
Maximizing Bisubmodular and k-Submodular Functions

Justin Ward∗

Department of Computer Science, University of Warwick, UK
J.D.Ward@dcs.warwick.ac.uk

Stanislav Živný†
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Abstract
Submodular functions play a key role in combinatorial opti-
mization and in the study of valued constraint satisfaction
problems. Recently, there has been interest in the class of
bisubmodular functions, which assign values to disjoint pairs
of sets. Like submodular functions, bisubmodular functions
can be minimized exactly in polynomial time and exhibit the
property of diminishing returns common to many problems
in operations research. Recently, the class of k-submodular
functions has been proposed. These functions generalize the
notion of submodularity to k-tuples of sets, with submodu-
lar and bisubmodular functions corresponding to k = 1 and
2, respectively.

In this paper, we consider the problem of maximizing
bisubmodular and, more generally, k-submodular functions
in the value oracle model. We provide the first approxima-
tion guarantees for maximizing a general bisubmodular or
k-submodular function. We give an analysis of the naive
random algorithm as well as a randomized greedy algorithm
inspired by the recent randomized greedy algorithm of Buch-
binder et al. [FOCS’12] for unconstrained submodular max-
imization. We show that this algorithm approximates any
k-submodular function to a factor of 1/(1 +

p
k/2).

In the case of bisubmodular functions, our randomized
greedy algorithm gives an approximation guarantee of 1/2.
We show that, as in the case of submodular functions, this
result is the best possible in both the value query model,
and under the assumption that NP 6= RP . Our analysis
provides further intuition for the algorithm of Buchbinder et
al. [FOCS’12] in the submodular case. Additionally, we show
that the naive random algorithm gives a 1/4-approximation
for bisubmodular functions, corresponding again to known
performance guarantees for submodular functions. Thus,
bisubmodular functions exhibit approximability identical to
submodular functions in all of the algorithmic contexts we
consider.

1 Introduction

Given a finite nonempty set U , a set function f : 2U →
R+ defined on subsets of U is called submodular if for
all S, T ⊆ U ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).
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Submodular functions are a key concept in operations
research and combinatorial optimization [29, 28, 38, 34,
10, 24, 19]. Examples of submodular functions include
cut capacity functions, matroid rank functions, and en-
tropy functions. Submodular functions are often consid-
ered to be a discrete analogue of convex functions [26].

Both minimizing and maximizing submodular func-
tions, possibly under some additional conditions, have
been considered extensively in the literature. Submod-
ular function maximization is easily shown to be NP-
hard [34] since it generalizes many standard NP-hard
problems such as the maximum cut problem [12, 9]. In
contrast, the problem of minimizing a submodular func-
tion can be solved efficiently with only polynomially
many evaluations of the function [19] either by using
the ellipsoid algorithm [13, 14], or by using one of sev-
eral combinatorial algorithms that have been obtained
in the last decade [33, 20, 17, 18, 30, 22].

Following a question by Lovász [26], a generalization
of submodularity to biset functions has been introduced.
Given a finite nonempty set U , a function f : 3U →
R+ defined on pairs of disjoint subsets of U is called
bisubmodular if for all pairs (S1, S2) and (T1, T2) of
disjoint subsets of U ,

f(S1, S2) + f(T1, T2)
≥ f((S1, S2) u (T1, T2)) + f((S1, S2) t (T1, T2)),

where we define

(S1, S2) u (T1, T2) = (S1 ∩ T1, S2 ∩ T2),

and

(S1, S2) t (T1, T2)
= ((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)).

Examples of bisubmodular functions include rank func-
tions of delta-matroids [4, 6]. Bisubmodularity also



arises in bicooperative games [3] as well as variants of
sensor placement problems and coupled feature selection
problems [35]. The minimization problem for bisub-
modular functions using the ellipsoid method was solved
in [32]. Moreover, combinatorial [11] and strongly com-
binatorial [27] algorithms are known for minimizing
bisubmodular functions.

In this paper, we study the natural generalization
of submodular and bisubmodular functions: given a
natural number k ≥ 1 and a finite nonempty set U ,
a function f : (k + 1)U → R+ defined on k-tuples of
pairwise disjoint subsets of U is called k-submodular if
for all k-tuples S = (S1, . . . , Sk) and T = (T1, . . . , Tk)
of pairwise disjoint subsets of U ,

f(S) + f(T ) ≥ f(S u T ) + f(S t T ),

where we define

S u T = (S1 ∩ T1, . . . , Sk ∩ Tk),

and

S t T

= ((S1∪T1)\
⋃

i∈{2,...,k}

(Si∪Ti), . . . , (Sk∪Tk)\
⋃

i∈{1,...,k−1}

(Si∪Ti)).

Using this notation, 1-submodular functions are sub-
modular functions and 2-submodular functions are
bisubmodular functions. (We note that Ando has used
the term k-submodular to study different class of func-
tions [1].)

Related work The name of k-submodular func-
tions was first introduced in [15] but the concept has
been known since at least [7]. k-submodularity is a spe-
cial case of strong tree submodularity [23] with the tree
being a star on k + 1 vertices.

To the best of our knowledge, it is not known
whether the ellipsoid method can be employed for
minimizing k-submodular functions for k ≥ 3 (some
partial results can be found in [15]), let alone whether
there is a (fully) combinatorial algorithm for minimizing
k-submodular functions for k ≥ 3. However, it has
recently been shown that explicitly given k-submodular
functions can be minimized in polynomial time [36].

Some results on maximizing special cases of bisub-
modular functions have appeared in Singh, Guillory,
and Bilmes [35], who showed that simple bisubmodular
function can be represented as a matroid constraint and
a single submodular function, thus enabling the use of
existing algorithms in some special cases. Unfortunately
they show that for some bisubmodular functions, this
approach requires that the submodular function take
negative values and so this approach does not work in

general. (We note that our definition of bisubmodular-
ity corresponds to directed bisubmodularity in [35].)

A different generalization of bisubmodularity, called
skew bisubmodularity, has proved important in classify-
ing finite-valued CSPs on domains with 3 elements [16];
this result was then generalized by a complexity classi-
fication of finite-valued CSPs on domains of arbitrary
size [37]. Explicitly given skew bisubmodular functions
can be minimized efficiently by results of Thapper and
Živný [36]. The general question of whether all bisub-
modular, and, more generally, k-submodular functions
can be approximately maximized was left open.

Contributions Following the question by
Lovász [26] of whether there are generalizations of
submodularity that preserve some nice properties such
as efficient optimization algorithms and a more recent,
similar question by Vondrák,1 we consider the class of
k-submodular functions.

