
A

Maximizing k-Submodular Functions and Beyond

JUSTIN WARD, EPFL, Switzerland
STANISLAV ŽIVNÝ, University of Oxford, United Kingdom

We consider the maximization problem in the value oracle model of functions defined on k-tuples of sets

that are submodular in every orthant and r-wise monotone, where k ≥ 2 and 1 ≤ r ≤ k. We give an analysis

of a deterministic greedy algorithm that shows that any such function can be approximated to a factor
of 1/(1 + r). For r = k, we give an analysis of a randomised greedy algorithm that shows that any such

function can be approximated to a factor of 1/(1 +
√
k/2).

In the case of k = r = 2, the considered functions correspond precisely to bisubmodular functions, in
which case we obtain an approximation guarantee of 1/2. We show that, as in the case of submodular

functions, this result is the best possible in both the value query model, and under the assumption that

NP 6= RP .
Extending a result of Ando et al., we show that for any k ≥ 3 submodularity in every orthant and

pairwise monotonicity (i.e. r = 2) precisely characterize k-submodular functions. Consequently, we obtain an
approximation guarantee of 1/3 (and thus independent of k) for the maximization problem of k-submodular

functions.

CCS Concepts: rTheory of computation→ Approximation algorithms analysis;

Additional Key Words and Phrases: submodularity, bisubmodularity, k-submodularity

ACM Reference Format:
Justin Ward and Stanislav Živný. 2015. Maximizing k-Submodular Functions and Beyond. ACM Trans.
Algor. V, N, Article A (January YYYY), 26 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Given a finite nonempty set U , a set function f : 2U → R+ defined on subsets of U is
called submodular if for all S, T ⊆ U ,

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).

Submodular functions are a key concept in operations research and combinatorial opti-
mization [Nemhauser and Wolsey 1988; Narayanan 1997; Topkis 1998; Schrijver 2003;
Fujishige 2005; Korte and Vygen 2007; Iwata 2008]. Examples of submodular func-
tions include cut capacity functions, matroid rank functions, and entropy functions.
Submodular functions are often considered to be a discrete analogue of convex func-
tions [Lovász 1983].

Both minimizing and maximizing submodular functions have been considered exten-
sively in the literature, in both constrained and unconstrained settings. Submodular

Justin Ward was supported by EPSRC grants EP/J021814/1 and EP/D063191/1 (work performed while the
author was at the University of Warwick, United Kingdom). Stanislav Živný was supported by a Royal Soci-
ety University Research Fellowship. An extended abstract of part of this work appeared in the Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014 [Ward and Živný 2014].
Authors’ addresses: J. Ward, EPFL IC IIF THL2 , INJ 131 (Bâtiment INJ) , Station 14, CH-1015 Lausanne,
Switzerland. S. Živný, Department of Computer Science, University of Oxford, Oxford OX1 3QD, United
Kingdom.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1549-6325/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 J. Ward and S. Živný

function maximization is easily shown to be NP-hard [Schrijver 2003] since it general-
izes many standard NP-hard problems such as the maximum cut problem [Garey and
Johnson 1979; Feige et al. 2011]. In contrast, the problem of minimizing a submodu-
lar function can be solved efficiently with only polynomially many evaluations of the
function [Iwata 2008] either by using the ellipsoid algorithm [Grötschel et al. 1981;
1988], or by using one of several combinatorial algorithms that have been obtained in
the last decade [Schrijver 2000; Iwata et al. 2001; Iwata 2002; 2003; Orlin 2009; Iwata
and Orlin 2009].

Following a question by Lovász [Lovász 1983], a generalization of submodularity
to biset functions has been introduced. Given a finite nonempty set U , a function f :
3U → R+ defined on pairs of disjoint subsets of U is called bisubmodular if for all pairs
(S1, S2) and (T1, T2) of disjoint subsets of U ,

f(S1, S2) + f(T1, T2) ≥ f((S1, S2) u (T1, T2)) + f((S1, S2) t (T1, T2)),

where we define

(S1, S2) u (T1, T2) = (S1 ∩ T1, S2 ∩ T2),

and

(S1, S2) t (T1, T2) = ((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)).

Bisubmodular functions were originally studied in the context of rank functions of
delta-matroids [Bouchet 1987; Chandrasekaran and Kabadi 1988]. Bisubmodularity
also arises in bicooperative games [Bilbao et al. 2008] as well as variants of sen-
sor placement problems and coupled feature selection problems [Singh et al. 2012].
The minimization problem for bisubmodular functions using the ellipsoid method was
solved in [Qi 1988]. More recently, combinatorial [Fujishige and Iwata 2005] and
strongly combinatorial [McCormick and Fujishige 2010] algorithms for maximizing
bisubmodular functions have been developed.

In this paper, we study the natural generalization of submodular and bisubmodular
functions: given a natural number k ≥ 1 and a finite nonempty set U , a function f : (k+
1)U → R+ defined on k-tuples of pairwise disjoint subsets of U is called k-submodular
if for all k-tuples S = (S1, . . . , Sk) and T = (T1, . . . , Tk) of pairwise disjoint subsets of U ,

f(S) + f(T) ≥ f(S u T) + f(S t T),

where we define

S u T = (S1 ∩ T1, . . . , Sk ∩ Tk),

and

S t T = ((S1 ∪ T1) \
⋃

i∈{2,...,k}

(Si ∪ Ti), . . . , (Sk ∪ Tk) \
⋃

i∈{1,...,k−1}

(Si ∪ Ti)).

Under this definition, 1-submodularity corresponds exactly to the standard notion of
submodularity for set functions, and similarly 2-submodularity corresponds to bisub-
modularity. (We note that Ando has used the term k-submodular to study a different
class of functions [Ando 2002].)

1.1. Related work
The terminology for k-submodular functions was first introduced in [Huber and Kol-
mogorov 2012] but the concept has been studied previously in [Cohen et al. 2006]. The
concept of k-submodularity is a special case of strong tree submodularity [Kolmogorov
2011] with the tree being a star on k + 1 vertices.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:3

To the best of our knowledge, it is not known whether the ellipsoid method can be
employed for minimizing k-submodular functions for k ≥ 3 (some partial results can
be found in [Huber and Kolmogorov 2012]), let alone whether there is a (fully) combi-
natorial algorithm for minimizing k-submodular functions for k ≥ 3. However, it has
recently been shown that explicitly given k-submodular functions can be minimized in
polynomial time [Thapper and Živný 2012]1, and these results have proved useful in
the design of fixed-parameter algorithms [Wahlström 2014].

Some results on maximizing special cases of bisubmodular functions have appeared
in Singh, Guillory, and Bilmes [Singh et al. 2012], who showed that simple bisubmodu-
lar function can be represented as a matroid constraint and a single submodular func-
tion, thus enabling the use of existing algorithms in some special cases. Unfortunately
they show that this approach may require that the submodular function take negative
values and so the approach does not work in general. (We note that our definition of
bisubmodularity corresponds to directed bisubmodularity in [Singh et al. 2012].)

A different generalization of bisubmodularity, called skew bisubmodularity, has
proved important in classifying finite-valued CSPs on domains with three ele-
ments [Huber et al. 2014]; this result was then generalized by a complexity classifi-
cation of finite-valued CSPs on domains of arbitrary size [Thapper and Živný 2013].
Explicitly given skew bisubmodular functions can be minimized efficiently by results
of Thapper and Živný [Thapper and Živný 2012]. The general question of whether
all bisubmodular, and, more generally, k-submodular functions can be approximately
maximized was left open.

1.2. Contributions
Following the question by Lovász [Lovász 1983] of whether there are generalizations
of submodularity that preserve some nice properties such as efficient optimization al-
gorithms, we consider the class of functions that are submodular in every orthant and
r-wise monotone (the precise definition is given in Section 2), which includes as special
cases bisubmodular and k-submodular functions.

Specifically, we consider the problem of maximizing bisubmodular and, more gener-
ally, k-submodular functions in the value oracle model. We provide the first approxi-
mation guarantees for maximizing a general bisubmodular or k-submodular function.

In Section 3, we prove that for any k ≥ 2, k-submodular functions are precisely the
k-set functions that are submodular in every orthant and pairwise monotone, thus
extending the result from [Ando et al. 1996] that showed this result for k = 2.

