains a ternary WNU f and a 4-ary WNU g with f(y, x, x) = g(y, x, x, x) for all x
and y. It is easy to write a linear program that checks for this condition, as it has
been done in the context of finite-valued constraint languages [66, Section 4].
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4. Sufficiency: Proof of Theorem 3.4. In this section, we prove that the
BWC is a sufficient condition for a valued constraint language with all constant unary
relations to have valued relational width (2, 3).

We start with a technical lemma. For a feasible solution λ of SA(k, `), let
supp(λi) = {σ : Xi → D | λi(σ) > 0}.

Lemma 4.1. Let I be an instance of VCSP(Γ). Assume that SA(k, `) for I is
feasible. Then, there exists an optimal solution λ∗ to SA(k, `) such that, for every i,
supp(λ∗i ) is closed under every operation in supp(Γ).

Proof. Let ω be an arbitrary m-ary fractional polymorphism of Γ, and let λ be
any feasible solution λ to SA(k, `). Define λω by

λωi (σ) = Pr
f∼ω

σ1,...,σm∼λi

[f ◦ (σ1, . . . , σm) = σ].

We show that λω is a feasible solution to SA(k, `), and that if λ is optimal, then so is
λω.

Clearly λωi is a probability distribution for each i ∈ [q], so (11) and (13) hold.
Since ω is a fractional polymorphism of Γ, we have σ ∈ Feas(φi) for any choice of
f ∈ supp(ω) and σ1, . . . , σm ∈ supp(λi). Hence, λωi (σ) = 0 for σ 6∈ Feas(φi), so (12)
holds.

Finally, let j ∈ [q] be such that Xj ⊆ Xi, |Xj | ≤ k, and let τ : Xj → D. Then,

∑
σ : Xi→D,σ|Xj=τ

λωi (σ) =
∑

σ : Xi→D,σ|Xj=τ

Pr
f∼ω

σ1,...,σm∼λi

[f ◦ (σ1, . . . , σm) = σ]

= Pr
f∼ω

σ1,...,σm∼λi

[(f ◦ (σ1, . . . , σm))|Xj = τ ]

= Pr
f∼ω

σ1,...,σm∼λi

[f ◦ (σ1|Xj , . . . , σm|Xj ) = τ ]

=
∑

τ1,...,τm : Xj→D
Pr
f∼ω

σ1,...,σm∼λi

[σ1|Xj = τ1, . . . ,

σm|Xj = τm, f ◦ (τ1, . . . , τm) = τ ]

=
∑

τ1,...,τm : Xj→D
λj(τ1) · · ·λj(τm) Pr

f∼ω
[f ◦ (τ1, . . . , τm) = τ ]

= Pr
f∼ω

τ1,...,τm∼λj

[f ◦ (τ1, . . . , τm) = τ ]

= λωj (τ),

where, we have used the fact that (10) can be read as λj(τ) = Prσ∼λi
[
σ|Xj = τ

]
. It

follows that (10) also holds for λω, so λω is feasible.
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For each i ∈ [q], we have:

∑
σ∈Feas(φi)

λi(σ)φi(σ(xi)) = E
σ∼λi

φi(σ) = E
σ1,...,σm∼λi

1
m

m∑
j=1

φi(σj(xi))

≥ E
f∼ω

σ1,...,σm∼λi

φi(f(σ1(xi), . . . , σm(xi)))

=
∑

σ∈Feas(φi)

(
Pr
f∼ω

σ1,...,σm∼λi

[f ◦ (σ1, . . . , σm) = σ]
)
φi(σ(xi))

=
∑

σ∈Feas(φi)

λωi (σ)φi(σ(xi)).

Therefore, if λ is optimal, then λω must also be optimal.
Now assume that λ is an optimal solution and that supp(λ) is not closed under

some operation f ∈ supp(ω) for ω ∈ fPol(Γ), i.e. for some σ1, . . . , σm ∈ supp(λ), we
have f(σ1, . . . , σm) 6∈ supp(λ). But note that f(σ1, . . . , σm) ∈ supp(λωi ). Therefore,
λ′ = 1

2 (λ+ λω) is an optimal solution such that supp(λi) ( supp(λ′i) ⊆ DXi . For each
i ∈ [q], DXi is finite. Hence, by repeating this procedure, we obtain a sequence of
optimal solutions with strictly increasing support until, after a finite number of steps,
we obtain a λ∗ that is closed under every operation in supp(Γ).

We now have everything that is needed to prove Theorem 3.4.
Proof of Theorem 3.4. Let I be an instance of VCSP(Γ) with φI(x1, . . . , xn) =∑q

i=1 φi(xi), Xi ⊆ V = {x1, . . . , xn} and φi : Dar(φi) → Q.
The dual of the SA(k, `) relaxation can be written in the following form, with

variables zi for i ∈ [q] and yj,τ,i for i, j ∈ [q] such that Xj ⊆ Xi, |Xj | ≤ k, and
τ : Xj → D. The dual variables corresponding to λi(σ) = 0 are eliminated together
with the dual inequalities for i, σ 6∈ Feas(φi).

max
q∑
i=1

zi

∀i ∈ [q] , |Xi| ≤ k, σ ∈ Feas(φi)

zi ≤ φi(σ) +
∑

j∈[q],Xj⊆Xi

yj,σ|Xj ,i
−

∑
j∈[q],Xi⊆Xj

yi,σ,j(14)

∀i ∈ [q] , |Xi| > k, σ ∈ Feas(φi)

zi ≤ φi(σ) +
∑

j∈[q],Xj⊆Xi
|Xj |≤k

yj,σ|Xj ,i
(15)

It is clear that if I has a feasible solution, then so does the SA(k, `) primal. Assume
that the SA(2, 3)-relaxation has a feasible solution.

By Lemma 4.1, there exists an optimal primal solution λ∗ such that, for every
i ∈ [q], supp(λ∗i ) is closed under supp(Γ). Let y∗, z∗ be an optimal dual solution.

Let ∆ = {φ′i}
q
i=1 ∪ {CD}, where φ′i = supp(λ∗i ), i.e. φ′i(x) = 0 if x ∈ supp(λ∗i ) and

φ′i(x) =∞ otherwise. We consider the instance J of CSP(∆) with φJ(x1, . . . , xn) =∑q
i=1 φ

′
i(xi).

We make the following observations:
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1. By construction of λ∗, supp(Γ) ⊆ Pol(∆), so ∆ contains all constant unary
relations and satisfies the BWC. By Theorems 2.16 and 2.17, the language ∆
has relational width (2, 3).

2. The first set of constraints in the primal say that if i, j ∈ [q], |Xj | ≤ 2 and Xj ⊆
Xi, then λ∗j (τ) > 0 (i.e. τ ∈ φ′j) if, and only if,

∑
σ : Xi→D,σ|Xj=τ λ

∗
i (σ) > 0

(i.e. τ satisfies πXj (φ′i)). In other words, J is (2, 3)-minimal.
These two observations imply that J has a satisfying assignment α : V → D. Let

αi = α|Xi . By complementary slackness, since λ∗i (αi) > 0 for every i ∈ [q], we must
have equality in the corresponding rows in the dual indexed by i and αi. We sum
these rows over i:

(16)
q∑
i=1

z∗i =
q∑
i=1

φi(α(xi)) +
( q∑
i=1

∑
j∈[q],Xj⊆Xi
|Xj |≤2

y∗j,αi|Xj ,i
−
∑
i∈[q]
|Xi|≤2

∑
j∈[q]
Xi⊆Xj

y∗i,αi,j

)
.

By noting that αi|Xj = αj when Xj ⊆ Xi, we can rewrite the expression in
parenthesis on the right-hand side of (16) as:

(17)
∑

i,j∈[q],Xj⊆Xi
|Xj |≤2

y∗j,αj ,i −
∑

i,j∈[q],Xi⊆Xj
|Xi|≤2

y∗i,αi,j = 0.

Therefore,
q∑
i=1

∑
σ∈Feas(φi)

λ∗i (σ)φi(σ(xi)) =
q∑
i=1

z∗i =
q∑
i=1

φi(α(xi)),

where the first equality follows by strong LP-duality, and the second by (16) and (17).
Since I was an arbitrary instance of VCSP(Γ), the theorem follows.

5. Necessity: Proof of Theorem 3.5. In this section, we prove that the BWC
is a necessary condition for a valued constraint language with all constant unary
relations to have bounded valued relational width.

The main idea of the proof is to show that if supp(Γ) does not satisfy the BWC,
then Γ can, in a sense, simulate linear equations in some Abelian group. We show
that such linear equations do not have bounded valued relational width, and that
the simulation preserves bounded valued relational width. We first state the result
on linear equations in an Abelian group and then discuss the precise meaning of
“simulation”.

Let G be an Abelian group over a finite set G and let r ≥ 1 be an integer. Denote
by EG,r the crisp constraint language over domain G with, for every a ∈ G, and
1 ≤ m ≤ r, a relation Rma = {(x1, . . . , xm) ∈ Gm | x1 + · · ·+ xm = a}. In Section 7,
we prove the following.

Theorem 5.1. Let G be a finite non-trivial Abelian group. Then, the constraint
language EG,3 does not have bounded valued relational width.