Specifically, we consider the problem of maximiz-
ing bisubmodular and, more generally, k-submodular
functions in the value oracle model. We provide the
first approximation guarantees for maximizing a gen-
eral bisubmodular or k-submodular function. In Sec-
tion 3 we show that the naive random algorithm that
simply returns a random partition of the ground set U
is 1/4-approximation for maximizing any bisubmodu-
lar function and a 1/k-approximation for maximizing a
k-submodular function with k ≥ 3.

In Section 4, we develop a randomized greedy
algorithm for k-submodular maximization inspired by
the algorithm of Buchbinder et al. [5] for unconstrained
submodular maximization. We show that this algorithm
approximates any k-submodular function to a factor of
1/(1 +

√
k/2).

Finally, in Section 5 we relate our results on bisub-
modular functions and existing results on submodular
functions via a known embedding of submodular func-
tions into bisubmodular functions. Using this embed-
ding we can translate inapproximability results for sub-
modular function into analogous results for bisubmod-
ular functions. Moreover, we show that the algorithm
of Buchbinder et al. [5] may be viewed as a special case
of our algorithm applied to this embedding.

Our results on bisubmodular functions and the
simple 1/k-approximation algorithm for maximizing
k-submodular functions have been obtained indepen-
dently by Iwata, Tanigawa, and Yoshida [21].

1In the SODA 2013 invited talk “Submodular Functions and
Their Applications”, Vondrák asked about generalizations of

submodularity defined via polymorphisms (submodularity corre-
sponds to min and max polymorphisms).



2 Preliminaries

We denote by R+ the set of all non-negative real
numbers. Let U be a ground set containing n elements
and k ≥ 1 be a fixed integer. We consider functions
that assign a value in R+ to each partial assignment
of the values {1, . . . , k} to the elements of U . We can
represent each such (partial) assignments as vectors x
in {0, . . . , k}U , where we have xe = 0 if element e in U
is not assigned any value in {1, . . . , k}, and otherwise
have xe equal to the value assigned to e. It will be
useful to consider the partial assignment obtained from
another (possibly partial) assignment x by “forgetting”
the values assigned to all elements except for some
specified set S ⊆ U . We represent this as the vector
x
∣∣
S

whose coordinates are given by
(
x
∣∣
S

)
e

= xe, for all
e ∈ S and

(
x
∣∣
S

)
e

= 0 for all e ∈ U \ S. Note that x
∣∣
S

is similar to the projection of x onto S, but we here
require that all coordinates e 6∈ S be set to 0, while
the standard notion of projection would remove these
coordinates from the resulting vector. In particular, this
means that x

∣∣
S

and x both have n coordinates.
In order to relate our results to existing work on

submodular functions, we shall also use terminology
from set functions. In this setting, we consider functions
that assign a value to each tuple of disjoint sets S =
(S1, . . . , Sk), where Si ⊆ U and Si ∩ Sj = ∅ for all
i 6= j. It is straightforward to check that the two
notions are equivalent by having e ∈ Si if and only if
xe = i. Then, we have xe = 0 if and only if e does not
appear in any of the sets S1, . . . , Sk. With some abuse
of notation, we shall write e 6∈ S for an element e in U
and S = (S1, . . . , Sk) if e 6∈ ∪1≤i≤kSi.

The solution space over which we optimize our
functions is thus the set of partitions of some subset
U ′ ⊆ U into k disjoint sets, where in our vector notation
U ′ is equivalent to the set of coordinates in x that
are non-zero. We shall refer to those solutions that
partition the entire ground set U (or, alternatively,
whose assignment vectors have no zero coordinates) as
partitions, and call partitions of some U ′ ⊆ U partial
solutions2 over U , to emphasize that they may not
necessarily assign every element in U to a set.3

In this paper, we study the following particular class
of functions mapping partial solutions over U to values
in R+. Consider the operations min0 and max0 given

2It is not a priori clear why a partial solution could not be

an optimal solution but we shall see, in Corollary 2.1, that when
maximizing k-submodular functions, where k ≥ 2, we can focus

only on partitions.
3Note that every partition is thus also a partial solution, but

not vice versa.

by

min0(s, t) def=

{
0, s 6= 0, t 6= 0, s 6= t

min(s, t), otherwise

and

max0(s, t) def=

{
0, s 6= 0, t 6= 0, s 6= t

max(s, t), otherwise,

where min(s, t) (respectively, max(s, t)) returns the
smaller (respectively, the larger) of s and t with respect
to the usual order on the integers.

For vectors s and t in {0, . . . , k}U we let min0(s, t)
(respectively, max0(s, t)) denote the vector obtained
from applying min0 (respectively, max0) to s and t
coordinate-wise. Using these operations we can define
the general class of k-submodular functions.

Definition 2.1. Given a natural number k ≥ 1 and a
finite nonempty set U , a function f : {0, . . . , k}U → R+

is called k-submodular if for all s and t in {0, . . . , k}U ,

(2.1) f(s) + f(t) ≥ f(min0(s, t)) + f(max0(s, t)).

Note that if s and t are both partitions, then we have
min0(s, t) = max0(s, t) = id0(s, t) where the operation
id0 on each coordinate of s and t is given by id0(s, t) =
s = t if s = t, and id0(s, t) = 0 otherwise. Thus, if f is
a k-submodular function, we have

(2.2) f(s) + f(t) ≥ 2f(id0(s, t))

for any partitions s and t.

Example. The well-known Max-Cut problem demon-
strates that maximizing (1-)submodular functions is
NP-hard even if the objective function is given ex-
plicitly [12]. We show that the same hardness result
holds for any k ≥ 1. Consider the following function
f= defined on {0, . . . , k} by f=(x, y) = 0 if x = y
and f=(x, y) = 1 if x 6= y. It is easy to check
that f= is k-submodular. Moreover, given a graph
(V,E) with V = {v1, . . . , vn}, maximizing the function
f(v1, . . . , vn) =

∑
{vi,vj}∈E f=(vi, vj) amounts to solv-

ing the Max-k-Cut problem, which is NP-hard [31].