In Section 4, we show that the naive random algorithm that simply returns a random
partition of the ground set U is 1/4-approximation for maximizing any bisubmodular
function and a 1/k-approximation for maximizing a k-submodular function with k ≥ 3.
We also show that our analysis is tight.

In Section 5, we show that a simple greedy algorithm for maximizing k-set func-
tions that are submodular in every orthant and r-wise monotone for some 1 ≤ r ≤ k
achieves a factor of 1/(1 + r). We also show that our analysis is tight. Consequently,
this algorithm achieves a factor of 1/3 for maximizing k-submodular functions.

In Section 6, we develop a randomized greedy algorithm for maximizing k-set func-
tions that are submodular in every orthant and k-wise monotone. The algorithm is in-
spired by the algorithm of Buchbinder et al. [Buchbinder et al. 2012] for unconstrained

1In fact, results in [Thapper and Živný 2012] imply that much larger classes of functions can be minimized
in polynomial time, including as one special case functions that are (strong) tree submodular, which in turn
includes k-submodular functions.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Ward and S. Živný

submodular maximization. We show that this algorithm approximates any such k-set
function to a factor of 1/(1 +

√
k/2).

Finally, in Section 7, we relate our results on bisubmodular functions and exist-
ing results on submodular functions via a known embedding of submodular functions
into bisubmodular functions. Using this embedding we can translate inapproximabil-
ity results for submodular function into analogous results for bisubmodular functions.
Moreover, we show that the algorithm of Buchbinder et al. [Buchbinder et al. 2012]
may be viewed as a special case of our algorithm applied to this embedding.

Recently, Iwata, Tanigawa, and Yoshida [Iwata et al. 2013] have independently ob-
tained a 1/k-approximation algorithm for maximizing k-submodular functions. Here
we improve this factor to 1/3, while also considering several other algorithms and gen-
eralizations of k-submodular functions.

2. PRELIMINARIES
We denote by R+ the set of all non-negative real numbers. Let U be a ground set con-
taining n elements and k ≥ 1 be a fixed integer. We consider functions that assign a
value in R+ to each partial assignment of the values {1, . . . , k} to the elements of U .
We can represent each such partial assignments as vectors x in {0, . . . , k}U , where we
have xe = 0 if element e ∈ U is not assigned any value in {1, . . . , k}, and otherwise
have xe equal to the value assigned to e. It will be useful to consider the partial assign-
ment obtained from another (possibly partial) assignment x by “forgetting” the values
assigned to all elements except for some specified set S ⊆ U . We represent this as the
vector x

∣∣
S

whose coordinates are given by
(
x
∣∣
S

)
e

= xe, for all e ∈ S and
(
x
∣∣
S

)
e

= 0 for
all e ∈ U \ S. Note that x

∣∣
S

is similar to the projection of x onto S, but we here require
that all coordinates e 6∈ S be set to 0, while the standard notion of projection would
remove these coordinates from the resulting vector. In particular, this means that x

∣∣
S

and x both have n coordinates.
In order to relate our results to existing work on submodular functions, we shall

also use terminology from set functions. In this setting, we consider k-set functions,
which assign a value to each tuple of k disjoint sets S = (S1, . . . , Sk), where Si ⊆ U
and Si ∩ Sj = ∅ for all i 6= j. It is straightforward to check that the two notions are
equivalent by having e ∈ Si if and only if xe = i. Then, we have xe = 0 if and only if e
does not appear in any of the sets S1, . . . , Sk.

The solution space over which we optimize our functions is thus the set of partitions
of some subset U ′ ⊆ U into k disjoint sets, where in our vector notation U ′ is equivalent
to the set of coordinates in x that are non-zero. We shall refer to a partition of the entire
ground set U as an orthant of U , and use the word partial solution to refer to a partition
of some subset of U , to emphasize that they may not necessarily assign every element
in U to a set. Given a partial solution s and an orthant t, we say that s is in orthant t
if s = t

∣∣
A

for some set A ⊆ U . That is, s is in orthant t if and only if s agrees with t on
all non-zero values.

Consider the operations min0 and max0 given by

min0(s, t)
def
=

{
0, s 6= 0, t 6= 0, s 6= t

min(s, t), otherwise

and

max0(s, t)
def
=

{
0, s 6= 0, t 6= 0, s 6= t

max(s, t), otherwise,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:5

where min(s, t) (respectively, max(s, t)) returns the smaller (respectively, the larger) of
s and t with respect to the usual order on the integers. Then, for vectors s and t in
{0, . . . , k}U we let min0(s, t) (respectively, max0(s, t)) denote the vector obtained from
applying min0 (respectively, max0) to s and t coordinate-wise. Using these operations
we can define the general class of k-submodular functions:

Definition 2.1. Given a natural number k ≥ 1 and a finite nonempty set U , a func-
tion f : {0, . . . , k}U → R+ is called k-submodular if for all s and t in {0, . . . , k}U ,

f(s) + f(t) ≥ f(min0(s, t)) + f(max0(s, t)). (1)
Note that if s and t are both orthants, then we have min0(s, t) = max0(s, t) = id0(s, t),
where the operation id0 on each coordinate of s and t is given by id0(s, t) = s = t if
s = t, and id0(s, t) = 0 otherwise. Thus, if f is a k-submodular function, we have

f(s) + f(t) ≥ 2f(id0(s, t)) (2)
for any two orthants s and t of U .

Example 2.2. The well-known Max-Cut problem demonstrates that maximizing
(1-)submodular functions is NP-hard, even if the objective function is given explic-
itly [Garey and Johnson 1979]. We show that the same hardness result holds for any
k ≥ 1. Consider the function f (u,v) : {0, . . . , k}{u,v} → R+ given by2 f (u,v)(xu, xv) =
Jxu 6= xvK. It is easy to check that f (u,v) is k-submodular. Given a graph (V,E) with
V = {1, . . . , n}, we consider the function f(x) =

∑
{i,j}∈E f

(i,j)(xi, xj). Because f is
a positive combination of k-submodular functions, it is also k-submodular. Moreover,
maximizing f amounts to solving the Max-k-Cut problem, which is NP-hard [Papadim-
itriou and Yannakakis 1991].

While concise, Definition 2.1 gives little intuition in the traditional setting of set
functions. We now consider this setting in order to provide some intuition. Consider
two partial solutions S = (S1, . . . , Sk) and T = (T1, . . . , Tk) and let s and t be the vectors
in {0, . . . , k}U representing S and T , respectively. Consider some element e ∈ U . We
have min0(se, te) = i 6= 0 precisely when se = te = i 6= 0. Thus, the vector min0(s, t) in
Definition 2.1 corresponds exactly to the coordinate-wise intersection (S1 ∩T1, . . . , Sk ∩
Tk) of S and T . Similarly, max0(se, te) = i 6= 0 precisely when either se = te 6= 0 or
when one of se, te is i 6= 0 and the other is 0. Thus, the vector max0(s, t) corresponds
exactly to the coordinate-wise union of S and T after we have removed any element e
occurring in two different sets in S and T . That is, if we set X−i =

⋃
j 6=i (Sj ∪ Tj), then

max0(s, t) corresponds to ((S1∪T1)\X−1, . . . , (Sk ∪Tk)\X−k). The removal of X−i from
the ith union effectively enforces the condition that no element occurs in two different
sets in the resulting partial solution.

The following equivalences, first observed by Cohen et al. [Cohen et al. 2006], allow
us to relate k-submodular functions to existing families of set functions. When k = 2,
Definition 2.1 requires that
f(S1, S2) + f(T1, T2) ≥ f(S1 ∩ T1, S2 ∩ T2) + f((S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T2)),

which agrees exactly with the definition of bisubmodular functions given in [Fujishige
2005]. When k = 1, there is only a single set in each partial solution, and hence a
single non-zero value in each corresponding vector, and so X−1 = ∅. Thus, Definition
2.1 requires that

f(S1) + f(T1) ≥ f(S1 ∩ T1) + f(S1 ∪ T1),

2Here and throughout, we employ the Iverson bracket notation JpK to denote a value that is 1 when state-
ment p is true and 0 when p is false.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Ward and S. Živný

which agrees exactly with the standard definition of submodular func-
tions [Nemhauser and Wolsey 1988].