Definition 5.2. We say that an m-ary weighted relation φ is expressible over a
valued constraint language Γ if there exists an instance I of VCSP(Γ) with variables
x1, . . . , xm, v1, . . . , vp such that

(18) φ(x1, . . . , xm) = min
v1,...,vp

φI(x1, . . . , xm, v1, . . . , vp).
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For a fixed set D, let φD= denote the binary equality relation {(x, x) | x ∈ D}.
Denote by 〈Γ〉 all weighted relations expressible in Γ ∪ {φD=}, where D is the domain
of Γ. A weighted relation being expressible over Γ∪ {φD=} is the analogue of a relation
being definable by a primitive positive (pp) formula (using existential quantification
and conjunction) over a relational structure with equality. Indeed, when Γ is crisp,
the two notions coincide.

Definition 5.3. Let ∆ and ∆′ be valued constraint languages on domain D and
D′, respectively. We say that ∆ has an interpretation in ∆′ with parameters (d, S, h)
if there exists a d ∈ N, a set S ⊆ D′d, and a surjective map h : S → D such that 〈∆′〉
contains the following weighted relations:

• φS : D′d → Q defined by φS(x) = 0 if x ∈ S and φS(x) =∞ otherwise;
• h−1(φD=); and
• h−1(φi), for every weighted relation φi ∈ ∆,

where h−1(φi), for an m-ary weighted relation φi, is the dm-ary weighted relation on
D′ defined by h−1(φi)(x1, . . . ,xm) = φi(h(x1), . . . , h(xm)), for all x1, . . . ,xm ∈ S.

When Γ is crisp, the notion of an interpretation coincides with the notion of a
pp-interpretation for relational structures [7].

Theorem 5.4. Let ∆ be a crisp constraint language of finite size that contains
all constant unary relations. If Pol(∆) does not satisfy the BWC, then there exists a
finite non-trivial Abelian group G such that ∆ interprets EG,r, for every r ≥ 1.

Proof. It has been shown in [46, Theorem 1.6 (4)] that if the polymorphism algebra
B of ∆ does not satisfy the BWC, then the variety generated by B admits type 1 or
2 (the notion of admitting types comes from Tame Congruence Theory [35]). By [2,
Lemmas 20 and 21], this implies that there exists a finite non-trivial Abelian group G
such that the variety generated by B contains a reduct A of the polymorphism algebra
of EG,r, for every r ≥ 1. For finite algebras A and B, A is contained in the variety
generated by B if, and only if, A is contained in the pseudovariety generated by B. In
terms of pp-interpretations [7], this is equivalent to EG,r having a pp-interpretation in
∆ (see also [11]).

Our notion of reduction will be the ≤SA reduction from Definition 3.2.
The following theorem shows that we can augment a valued constraint language

with various additional weighted relations. The transformations in these reductions
have previously been used to prove polynomial-time reductions [11, 18, 66, 47, 65].
Here, we show that they all additionally preserve bounded valued relational width.

Theorem 5.5. Let Γ be a valued constraint language of finite size on domain D.
The following holds:

1. If φ is expressible in Γ, then Γ ∪ {φ}≤SA Γ.
2. Γ ∪ {φD=}≤SA Γ.
3. If Γ interprets the valued constraint language ∆ of finite size, then ∆≤SA Γ.
4. If φ ∈ Γ, then Γ ∪ {Opt(φ)}≤SA Γ and Γ ∪ {Feas(φ)}≤SA Γ.
5. If Γ′ is a core of Γ on domain D′ ⊆ D, then Γ′ ∪ CD′ ≤SA Γ.

Note that Theorem 5.5(5) is just a restatement of Lemma 3.6.
A formal proof of Theorem 5.5 is given in Section 6. Here is the main idea.
All of the reductions are based on replacing each constraint φi(xi) of an instance

I of the left-hand side by some gadget, given as an instance Ji of the right-hand side.
The instance J is then defined as the sum of all objective functions φJi .

If the replacements satisfy certain conditions, then we show that, for any 1 ≤
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k′ ≤ `′, there exist 1 ≤ k ≤ ` such that if ∆′ has valued relational width (k′, `′),
then ∆ has valued relational width (k, `), so the reductions preserve bounded valued
relational width. The conditions are: (a) for every satisfying and optimal solution
α of J , there is a satisfying assignment σα of I such that Val(I, σα) ≤ Val(J, α); (b)
for every large enough k, feasible solution λ to the SA(k, 2k)-relaxation of I, and
assignment σ : Xi → D with positive support in λ, there exists a satisfying assignment
ασi of Ji such that φi(σ(xi)) ≥ Val(Ji, ασi ); and (c) the assignments ασi are “pairwise
consistent”, i.e. ασii and ασrr agree on the intersection of the variables of Ji and Jr
whenever σi and σr are restrictions of some σ : X → D with positive support in λ.

We will also need the following technical lemmas.
Lemma 5.6. Let Γ be a valued constraint language of finite size over domain D

and let F be a finite set of operations over D. If supp(Γ) ∩ F = ∅, then there exists a
crisp constraint language ∆ such that Pol(∆) ∩ F = ∅ and ∆≤SA Γ.

Proof. By Lemma 2.9, for each f ∈ F ∩Pol(Γ), there is an instance If of VCSP(Γ)
such that f 6∈ Pol(Opt(φIf )). Let ∆ = {Opt(φIf ) | f ∈ F} ∪ {Feas(φ) | φ ∈ Γ}. For
f ∈ F ∩ Pol(Γ), we have f 6∈ Pol(Opt(φIf )) ⊇ Pol(∆). For f ∈ F \ Pol(Γ), we have
f 6∈ Pol(φ), for some φ ∈ Γ, so f 6∈ Pol(∆). It follows that Pol(∆) ∩ F = ∅. Finally,
∆≤SA Γ holds by Theorem 5.5(1) and (4).

Lemma 5.7. Let Γ be a valued constraint language of finite size. If supp(Γ) does
not satisfy the BWC, then there is a crisp constraint language ∆ of finite size such
that Pol(∆) does not satisfy the BWC, and ∆≤SA Γ.

Proof. Since supp(Γ) does not satisfy the BWC, there exists an m ≥ 3 such that
supp(Γ) does not contain any m-ary WNU. Let F be the (finite) set of all m-ary
WNUs. The result follows by applying Lemma 5.6 to Γ and F .

We now have everything that is needed to prove Theorem 3.5.
Proof of Theorem 3.5. Suppose that supp(Γ) does not satisfy the BWC. There

exists, by Lemma 5.7, a crisp constraint language ∆ such that Pol(∆) does not satisfy
the BWC and ∆≤SA Γ. Since CD ⊆ Γ, we may assume, without loss of generality, that
CD ⊆ ∆.

By Theorem 5.4, there exists a finite non-trivial Abelian group G and an interpre-
tation of EG,3 in ∆. By Theorem 5.1, EG,3 does not have bounded valued relational
width. By Theorem 5.5(3),we have EG,3≤SA ∆≤SA Γ, so Γ does not have bounded
valued relational width.

6. Reductions: Proof of Theorem 5.5. We show that Theorem 5.5 follows
from Lemmas 6.2–6.7 proved in this section.

For a valued constraint language Γ, let ar(Γ) denote max{ar(φ) | φ ∈ Γ}.
It will sometimes be convenient to add null constraints to a VCSP instance

as placeholders, to ensure that they have a scope, even if these relations may not
necessarily be members of the corresponding constraint language Γ. In order to obtain
an equivalent instance that is formally in VCSP Γ), the null constraints can simply be
dropped, as they are always satisfied and do not influence the value of the objective
function.

We extend the convention of denoting the set of variables in xi by Xi to tuples yi,
y′i, and v, whose sets are denoted by Yi, Y ′i , and Vi, respectively.

The following technical lemma is the basis for most of the reductions.
Lemma 6.1. Let ∆ and ∆′ be valued constraint languages of finite size over

domains D and D′, respectively.
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Let (I, i) 7→ Ji be a map that to each instance I of VCSP(∆) with variables
V and objective function

∑q
i=1 φi(xi), and index i ∈ [q], associates an instance Ji

of VCSP(∆′) with variables Yi and objective function φJi . Let J be the VCSP(∆′)
instance with variables V ′ =

⋃q
i=1 Yi and objective function

∑q
i=1 φJi .

Suppose that the following holds:
(a) For every satisfying and optimal assignment α of J , there exists a satisfying

assignment σα of I such that

Val(I, σα) ≤ Val(J, α).

Furthermore, suppose that for k ≥ ar(∆), and any feasible solution λ of the
SA(k, 2k)-relaxation of I, the following properties hold:
(b) For i ∈ [q], and σ : Xi → D with positive support in λ, there exists a satisfying

assignment ασi of Ji such that

φi(σ(xi)) ≥ Val(Ji, ασi );

(c) for i, r ∈ [q], any X ⊆ V with Xi ∪Xr ⊆ X, and σ : X → D with positive support
in λ,

ασii |Yi∩Yr = ασrr |Yi∩Yr ,

where σi = σ|Xi and σr = σ|Xr .
Then, I 7→ J is a many-one reduction from VCSP(∆) to VCSP(∆′), and for any

1 ≤ k′ ≤ `′, there exist 1 ≤ k ≤ ` such that if I is a gap instance for SA(k, `), then J
is a gap instance for SA(k′, `′). In particular, the reduction preserves bounded valued
relational width.