While quite concise, Definition 2.1 gives little intu-
ition in the traditional setting of set functions. We now
attempt to provide some such intuition. Consider two
partial solutions S = (S1, . . . , Sk) and T = (T1, . . . , Tk)
and let s and t be the vectors in {0, . . . , k}U repre-
senting S and T , respectively. Consider some element



i ∈ U . We have min0(si, ti) = j 6= 0 precisely when
si = ti = j 6= 0. Thus, the vector min0(s, t) in Defini-
tion 2.1 corresponds exactly to the coordinate-wise in-
tersection (S1 ∩ T1, . . . , Sk ∩ Tk) of S and T . Moreover,
max0(si, ti) = j 6= 0 precisely when either si = ti 6= 0 or
when one of si, ti is j 6= 0 and the other is 0. Thus, the
vector max0(s, t) corresponds exactly to the coordinate-
wise union of S and T after we have removed any ele-
ment i occurring in two different sets from both of them.
That is, if we set X−i =

⋃
j 6=i (Sj ∪ Tj), then max0(s, t)

corresponds to ((S1 ∪ T1) \ X−1, . . . , (Sk ∪ Tk) \ X−k).
Note that the removal of X−i from the ith union en-
sures that no element occurs in two different sets in the
resulting partial solution.

The following equivalences, first observed by Cohen
et al. [7], allow us to relate k-submodular functions
to existing families of set functions. When k = 2,
Definition 2.1 requires that

f(S1, S2) + f(T1, T2)
≥ f(S1 ∩ T1, S2 ∩ T2)

+ f((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T2)),

which agrees exactly with the definition of bisubmodu-
lar functions given in [10]. When k = 1, there is only
a single set in each partial solution, and so X−1 = ∅.
Thus, Definition 2.1 requires that

f(S1) + f(T1) ≥ f(S1 ∩ T1) + f(S1 ∪ T1),

which agrees exactly with the standard definition of
submodular functions [29].

Let x be a partition of the ground set U . Given a
k-submodular function f , we call set function h : 2U →
R+ defined for any S ⊆ U by

h(S) def= f(x
∣∣
S

)

the function induced by x and f . In the language of set
functions, the function h is obtained by first assigning
each element e in U to a single set Xi (where i = xe).
Then, h(S) is simply the value of f(S∩X1, . . . , S∩Xk).

For a function f : {0, . . . , k}U → R+, a partial
solution S = (S1, . . . , Sk), an element e ∈ U , and a value
i ∈ {1, . . . , k}, we define the marginal value fi,e(S) by

fi,e(S) def=
f(S1, . . . , Si−1, Si+e, Si+1, . . . , Sk)− f(S1, . . . , Sk),

for any partial solution S = (S1, . . . , Sk) such that
e 6∈ S, where Si + e is a shorthand for Si ∪ {e}.

The following theorem shows that both the induced
functions and marginal values of k-submodular func-
tions obey certain useful properties.

Theorem 2.1. Let f : {0, . . . , k}U → R+ be a k-
submodular function, where k ≥ 2. Then,

1. For any partition x, the function h induced by x
and f is submodular.

2. For any element e and any partial solution S =
(S1, . . . , Sk) such that e 6∈ S,

k∑
i=1

fi,e(S) ≥ 0.

Proof. To prove the first property, let f , x =
(X1, . . . , Xk), and h be as stated. For any S, T ⊆ U ,

h(S) + h(T )
(1)
= f(S ∩X1, . . . , S ∩Xk) + f(T ∩X1, . . . , T ∩Xk)
(2)

≥ f((S ∩X1) ∩ (T ∩X1), . . . , (S ∩Xk) ∩ (T ∩Xk))
+ f((S ∩X1) ∪ (T ∩X1), . . . , (S ∩Xk) ∪ (T ∩Xk))

(3)
= f((S ∩ T ) ∩X1, . . . , (S ∩ T ) ∩Xk)

+ f((S ∪ T ) ∩X1, . . . , (S ∪ T ) ∩Xk)
(4)
= h(S ∩ T ) + h(S ∪ T ),

where (1) and (4) follow from the definition of h, (2)
follows from the definition of k-submodularity and the
fact that (S ∩ Xi) ∩ (T ∩ Xj) = ∅ for all i 6= j since
x is a partition, and (3) follows from basic properties
of union and intersection and the fact that Xi’s are
disjoint. Thus h is submodular.

In order to prove the second property, we prove the
following:

(2.3)
k∑
i=1

f(S1, . . . Si−1, Si+e, Si+1 . . . , Sk)

≥ k · f(S1, . . . , Sk).

Let S = (S1, . . . , Sk) be a partial solution and s the
corresponding vector in {0, . . . , k}U . For any fixed 1 ≤
i 6= j ≤ k, consider partial solutions (S1, . . . , Si−1, Si +
e, Si+1, . . . , Sk) and (S1, . . . , Sj−1, Sj + e, Sj+1, . . . , Sk)
and let s1 and s2 be the corresponding vectors in
{0, . . . , k}U . Since Sp ∩ Sr = ∅ for all 1 ≤ p 6= r ≤ k,
we get min0(s1, s2) = max0(s1, s2) = s. Thus, by
using the k-submodularity inequality (2.1) for all pairs
of 1 ≤ i 6= j ≤ k, we get

k∑
i=1

(k − 1) · f(S1, . . . , Si−1, Si+e, S2, Si+1, . . . , Sk)

≥
(
k

2

)
· 2 · f(S1, . . . , Sk),



which, after dividing both sides by k − 1, simplifies to
inequality (2.3).

In the case of k = 2, Ando, Fujishige, and Naito
[2] have shown that the 2 properties given in Theorem
2.1 in fact give an exact characterization of the class of
bisubmodular functions.

Corollary 2.1. (of Theorem 2.1) Any partial so-
lution S ∈ {0, . . . , k}U can be extended to a partition
of U in {1, . . . , k}U without any loss in the value of f .

Proof. If S is not a partition of U then there is some e in
U so that e 6∈ S and there is at least one index i so that
f(S1, . . . , Si−1, Si+e, Si+1, . . . , Sk)−f(S1, . . . , Sk) ≥ 0
as otherwise, by summing over all 1 ≤ i ≤ k, we would
get a contradiction with Theorem 2.1 (2). Thus we can
add e to Si and inductively get a maximizer of f that
is a partition of U .

It is easy to show that k-submodular functions
have the property of diminishing returns. (For 1-
submodular functions this is an equivalent definition of
submodularity [29].4)

Proposition 2.1. Let f : (k + 1)U → R+ be a k-
submodular function and let S = (S1, . . . , Sk) and T =
(T1, . . . , Tk) be two partial solutions such that Si ⊆ Ti
for all 1 ≤ i ≤ k. Then for every 1 ≤ i ≤ k and e 6∈ T ,
fi,e(S) ≥ fi,e(T ).