It is well-known that for standard set functions submodularity is equivalent to the
property of diminishing marginal returns. Let f : 2U → R+ be a set function on U and
define the marginal value of e with respect to S as fe(S)

def
= f(S ∪ {e}) − f(S) for all

S ⊆ U and e 6∈ S. Then, f is submodular if and only if

fe(A) ≥ fe(B)

for all A ⊆ B and e 6∈ B.
We shall see that marginal returns also play an important role in characterizing

k-submodular functions. In this setting, however, we must specify not only which el-
ement we are adding to the solution, but which set in the partition it is being added
to. For a k-set function function f : {0, . . . , k}U → R+, an element e ∈ U , and a value
i ∈ {1, . . . , k}, we define the marginal value fi,e(S) by

fi,e(S)
def
= f(S1, . . . , Si−1, Si∪{e}, Si+1, . . . , Sk)− f(S1, . . . , Sk)

for any partial solution S = (S1, . . . , Sk) such that e 6∈ Si for any i. Equivalently, in
vector notation, we have

fi,e(s)
def
= f(s + i · 1e)− f(s),

where s is any partial solution satisfying se = 0, and 1e denotes the unit vector that is
1 in coordinate e and 0 in all other coordinates.

Definition 2.3. Let k ≥ 1, and 1 ≤ r ≤ k. We say that a function f : {0, . . . , k}U → R+

is:

— submodular in every orthant, if for any two partial solutions a and b in the same
orthant of U , f(a) + f(b) ≥ f(min0(a,b)) + f(max0(a,b)).

— r-wise monotone, if for any element e, any partial solution s with se = 0, and any set
of r distinct values I ∈

({1,...,k}
r

)
: ∑

i∈I
fi,e(s) ≥ 0.

We remark that the case of k = r = 1 corresponds to monotone submodular func-
tions. In the case of k = r = 2, Ando, Fujishige, and Naito [Ando et al. 1996] have
shown that these two properties give an exact characterization of the class of bisub-
modular functions. In Section 3, we extend their result by showing that submodularity
in every orthant and pairwise monotonicity in fact precisely characterize k-submodular
functions for all k ≥ 2.

Let us now give some justification for the terminology “submodular in every orthant.”
Let x be an orthant of U . Given a k-submodular function f , we call set function h : 2U →
R+ defined for any S ⊆ U by

h(S)
def
= f(x

∣∣
S

)

the function induced by x and f . In the language of set functions, the function h is
obtained by first assigning each element e in U to a single set Xi (where i = xe). Then,
h(S) is simply the value of f(S ∩ X1, . . . , S ∩ Xk). We now show f is k-submodular in
an orthant (in the sense of Definition 2.3) if an only if the function h induced by this
orthant and f is submodular.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:7

LEMMA 2.4. Let (X1, . . . , Xk) be an orthant of U , with vector representation x. Then,
f is k-submodular in the orthant x if and only if the function h induced by x and f is
submodular.

PROOF. Let A and B be two subsets of U , with associated partial solutions a = x
∣∣
A

and b = x
∣∣
B

in orthant x. Then, note that e ∈ A ∩B if and only min(ae, be) is non-zero,
and e ∈ A ∪ B if and only if max(ae, be) is non-zero. Moreover, since a and b agree on
all non-zero coordinates, we have min0(a,b) = min(a,b) and max0(a,b) = max(a,b).
Hence,

h(A ∪B) = f(x
∣∣
A∪B) = f(max(x

∣∣
A
,x
∣∣
B

)) = f(max0(x
∣∣
A
,x
∣∣
B

)) = f(max0(a,b)),

h(A ∩B) = f(x
∣∣
A∩B) = f(min(x

∣∣
A
,x
∣∣
B

)) = f(min0(x
∣∣
A
,x
∣∣
B

)) = f(min0(a,b)).

Thus, we have

h(A) + h(B) ≥ h(A ∩B) + h(A ∪B)

for any A,B ⊆ U if and only if

f(a) + f(b) ≥ f(min0(a,b)) + f(max0(a,b))

for the associated partial solutions a,b in orthant x.

Many of our proofs will use this connection between the standard notion of submod-
ularity and the k-set functions in Definition 2.1. Specifically, we shall make use of the
following result from Lee, Sviridenko, and Vondrák [Lee et al. 2010], which we restate
here.

LEMMA 2.5 ([LEE ET AL. 2010, LEMMA 1.1]). Let f be a non-negative submodu-
lar function on U . Let S,C ⊆ U and let {T`}t`=1 be a collection of subsets of C \ S such
that each element of C \ S appears in exactly p of these subsets. Then

t∑
`=1

[f(S ∪ T`)− f(S)] ≥ p[f(S ∪ C)− f(S)].

In fact, the following weaker statement will be sufficient for our purposes:

COROLLARY 2.6 (OF LEMMA 2.5). Let f be a non-negative submodular function on
U . Let S,C ⊆ U and let {T`}t`=1 be a collection of subsets of C \S such that each element
of C \ S appears in exactly p of these subsets. Then

t∑
`=1

f(S ∪ T`) ≥ pf(S ∪ C).

PROOF. Add
∑t
`=1 f(S) to each side of the inequality in Lemma 2.5. This gives

t∑
`=1

f(S ∪ T`) ≥ p · f(S ∪ C)− p · f(S) +

t∑
`=1

f(S)

= p · f(S ∪ C) + (t− p) · f(S)

≥ p · f(S ∪ C),

since p ≤ t.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Ward and S. Živný

3. CHARACTERIZATION OF K-SUBMODULARITY
THEOREM 3.1. Let f : {0, . . . , k}U → R+ be a k-set function, where k ≥ 2. Then, f is

k-submodular if and only if f is submodular in every orthant and pairwise monotone.

In order to prove Theorem 3.1, we shall make use of the following lemma, which allows
us to generalize pairwise monotonicity to solutions that disagree on the placement of
multiple elements e.

LEMMA 3.2. Let k ≥ 2 and suppose that f : {0, . . . , k}U → R+ is submodular in
every orthant and pairwise monotone. Let a and b in {0, . . . , k}U satisfy 0 6= ae 6= be 6= 0
for all e ∈ I and ae = be for all e ∈ U \ I, and define c = a

∣∣
U\I = b

∣∣
U\I . Then,

f(a) + f(b) ≥ 2f(c).

PROOF. The proof is by induction on the size of I. In the case that |I| = 0, the claim
is trivial. Suppose, then, that |I| = p > 0 and so I contains at least 1 element e. We can
represent a and b as a = c + x, and b = c + y where x and y are vectors in {0, . . . , 1}U
satisfying 0 6= xe 6= ye 6= 0 for all e ∈ I, and xe = ye = 0 for all e ∈ U \ I.

Let e ∈ I be some element on which a and b disagree. We define x̄ = x
∣∣
I\{e}, ȳ =

y
∣∣
{e}, and z = x̄ + ȳ. Then, we have

f(a)+f(b) = f(c+x)+f(c+y) = [f(c+x)+f(c+z)]+[f(c+y)+f(c+z)]−2f(c+z). (3)

The solutions c + x and c + z disagree on precisely the single element e in I and are
non-zero for this element. Thus, by the induction hypothesis

f(c + x) + f(c + z) ≥ 2f(c + x̄). (4)

Similarly, c + y and c + z disagree on precisely those p− 1 elements in I \ {e} and are
non-zero for these elements. Thus, by the induction hypothesis

f(c + y) + f(c + z) ≥ 2f(c + ȳ). (5)

Combining (3), (4), and (5) we obtain

f(a) + f(b) ≥ 2f(c + x̄) + 2f(c + ȳ)− 2f(c + z). (6)

Now, we note that c+x̄ and c+ȳ are both in the orthant c+z. Thus, from submodularity
in every orthant,

f(c + x̄) + f(c + ȳ) ≥ f(min0(c + x̄, c + ȳ)) + f(max0(c + x̄, c + ȳ)) = f(c) + f(c + z). (7)

Combining (6) and (7) we obtain

f(a) + f(b) ≥ 2f(c) + 2f(c + z)− 2f(c + z) = 2f(c).

We now return to the proof of the Theorem 3.1.