Proof. First, we show that Opt(I) = Opt(J). From condition (a), if J is satisfiable,
then so is I and Opt(I) ≤ Opt(J). Conversely, if I is satisfiable, and σ is an optimal
assignment to I, then the SA(k, 2k) solution λ that assigns probability 1 to σ|X
for every X ⊆ V with |X| ≤ 2k is feasible. Let σi = σ|Xi . By (b), there exist
satisfying assignments ασii of Ji, for all i ∈ [q], such that Opt(I) ≥ OptLP(I) ≥∑
i∈[q] Val(Ji, ασii ). Define an assignment α : V ′ → D′ by letting α(y) = ασii (y) for

an arbitrary i such that y ∈ Yi. We claim that α|Yi = ασii , for all i ∈ [q]. From
this it follows that α is a satisfying assignment to J such that

∑
i∈[q] Val(Ji, ασii ) =

Val(J, α) ≥ Opt(J), and hence that Opt(I) ≥ Opt(J). Indeed, let y ∈ V ′ and assume
that y ∈ Yi and y ∈ Yr. Let X = Xi ∪Xr. Then, since λ(σ|X) = 1, it follows from (c)
that ασii (y) = ασrr (y).

Let 1 ≤ k′ ≤ `′ be arbitrary, and let k = max{`′, ar(∆′)} · ar(∆), ` = 2k. Assume
that I is a gap instance for the SA(k, `)-relaxation of VCSP(∆), and let λ be a
feasible solution such that ValLP(I, λ) < Opt(I) (where Opt(I) may be ∞, i.e. I
may be unsatisfiable). We show that there is a feasible solution κ to the SA(k′, `′)-
relaxation of J such that ValLP(J, κ) ≤ ValLP(I, λ). Then, by condition (a), we
have ValLP(J, κ) ≤ ValLP(I, λ) < Opt(I) ≤ Opt(J), so J is a gap instance for the
SA(k′, `′)-relaxation of VCSP(∆′). Since k′ and `′ were chosen arbitrarily, the result
then follows.

To this end, augment I with null constraints on Xq+1, . . . , Xq′ so that for every
at most `-subset X ⊆ V , there exists an i ∈ [q′] such that Xi = X. Rewrite the
objective function of J as

∑p
j=1 φ

′
j(y′j), φ′ ∈ ∆′, where, by possibly first adding extra

null constraints to J , we will assume that for every at most `′-subset Y ⊆ V ′, there
exists a j ∈ [p] such that Y ′j = Y . For each i ∈ [q], let Ci be the set of indices j ∈ [p]
corresponding to the weighted constraints in the instance Ji.
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For X ⊆ V , define YX =
⋃
i∈[q]:Xi⊆X Yi. For i ∈ [q′] \ [q], let Ji be an instance on

the variables YXi containing a single null constraint on the variables. For σ ∈ supp(λi),
and any r, s ∈ [q] such that Xr ∪ Xs ⊆ Xi and y ∈ Yr ∩ Ys, by (c), it holds that
ασrr (y) = ασss (y). Therefore, we can uniquely define ασi : YXi → D′ for i ∈ [q′] \ [q] by
letting ασi (y) = ασrr (y) for any choice of r ∈ [q] with Xr ⊆ Xi and y ∈ Yr. Furthermore,
this definition is consistent with ασi for i ∈ [q] in the sense that (c) now holds for all
i, r ∈ [q′].

For m ≥ 1, let X(≤m) = {X =
⋃
i∈S Xi | S ⊆ [q], |X| ≤ m}, and for Y ⊆ V ′ with

|Y | ≤ `′, let X(≤m)(Y ) = {X ∈ X(≤m) | Y ⊆ YX}.
Let j ∈ [p] be arbitrary and let X =

⋃
i∈S Xi ∈ X(≤n)(Y ′j ), for some S ⊆ [q],

where n = |V |. For each y ∈ Y ′j , let i(y) ∈ S be an index such that y ∈ Yi(y) and let
X ′ =

⋃
y∈Y ′

j
Xi(y). Then, Y ′j ⊆ YX′ , X ′ ⊆ X, and |X ′| ≤ max{`′, ar(∆′)} · ar(∆) ≤ k,

so X ′ ∈ X(≤k)(Y ′j ).
In other words,

(19)
for all X ∈ X(≤n)(Y ′j ), there exists i ∈ [q′] such that Xi ⊆ X and Xi ∈ X(≤k)(Y ′j ).

In particular (19) shows that for every j there exists i ∈ [q′] such that Xi ∈ X(≤`)(Y ′j ),
since

⋃
i∈[q]Xi ∈ X(≤n)(Y ′j ) for all j.

For j ∈ [p], α : Y ′j → D′, and an i ∈ [q′] such that Xi ∈ X(≤`)(Y ′j ), define

(20) µij(α) =
∑

σ∈supp(λi)
ασi |Y ′

j
=α

λi(σ).

Claim: Definition (20) is independent of the choice of Xi ∈ X(≤`)(Y ′j ).
First, we prove this equality for Xr ⊆ Xi with Xr ∈ X(≤k)(Y ′j ) and Xi ∈

X(≤`)(Y ′j ).
We have,

µrj(α) =
∑

τ∈supp(λr)
ατr |Y ′

j
=α

∑
σ∈supp(λi)
σ|Xr=τ

λi(σ) =
∑

σ∈supp(λi)
ασrr |Y ′

j
=α

λi(σ) =
∑

σ∈supp(λi)
ασi |Y ′

j
=α

λi(σ) = µij(α),

where the first equality follows by (20) and (10) for λ since |Xr| ≤ k, and the second
equality follows by interchanging the order of summation and noting that σ ∈ supp(λi)
implies that σr = σ|Xr ∈ supp(λr), again by (10) for λ. The third equality follows by
(c) extended to i, r ∈ [q′].

Next, let Xr ∈ X(≤k)(Y ′j ) and Xi ∈ X(≤`)(Y ′j ) be arbitrary. From (19), it follows
that Xi contains a subset Xs ∈ X(≤k)(Y ′j ). Since |Xr ∪Xs| ≤ 2k = `, there exists an
index u such that Xu = Xr ∪Xs. The claim now follows by a repeated application of
the first case: µrj = µuj = µsj = µij .

By the claim, we can pick an arbitrary Xi ∈ X(≤`)(Y ′j ) and uniquely define κj = µij .
We now show that this definition of κ satisfies the equations (10)–(13).

• To verify that the equations (10) hold, let s, j ∈ [p] be such that Y ′s ⊆ Y ′j , and
β : Y ′s → D′. Let Xi ∈ X(≤k)(Y ′j ). We now have:∑

α : Y ′j→D
′

α|Y ′s=β

κj(α) =
∑

α : Y ′j→D
′

α|Y ′s=β

µij(α) = µis(β) = κs(β),
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where the second equality follows from Y ′s ⊆ Y ′j and a rearrangement of
terms, and the last equality follows from the claim since Y ′s ⊆ Y ′j ⊆ YXi , so
Xi ∈ X(≤k)(Y ′s ).

• To verify that the equations (11) hold let Y ′j = {y} be a singleton and let
Xi ∈ X(≤`)(Y ′j ). We have:∑

α : Y ′
j
→D′

κj(α) =
∑

α : Y ′
j
→D′

∑
σ∈supp(λi)
ασi |Y ′

j
=α

λi(σ) =
∑

σ∈supp(λi)

λi(σ) = 1,

where the last equality follows from (11) for λi.
• The equations (12) hold trivially if φ′j is a null constraint. Otherwise, j ∈ Ci for

some i ∈ [q]. This implies that Xi ∈ X(≤k)(Y ′j ), and by the claim that κj = µij .
Then, α ∈ supp(κj) implies that there is a σ ∈ supp(λi) such that ασi |Y ′j = α.
By condition (b) and equation (12) for λi, the tuple ασi (y′j) ∈ Feas(φ′j), so κj
satisfies (12).

• κj = µij is defined as a sum of λ’s, which are nonnegative by (13), and thus
also satisfies (13).

We conclude that κ is a feasible solution to the SA(k′, l′)-relaxation of J .
Let i ∈ [q] and note that by the claim, for every j ∈ Ci, we have κj = µij .

Therefore,

(21)

∑
j∈Ci

∑
α∈Feas(φ′

j
)

κj(α)φ′j(α(y′j)) =
∑
j∈Ci

∑
α∈Feas(φ′

j
)

∑
σ∈supp(λi)
ασi |Y ′

j
=α

λi(σ)φ′j(α(y′j))

=
∑

σ∈supp(λi)

λi(σ)
∑
j∈Ci

∑
α∈Feas(φ′j)
ασi |Y ′

j
=α

φ′j(α(y′j))

=
∑

σ∈supp(λi)

λi(σ)
∑
j∈Ci

φ′j(ασi (y′j))

≤
∑

σ∈supp(λi)

λi(σ)φi(σ),

where the inequality follows from assumption (b). Summing inequality (21) over i ∈ [q]
shows that ValLP((J, κ) ≤ ValLP(I, λ) and the lemma follows.

Lemma 6.2. Let Γ be a valued constraint language of finite size and let φ be a
weighted relation expressible over Γ. Then, Γ ∪ {φ}≤SA Γ.

Proof. Let I be an instance of VCSP(Γ ∪ {φ}) with variables V = {x1, . . . , xn}
and objective function φI(x1, . . . , xn) =

∑q
i=1 φi(xi), where φi ∈ Γ ∪ {φ} and xi is

such that Xi ⊆ V . Let I ′ be an instance of VCSP(Γ) such that φ(x1, . . . , xm) =
minvi∈D φI′(x1, . . . , xm, v1, . . . , vp).