Proof. Without loss of generality, we assume that i = 1.
From the definition of k-submodularity we get f(S1 +
e, S2, . . . , Sk) + f(T1, T2, . . . , Tk) ≥ f(S1, . . . , Sk) +
f(T1 + e, T2, . . . , Tk).

Finally, we restate the following result from Lee,
Sviridenko, and Vondrák [25], which shall be useful in
our analysis:

Lemma 2.1. ([25, Lemma 1.1]) Let f be a non-
negative submodular function on U . Let S,C ⊆ U and
let {T`}t`=1 be a collection of subsets of C \ S such that
each element of C \S appears in exactly p of these sub-
sets. Then

t∑
`=1

[f(S ∪ T`)− f(S)] ≥ p[f(S ∪ C)− f(S)].

In fact, the following weaker statement will be sufficient
for our purposes:

4That is, f : 2U → R+ is 1-submodular if and only if
fi,e(S) ≥ fi,e(T ) for every S ⊆ T and e 6∈ T .

Corollary 2.2. (of Lemma 2.1) Let f be a non-
negative submodular function on U . Let S,C ⊆ U and
let {T`}t`=1 be a collection of subsets of C \ S such that
each element of C \S appears in exactly p of these sub-
sets. Then

t∑
`=1

f(S ∪ T`) ≥ pf(S ∪ C).

Proof. Add
∑t
`=1 f(S) to each side of the inequality in

Lemma 2.1. This gives

t∑
`=1

f(S ∪ T`) ≥ p · f(S ∪ C)− p · f(S) +
t∑
`=1

f(S)

= p · f(S ∪ C) + (t− p) · f(S) ≥ p · f(S ∪ C),

since p ≤ t.

3 The Naive Random Algorithm

In this section, we consider the expected performance
of the naive randomized algorithm for maximizing a
k-submodular function f : {0, . . . , k}U → R+. Corol-
lary 2.1 shows that any partial solution S ∈ {0, . . . , k}U
can be extended to a full partition of U in {1, . . . , k}U
without any loss in the value of f . Thus, we consider a
random algorithm that simply selects a partition of the
ground set from {1, . . . , k}U uniformly at random. The
proof of the following result can be found in Appendix A
(case k=1 is known [9]).

Theorem 3.1. The naive random algorithm gives a
1/4-approximation for k-submodular functions with k ≤
2 and a 1/k-approximation for k-submodular functions
with k ≥ 3.

Example. As a tight example for k = 2, we consider the
function f[u=1,v=2] on the ground set {u, v}, given by:

f[u=1,v=2](x) =


1, xu = 1, xv = 2
1
2 , xu = 1, xv = 0 or xu = 0, xv = 2
0, otherwise

.

It is easily verified that this function is indeed bisub-
modular. Moreover, the probability that a random
partition will set xu = 1, and xv = 2 is 1

4 , and
the function has value 0 for all other partitions.
Thus, E[f[u=1,v=2](x)] = 1

4 , whereas the maximum
value is 1. We can generalize this to a ground sets
U = U ′ ∪ V ′ of arbitrary size by setting f(x) =∑
u∈U ′

∑
v∈V ′ f[u=1,v=2](x).

Example. As a tight example for k ≥ 3, we consider the
k-submodular function f[e=1] on the singleton ground



set {e} given by f[e=1](x) = 1 if xe = 1 and f[e=1](x) = 0
otherwise. It is easy to verify that this function is indeed
k-submodular. Moreover, a random partition sets sx =
1 with probability only 1

k , and so E[f[e=1](x)] = 1
k . Note

that the example is easily generalized to ground sets of
arbitrary size by defining f(x) =

∑
e∈U f[e=1](x).

4 A Randomized Greedy Algorithm

Next, we consider the performance of a simple greedy
algorithm inspired by the algorithm of Buchbinder et
al. [5] for unconstrained submodular maximization. Our
algorithm begins with the initial solution (∅, . . . , ∅) and
considers elements of the ground set U in some arbitrary
order, permanently adding each element to one of the
sets Si in S, based on the increase that this gives in f .
Specifically, the algorithm randomly adds an element
e to the set Si with probability proportional to the
resulting marginal increase fi,e(S) in f with respect to
the current solution S. If fi,e(S) < 0, we add e to Si
with probability 0. Note that Theorem 2.1 shows that
we cannot have fi,e(S) < 0 for all i, but it may be the
case that fi,e(S) = 0 for all i. In this case, we add e to
the set S1.

Algorithm 4.1. Randomized Greedy
for i = 1 to k do

Si ← ∅
end for
for each e ∈ U do

for i = 1 to k do
xi ← max(0, fi,e(S))

end for
β =

∑k
i=1 xi

if β 6= 0 then
Let i ∈ {1, . . . , k} be chosen randomly,

with Pr[i = j] = xj

β for all j ∈ {1, . . . , k}.
Si ← Si + e

else
S1 ← S1 + e

end if
end for

Theorem 4.1. Let S be the solution produced by the
randomized greedy algorithm on some instance f :
{0, . . . , k}U → R+ of k-submodular maximization with
k ≥ 2, and let OPT be the optimal solution for this
instance. Then,(

1 +

√
k

2

)
E[f(S)] ≥ f(OPT ).

Proof. Our analysis considers 2 sequences of n solutions.
First let, S(i) = (S(i)

1 , . . . , S
(i)
k ) be the algorithm’s

solution after i elements have been considered, and
let U (i) =

⋃k
j=1 S

(i)
j be the set of elements that have

been considered by the algorithm at this point. Then,
we define the solution O(i) = (O(i)

1 , . . . , O
(i)
k ), where

O
(i)
j = (OPT j \ U (i)) ∪ S(i)

j . Intuitively, O(i) is the
solution that agrees with S(i) on the placement of the
elements considered by the greedy algorithm in its first
i phases and agrees with OPT on the placement of
all other elements. Note that in particular we have
O(0) = OPT and O(n) = S. In Lemma 4.1, we bound
the expected decrease E[f(O(i))− f(O(i+1))] relative to
the increase E[f(S(i+1))−f(S(i))]. Specifically, we show
that
(4.4)

E[f(O(i))− f(O(i+1))] ≤
√
k

2
E[f(S(i+1))− f(S(i))]

for all i. Summing the resulting inequalities for i = 0 to
n, we then obtain

n∑
i=0

E[f(O(i))− f(O(i+1))]

≤
√
k

2

n∑
i=0

E[f(S(i+1))− f(S(i))],

which simplifies to

E[f(O(0))]−E[f(O(n))]

≤
√
k

2

(
E[f(S(n))]− E[f(S(0))]

)
≤
√
k

2
E[f(S(n))].

The theorem then follows from the definitions O(0) =
OPT , and S(n) = O(n) = S.