PROOF PROOF OF THEOREM 3.1. We begin by showing that necessity of the two
properties. Suppose that f is k-submodular. Then, submodularity in every orthant fol-
lows directly from (1). For pairwise monotonicity, let s satisfy se = 0. Consider any pair
of distinct values i, j from {1, . . . , k}, and let si = s + i · 1e and sj = s + j · 1e. Then,

fi,e(s) + fj,e(s) = f(si)− f(s) + f(sj)− f(s)

≥ f(min0(si, sj)) + f(max0(si, sj))− 2f(s)

= f(s) + f(s)− 2f(s).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:9

We now show that submodularity in every orthant and pairwise monotonicity imply
k-submodularity. Let f be a function that is submodular in every orthant and pairwise
monotone, and consider two arbitrary vectors x and y in {0, . . . , k}U . Let I be the set of
all elements e ∈ U for which xe 6= 0, ye 6= 0 and xe 6= ye. We can write

f(x) + f(y) = f(x) + f(y
∣∣
U\I) + f(y) + f(max0(x,y))− f(y

∣∣
U\I)− f(max0(x,y)). (8)

We note that x and y
∣∣
U\I are in the same orthant, since they agree on all non-zero

coordinates. Thus,

f(x) + f(y
∣∣
U\I) ≥ f(min0(x,y

∣∣
U\I)) + f(max0(x,y

∣∣
U\I))

= f(min0(x,y)) + f(max0(x,y) + x
∣∣
I
), (9)

where in the final equation we have used the fact that for all e ∈ I, xe 6= 0, ye 6= 0 and
xe 6= ye and so min0(xi, yi) = max0(xi, yi) = 0. Similarly, we have y and max0(x,y) in
the same orthant, and so

f(y) + f(max0(x,y)) ≥ f(min0(y,max0(x,y))) + f(max0(y,max0(x,y)))

= f(y
∣∣
U\I) + f(max0(x,y) + y

∣∣
I
). (10)

Combining (8), (9), and (10), we obtain

f(x) + f(y) ≥ f(min0(x,y)) + f(max0(x,y) + x
∣∣
I
) + f(max0(x,y) + y

∣∣
I
)− f(max0(x,y)).

(11)
Finally, from Lemma 3.2 we have:

f(max0(x,y) + x
∣∣
I
) + f(max0(x,y) + y

∣∣
I
) ≥ 2f(max0(x,y). (12)

Combining (11) and (12) then gives

f(x) + f(y) ≥ f(min0(x,y)) + f(max0(x,y)).

We now provide an example of a natural class of k-set functions which are submod-
ular in every orthant and k-wise monotone but not k-submodular.

Example 3.3. Let f (u,v) : {0, . . . , k}{u,v} → R+ be given by:

f (u,v)(xu, xv) =


0, xu = xv = 0
1
k

∑k
i=1Jxu < iK = k−xu

k , xu 6= 0, xv = 0
1
k

∑k
i=1Ji < xvK = xv−1

k , xu = 0, xv 6= 0

Jxu < xvK, otherwise.

The function f (u,v) has the following intuitive interpretation: we begin with the val-
ued constraint Jxu < xvK, where xu and xv range over {1, . . . , k}. This gives a function
that is defined on all orthants. We extend the function to partial assignments by set-
ting f (u,v)(0, 0) = 0, and otherwise assigning f (u,v)(xu, 0) and f (u,v)(0, xv) the probabil-
ity that xu > i and i > xv, respectively, when i is chosen uniformly at random from
{1, . . . , k}.

The function f (u,v) arises in the following graph layout problem: we are given a
directed graph G = (V,E) and a number k, and we wish to partition V into k layers
so that as many directed edges as possible travel from a lower- to a higher-numbered
layer. This problem is equivalent to maximizing the function f(x) : {0, . . . , k}V → R+

given by f(x) =
∑

(u,v)∈E f
(u,v)(xu, xv) Although this function allows some vertices to

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Ward and S. Živný

remain unassigned, k-wise monotonicity implies that there is always a maximizer of f
that is an orthant.

We now show that f (u,v) is submodular in every orthant and k-wise monotone. Fix an
orthant (xu = i, xv = j), where i, j ∈ {1, . . . , k}, and let h be the submodular function
induced by f (u,v) and this orthant. If i ≥ j, we have

hu(∅) = h({u})− h(∅) =
k − i
k

hv(∅) = h({v})− h(∅) =
j − 1

k

hu({v}) = h({u, v})− h({v}) = −j − 1

k
hv({u}) = h({u, v})− h(∅) = −k − i

k
,

while if i < j (and hence i ≤ j − 1), we have:

hu(∅) = h({u})− h(∅) =
k − i
k

= 1− i

k
hv(∅) = h({v})− h(∅) =

j − 1

k
≥ i

k

hu({v}) = h({u, v})− h({v}) = 1− j − 1

k
≤ 1− i

k

hv({u}) = h({u, v})− h(∅) = 1− k − i
k

=
i

k
.

In all cases, we observe that the marginals of h are decreasing, and so h is a submodu-
lar function.

In order to show that f (u,v) is k-wise monotone, we note that f (u,v)i,e (0, 0) is non-
negative for all values of i and e, and so

∑k
i=1 f

(u,v)
i,e (0, 0) ≥ 0 for all e ∈ {u, v}. For

the remaining marginals, suppose that j 6= 0. Then, for we have
k∑
i=1

f
(u,v)
i,u (0, j) =

k∑
i=1

[
Ji < jK− 1

k

j∑
p=1

Jp < jK

]
=

k∑
i=1

Ji < jK−
k∑
p=1

Jp < jK = 0,

k∑
i=1

f
(u,v)
i,v (j, 0) =

k∑
i=1

[
Jj < iK− 1

k

j∑
p=1

Jj < pK

]
=

k∑
i=1

Jj < iK−
k∑
p=1

Jj < pK = 0.

4. THE NAIVE RANDOM ALGORITHM
We now consider the performance of the naive random algorithm for maximizing a
k-submodular function f : {0, . . . , k}U → R+. Note that pairwise monotonicity of f ,
guaranteed by Theorem 3.1, implies that any partial solution S ∈ {0, . . . , k}U can be
extended greedily to an orthant of U without any loss in the value of f , since for every
element e 6∈ S, we must have fi,e(S) ≥ 0 for some i ∈ {1, . . . , k}. Thus, we may assume
without loss of generality that f takes its maximum value on some orthant o. We
now consider the expected performance of a random algorithm that simply selects an
orthant of U uniformly at random.

THEOREM 4.1. Let f : {0, . . . , k}U → R+ be a k-submodular function attaining
its maximum value on orthant o, and let x be an orthant of U selected uniformly at
random. Then, E[f(x)] ≥ 1

4f(o) if k = 2, and E[f(x)] ≥ 1
kf(o) if k ≥ 3.

We present the analysis for the case in which k ≥ 3 first, as it is simpler and will aid
in motivating some of the constructions used for the case k = 2.

4.1. Analysis for k ≥ 3

Let h : 2U → R+ be the submodular function induced by o and f . For each e ∈ U we
consider a fixed permutation πe on the set {1, . . . , k} with the property that πe(oe) =

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:11

oe and πe(z) 6= z for all z ∈ {1, . . . , k} \ {oe}.3 Then, we denote by π(x) the vector
(πe(xe))e∈U .

Let P (A) be the set of orthants of U that agree with o on exactly those coordinates
e ∈ A. The following lemma allows us to relate the sum of the values of all partitions
in P (A) to the value of o.

LEMMA 4.2. For each set A ⊆ U ,∑
x∈P (A)

f(x) ≥ (k − 1)n−|A|h(A).

PROOF. Consider the sum
∑

x∈P (A) f(π(x)). Because πe(xe) = oe if and only if xe =

oe already, we have π(x) ∈ P (A) if and only if x ∈ P (A). Then, because each πe is a
bijection, we have ∑

x∈P (A)

f(x) =
∑

x∈P (A)

f(π(x)),

and so,

∑
x∈P (A)

f(x) =
1

2

 ∑
x∈P (A)

f(x) +
∑

x∈P (A)

f(π(x))

 =
1

2

∑
x∈P (A)

[f(x) + f(π(x))] . (13)

Now, we note that x and π(x) are both orthants. Thus, from (2) we have

f(x) + f(π(x)) ≥ 2id0(x, π(x)).