For i ∈ [q] such that φi ∈ Γ, let Ji be the instance on variables Yi = Xi with
φJi(Yi) = φi(xi). For i ∈ [q] such that φi = φ, let vi be a copy of the variables
v1, . . . , vp, and let Ji be the instance on variables Yi = Xi ∪ Vi with objective function
φJi(Yi) = φI′(xi,vi). Let J be the VCSP(Γ) instance with variables

⋃
i Yi and

objective function
∑
i φJi .

We verify properties (a)–(c) of Lemma 6.1.
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(a) Let α be any satisfying assignment of J and define σα = α|V . For i ∈ [q] such
that φi ∈ Γ, we have φi(σα(xi)) = φJi(α(Yi)) <∞. For i ∈ [q] such that φi = φ, we
have φi(σα(xi)) ≤ φJi(α(Yi)) = φI′(α(xi,vi)) < ∞. Summing over all i ∈ [q] gives
Val(I, σα) ≤ Val(J, α) <∞.

Let k ≥ ar(Γ ∪ {φ}) and suppose that λ is a feasible solution to the SA(k, 2k)-
relaxation of I. For all i ∈ [q] and σ : Xi → D with positive support in λ, define ασi as
follows. If φi ∈ Γ, then define ασi = σ. Otherwise, φi = φ. Let γσi : Vi → D be any
assignment such that φi(σ(xi)) = φJ(σ(xi), γσi (vj)), and define ασi : Xi ∪ Vi → D by
ασi = σ ∪ γσi .

(b) For all i ∈ [q], Val(Ji, ασi ) = φJi(ασi (Yi)) = φi(σ(xi)) <∞, where the equalities
hold by construction, and the inequality follows from the feasibility of λ.

(c) Let i, r ∈ [q] and X ⊆ V be as in the lemma and suppose that σ : X → D
has positive support in λ. If i = r, then there is nothing to show. Otherwise,
Yi ∩ Yr = Xi ∩Xr, so ασii |Yi∩Yr = σi|Xi∩Xr = σ|Xi∩Xr = σr|Xi∩Xr = ασrr |Yi∩Yr .

It follows that Lemma 6.1 is applicable, so Γ ∪ {φ}≤SA Γ.
Lemma 6.3. Let Γ be a valued constraint language of finite size over domain D.

Then, Γ ∪ {φD=}≤SA Γ.
Proof. Let I be an instance of VCSP(Γ ∪ {φD=}) with variables V = {x1, . . . , xn}

and objective function φI(x1, . . . , xn) =
∑q
i=1 φi(xi), where φi ∈ Γ ∪ {φD=} and xi is

such that Xi ⊆ V . Define the undirected graph G = (V,E), where E contains an
edge between u and v if, and only if, there is a constraint φD=(u, v) in I. Let ∼ be
the equivalence relation on V defined by u ∼ v if u and v are in the same connected
component of G. For v ∈ V , let ṽ denote the equivalence class of ∼ containing v. For
a tuple of variables x = (v1, . . . , vm) ∈ V m, define x̃ = (ṽ1, . . . , ṽm).

For i ∈ [q], let yi = x̃i and let Ji be an instance on variables Yi. If φi ∈ Γ’ then
let the objective function be φJi(Yi) = φi(yi). Otherwise, let φJi be a null-constraint
on Yi. Let J be the VCSP(Γ) instance with variables

⋃
i Yi and objective function∑

i φJi .
We verify properties (a)–(c) of Lemma 6.1.

(a) Let α be satisfying assignment of J and define σα(v) = α(ṽ) for all v ∈ V .
It is clear that φi(σα(xi)) = φJi(α(Yi)) for all i ∈ [q]. Summing over all i gives
Val(I, σα) = Val(J, α).

Let k ≥ ar(Γ∪{φD=}) ≥ 2 and suppose that λ is a feasible solution to the SA(k, 2k)-
relaxation of I. We claim that, for all i ∈ [q] and σ : Xi → D with positive support in
λ,

(22) u ∼ v =⇒ σ(u) = σ(v).

For ṽ ∈ Yi, let ασi (ṽ) = σ(u) for some u ∈ ṽ ∩Xi. By the claim, the definition of
ασi is actually independent of the choice of u ∈ ṽ ∩Xi. The justification of the claim
follows at the end of the proof.

(b) For all i ∈ [q], Val(Ji, ασi ) = φJi(ασi (Yi)) = φi(σ(xi)) <∞, where the second
equality holds by (22), and the inequality follows from the feasibility of λ.

(c) Let i, r ∈ [q] and X ⊆ V be as in the lemma and suppose that σ : X → D
has positive support in λ. Let ṽ ∈ Yi ∩ Yr, let v1 ∈ ṽ ∩Xi and v2 ∈ ṽ ∩Xr. By (22),
σ(v1) = σ(v2), so ασii (ṽ) = σi(v1) = σ(v1) = σ(v2) = σr(v2) = ασrr (ṽ).
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It remains to prove that (22) holds for all σ : Xi → D with positive support in
λ. The proof is by induction over the length of a shortest path, u = u0, . . . , ud = v,
between u and v in the graph G. If d = 0, then u = v, so there is nothing to prove.
Assume therefore that d > 0 and that the claim holds for all assignments with positive
support and all u′ ∼ v′ with a shortest path of length strictly smaller than d. Let
X ′ = {u0, ud} and note that since |X ′| = 2 ≤ k, there exists an assignment τ ′ : X ′ → D
with positive support in λ such that τ ′ = σ|X′ . Now, let X = X ′ ∪ {ud−1}. Since
|X| ≤ 3 ≤ 2k, it follows that λ has a distribution over assignments to X, so there
exists an assignment τ : X → D with positive support in λ such that τ |X′ = τ ′ = σ|X′ .
In particular, τ(u0) = σ(u0) and τ(ud) = σ(ud).

By assumption, there is an equality constraint on X ′′ = {ud−1, ud} in J , so any
assignment τ ′′ : X ′′ → D with positive support in λ must have τ ′′(ud−1) = τ ′′(ud).
Since equation (10) holds for X ′′ ⊆ X, it follows that τ |X′′ has positive support in λ,
and hence τ(ud−1) = τ(ud).

By the induction hypothesis applied to τ and the path u0, . . . , ud−1, we now have
σ(u0) = τ(u0) = τ(ud−1) = τ(ud) = σ(ud). It follows that Lemma 6.1 is applicable, so
Γ ∪ {φ}≤SA Γ.

Lemma 6.4. Let ∆′ and ∆ be constraint languages of finite size and assume that
∆′ interprets ∆. Then, ∆≤SA ∆′.

Proof. Let D and D′ be the domains of ∆ and ∆′, respectively. Let (d, S, h) be
an interpretation of ∆ in ∆′. By Lemma 6.2 and Lemma 6.3, we may assume that
∆′ contains the d-ary weighted relation φS , and for each φi ∈ ∆, that ∆′ contains
h−1(φi).

Let I be an instance of VCSP(∆) with variables V = {x1, . . . , xn} and objective
function φI(x1, . . . , xn) =

∑q
i=1 φi(xi). Assume that φI contains a distinguished unary

null-constraint for each singleton subset {xj} ⊆ V , i.e. that for each 1 ≤ j ≤ n, there
exists an i ∈ [q] such that φi is a null constraint, and xi = (xj). Let v1, . . . ,vn be
d-tuples of distinct fresh variables (nd distinct variables overall) and let Vj be the set
of variables in vj , for each 1 ≤ j ≤ n.

For i ∈ [q], let Ji be an instance on variables Yi =
⋃
j : xj∈Xi Vj . If φi(xj) is one

of the distinguished null-constraints, then let φJi(Yi) = φS(vj). Otherwise, assuming
xi = (xi1 , . . . , xir), let φJi(Yi) = h−1(φi)(vi1 , . . . ,vir). Let J be the VCSP(∆′)
instance with variables

⋃
i Yi and objective function

∑
i φJi .

We verify properties (a)–(c) of Lemma 6.1.

(a) Let α be any satisfying assignment of J and define σα : V → D by σα(xj) =
h(α(vj)). This is well-defined since there always is a constraint φS(vj) in J which
ensures that α(vj) ∈ S. For all i ∈ [q], φi(σα(xi)) = φi(h(α(vi1)), . . . , h(α(vir))) =
φJi(α(Yi)), where xi = (xi1 , . . . , xir ). Summing over all i gives Val(I, σα) = Val(J, α).

For each xj ∈ V and a ∈ D, let τj,a : Vj → D′ be an assignment such that
τj,a(vj) ∈ S and h(τj,a(vj)) = a. Let k ≥ ar(∆) and suppose that λ is a feasible
solution to the SA(k, 2k)-relaxation of I. For all i ∈ [q] and σ : Xi → D with positive
support in λ, define ασi : Yi → D′ by ασi (v) = τj,σ(xj)(v) where j is the index such that
v ∈ Vj , i.e., ασi =

⋃
j : xj∈Xi τj,σ(xj).

(b) For all i ∈ [q], assuming xi = (xi1 , . . . , xir), Val(Ji, ασi ) = φJi(ασi (Yi)) =
h−1(φi)(ασi (vi1), . . . , ασi (vir)) = φi(h(ασi (vi1)), . . . , h(ασi (vir))) = φi(σ(xi)) < ∞,
where the inequality follows from the feasibility of λ.