We now show that inequality (4.4) must hold.

Lemma 4.1. For any 0 ≤ i ≤ n,

E[f(O(i))− f(O(i+1))] ≤
√
k

2
E[f(S(i+1))− f(S(i))].

Proof. Let e be the element of U considered by the
randomized greedy algorithm in the (i + 1)th phase,
and let U (i) and O(i) be defined as in the proof of
Theorem 4.1. We condition on an arbitrary, fixed value
for both U (i), O(i), and consider the expectation over
choices the algorithm makes for e. Because our result
will hold for an arbitrary U (i) or O(i) it then extends
to the expectation over the first i choices made by the
algorithm.



We define the solution A = (A1, . . . , Ak), where
Aj = O

(i)
j − e, and let aj = fj,e(A) for 1 ≤ j ≤ k. As in

the definition of the greedy algorithm in Algorithm 4.1,
we let xj = max(0, fj,e(S(i))) for each 1 ≤ j ≤ k. Then,
we note that for every 1 ≤ j ≤ k,

Aj = O
(i)
j − e = ((OPT j \ U (i)) ∪ S(i)

j )− e

⊇ S(i)
j − e = S

(i)
j ,

where S(i)
j − e = S

(i)
j as e is considered in the (i+ 1)th

phase. Thus, from Proposition 2.1 we have aj =
fj,e(A) ≤ fj,e(S(i)) ≤ xj for all 1 ≤ j ≤ k and also,
from Theorem 2.1,

∑k
j=1 aj ≥ 0.

Finally, we have xj ≥ 0 for each 1 ≤ j ≤ k, by
definition.

Now, let suppose that e ∈ OPT o for some 1 ≤ o ≤
k, and that the greedy algorithm places e ∈ S(i)

j for some
1 ≤ j ≤ k. Then, O(i) and O(i+1) are identical except
that O(i) places e in the oth set, while O(i+1) places e
in the jth set. Thus, we have f(O(i)) = f(A) + fo,e(A)
and f(O(i+1)) = f(A) + fj,e(A), and so

f(O(i))− f(O(i+1)) = fo,e(A)− fj,e(A) = ao − aj ,

and
f(S(i+1))− f(S(i)) = fj,e(S(i)) = xj .

For any given j, the probability that the greedy algo-
rithm makes such a choice is precisely xj/β, and so

E[f(S(i+1))− f(S(i))] =
1
β

∑
j

x2
j ,

and

E[f(O(i))− f(O(i+1))] =
1
β

∑
j

xj(ao − aj)

=
1
β

∑
j 6=o

xj(ao − aj).

In order to prove the lemma it is thus sufficient to show
that

(4.5)
∑
j 6=o

xj(ao − aj) ≤
√
k

2

∑
j

x2
j .

For any value of x1, . . . , xk, the left hand side of (4.5)
is upper bounded by the optimal value of the linear
program

maximize
∑
j 6=o

xj(ao − aj)

subject to aj ≤ xj 1 ≤ j ≤ k∑
j

aj ≥ 0

This is a bounded, feasible linear program in k variables
aj with k+1 linearly independent constraints. Let a∗ be
an optimal solution to this program. Then, basic linear
programming theory allows us to suppose without loss
of generality that a∗ is in fact a basic feasible solution
and hence has k tight constraints. We first note that by
increasing ao we cannot violate the final constraint and
can only increase the objective, and so we may assume
that ao = xo. Of the remaining k constraints, k−1 must
be tight, of which k−2 must be of the first type. Hence,
for all j except at most 1 value ` 6= o, we in fact have
aj = xj . This accounts for k− 1 total tight constraints.
The final tight constraint must imply either a` = x` or∑
j aj = 0. Because aj = xj for all j 6= `, the latter

is equivalent to a` = −
∑
j 6=` xj . Moreover, because

xj ≥ 0 for all j, setting a` = −
∑
j 6=` xj always gives an

objective value at least as large as setting a` = x`. Thus,
we can characterize the optimal solution to this linear
program by a∗j = xj for all j 6= `, and a∗` = −

∑
j 6=` xj ,

where ` is some value distinct from o.
Returning to (4.5), we have∑

j 6=o

xj(ao − aj) ≤
∑
j 6=o

xj(a∗o − a∗j )

=
∑
j 6=o,`

xj(xo − xj) + x`

xo +
∑
j 6=`

xj


= 2x`xo +

∑
j 6=o,`

[x`xj + xoxj − x2
j ],

for any x1, . . . , xk ≥ 0. In order to prove (4.5) it then
suffices to show that

(4.6) 0 ≤ α
∑
j

x2
j − 2x`xo −

∑
j 6=o,`

[x`xj + xoxj − x2
j ],

where α =
√

k
2 . This follows directly from the fact

that the right hand side of (4.6) can be written as the
following sum of squares:

(x` − xo)2 +
∑
j 6=o,`

(√
α− 1
k − 2

x` −
√
α+ 1

2
xj

)2

+
∑
j 6=o,`

(√
α− 1
k − 2

xo −
√
α+ 1

2
xj

)2

.

A verification of this can be found in Appendix C.

A simpler analysis in Appendix B shows that
a deterministic greedy algorithm gives a (1 + k)-
approximation.



5 Conclusion

In the preceding sections we have considered the prob-
lem of maximizing k-submodular functions by both a
random partition and a simple, randomized greedy al-
gorithm. In the case of maximizing a bisubmodular
function, we obtained the same approximation ratios
as those already known in the submodular case: 1/4 for
the naive random solution [9] and 1/2 via a randomized
greedy approach [5]. We can make this correspondence
more explicit by considering the following embedding
of a submodular function into a bisubmodular function.
Given a submodular function g : 2U → R+, we consider
the function f : 3U → R+ defined by

(5.7) f(S, T ) def= g(S) + g(U \ T )− g(U).

This embedding has been studied by Fujishige and
Iwata, who show that the function f is bisubmodular
and has the following property: if (S, T ) is a minimizer
(maximizer) of f then both S and U \ T are minimiz-
ers (maximizers) of g [11]. Thus, exact 2-submodular
function minimization (maximization) is a generaliza-
tion of 1-submodular function minimization (maximiza-
tion). We can in fact show a stronger result: that this
embedding preserves approximability.