Consider an arbitrary coordinate e ∈ U . If e ∈ A we have xe = oe and so πe(xe) = xe
and hence id0(xe, πe(xe)) = xe. If e 6∈ A, then we have xe 6= oe and so πe(xe) 6= xe and
hence id0(xe, πe(xe)) = 0. Thus,

2id0(x, π(x)) = 2f(o
∣∣
A

) = 2h(A).

Combining this with (13) we have,∑
x∈P (A)

f(x) =
1

2

∑
x∈P (A)

[f(x) + f(π(x))] ≥
∑

x∈P (A)

h(A) = (k − 1)n−|A|h(A),

since there are precisely k − 1 choices i 6= oe for xe for each of the n − |A| coordinates
e 6∈ A.

We now complete the proof of Theorem 4.1 in the case k ≥ 3. We formulate the
expectation as

E[f(x)] =
1

kn

n∑
i=0

∑
A∈(U

i)

∑
x∈P (A)

f(x).

Using Lemma 4.2 we obtain
n∑
i=0

∑
A∈(U

i)

∑
x∈P (A)

f(x) ≥
n∑
i=0

∑
A∈(U

i)

(k − 1)n−ih(A). (14)

3Such a permutation can be obtained by taking, for example, πe(oe) = oe, πe(oe−1) = oe+1, and π(z) = z+1
mod k for all other z ∈ {1, . . . , k}.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Ward and S. Živný

Consider a fixed value i ∈ {0, . . . , n}. Each element e ∈ U appears in exactly
(
n−1
i−1
)

of
the

(
n
i

)
sets A ∈

(
U
i

)
. Because h is submodular, Corollary 2.6 then implies that∑

A∈(U
i)

h(A) ≥
(
n− 1

i− 1

)
h(U) =

(
n− 1

i− 1

)
f(o). (15)

Combining (14) and (15) with our formulation of E[f(x)] we obtain:

E[f(x)] ≥ 1

kn

n∑
i=0

(
n− 1

i− 1

)
(k − 1)n−if(o)

=
(k − 1)n−1

kn

n∑
i=0

(
n− 1

i− 1

)
(k − 1)−(i−1)f(o)

=
(k − 1)n−1

kn

n−1∑
i=0

(
n− 1

i

)
(k − 1)−if(o)

=
(k − 1)n−1

kn
·
(

1 +
1

k − 1

)n−1
· f(o)

=
(k − 1)n−1

kn
· kn−1

(k − 1)n−1
· f(o)

=
1

k
· f(o).

4.2. Analysis for k = 2

Now we consider the case in which f is a bisubmodular function, i.e. the case of k = 2.
In the previous analysis of k-submodular functions for k ≥ 3 we used a bijection πe
on {1, . . . , k} with the property that πe(oe) = oe and πe(z) 6= z for all z 6= oe. However,
when k = 2, no such bijection exists and we must adopt a different approach.

Suppose again that f attains its maximum on orthant o ∈ {1, 2}U . For a value v ∈
{1, 2} we let v̄ def

= (v mod 2) + 1 (i.e. the other value in {1, 2}). Then, for any disjoint
subsets A and B of U we define the (partial) solution T (A,B) by

T (A,B)i =


oi, i ∈ A
ōi, i ∈ B
0, otherwise

.

It will simplify our analysis to work with with symmetrized values, which depend
only on the sizes of the sets A and B chosen. We define

Fi,j =

(
n

i

)−1(
n− i
j

)−1 ∑
A∈(U

i)

∑
B∈(U\A

j)

[f(T (A,B))].

Then, Fi,j gives the average value of f over all partial solutions on i+ j elements that
agree with o on exactly i and disagree with it on exactly j elements. In particular, we
have Fn,0 = f(o), and Fi,n−i =

(
n
i

)−1∑
A∈(U

i)
f(T (A,U \ A)). Our next lemma relates

these two values.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:13

LEMMA 4.3. For all i such that 0 ≤ i ≤ n,

Fi,n−i ≥
i(i− 1)

n(n− 1)
Fn,0. (16)

PROOF. We prove 2 separate inequalities which together imply the lemma. First,
we shall show that for all 1 ≤ i ≤ n− 1,

Fi,n−i ≥ Fi−1,n−i−1. (17)

We do this by showing that a related inequality holds for arbitrary sets of the appro-
priate size, and then average over all possible sets to obtain (17). Fix 1 ≤ i ≤ n− 1 and
let A be any subset of U of size i + 1. Set B = U \ A and let x and y any two distinct
elements in A. Consider the solutions T (A − x,B + x) and T (A − y,B + y)4. They are
both orthants and agree on all elements except x and y. Thus, from (2), the inequality

f(T (A− x,B + x)) + f(T (A− y,B + y)) ≥ 2id0(T (A− x,B + x), T (A− y,B + y))

= 2f(T (A− x− y,B))

holds for any such choice of A, x, and y, where |A| = i+ 1 and |B| = |U \A| = n− i− 1.
Averaging the resulting inequalities over all possible choices for A, B = U \A, x, and y
and dividing both sides by 2 then gives (17).

Next, we show that for any 1 ≤ i ≤ n− 1,

Fi−1,n−i−1 ≥
i− 1

i+ 1
Fi+1,n−i−1. (18)

Again fix i ≥ 1, let A be any subset of U of size i + 1 and set B = U \ A. Let h be the
submodular function induced by the orthant T (A,B) and f . Note then, that we can
express h as h(X) = T (A ∩X,B ∩X)). We consider the sum:∑

C∈(A
2)

[f(T (A \ C,B))− T (∅, B)] =
∑
C∈(A

2)

[h(U \ C)− h(B)]

Each element of A appears in exactly
(|A|−1

2

)
=
(
i
2

)
of the sets U \ C above (one for

each way to choose a two element set C from the remaining |A|−1 elements). Applying
Corollary 2.6 we then obtain∑

C∈(A
2)

h(U \ C) ≥
(
i

2

)
h(U) =

(
i

2

)
T (A,B).

Altogether, we obtain the inequality∑
C∈(A

2)

f(T \ C,B) ≥
(
i

2

)
T (A,B),

valid for any choice of A, with |A| = i+ 1, and |B| = |U \ A| = n− i− 1. Averaging the
resulting inequalities over all possible choices for A, we obtain(

i+ 1

2

)
Fi−1,n−i−1 ≥

(
i

2

)
Fi+1,n−i−1,

which is equivalent to (18).

4Here, we employ the shorthand A+ x for A ∪ {x} and A− x for A \ {x}.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Ward and S. Živný

Combining (17) and (18) then gives the symmetrized inequality

Fi,n−i ≥
i− 1

i+ 1
Fi+1,n−i−1. (19)

The desired inequality (16) then follows from reverse induction on i. If i = n, then (16)
is trivial. For the inductive step, we suppose that 1 ≤ i ≤ n − 1. Then, applying (19)
followed by the induction hypothesis gives

Fi,n−i ≥
i− 1

i+ 1
Fi+1,n−i−1 ≥

i− 1

i+ 1
· (i+ 1)i

n(n− 1)
Fn,0 =

i(i− 1)

n(n− 1)
Fn,0.

If i = 0, we cannot apply (19). In this case, however, (16) follows directly from non-
negativity of f .

We now complete the proof of Theorem 4.1 in the case that k = 2. We can formulate
the expectation in terms of our symmetric notation as

E[f(x)] = 2−n
n∑
i=0

∑
A∈(U

i)

T (A,U \A) = 2−n
n∑
i=0

(
n

i

)
Fi,n−i.

Then, we have

2−n
n∑
i=0

(
n

i

)
Fi,n−i ≥ 2−n

n∑
i=2

(
n

i

)
Fi,n−i

≥ 2−n
n∑
i=2

(
n

i

)
i(i− 1)

n(n− 1)
Fn,0

= 2−n
n∑
i=2

(
n− 2

i− 2

)
Fn,0

= 2−n
n−2∑
i=0

(
n− 2

i

)
Fn,0

= 2−n · 2n−2Fn,0

=
1

4
f(o),

where the first inequality follows from non-negativity of f (and hence of F) and the
second inequality follows from Lemma 4.3.

Example 4.4. As a tight example for k = 2, we consider the function f (u,v) defined
as in Example 3.3 for the special case in which k = 2. Then, the resulting function is
submodular in every orthant and 2-wise monotone and hence must be bisubmodular.
Moreover, the probability that a random orthant will set xu = 1, and xv = 2 is 1

4 , and
the function has value 0 for all other orthants. Thus, E[f (u,v)(x)] = 1

4 , whereas the
maximum value is 1.