(c) Let i, r ∈ [q] and X ⊆ V be as in Lemma 6.1 and suppose that σ : X → D
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has positive support in λ. Let v ∈ Yi ∩ Yr and let vj be the tuple of variables that
contains v. Then, xj ∈ Xi ∩Xr, so ασii (v) = τj,σ(xj)(v) = ασrr (v).

It follows that Lemma 6.1 is applicable, so ∆≤SA ∆′.
Lemma 6.5. Let Γ be a valued constraint language of finite size and φ ∈ Γ. Then,

Γ ∪ {Opt(φ)}≤SA Γ.
Proof. To avoid trivial cases, we will assume that all weighted relations in Γ take

at least one finite value. Moreover, in order to simplify the proof, we will assume that
min(φ′) = 0 for every φ′ ∈ Γ. This is without loss of generality as replacing φ′ by
φ′ + c, for any c ∈ Q, changes the value of the objective function of a VCSP instance
by the same additive constant as the objective function of the LP relaxation, for all
feasible solutions to the corresponding problems.

Let I be an arbitrary instance of VCSP(Γ ∪ {Opt(φ)}) with variables V and
objective function

∑q
i=1 φi(xi). We create an instance J of VCSP(Γ) as follows. The

variables of J are the same as the variables in I. Every weighted constraint φi(xi)
in I, where φi 6= Opt(φ) appears also in J . Every weighted constraint Opt(φ)(xi) is
replaced by C copies of φ(xi) in J , where the value of the constant C is chosen as
follows: If φ only takes a single distinct finite value (which we assume is 0), then let
C = 1. Otherwise, let U =

∑q
i=1 max(φi), where max(φi) denotes the largest finite

value of the weighted relation φi. Let δ be the smallest non-zero finite value of φ.
Now, let C = d(U + 1)/δe. U can be computed in polynomial time and the value of C
depends linearly on the number of constraints in I, so the size of J is polynomial in
the size of I.

First, we prove that Opt(J) determines Opt(I). Any satisfying assignment to I is also
a satisfying assignment to J , so

(23) Opt(J) ≤ Opt(I).

If J has a satisfying assignment, then let σ be an optimal assignment. We
distinguish two cases. First, assume that σ assigns the optimal zero value to every
copy of φ. Then, σ is also a satisfying assignment of I, so

(24) Opt(I) ≤ Val(I, σ) = Val(J, σ) = Opt(J).

From (23) and (24), we see that Opt(I) ≤ Val(I, σ) = Opt(J) ≤ Opt(I), so σ is also
an optimal assignment to I.

Otherwise, σ assigns a sub-optimal value to at least C copies of φ, so

Val(J, σ) ≥ Cδ + Opt(I) ≥ U + 1.

In this case, Opt(J) > U . But U ≥ Opt(I) if I is satisfiable, which contradicts (23),
and hence I is unsatisfiable. In summary, if J is unsatisfiable, or if Opt(J) > U , then
I is unsatisfiable, and otherwise Opt(I) = Opt(J).

Next, we prove that, for any given parameters 1 ≤ k ≤ `, if Γ ∪ {Opt(φ)} does not
have valued relational width (k, `), then Γ does not have valued relational width
(k, `). Let I be an instance of VCSP(Γ ∪ {Optφ}) and λ a feasible solution to the
SA(k, `)-relaxation of I, with ValLP(I, λ) < Opt(I), where Opt(I) could be ∞. We
will assume that I has been augmented with null constraints so that, for every subset
V ′ ⊆ V with |V ′| ≤ `, there is some i ∈ [q] with Xi = V ′. Let J be the instance of
VCSP(Γ) constructed above.
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Let λ′ be the feasible solution to the SA(k, `)-relaxation of J obtained from λ by
letting λ′j = λi for all φ-constraints of J with index j that were introduced as copies
of the Opt(φ)-constraint of I with index i. Then, λ′ assigns an optimal value to each
φ-constraint, so ValLP(J, λ′) = ValLP(I, λ).

If J is unsatisfiable, then OptLP(J) < Opt(J), so Γ does not have valued relational
width (k, `). If J is satisfiable and I is also satisfiable then it was shown above that
Opt(J) = Opt(I), so OptLP(J) ≤ OptLP(I) < Opt(I) = Opt(J), and again Γ does
not have valued relational width (k, `). Finally, if J is satisfiable and I is unsatisfiable
then Opt(J) > U . Since λ is a feasible solution, we have OptLP(I) ≤ U from the
definition of U . Then, OptLP(J) ≤ OptLP(I) ≤ U < Opt(J), so again Γ does not
have valued relational width (k, `). Since k and ` were chosen arbitrarily, the result
follows.

Lemma 6.6. Let Γ be a valued constraint language of finite size and φ ∈ Γ. Then,
Γ ∪ {Feas(φ)}≤SA Γ.

Proof. To avoid trivial cases, we will assume that all weighted relations in Γ take
at least one finite value. As in the proof of Lemma 6.5, we will assume that min(φ) = 0.
Let I be an arbitrary instance of VCSP(Γ∪ {Feas(φ)}) with variables V and objective
function

∑q
i=1 φi(xi). We create an instance J of VCSP(Γ) as follows. The variables

of J are the same as the variables in I. For every weighted constraint φi(xi) in I
with φi ∈ Γ, we add C copies of φi(xi) in J . Every weighted constraint Feas(φ)(xi) is
replaced by φ(xi) in J . The value of the constant C is chosen as follows: If φ only
takes a single distinct finite value, then let C = 1. Otherwise, let U be the largest
finite value of φ. Let δ = 1/M where M > 0 is any constant such that M ·φi is integral
for every i. This implies that δ is less than or equal to the least possible difference
between any two satisfying assignments of I. Now, let C = dN(U + 1)/δe, where N
is the number of occurrences of Feas(φ) in I. The value of C can be computed in
polynomial time and depends linearly on the number of constraints in I, so the size of
J is polynomial in the size of I.

An assignment σ : V → D satisfies I if, and only if, it is satisfies J , and

(25) C ·Val(I, σ) ≤ Val(J, σ) ≤ C ·Val(I, σ) +NU.

Let σ be an optimal assignment to J and suppose that there exists an assignment
σ′ to I such that Val(I, σ′) < Val(I, σ). Then,

Val(J, σ′) ≤ C ·Val(I, σ′) +NU

≤ C · (Val(I, σ)− δ) +NU

≤ C ·Val(I, σ) +NU − C · δ
< C ·Val(I, σ)
≤ Val(J, σ),

which contradicts σ being optimal. Hence, σ is also an optimal assignment to I.
Next, we prove that, for any given parameters 1 ≤ k ≤ `, if Γ ∪ {Feas(φ)} does

not have valued relational width (k, `), then Γ does not have valued relational width
(k, `). Let I be an instance of VCSP(Γ ∪ {Feas(φ)}) and λ a feasible solution to the
SA(k, `)-relaxation of I with ValLP(I, λ) < Opt(I). We will assume that I has been
augmented with null constraints so that, for every subset V ′ ⊆ V with |V ′| ≤ `, there is
some i ∈ [q] with Xi = V ′. If I is unsatisfiable, then let J be the instance of VCSP(Γ)
constructed as above. Otherwise, let ε = Opt(I)−ValLP(I, λ) > 0, and let J be the
instance constructed as above, but with C = max{dN(U + 1)/δe, dN(U + 1)/εe}.
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Let λ′ be the feasible solution to the SA(k, `)-relaxation of J obtained from λ by
letting λ′j = λi for every constraint of J with index j that was introduced as a (possibly
single) copy of the constraint φi(xi) of I. Then, ValLP(J, λ′) ≤ C ·ValLP(I, λ) +NU .

The instance J is unsatisfiable if, and only if, I is unsatisfiable, and in this case,
OptLP(J) < Opt(J), so Γ does not have valued relational width (k, `). Otherwise,
J is satisfiable, and C · Opt(I) ≤ Opt(J), so OptLP(J) ≤ C · OptLP(I) + NU ≤
C · (Opt(I)− ε) +NU ≤ Opt(J) +NU − C · ε < Opt(J), so Γ does not have valued
relational width (k, `). Since k and ` were chosen arbitrarily, the result follows.

Lemma 6.7. Let Γ be a valued constraint language of finite size over domain D
and let Γ′ be a core of Γ with D′ ⊆ D. Then, Γ′ ∪ CD′ ≤SA Γ.

Proof. Let I ′ be an instance of VCSP(Γ′), and let I be the instance of VCSP(Γ)
obtained from I ′ by substituting every restricted weighted relation in Γ′ by its cor-
responding weighted relation in Γ. Then, by Lemma 2.12, Opt(I ′) = Opt(I). Fix
1 ≤ k ≤ ` and assume that I ′ is a gap instance for the SA(k, `)-relaxation of VCSP(Γ′).
Then, OptLP(I) ≤ OptLP(I ′) < Opt(I ′) = Opt(I), where the first inequality follows
from the fact that I ′ is a restriction of I. This establishes Γ′≤SA Γ.