Suppose that some algorithm gives a α-
approximation for bisubmodular maximization.
Then, consider an arbitrary submodular function g and
let f be the embedding of g defined as in (5.7). Let
OPT = (O1, O2) be a maximizer f , and suppose that
the algorithm returns a solution S = (S1, S2). Then, by
Corollary 2.1 we can greedily extend S to a partition
S′ = (S′1, S

′
2) of U . Similarly, we can assume without

loss of generality that OPT is a partition of U . Then,
we have f(U \S′2) = f(S′1) and f(U \O2) = f(O2), and
thus

g(S′1) =
1
2

(g(S′1) + g(U \ S′1))

=
1
2

(f(S′1, S
′
2) + g(U))

≥ 1
2

(αf(O1, O2) + g(U))

=
1
2

(αg(O1) + αg(U \O2) + (1− α)g(U))

≥ 1
2

(αg(O1) + αg(U \O2))

= αg(O1).

Since O1 is a maximizer of g, the resulting algorithm
is an α-approximation for maximizing g. Hence, the
1/2 + ε inapproximability results of [9, 8] hold for
bisubmodular maximization as well, in both the value
oracle setting and under the assumption that NP 6=
RP .

The embedding (5.7) also allows us to provide new
intuition for the performance of the randomized greedy
algorithm for submodular maximization considered by
Buchbinder et al. [5]. This algorithm maintains 2
solutions, S1 and S2 which are initially ∅ and U . At
each step, it considers an element e, and either adds e to
S1 or removes e from S2, with probability proportional
to the resulting increase in the submodular function in
either case.

In comparison, we consider the case in which we
embed a submodular function g into a bisubmodular
function f using (5.7) and then run the greedy algorithm
of Section 4 on f . Suppose at some step we have a
current solution T = (T1, T2) and we consider element e,
and define S1 = T1 and S2 = U \T2. The algorithm will
add e to either T1 or T2 with probability proportional
to the resulting increase in f . In the first case, this
increase is precisely g(T1 + e) − g(T1) = g(S1 + e) −
g(S1), and adding e to T1 corresponds to adding e
to S1. In the second case this increase is precisely
g(U \ T2) − g(U \ (T2 + e)) = g(S2) − g(S2 − e) and
adding e to T1 corresponds to removing e from S1.
Thus, the operation of the algorithm of Buchbinder
et al. [5] may be viewed as a natural, straightforward
randomized greedy algorithm viewed through the lens
of the embedding (5.7). Our analysis of bisubmodular
functions can then be viewed as a generalization of their
proof in the submodular case.

We do not know whether our analysis in Section 4
is tight for k ≥ 3. More generally, we ask whether the
symmetry gap technique from [39, 8] can be generalized
to obtain hardness results for k-submodular maximiza-
tion for k ≥ 3.
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A The Naive Random Algorithm

We present the analysis for the case in which k ≥ 3 first,
as it is simpler and will aid in motivating some of the
constructions used for the case k = 2.

A.1 Analysis for k ≥ 3 Let f be a k-submodular
function over a ground set U of size n. It will be
convenient to treat solutions to this problem as vectors
in {0, . . . , k}U , as discussed in Section 2. Let o be a
vector on which f takes its maximum value. Then, by
Corollary 2.1, we may assume without loss of generality
that o is a partition and so o ∈ {1, . . . , k}U . Finally, let
h : 2U → R+ be the submodular function induced by o
and f .

For each i ∈ U we consider a fixed permutation πi
on the set {1, . . . , k} with the property that πi(oi) = oi
and πi(z) 6= z for all z ∈ {1, . . . , k} \ {oi}.5 Then, we
denote by π(x) the vector whose ith coordinate is πi(xi).

Let P (A) be the set of partitions of U that agree
with o on exactly those coordinates i ∈ A. The
following lemma allows us to relate the sum of the values
of all partitions in P (A) to the value of o.

Lemma A.1. For each set A ⊆ U ,∑
x∈P (A)

f(x) ≥ (k − 1)n−|A|h(A).

Proof. Consider the sum∑
x∈P (A)

f(π(x)).

Because πi(xi) = oi if and only if xi = oi already, we
have π(x) ∈ P (A) if and only if x ∈ P (A). Then,

5Such a permutation can be obtained by taking, for example,

πi(oi) = oi, πi(oi − 1) = oi + 1, and π(z) = z + 1 mod k for all
other z ∈ {1, . . . , k}.

because each πi is a bijection, we have∑
x∈P (A)

f(x) =
∑

x∈P (A)

f(π(x)),

and so,

∑
x∈P (A)

f(x) =
1
2

 ∑
x∈P (A)

f(x) +
∑

x∈P (A)

f(π(x))

(A.1)

=
1
2

∑
x∈P (A)

[f(x) + f(π(x))] .

Now, we note that x and π(x) are both partitions. Thus,
from (2.2) we have

f(x) + f(π(x)) ≥ 2id0(x, π(x)).

Consider an arbitrary coordinate i ∈ U . If i ∈ A
we have xi = oi and so πi(xi) = xi and hence
id0(xi, πi(xi)) = xi. If i 6∈ A, then we have xi 6= oi
and so πi(xi) 6= xi and hence id0(xi, πi(xi)) = 0. Thus,

2id0(x, π(x)) = 2f(o
∣∣
A

) = 2h(A).

Combining this with (A.1) we have,

∑
x∈P (A)

f(x) =
1
2

∑
x∈P (A)

[f(x) + f(π(x))]

≥
∑

x∈P (A)

h(A) = (k − 1)n−|A|h(A),

since there are precisely k − 1 choices j 6= oi for xi for
each of the n− |A| coordinates i 6∈ A.

We can now prove our main result regarding the
expected quality of a random partition.

Theorem A.1. Let x ∈ {1, . . . , k}U be a partition of U
chosen uniformly at random. Then, E[f(x)] ≥ 1

k · f(o).

Proof. We formulate the expectation as

E[f(x)] =
1
kn

n∑
i=0

∑
A∈(U

i )

∑
x∈P (A)

f(x).

Using Lemma A.1 we obtain
(A.2)

n∑
i=0

∑
A∈(U

i )

∑
x∈P (A)

f(x) ≥
n∑
i=0

∑
A∈(U

i )
(k − 1)n−ih(A).

Consider a fixed value i ∈ {0, . . . , n}. Each element
e ∈ U appears in exactly

(
n−1
i−1

)
of the

(
n
i

)
sets A ∈

(
U
i

)
.