This example is easily extended to ground sets U = {u} ∪ V of arbitrary size, by
setting f(x) =

∑
v∈V f

(u,v)(xu, xv). This function is also bisubmodular as it is a positive
combination of bisubmodular functions. Moreover, the assignment setting xu = 1 and
xv = 2 for all v ∈ V has value |V |, but by linearity of expectation a uniform random
assignment has expected value only 1

4 |V |.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:15

Example 4.5. As a tight example for k ≥ 3, we consider the single-argument k-
submodular function f (e) : {0, . . . , k}{e} given by f(xe) = Jxe = 1K. It is easy to verify
that this function is indeed k-submodular. Moreover, a uniform random assignment
sets xe = 1 with probability only 1

k , and so E[f (e)(xe)] = 1
k . Similar to the previous ex-

ample, we can generalize to an arbitrary ground set U by setting f(x) =
∑
e∈U f

(e)(xe).
We note also that the value 1 in the definition of each f (e) can be replaced by any value
p ∈ {1, . . . , k}.

5. A DETERMINISTIC GREEDY ALGORITHM
In this section we consider a deterministic greedy algorithm for maximizing a k-set
function f : {0, . . . , k}U → R+, that is submodular in every orthant and r-wise mono-
tone for some 1 ≤ r ≤ k, where k ≥ 2. As a special case, we obtain an approximation
algorithm for k-submodular functions.

The algorithm begins with the initial solution s = 0 and considers elements of the
ground set U in some arbitrary order, permanently setting se = i for each element
e, based on the increase that this gives in f . Specifically, the algorithm sets se to the
value i that yields the largest marginal increase fi,e(S) in f with respect to the current
solution s. If there is more than one option we set se the smallest such i giving the
maximal increase.

Algorithm 1 Deterministic Greedy
s← 0
for each e ∈ U do

for i = 1 to k do
yi ← fi,e(s)

y = max(y1, . . . , yk)
Let q be the smallest value from {1, . . . , k} so that yi = y.
se ← q

return s

THEOREM 5.1. Let s be the solution produced by the deterministic greedy algorithm
on some instance f : {0, . . . , k}U → R+ that is submodular in every orthant and r-wise
monotone for some 1 ≤ r ≤ k, and let o be the optimal solution for this instance. Then,

(1 + r)f(s) ≥ f(o).

PROOF. Our analysis considers 2 sequences of n solutions. First let, s(j) be the al-
gorithm’s solution after j elements of U have been considered, and let U (j) be the set
of elements that have been considered. Let o(j) = o

∣∣
U\U(j) + s(j) be a partial solution

that agrees with s(j) on the placement of the elements considered by the greedy al-
gorithm in its first j phases and with o on the placement of all other elements. Note
that in particular we have o(0) = o and o(n) = s. Our analysis of the greedy algo-
rithm will bound the loss in f(o(j)) incurred at the each stage by the improvement
in s(j) made by the algorithm. In Lemma 5.2, we show that for every 0 ≤ j ≤ n,
f(o(j))− f(o(j+1)) ≤ r[f(s(j+1))− f(s(j))].

Summing this inequality from j = 0 to n− 1, we obtain
n−1∑
j=0

[
f(o(j))− f(o(j+1))

]
≤ r

n−1∑
j=0

[
f(s(j+1))− f(s(j))

]
.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Ward and S. Živný

Telescoping the summations on each side, we then have

f(o(0))− f(o(n)) ≤ r
[
f(s(n))− f(s(0))

]
.

The theorem then follows immediately from the facts o(0) = o, o(n) = s(n) = s, and
s(0) ≥ 0.

It remains to show the following inequality.

LEMMA 5.2. For 0 ≤ j ≤ n− 1,

f(o(j))− f(o(j+1)) ≤ r
[
f(s(j+1))− f(s(j))

]
.

PROOF. Let e be the element considered in the (j + 1)th phase of the algorithm.
We define the solution t = o

∣∣
U\U(j+1) + s(j), and let ai = fi,e(t) for 1 ≤ i ≤ k. Then,

we note that for any value i, t + i · 1e and s(j) + i · 1e are in the same orthant. For some
value i, let h be the submodular function induced by this orthant and f . Then h must
be submodular, and so

yi = fi,e(s
(j)) = he(U

(j)) ≥ he(U \ {e}) = fi,e(t) = ai.

Suppose that in the optimal solution we have oe = p but the greedy algorithm sets
se ← q. Then, we observe that f(o(j)) = f(t) + fp,e(t) and f(o(j+1)) = f(t) + fq,e(t), and
so

f(o(j))− f(o(j+1)) = fp,e(t)− fq,e(t) = ap − aq.
Similarly,

f(s(j+1))− f(s(j)) = fp,e(s
(j)) = yj .

By r-wise monotonicity, for any I ⊆ {1, . . . , k} with |I| = r we have
∑
`∈I a` ≥ 0 and

thus −aq ≤
∑
`∈I\{q} a`. Therefore, ap−aq ≤ ap+

∑
`∈I\{q} a` ≤ r ·yq as ai ≤ yi for every

1 ≤ i ≤ k and yq = max(y1, . . . , yk).

Combining Theorem 3.1 and Theorem 5.1 gives us the following.

COROLLARY 5.3. Let s be the solution produced by the deterministic greedy algo-
rithm for some k-submodular function f : {0, . . . , k}U → R+, and let o be an optimal
solution for this instance. Then,

1

3
f(s) ≥ f(o).

The following is a tight example for Theorem 5.1.

Example 5.4. Let 0 ≤ r ≤ k and consider the function f (u,v) : {0, . . . , k}{u,v} → R+

given by f (u,v)(xu, xv) = 1
r+1Jxu 6= 0K + r

r+1Jxu 6= 1 ∧ xv = 2K. We shall first show that
f (u,v) is submodular in every orthant and r-wise monotone.

Fix an orthant (xu = i, xv = j) with j 6= 2, and let h be the function induced by f (u,v)
and this orthant. Then, the marginals of h are given by:

hu(∅) = h({u})− h(∅) = 1
r+1 hv(∅) = h({v})− h(∅) = 0

hu({v}) = h({u, v})− h({v}) = 1
r+1 hv({u}) = h({u, v})− h({u}) = 0.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:17

Now, fix an orthant (xu = i, xv = 2), and let h be the function induced by f (u,v) and this
orthant. We have

hu(∅) = h({u})− h(∅) = 1
r+1 hv(∅) = h({v})− h(∅) = r

r+1

hu({v}) = h({u, v})− h({v}) = 1
r+1 −

r
r+1Ji = 1K hv({u}) = h({u, v})− h({u}) = r

r+1Ji 6= 1K.

In all cases, the marginals of h are decreasing, and so f (u,v) is submodular in every
orthant. We now show that f (u,v) is r-wise monotone. The marginals of f (u,v) are non-
negative, except the one obtained by setting xu from 0 to 1 in the case that xv = 2.
Thus, the only non-trivial case is that in which xv = 2, and I is a set of r distinct
values with 1 ∈ I. In this case,∑

i∈I
[f

(u,v)
i,u (0, 2)] = f (u,v)(1, 2)− f (u,v)(0, 2) +

∑
i∈I\{1}

[f (u,v)(i, 2)− f (u,v)(0, 2)]

=
1

r + 1
− r

r + 1
+ (r − 1) · 1

r + 1
= 0.

Now, we analyze the performance of the deterministic greedy algorithm on f (u,v).
We suppose, without loss of generality, that the algorithm considers u before v. When
u is considered, we have s = 0 and f

(u,v)
i,u (0, 0) = 1

r+1 for all i ∈ {1, . . . , k}, and so the
algorithm sets su = 1. In the next iteration, we have f

(u,v)
i,v (1, 0) = 0 for all values

i ∈ {1, . . . , k}, and so the algorithm set sv = 1 and returns s = (1, 1). We then have
f (u,v)(s) = 1

r+1 , but f (u,v)(2, 2) = 1. As in previous examples, we can easily obtain a
function over ground sets of arbitrary size by summing the values of several different
functions f (u,v).