Let F be the set of unary operations on D′ that are not in supp(Γ′) and apply
Lemma 5.6 to Γ′ and F . This provides a crisp constraint language ∆ on D′ such that
∆≤SA Γ′ and such that every unary operation in Pol(∆) is also in supp(∆). Since Γ′
is a core only bijections can occur in supp(Γ′). By Lemma 5.6, Pol(∆) ∩ F = ∅ and
hence only bijections can occur in Pol(∆). Thus ∆ is also a core. We finish the proof
by showing that Γ′ ∪ CD′ ≤SA Γ′ ∪∆, using Lemma 6.1. Indeed, by Lemma 5.6 we
have ∆≤SA Γ′ and we have previously shown that Γ′≤SA Γ. Overall, Γ′ ∪CD′ ≤SA Γ′ ∪
∆≤SA Γ′≤SA Γ and thus Γ′ ∪ CD′ ≤SA Γ.

Let I∆ be the instance on variables V∆ = {xa | a ∈ D} and containing, for every
φ ∈ ∆, and a ∈ Dar(φ), a constraint φ(xa), where xa[i] = xa[i] for 1 ≤ i ≤ ar(φ).
Every satisfying assignment α to I∆ defines an operation fα : D → D by the map
a 7→ α(xa). The instance I∆ is sometimes called the indicator instance [38] and has
the following property:
(26)
α is a satisfying assignment of I∆ if, and only if, fα is a unary polymorphism of ∆.

Let I be an arbitrary instance of VCSP(Γ′ ∪CD′) with variables V = {x1, . . . , xn}
and objective function φI(x1, . . . , xn) =

∑q
i=1 φi(xi), where φi ∈ Γ′ ∪ CD′ and xi such

that Xi ⊆ V . Assume without loss of generality that V ∩ V∆ = ∅. For v ∈ V , define
v̂ := xa if there is a unary constraint v = a in I, and define v̂ := v, otherwise. For a
tuple of variables x = (v1, . . . , vm) ∈ V m, define x̂ = (v̂1, . . . , v̂m).

For i ∈ [q] such that φi ∈ Γ′, let yi = x̂i and let Ji be the instance on variables
Yi with objective function φJi(Yi) = φi(yi). For i ∈ [q] such that φi(xi) is a unary
constraint xi = a, let Ji be the instance I∆ on variables Yi = V∆. Note that each
Ji corresponding to a unary constraint xi = a is the same instance I∆ on the same
variables V∆. Let J be the VCSP(Γ′ ∪∆) instance with variables

⋃
i Yi and objective

function
∑
i φJi .

We verify properties (a)–(c) of Lemma 6.1.

(a) Let α be an optimal assignment to J and consider the operation fα in (26)
obtained from the unique copy of I∆ in J . Since the unary operations in Pol(∆) are
bijections and closed under composition, it follows that f−1

α is also in Pol(∆) and
therefore in supp(Γ). Hence, by Lemma 2.9, β := f−1

α ◦α is also an optimal assignment
to J and fβ is the identity operation. We define σα(x) = a if x̂ = xa for some a ∈ D′,
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and σα(x) = β(x) otherwise. All unary constraints x = a in I are satisfied by σα and
all other constraints take the same value as in J , hence Val(I, σα) = Val(J, α).

Let k ≥ ar(Γ′ ∪ CD′) and suppose that λ is a feasible solution to the SA(k, 2k)-
relaxation of I. Let γ be the satisfying assignment of I∆ that assigns a to xa for
all a ∈ D′. For all i ∈ [q] and σ : Xi → D with positive support in λ, define
ασi = (σ ∪ γ)|Yi .

(b) For all i ∈ [q], Val(Ji, ασi ) = φJi(ασi (Yi)) = φi(σ(xi)) <∞, where the equalities
hold by construction, and the inequality follows from the feasibility of λ.

(c) Let i, r ∈ [q] and X ⊆ V be as in the lemma and suppose that σ : X → D
has positive support in λ. Let y ∈ Yi ∩ Yr. If y = xa for some a ∈ D′’ then
ασii (y) = ασrr (y) = γ(xa) = a. Otherwise, y ∈ Xi ∩Xr, so ασii (y) = σi(y) = σ(y) =
σr(y) = ασrr (y).

It follows that Lemma 6.1 is applicable, so Γ′ ∪ CD′ ≤SA Γ′ ∪∆.
7. Gap Instances for SA-relaxations of VCSP(EG,3). In this section, we give

a construction of gap instances for SA-relaxations of VCSP(EG,3), which shows that
EG,3 does not have bounded valued relational width. This result can also be derived
from results in [58] using additional non-trivial results. We provide here a direct,
elementary proof for constant level LP relaxations, whereas [58] deals with linear level
SDP relaxations.

Let G be an Abelian group over a finite set G and let g be a non-zero element
in G. Let R0 = {(x, y, z) ∈ G3 | x = y + z + 0} and Rg = {(x, y, z) ∈ G3 | x =
y + z + g} and ∆ = {R0, Rg}. Both R0 and Rg are expressible in EG,3: R0(x, y, z) =
miny′,z′(R3

0(x, y′, z′) +R2
0(y′, y) +R2

0(z′, z)) and Rg(x, y, z) = miny′,z′(R3
g(x, y′, z′) +

R2
0(y′, y) +R2

0(z′, z)). By Theorem 5.5(1), it suffices to prove that ∆ does not have
bounded valued relational width.

Let k ≥ 3. We construct an unsatisfiable instance I of VCSP(∆) and a feasible
solution to its SA(k, k)-relaxation. The construction is similar to the one in [30,
Theorem 31] where it is used to show that constraint languages without “the ability
to count” do not have bounded width. Our theorem is a strengthening of this result.

Let n ≥ 1 be a positive integer. Let Tn×n be the torus grid graph on n×n vertices
resulting from taking the square grid graph on (n+1)× (n+1) vertices and identifying
the topmost with the bottommost vertices as well as the leftmost with the rightmost
vertices.

The instance In contains one variable for each vertex and one variable for each
edge in Tn×n. For 0 ≤ a, b < n, let xa,b, ya,b, and za,b, be the variables corresponding
to vertices, horizontal edges, and vertical edges, respectively; cf., Figure 1. Let In
contain the following constraints:

ya,b+1 = ya,b + xa,b + ca,b(27)
za+1,b = za,b + xa,b + da,b,(28)

where indices are taken modulo n, and the elements ca,b, da,b ∈ {0, g} are chosen so
that

(29)
∑
a,b

ca,b −
∑
a,b

da,b = g.

The following result establishes Theorem 5.1. We note that it actually shows
that In, which has p = O(n2) variables, is a gap instance for SA(k(p), k(p)), with
k = Θ(√p).
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x0,0 x0,1 x0,2 x0,0

x1,0 x1,1 x1,2 x1,0

x2,0 x2,1 x2,2 x2,0

x0,0 x0,1 x0,2 x0,0

y0,0 y0,1 y0,2

y1,0 y1,1 y1,2

y2,0 y2,1 y2,2

y0,0 y0,1 y0,2

z0,0

z1,0

z2,0

z0,1

z1,1

z2,1

z0,2

z1,2

z2,2

z0,0

z1,0

z2,0

Figure 1. Variables in the torus T3,3 obtained from the 4× 4 grid graph.

Theorem 7.1. For every k ≥ 3 and n > 2k, the instance In is a gap instance for
SA(k, k).

Proof. The instance In is unsatisfiable by construction: Summing the equations
(27) over a and b and simplifying implies the equation 0 =

∑
a,b(xa,b + ca,b). Similarly,

the equations (28) imply 0 =
∑
a,b(xa,b + da,b). By taking the difference of these two

equations, it follows that 0 =
∑
a,b(ca,b − da,b) = g by (29), a contradiction. Hence,

the constraints of In cannot be simultaneously satisfied. On the other hand, the
SA(k, k)-relaxation of In has a feasible solution by Lemma 7.4.

In the remaining part of the section, we prove that the SA(k, k)-relaxation of In
has a feasible solution.

Denote by V the set all variables of In and let Vx = {xa,b | 0 ≤ a, b < n}. For
S ⊆ Vx, we say that S excludes a cross if there are indices a′ and b′ such that xa′,b 6∈ S
for all 0 ≤ b < n, and xa,b′ 6∈ S for all 0 ≤ a < n. We say that S contains a hole if
the induced subgraph Tn×n[Vx \ S] is not connected. Let S be the family of subsets
S ⊆ Vx such that S excludes a cross and does not contain a hole.

For a subgraph T ′ of Tn×n, we denote by Var(T ′) the set of variables on the
vertices and edges of T ′. Let X1, . . . , Xm be an enumeration of all subsets X ⊆ V
such that X ⊆ Var(Tn×n[S]) for some S ∈ S. For i ∈ [m], define

(30) X̄i =
⋂

S∈S : Xi⊆Var(Tn×n[S])

Var(Tn×n[S]).

Since S is closed under intersection, it follows that X̄i = Var(Tn×n[S]) for some S ∈ S,
so Vx ∩ X̄i = S excludes a cross and does not contain a hole.

It follows from the definition of X̄ that Xj ⊆ Xi =⇒ X̄j ⊆ X̄i. However, we
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will need a stronger property, namely that it is possible to move within the set family
{X̄i}mi=1 from X̄j to X̄i by adding vertices from Vx one at a time. More formally,
define the binary relation → on {X̄i}mi=1 by letting X̄j → X̄i if, and only if, X̄j ⊆ X̄i

and Vx ∩ (X̄i \ X̄j) = {xa,b} for some 0 ≤ a, b < n. Let 4 be the reflexive transitive
closure of →.