Because h is submodular, Corollary 2.2 then implies
that

(A.3)
∑
A∈(U

i )
h(A) ≥

(
n− 1
i− 1

)
h(U) =

(
n− 1
i− 1

)
f(o).

Combining (A.2) and (A.3) with our formulation of
E[f(x)] we obtain:

E[f(x)] ≥ 1
kn

n∑
i=0

(
n− 1
i− 1

)
(k − 1)n−if(o)

=
(k − 1)n−1

kn

n∑
i=0

(
n− 1
i− 1

)
(k − 1)−(i−1)f(o)

=
(k − 1)n−1

kn

n−1∑
i=0

(
n− 1
i

)
(k − 1)−if(o)

=
(k − 1)n−1

kn
·
(

1 +
1

k − 1

)n−1

· f(o)

=
(k − 1)n−1

kn
· kn−1

(k − 1)n−1
· f(o)

=
1
k
· f(o).

A.2 Analysis for k = 2 Now we consider the case in
which f is a bisubmodular function. In our analysis of
k-submodular functions for k ≥ 3 we used a bijection πi
on {1, . . . , k} with the property that had the property
that πi(oi) = oi and πi(z) 6= z for all z 6= oi. However,
when k = 2, no such bijection exists and we must adopt
a different approach.

Suppose that f attains its maximum on a partition
o ∈ {1, 2}U , and for a value v ∈ {1, 2} let v̄ = (v
mod 2) + 1 (i.e. the other value in {1, 2}). Then, for
any disjoint subsets A and B of U we define the (partial)
solution T (A,B) by

T (A,B)i =


oi, i ∈ A
ōi, i ∈ B
0, otherwise

.

It will simplify our analysis to work with with
symmetrized values, which depend only on the sizes of
the sets A and B chosen. We define

Fi,j =
(
n

i

)−1(
n− i
j

)−1 ∑
A∈(U

i )

∑
B∈(A\B

i )
[f(T (A,B))].

Then, Fi,j gives the average value of f over all partial
solutions on i + j elements that agree with o on
exactly i and disagree with it on exactly j elements.
In particular, we have Fn,0 = f(o), and Fi,n−i =

(
n
i

)−1∑
A∈(U

i ) f(T (A,U \ A)). Our next lemma relates
these two values.

Lemma A.2. For all i such that 0 ≤ i ≤ n,

(A.4) Fi,n−i ≥
i(i− 1)
n(n− 1)

Fn,0.

Proof. We prove 2 separate inequalities which together
imply the lemma. First, we shall show that for all
1 ≤ i ≤ n− 1,

(A.5) Fi,n−i ≥ Fi−1,n−i−1.

We prove that a related inequality holds for arbitrary
sets of the appropriate size, and then average over all
possible sets to obtain (A.5). Fix 1 ≤ i ≤ n− 1 and let
A be any subset of U of size i+1. Set B = U \A and let
x and y any two distinct elements in A. Consider the
solutions T (A − x,B + x) and T (A − y,B + y). They
are both partitions and agree on all elements except x
and y. Thus, from (2.2)

f(T (A− x,B + x)) + f(T (A− y,B + y))
≥ 2id0(T (A− x,B + x), T (A− y,B + y))
= 2f(T (A− x− y,B − x− y)),

holds for any such choice of A, x, and y. Averaging
the resulting inequalities over all possible choices for A,
B = U \ A, x, and y and dividing both sides by 2 then
gives (A.5).

Next, we show that for any 1 ≤ i ≤ n− 1,

(A.6) Fi−1,n−i−1 ≥
i− 1
i+ 1

Fi+1,n−i−1

Again fix i ≥ 1, let A be any subset of U of size i + 1
and set B = U \ A. Let h be the submodular function
induced by the partition T (A,B) and f . Note then,
that we can express h as h(X) = T (A∩X,B∩X)). We
consider the sum:∑

C∈(A
2)

[f(T (A \ C,B))− T (∅, B)]

=
∑
C∈(A

2)
[h(U \ C)− h(B)]

Each element of A appears in exactly
(|A|−1

2

)
=
(
i
2

)
of

the sets U \C above (one for each way to choose a two
element set C from the remaining |A| − 1 elements).
Applying Corollary 2.2 we then obtain∑

C∈(A
2)
h(U \ C) ≥

(
i

2

)
h(U) =

(
i

2

)
T (A,B).



Averaging over all possible choices for A gives(
i+ 1

2

)
Fi−1,n−i−1 ≥

(
i

2

)
Fi+1,n−i−1,

which is equivalent to (A.6).
Combining (A.5) and (A.6) then gives the sym-

metrized inequality

(A.7) Fi,n−i ≥
i− 1
i+ 1

Fi+1,n−i−1.

The desired inequality (A.4) then follows from reverse
induction on i. If i = n, then (A.4) is trivial. For the
inductive step, we suppose that 1 ≤ i ≤ n − 1. Then,
applying (A.7) followed by the induction hypothesis
gives

Fi,n−i ≥
i− 1
i+ 1

Fi+1,n−i−1

≥ i− 1
i+ 1

· (i+ 1)i
n(n− 1)

Fn,0 =
i(i− 1)
n(n− 1)

Fn,0.

If i = 0, we cannot apply (A.7). In this case,
however, (A.4) follows directly from non-negativity of
f .

Theorem A.2. Let x ∈ {1, . . . , k}U be a partition of U
chosen uniformly at random. Then, E[f(x)] ≥ 1

4 · f(o).

Proof. We can formulate the expectation in terms of our
symmetric notation as

E[f(x)] = 2−n
n∑
i=0

∑
A∈(U

i )
T (A,U \A)

= 2−n
n∑
i=0

(
n

i

)
Fi,n−i.

Then, we have

2−n
n∑
i=0

(
n

i

)
Fi,n−i ≥ 2−n

n∑
i=2

(
n

i

)
Fi,n−i

≥ 2−n
n∑
i=2

(
n

i

)
i(i− 1)
n(n− 1)

Fn,0

= 2−n
n∑
i=2

(
n− 2
i− 2

)
Fn,0

= 2−n
n−2∑
i=0

(
n− 2
i

)
Fn,0

= 2−n · 2n−2Fn,0

=
1
4
f(o),

where the first inequality follows from non-negativity of
f (and hence of F ) and the second inequality follows
from Lemma A.2.

B A Deterministic Greedy Algorithm

In this section we consider a deterministic greedy algo-
rithm that is even simpler than the randomized greedy
algorithm from Section 4. The algorithm begins with
the initial solution (∅, . . . , ∅) and considers elements of
the ground set U in some arbitrary order, permanently
adding each element to one of the sets Si in S, based on
the increase that this gives in f . Specifically, the algo-
rithm adds an element e to the set Si with the biggest
marginal increase fi,e(S) in f with respect to the cur-
rent solution S. If there are more than one option we
add e to Si with the smallest i.