6. A RANDOMIZED GREEDY ALGORITHM
In this section we consider the performance of a simple randomized greedy algorithm
for maximizing a k-set function that is submodular in every orthant and k-wise mono-
tone. Our algorithm is inspired by the algorithm of Buchbinder et al. [Buchbinder et al.
2012] for unconstrained submodular maximization. It begins with the initial solution
s = 0 and considers elements of the ground set U in some arbitrary order, permanently
setting se to some value i ∈ {1, . . . , k}, based on the marginal increase in f that this
yields. Specifically, the algorithm randomly sets se = i with probability proportional
to the resulting marginal increase fi,e(s) in f with respect to the current solution s.
If fi,e(s) < 0, we set se = i with probability 0. Note that Theorem 3.1 shows that we
cannot have fi,e(s) < 0 for all i, but it may be the case that fi,e(s) = 0 for all i. In this
case, we set se = 1.

THEOREM 6.1. Let f : {0, . . . , k}U be a k-set function that is submodular in every
orthant and k-wise monotone, where k ≥ 2. Let o be orthant of U that maximizes f and
let s be the orthant produced by the randomized greedy algorithm. Then,(

1 +

√
k

2

)
E[f(s)] ≥ f(o).

PROOF. As in the analysis of the deterministic greedy algorithm, we considers 2
sequences of n solutions. Let s(j), and o(j) be defined as in the proof of Theorem 5.1,
and note that s (and hence each s(j)) is now a random variable depending on the ran-
dom choices made by the algorithm. In Lemma 6.2, we bound the expected decrease
E[f(o(j)) − f(o(j+1))] relative to the increase E[f(s(j+1)) − f(s(j))] in each iteration.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Ward and S. Živný

Algorithm 2 Randomized Greedy
s← 0
for each e ∈ U do

for i = 1 to k do
yi ← max(0, fi,e(s))

β =
∑k
i=1 yi

if β 6= 0 then
Let q ∈ {1, . . . , k} be chosen randomly, with Pr[i = `] = x`

β for all ` ∈ {1, . . . , k}.
se ← q

else
se ← 1

return s

Specifically, we show that

E[f(o(j))− f(o(j+1))] ≤
√
k

2
E[f(s(j+1))− f(s(j))] (20)

for all j. Summing the resulting inequalities for j = 0 to n, we then obtain
n∑
j=0

E[f(o(j))− f(o(j+1))] ≤
√
k

2

n∑
j=0

E[f(s(j+1))− f(s(j))],

which simplifies to

E[f(o(0))]− E[f(o(n))] ≤
√
k

2

(
E[f(s(n))]− E[f(s(0))]

)
≤
√
k

2
E[f(s(n))].

The theorem then follows from the definitions o(0) = o, and s(n) = o(n) = s.

We now show that inequality (20) must hold.

LEMMA 6.2. For any 0 ≤ j ≤ n,

E[f(o(j))− f(o(j+1))] ≤
√
k

2
E[f(s(j+1))− f(s(j))].

PROOF. Let e be the element of U considered by the randomized greedy algorithm
in the (j + 1)th phase, and let U (j) and o(j) be defined as in the proof of Theorems 6.1
and 5.1. We condition on an arbitrary, fixed value for both s(j), o(j), and consider the
expectation over choices the algorithm makes for e. Because our result will hold for an
arbitrary s(j) or o(j) it then extends to the expectation over the first j choices made by
the algorithm.

As in the proof of Lemma 5.2, we define the solution t = o
∣∣
U(j−1) + s(j−1), and set

ai = fi,e(t) for 1 ≤ j ≤ k. Let the values yi be defined as in the algorithm. Then, as in
the proof of Lemma 5.2, submodularity of f in every orthant implies that

ai ≤ yi for every i ∈ {1, . . . , k}. (21)

Moreover, r-wise monotonicity of f implies that∑
i∈I

ai ≥ 0 for all I ∈
(
{1, . . . , k}

r

)
. (22)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:19

Finally, by the construction of Algorithm 2, we have yi ≥ 0 for each 1 ≤ i ≤ k.
Now, let suppose that in the optimal solution oe = p but the greedy algorithm sets

se ← q. Then, we have f(o(j)) = f(t) + fp,e(t) and f(o(j+1)) = f(t) + fq,e(t), and so, as
in the proof of Lemma 5.2,

f(o(j))− f(o(j+1)) = fp,e(t)− fq,e(t) = ap − aq,

and

f(s(j+1))− f(s(j)) = fq,e(s
(j)) = yq.

For any given value q, the probability that the greedy algorithm makes such a choice
is precisely yq/β, and so

E[f(s(j+1))− f(s(j))] =
1

β

∑
i

y2i ,

and

E[f(o(j))− f(o(j+1))] =
1

β

∑
i

yi(ap − ai) =
1

β

∑
i 6=p

yi(ap − ai).

In order to prove the lemma it is thus sufficient to show that

∑
i6=p

yj(ap − ai) ≤
√
k

2

∑
i

y2i . (23)

For any value of y1, . . . , yk, the left hand side of (23) is upper bounded by the optimal
value of the following linear program in a1, . . . , ak, whose constraints are given by (21)
and (22):

maximize
∑
i 6=p

yi(ap − ai)

subject to ai ≤ yi, for 1 ≤ i ≤ k∑
i∈I

ai ≥ 0, for all I ∈
(
{1, . . . , k}

r

)

We consider an optimal, extreme-point solution a∗1, . . . , a
∗
k for this program. We first

note that by increasing ap we cannot violate the final constraint and can only increase
the objective, and so we may assume that a∗p = yp. Of the remaining k constraints,
k − 1 must be tight, of which k − 2 must be of the first type. Hence, for all i except
at most 1 value ` 6= p, we in fact have a∗i = yi. This accounts for k − 1 total tight
constraints. The final tight constraint must imply either a∗` = y` or

∑
i a
∗
i = 0. Because

a∗i = yi for all i 6= `, the latter is equivalent to a∗` = −
∑
i 6=` yi. Moreover, because yi ≥ 0

for all i, setting a∗` = −
∑
i 6=` yi always gives an objective value at least as large as

setting a∗` = y`. Thus, we can characterize the optimal solution to this linear program
by a∗i = yi for all i 6= `, and a∗` = −

∑
i6=` yi, where ` is some value distinct from p.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Ward and S. Živný

Returning to (23), we have∑
i6=p

yi(ap − ai) ≤
∑
i6=p

yi(a
∗
p − a∗i)

=
∑
i 6=p,`

yi(yp − yi) + y`

yp +
∑
i 6=`

yi


= 2y`yp +

∑
i 6=p,`

[y`yi + ypyi − y2i],

for any y1, . . . , yk ≥ 0. In order to prove (23) it then suffices to show that

0 ≤ α
∑
i

y2i − 2y`yp −
∑
i6=p,`

[y`yi + ypyi − y2i], (24)

where α =
√

k
2 . This follows directly from the fact that the right hand side of (24) can

be written as the following sum of squares:

(y` − yp)2 +
∑
j 6=o,`

(√
α− 1

k − 2
y` −

√
α+ 1

2
yi

)2

+
∑
j 6=o,`

(√
α− 1

k − 2
yp −

√
α+ 1

2
yi

)2

. (25)

In order to verify that this is the case, we note that

(y` − yp)2 = y2` − 2y`yp + y2p

and (√
α− 1

k − 2
y` −

√
α+ 1

2
yi

)2

=
α− 1

k − 2
y2` − 2

√
(α− 1)(α+ 1)

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
α2 − 1

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
k
2 − 1

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
k−2
2

2(k − 2)
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − 2

√
1

4
y`yi +

α+ 1

2
y2i

=
α− 1

k − 2
y2` − y`yi +

α+ 1

2
y2i ,

and, similarly,(√
α− 1

k − 2
yp −

√
α+ 1

2
yi

)2

=
α− 1

k − 2
y2p − ypyi +

α+ 1

2
y2i

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:21

Thus, (25) is equal to

y2` − 2y`yp + y2p +
∑
i 6=p,`

[
α− 1

k − 2
y2` − y`yi +

α+ 1

2
y2i

]
+
∑
i6=p,`

[
α− 1

k − 2
y2p − ypyi +

α+ 1

2
y2i

]

= y2` − 2y`yp + y2p + (α− 1)y2` + (α− 1)y2p −
∑
i 6=p,`

[
y`yi −

α+ 1

2
y2i

]
−
∑
i 6=p,`

[
ypyi −

α+ 1

2
y2i

]
= y2` − 2y`yp + y2p + (α− 1)y2` + (α− 1)y2p −

∑
i 6=p,`

[
y`yi + ypyi − (α+ 1)y2i

]
= αy2` + αy2p − 2y`yp + α

∑
i 6=p,`

y2i −
∑
i6=p,`

[
y`yi + ypyi − y2i

]
= α

∑
i

y2i − 2y`yp −
∑
i 6=p,`

[
y`yi + ypyi − y2i

]
.