Lemma 7.2. Xj ⊆ Xi =⇒ X̄j 4 X̄i.
Proof. Assume to the contrary that there are i and j such that Xj ⊆ Xi but

X̄j 64 X̄i. Let C = Vx ∩ (X̄i \ X̄j) and assume that i and j are chosen so that |C| is
minimised. Let xa,b ∈ C and consider the set S = (Vx ∩ X̄i) \ {xa,b}. By construction
X̄j ⊆ S̄ ⊆ X̄i. If xa,b 6∈ S̄, then |Vx ∩ (S̄ \ X̄j)| < |C| which contradicts the minimality
of |C|. Therefore, Vx∩ S̄ = Vx∩X̄i, so S̄ = X̄i. This means that S contains a hole, and
in particular that S and therefore X̄i contains all neighbours of xa,b. Consider the set
∂C of vertices in Vx \C that are neighbours to some xa,b ∈ C. By the previous remark,
∂C ⊆ (Vx ∩ X̄i) \ C, so ∂C ⊆ Vx ∩ X̄j . Let C ′ be the vertices of an excluded cross in
X̄i. Then, any path in Tn×n from a vertex in C to a vertex in C ′ must pass through
a vertex in ∂C. Therefore, the induced subgraph Tn×n[Vx \ X̄j ] is disconnected, so
Vx ∩ X̄j contains a hole; a contradiction.

For i ∈ [m], define Ni to be the set of assignments σ̄ : X̄i → G that satisfy every
constraint in In whose scope is contained in X̄i. We argue that Ni is non-empty for
every i. A horizontal component of X̄i is a set of edges {ya,b, ya,b+1, . . . , ya,b+r} ⊆ X̄i

such that ya,b−1, ya,b+r+1 6∈ X̄i. A vertical component of X̄i is defined analogously.
Let Ci, Hi, and Vi be the number of vertices, horizontal components, and vertical
components, respectively, in X̄i. Since Vx ∩ X̄i excludes a cross, an assignment is
precisely determined by freely choosing the value of every vertex, and of one edge in
each horizontal component and one edge in each vertical component:

(31) |Ni| = |G|Ci+Hi+Vi ≥ 1.

For τ̄ ∈ Nj and i such that X̄j ⊆ X̄i, let Nj,i(τ̄) denote the set of assignments
σ̄ ∈ Ni such that τ̄ = σ̄|X̄j , i.e. the set of extensions of τ̄ to an assignment in Ni. Next,
we give an expression for the size of the sets Nj,i(τ̄) that is independent of the choice
of τ̄ .

Lemma 7.3. For Xj ⊆ Xi and all τ̄ ∈ Nj,

(32) |Nj,i(τ̄)| = |Ni|
|Nj |

.

Proof. First assume that X̄j → X̄i and let xa,b be the unique vertex in X̄i \ X̄j .
Since X̄j ∩ Vx does not contain a hole, it follows that xa,b must have fewer than four
neighbours in X̄j . We consider the following three possible cases:

1. xa,b has a single neighbour in X̄j . Without loss of generality, assume that
this neighbour is xa,b+1 so that X̄i \ X̄j = {xa,b, ya,b}. Choose the value of
xa,b arbitrarily. If ya,b+1 ∈ X̄j , then the equation ya,b+1 = ya,b + xa,b + ca,b
forces the value of ya,b. In this case, we have |G| possible extensions and
Ci = Cj + 1’ Hi = Hj , and Vi = Vj , so (32) holds. Otherwise, ya,b+1 6∈ X̄j , so
the value of ya,b can be chosen arbitrarily. In this case, we have |G|2 possible
extensions and Ci = Cj + 1, Hi = Hj + 1, and Vi = Vj , so (32) holds.

2. xa,b has two neighbours in X̄j . If xa,b has one horizontal and one vertical
neighbour, then we can argue as in case (1). Otherwise, without loss of
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generality, assume that X̄i \ X̄j = {ya,b−1, xa,b, ya,b}. We have three possible
cases, depending on the size of the intersection {ya,b−2, ya,b+1} ∩ X̄j . If this
intersection contains both y-variables, then the values of ya,b−1, xa,b, and ya,b
are all forced by the equations. In this case we have 1 possible extension,
Ci = Cj + 1, Hi = Hj − 1, and Vi = Vj , so (32) holds. If the intersection
contains one or zero y-variables, then we can choose the value of xa,b arbitrarily
and proceed similarly to case (1).

3. xa,b has three neighbours in X̄j . This case follows by extending the argument
in (2) for two vertical neighbours.

We now prove by induction that the general expression in (32) holds. By Lemma 7.2,
there exists an i′ such that X̄j 4 X̄i′ → X̄i. We have just shown that (32) holds for
i′, i, and all σ̄′ ∈ Ni′ . Assume by induction that (32) holds for j, i′, and all τ̄ ∈ Nj .
Then,

|Nj,i(τ̄)| =
∑

σ̄′∈Nj,i′ (τ̄)

|Ni′,i(σ̄′)| =
∑

σ̄′∈Nj,i′ (τ̄)

|Ni|
|Ni′ |

= |Ni
′ |

|Nj |
|Ni|
|Ni′ |

= |Ni|
|Nj |

.

which proves the lemma.
We are now ready to finish the proof of Theorem 7.1.
Lemma 7.4. For i ∈ [m], with |Xi| ≤ k, let λi be the following probability distri-

bution:

(33) λi(σ) = Pr
σ̄∼Ui

[
σ̄|Xi = σ

]
,

where Ui is the uniform distribution on Ni. Then, λ is a feasible solution to the
SA(k, k)-relaxation of In.

Proof. Let X ⊆ V with |X| ≤ k. Since |X| ≤ k < n/2, by the pigeonhole principle,
there exists an a′ such that {ya′,b, xa′,b, ya′+1,b}∩X = ∅ for every 0 ≤ b < n. Similarly,
there exists a b′ such that {za,b′ , xa,b′ , za,b′+1} ∩ X = ∅ for every 0 ≤ a < n. Let
S = Vx \ {(a, b) | a = a′ or b = b′}. Then, S ∈ S and X ⊆ Var(Tn×n[S]), so X = Xi

for some 1 ≤ i ≤ m. It follows that λ is defined for all X ⊆ V with |X| ≤ k.
By construction, λ satisfies (11) and (12) for the SA(k, k)-relaxation of In. It

remains to show that it also satisfies (10).
Let Xj ⊆ Xi and τ : Xj → G. Let X be a subset of variables such that Xj ⊆ X ⊆

X̄i. Then,

Pr
σ̄∼Ui

[
σ̄|Xj = τ

]
=

∑
σ : X→G

Pr
σ̄∼Ui

[
σ̄|Xj = τ and σ̄|X = σ

]
=

∑
σ : X→G
σ|Xj=τ

Pr
σ̄∼Ui

[σ̄|X = σ] .(34)

For X = X̄j , equation (34) implies the following.

(35) Pr
σ̄∼Ui

[
σ̄|Xj = τ

]
=

∑
τ̄ : X̄j→G
τ̄ |Xj=τ

Pr
σ̄∼Ui

[
σ̄|X̄j = τ̄

]
=

=
∑
τ̄∈Nj
τ̄ |Xj=τ

|Nj,i(τ̄)|
|Ni|

=
∑
τ̄∈Nj
τ̄ |Xj=τ

1
|Nj |

= λj(τ),
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where the next-to-last inequality follows from Lemma 7.3. Hence,

λj(τ) = Pr
σ̄∼Ui

[
σ̄|Xj = τ

]
(36)

=
∑

σ : Xi→G
σ|Xj=τ

Pr
σ̄∼Ui

[
σ̄|Xi = σ

]
(37)

=
∑

σ : Xi→G
σ|Xj=τ

λi(σ),(38)

where (37) follows by (34) with X = Xi. It follows that λ satisfies (10), hence it is a
feasible solution to the SA(k, k)-relaxation of In.

8. Proof of Lemma 3.7.
Lemma 8.1 (Lemma 3.7 restated). Let Γ be a valued constraint language of finite

size on domain D and Γ′ a core of Γ on domain D′ ⊆ D. Then, supp(Γ) satisfies the
BWC if, and only if, supp(Γ′ ∪ CD′) satisfies the BWC.

Proof. Let µ be a unary fractional polymorphism of Γ with an operation g in
its support such that g(D) = D′. We begin by constructing a unary fractional
polymorphism µ′ of Γ such that every operation in supp(µ′) has an image in D′. We
will use a technique for generating fractional polymorphisms described in [44, Lemma
10]. It takes a fractional polymorphism, such as µ, a set of collections G, which in our
case will be the set of operations in the clone of supp(µ), a set of good collections G∗,
which will be operations from G with an image in D′, and an expansion operator Exp
which assigns to every collection a probability distribution on G.

The procedure starts by generating each collection f ∈ supp(µ) with probability
µ(f), and subsequently the expansion operation Exp maps f ∈ G to the probability
distribution that assigns probability Prh∼µ[h ◦ f = f ′] to each operation f ′ ∈ G. The
expansion operator is required to be non-vanishing, which means that starting from
any collection f ∈ G, repeated expansion must assign non-zero probability to a good
collection in G∗. In our case, this is immediate, since starting from a collection f , the
good collection g ◦ f gets probability at least µ(g) which is non-zero by assumption.
By [44, Lemma 10], it now follows that Γ has a fractional polymorphism µ′ with
supp(µ′) ⊆ G∗. So every operation in supp(µ′) has an image in D′.