Algorithm B.1. Deterministic Greedy
for i = 1 tok do

Si ← ∅
end for
for each e ∈ U do

for i = 1 tok do
xi ← fi,e(S)

end for
x = max(x1, . . . , xk)
Let i be the smallest value from {1, . . . , k}

so that xi = x.
Si ← Si + e

end for

The analysis of the deterministic greedy algorithm
is similar to the analysis of the randomized greedy
algorithm from Section 4 but simpler.

Theorem B.1. Let S be the solution produced by the
deterministic greedy algorithm on some instance f :
{0, . . . , k}U → R+ of k-submodular maximization, and
let OPT be the optimal solution for this instance. Then,

(1 + k)f(S) ≥ f(OPT ).

Proof. Our analysis considers 2 sequences of n solutions.
First let, S(i) = (S(i)

1 , . . . , S
(i)
k ) be the algorithm’s

solution after i elements have been considered, and let
U (i) =

⋃k
j=1 S

(i)
j be the set of elements that have been

considered by the algorithm at this point. Then, we
define the solution O(i) = (O(i)

1 , . . . , O
(i)
k ), where O(i)

j =

(OPT j \ U (i)) ∪ S(i)
j . Intuitively, O(i) is the solution

that agrees with S(i) on the placement of the elements
considered by the greedy algorithm in its first i phases
and agrees with OPT on the placement of all other
elements. Note that in particular we have O(0) = OPT
and O(n) = S. Our analysis of the greedy algorithm
will bound the loss in f(Oi) incurred at the each stage,
showing that it is bounded by the improvement made by
the algorithm. In Lemma B.1, we show that for every
0 ≤ i ≤ n, f(O(i))−f(O(i+1)) ≤ k[f(S(i+1))−f(S(i))].



Summing the inequality from Lemma B.1 from i =
0 to n− 1, we obtain

n−1∑
i=0

[
f(O(i))− f(O(i+1))

]
≤ k

n−1∑
i=0

[
f(S(i+1))− f(S(i))

]
.

Telescoping the summations on each side, we then have

f(O(0))− f(O(n)) ≤ k
[
f(S(n))− f(S(0))

]
.

The theorem then follows immediately from O(0) =
OPT , O(n) = S(n) = S, and S0 ≥ 0.

It remains to show the following result.

Lemma B.1. For 0 ≤ i ≤ n− 1,

f(O(i))− f(O(i+1)) ≤ k
[
f(S(i+1))− f(S(i))

]
.

Proof. Let e be the element considered in the ith phase
of the algorithm.

We define the solution A = (A1, . . . , Ak), where
Aj = (O(i)

j − e), and let aj = fj,e(A) for 1 ≤ j ≤ k.
Now, let suppose that e ∈ OPT o for some 1 ≤ o ≤

k, and that the greedy algorithm places e ∈ S(i)
j for some

1 ≤ j ≤ k. Then, O(i) and O(i+1) are identical except
that O(i) places e in the oth set, while O(i+1) places e
in the jth set. Thus, we have f(O(i)) = f(A) + fo,e(A)
and f(O(i+1)) = f(A) + fj,e(A), and so

f(O(i))− f(O(i+1)) = fo,e(A)− fj,e(A) = ao − aj ,

and
f(S(i+1))− f(S(i)) = fj,e(S(i)) = xj .

By Theorem 2.1, we have
∑k
`=1 a` ≥ 0 and thus

−aj ≤
∑
` 6=j a`. Therefore, ao − aj ≤ ao +

∑
` 6=j a` ≤

kxj as ar ≤ xr for every 1 ≤ r ≤ k and xj =
max(x1, . . . , xk).

C Verification

We want to show that the right hand side of (4.6) can
be written as the following sum of squares:

(x` − xo)2 +
∑
j 6=o,`

(√
α− 1
k − 2

x` −
√
α+ 1

2
xj

)2

(C.8)

+
∑
j 6=o,`

(√
α− 1
k − 2

xo −
√
α+ 1

2
xj

)2

.

In order to verify that this is the case, note that

(x` − xo)2 = x2
` − 2x`xo + x2

o

and

(√
α− 1
k − 2

x` −
√
α+ 1

2
xj

)2

=
α− 1
k − 2

x2
` − 2

√
(α− 1)(α+ 1)

2(k − 2)
x`xj +

α+ 1
2

x2
j

=
α− 1
k − 2

x2
` − 2

√
α2 − 1

2(k − 2)
x`xj +

α+ 1
2

x2
j

=
α− 1
k − 2

x2
` − 2

√
k
2 − 1

2(k − 2)
x`xj +

α+ 1
2

x2
j

=
α− 1
k − 2

x2
` − 2

√
k−2
2

2(k − 2)
x`xj +

α+ 1
2

x2
j

=
α− 1
k − 2

x2
` − 2

√
1
4
x`xj +

α+ 1
2

x2
j

=
α− 1
k − 2

x2
` − x`xj +

α+ 1
2

x2
j ,

and, similarly,

(√
α− 1
k − 2

xo −
√
α+ 1

2
xj

)2

=
α− 1
k − 2

x2
o − xoxj +

α+ 1
2

x2
j



Thus, (C.8) is equal to

x2
` − 2x`xo + x2

o +
∑
j 6=o,`

[
α− 1
k − 2

x2
` − x`xj +

α+ 1
2

x2
j

]

+
∑
j 6=o,`

[
α− 1
k − 2

x2
o − xoxj +

α+ 1
2

x2
j

]
= x2

` − 2x`xo + x2
o + (α− 1)x2

` + (α− 1)x2
o

−
∑
j 6=o,`

[
x`xj −

α+ 1
2

x2
j

]

−
∑
j 6=o,`

[
xoxj −

α+ 1
2

x2
j

]
= x2

` − 2x`xo + x2
o + (α− 1)x2

` + (α− 1)x2
o

−
∑
j 6=o,`

[
x`xj + xoxj −

α+ 1
x

2

j

]
= αx2

` + αx2
o − 2x`xo + α

∑
j 6=o,`

x2
j

−
∑
j 6=o,`

[
x`xj + xoxj − x2

j

]
= α

∑
j

x2
j − 2x`xo −

∑
j 6=o,`

[
x`xj + xoxj − x2

j

]
.