Now, we show that if supp(Γ) contains an m-ary WNU t, then supp(Γ′ ∪CD′) also
contains an m-ary WNU. Let ω be a fractional polymorphism of Γ with t in its support.
Define ω′ by ω′(f ′) = Prh∼µ′,f∼ω[h ◦ f = f ′]. Then, ω′ is a fractional polymorphism
of Γ in which every operation has an image in D′, so ω′ is a fractional polymorphism
of Γ′. Furthermore, for any unary operation h ∈ supp(µ′), h ◦ t is again a WNU, so
supp(Γ′) contains an m-ary WNU t′. Next, let h(x) = t′(x, . . . , x). Since Γ′ is a core,
the set of unary operations in supp(Γ′) contains only bijections and is closed under
composition (Lemma 2.8). It follows that h has an inverse h−1 ∈ supp(Γ′), and since
supp(Γ′) is a clone, h−1 ◦ t′ is an idempotent WNU in supp(Γ′). We conclude that
h−1 ◦ t′ ∈ supp(Γ′ ∪ {CD′}).

For the opposite direction, let t′ be an m-ary WNU in supp(Γ′ ∪ {CD′}), and let
ω′ be a fractional polymorphism of Γ′ ∪ {CD′} with t′ in its support. Then, ω′ is also
a fractional polymorphism of Γ′. Define ω by ω(f) = Prh∼µ′,f ′∼ω′ [f ′[h, . . . , h] = f ].
Then, ω is a fractional polymorphism of Γ, and, for every h ∈ supp(µ′), the operation
t[h, . . . , h] is an m-ary WNU in supp(ω). We conclude that t ∈ supp(Γ), which finishes
the proof.
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9. Proofs of Theorems 3.20 and 3.24.
Theorem 9.1 (Theorem 3.20 restated). Let D be an arbitrary finite domain and

let Γ be an arbitrary valued constraint language of finite size on D with CD ⊆ Γ.
Assume that Γ expresses a unary finite-valued weighted relation ν that is injective on
D. Then, either supp(Γ) satisfies the BWC, in which case Γ has valued relational
width (2, 3), or VCSP(Γ) is NP-hard.

Proof. If Γ satisfies the BWC then the result follows from Theorem 3.4. If Γ does
not satisfy the BWC then, by Lemma 5.7, there exists a crisp constraint language ∆
such that Pol(∆) does not satisfy the BWC and ∆≤SA Γ. By assumption, CD ⊆ Γ and
thus ∆ ∪ CD ≤SA Γ. Hence we may assume, without loss of generality, that CD ⊆ ∆.
By Theorem 5.4, there exists a non-trivial Abelian group G over a finite set G and
an interpretation of EG,3 in ∆ with parameters (d, S, h). By Theorem 5.5(3), we have
EG,3≤SA ∆≤SA Γ.

Let C be larger than maxa∈D ν(a) −mina∈D ν(a). The d-ary weighted relation
φ(x1, . . . , xd) defined by

φ(x1, . . . , xd) = ν(x1) + Cν(x2) + C2ν(x3) + · · ·+ Cd−1ν(xd)

is injective on the set of d-tuples over D. By Theorem 5.5(1), {φ}≤SA Γ. We define

φ′(x1, . . . , xd) = min
y1,...,yd

h−1(φG=)(x1, . . . , xd, y1, . . . , yd) + φ(y1, . . . , yd).

By Theorem 5.5(1) and (3), {φ′}≤SA Γ. Thus, we have an injective unary weighted
relation φ′ on the interpreted EG,3. For every x ∈ G, let hx ∈ Dd be an arbitrarily
chosen element of h−1(x). Finally, define the unary finite-valued weighted relation
φ′′ : G→ Q by φ′′(x) = φ′(hx). (Note that the choice of hx does not affect the value
of φ′′(x).)

We denote by E′G the crisp constraint language on domain G with, for every r ≥ 1,
a ∈ G, and c = (c1, . . . , cr) ∈ Zr with

∑r
i=1 ci = 0, a relation Sra,c = {(x1, . . . , xr) ∈

Gr |
∑r
i=1 cixi = a}. By [62, Theorem 3.18], VCSP(E′G ∪{φ′′}) is APX-hard, and thus

NP-hard since φ′′ is injective and thus non-constant on G. We will finish the proof by
showing how to reduce, in polynomial time, any instance I ′ of VCSP(E′G ∪ {φ′′}) to
an instance I of VCSP(EG,3 ∪ {φ′′}).

Let V denote the set of variables of I ′. The variables of I will include V and a set
of new auxiliary variables for each constraint of I ′ not involving φ′′. Let φ′′(x) be a
constraint of I ′ for some x ∈ V . Then we include the constraint φ′′(x) in I. Let Sra,c(x)
be a constraint of I ′ for some r ≥ 1, a ∈ G, c = (c1, . . . , cr) ∈ Zr with

∑r
i=1 ci = 0,

and x = (x1, . . . , xr) ∈ V r . Since |G|x = 0 in G, for all x ∈ G we can, without loss
of generality, assume that 0 ≤ ci < |G|. Thus Sra,c is equivalent to an m-ary relation
S′ over G where m =

∑r
i=1 ci ≤ r|G|. The relation S′ can be expressed with O(m)

relations from EG,3 using O(m) auxiliary variables.
Theorem 9.2 (Theorem 3.24 restated). Let Γ be a conservative valued constraint

language. Either VCSP(Γ) is NP-hard, or supp(Γ) contains a majority operation and
hence Γ has valued relational width (2, 3).

Proof. If Pol(Γ) does not contain a majority operation then Γ is NP-hard by
Theorem 3.23. If supp(Γ) contains a majority operation then, by Corollary 3.11, Γ
has valued relational width (2, 3).

Let F be the set of majority operations in Pol(Γ) \ supp(Γ). By Lemma 2.9, for
each f ∈ F , there is an instance If of VCSP(Γ) such that f 6∈ Pol(Opt(If )). Let
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Γ′ = Γ ∪ {Opt(If ) | f ∈ F}. If Pol(Γ′) does not contain a majority polymorphism,
then, since Γ is conservative, so is Γ′, and hence Γ′ is NP-hard by Theorem 3.23.
Therefore, Γ is NP-hard by Theorem 5.5 (4). Assume that Pol(Γ′) contains a majority
polymorphism f . Then, f 6∈ F , so f ∈ supp(Γ). From Corollary 3.11, it follows that Γ
has valued relational width (2, 3).

10. Conclusions. Using techniques from the algebraic study of CSPs and the
study of linear programming relaxations, we have given a precise characterisation of
the power of constant level Sherali-Adams linear programming relaxations for exact
solvability of valued constraint languages. Notably, we needed to prove that certain
gadget constructions, such as going to the core and interpretations, common in the
algebraic CSP literature but not commonly used in other areas of CSPs, such as
approximation, preserve solvability by constant level Sherali-Adams relaxations.

The complexity of Min-Ones problems with respect to exact solvability and
approximability was established in [24, 42]. Minimum-Solutions problems are a
generalisation of Min-Ones problems to larger domains, including integer programs
over bounded domains [39]. Following our characterisation of the power of Sherali-
Adams, we have given a complete complexity classification of exact solvability of
Minimum-Solution problems over arbitrary finite domains.
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[70] Y. Yoshida and Y. Zhou, Approximation schemes via Sherali-Adams hierarchy for dense
constraint satisfaction problems and assignment problems, in Innovations in Theoretical
Computer Science (ITCS’14), ACM, 2014, pp. 423–438, https://doi.org/10.1145/2554797.
2554836.

https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1109/CCC.2007.2
https://doi.org/10.1109/CCC.2007.2
https://doi.org/10.4230/LIPIcs.STACS.2010.2493
https://doi.org/10.1109/FOCS.2012.25
http://zivny.cz/publications/tz12focs-preprint.pdf
http://zivny.cz/publications/tz12focs-preprint.pdf
https://doi.org/10.1137/140990346
https://doi.org/10.1137/140990346
http://zivny.cz/publications/tz15sidma-preprint.pdf
https://doi.org/10.1007/978-3-662-47672-7_86
https://doi.org/10.1007/978-3-662-47672-7_86
http://zivny.cz/publications/tz15icalp-preprint.pdf
https://doi.org/10.1145/2974019
http://zivny.cz/publications/tz16jacm-preprint.pdf
http://zivny.cz/publications/tz16jacm-preprint.pdf
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1007/978-3-642-39206-1_68
https://doi.org/10.1145/2554797.2554836
https://doi.org/10.1145/2554797.2554836

	Introduction
	Preliminaries
	Valued CSPs
	Fractional Polymorphisms
	Cores and Constants
	Relational Width

	The Power of Sherali-Adams Relaxations
	Valued Relational Width
	A Characterisation of Bounded Valued Relational Width
	Algorithmic Consequences
	Complexity Consequences
	Related Work on BLP and Relational Width
	Obtaining a Solution and the Meta Problem

	Sufficiency: Proof of Theorem 3.4
	Necessity: Proof of Theorem 3.5
	Reductions: Proof of Theorem 5.5
	Gap Instances for SA-relaxations of `39`42`"613A``45`47`"603AVCSP(EG,3)
	Proof of Lemma 3.7
	Proofs of Theorems 3.20 and 3.24
	Conclusions
	References