The guarantees we obtain for the randomized greedy algorithm are better than for
the deterministic greedy algorithm on r-wise monotone k-set functions only when k is
small or r is large. While we do not have a tight example for the randomized greedy
algorithm on r-wise monotone k-set functions for every fixed value of r and k, the fol-
lowing example confirms that the randomized algorithm can indeed perform worse
than the deterministic algorithm for k-submodular (i.e. pairwise monotone) functions,
once k grows large enough. This behavior is somewhat unintuitive, as the random-
ized greedy algorithm has an expected approximation ratio of 1/2 for bisubmodular
functions, while the deterministic greedy algorithm has an approximation ratio of only
1/3.

Example 6.3. Consider the weighted set-coverage function f (u,v) : {0, . . . , k}{u,v} →
R+ given as follows. We have a universe {a, b} where a has weight 1 and b has weight
γ = 1√

k−1 . Additionally, we have sets S1 = {a} and Si = {b} for every 2 ≤ i ≤ k, and
Ti = {b}, for every 1 ≤ i ≤ k. The value of f (u,v)(xu, xv) is then simply the total weight
of all elements in Su ∪ Tv. The function induced by f (u,v) and any orthant is then a
weighted set coverage function, and so is submodular. Moreover, all marginals of f (u,v)
are non-negative and so f (u,v) is trivially r-wise monotone for any r.

We now consider the performance of the randomized greedy algorithm on f (u,v). We
suppose, without loss of generality, that the greedy algorithm considers u before v. Ini-
tially we have s = 0, and in the first phase, the algorithm sets su ← 1 with probability

1
1+(k−1)γ and for each 2 ≤ i ≤ k, sets su ← i with probability γ

1+(k−1)γ . In the next step,
the algorithm considers v. We note that all the sets Ti are identical, and so the algo-
rithm’s particular choice in this phase does not affect the final value of the function.
The solution s produced by the algorithm has value 1 + γ if su = 1 and γ otherwise.
Thus, the expected value of solution produced by the algorithm is:

1 + γ + (k − 1)γ2

1 + (k − 1)γ
=

2 + γ

1 + (k − 1)γ
.

The optimal value of f (u,v) is 1 + γ and so the expected approximation ratio of the
randomized greedy algorithm on f (u,v) is

α =
2 + γ

1 + (k − 1)γ
· 1

1 + γ
=

2 + γ

1 + (k − 1)γ + γ + (k − 1)γ2
=

2 + γ

2 + kγ
.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Ward and S. Živný

In particular, for all k ≥ 21, we have α < 1/3. For large k, α is approximately

1/

(
1 +

√
k
4

)
. In the appendix, we show that the randomized greedy algorithm does

indeed attain a similar, improved ratio for k-submodular functions.

7. CONCLUSION
In the preceding sections we have considered the problem of maximizing k-submodular
functions by both a random partition and two simple simple greedy algorithms. In the
case of maximizing a bisubmodular function, we obtained the same approximation
ratios as those already known in the submodular case: 1/4 for the naive random solu-
tion [Feige et al. 2011] and 1/2 via a randomized greedy approach [Buchbinder et al.
2012]. We can make this correspondence more explicit by considering the following em-
bedding of a submodular function into a bisubmodular function. Given a submodular
function g : 2U → R+, we consider the biset function f : 3U → R+ defined by

f(S, T)
def
= g(S) + g(U \ T)− g(U). (26)

This embedding has been studied by Fujishige and Iwata, who show that the function
f is bisubmodular and has the following property: if (S, T) is a minimizer (maximizer)
of f then both S and U \T are minimizers (maximizers) of g [Fujishige and Iwata 2005].
Thus, exact 2-submodular function minimization (maximization) is a generalization of
1-submodular function minimization (maximization). We can in fact show a stronger
result: that this embedding preserves approximability.

Suppose that some algorithm gives a α-approximation for bisubmodular maximiza-
tion. Then, consider an arbitrary submodular function g and let f be the embedding
of g defined as in (26). Let O = (O1, O2) be a maximizer f , and suppose that the al-
gorithm returns a solution S = (S1, S2). Then, since f is pairwise monotone, we can
greedily extend S to a partition S′ = (S′1, S

′
2) of U . Similarly, we can assume without

loss of generality that O is a partition of U . Then, we have f(U \ S′2) = f(S′1) and
f(U \O2) = f(O2), and so

g(S′1) =
1

2
(g(S′1) + g(U \ S′1))

=
1

2
(f(S′1, S

′
2) + g(U))

≥ 1

2
(αf(O1, O2) + g(U))

=
1

2
(αg(O1) + αg(U \O2) + (1− α)g(U))

≥ 1

2
(αg(O1) + αg(U \O2))

= αg(O1).

Since O1 is a maximizer of g, the resulting algorithm is an α-approximation for maxi-
mizing g. Hence, the 1/2 + ε inapproximability results of [Feige et al. 2011; Dobzinski
and Vondrák 2012] hold for bisubmodular maximization as well, in both the value
oracle setting and under the assumption that NP 6= RP .

The embedding (26) also allows us to provide new intuition for the performance of the
randomized greedy algorithm for submodular maximization considered by Buchbinder
et al. [Buchbinder et al. 2012]. This algorithm maintains 2 solutions, S1 and S2 which
are initially ∅ and U . At each step, it considers an element e, and either adds e to S1

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:23

or removes e from S2, with probability proportional to the resulting increase in the
submodular function in either case.

In comparison, we consider the case in which we embed a submodular function g into
a bisubmodular function f using (26) and then run the greedy algorithm of Section 6
on f . Suppose at some step we have a current solution T = (T1, T2) and we consider
element e, and define S1 = T1 and S2 = U \ T2. The algorithm will add e to either
T1 or T2 with probability proportional to the resulting increase in f . In the first case,
this increase is precisely g(T1 + e) − g(T1) = g(S1 + e) − g(S1), and adding e to T1
corresponds to adding e to S1. In the second case this increase is precisely g(U \ T2) −
g(U \ (T2 + e)) = g(S2) − g(S2 − e) and adding e to T1 corresponds to removing e from
S1. Thus, the operation of the algorithm of Buchbinder et al. [Buchbinder et al. 2012]
may be viewed as that of the natural, straightforward randomized greedy algorithm
presented in Section 6, viewed through the lens of the embedding (26).

An interesting open question is whether the symmetry gap technique from [Vondrák
2009; Dobzinski and Vondrák 2012] can be generalized to obtain hardness results for
k-submodular maximization for k ≥ 3, and, more generally, for maximizing k-set func-
tions that are submodular in every orthant and r-wise monotone for some 1 ≤ r ≤ k.

Acknowledgments
We are grateful to Maxim Sviridenko for many insightful conversations.

References
Kazutoshi Ando. 2002. K-submodular functions and convexity of their Lovász extension. Discrete Applied

Mathematics 122, 1-3 (2002), 1–12. DOI:http://dx.doi.org/10.1016/S0166-218X(01)00318-3
Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh. 1996. A characterization of bisubmodular functions.

Discrete Mathematics 148, 1-3 (1996), 299–303. DOI:http://dx.doi.org/10.1016/0012-365X(94)00246-F
Jesús M. Bilbao, Julio R. Fernández, Nieves Jiménez, and Jorge J. López. 2008. Survey of Bi-

cooperative Games. In Pareto Optimality, Game Theory and Equilibria, Altannar Chinchu-
luun, Panos M. Pardalos, Athanasios Migdalas, and Leonidas Pitsoulis (Eds.). Springer.
DOI:http://dx.doi.org/10.1007/978-0-387-77247-9 8

André Bouchet. 1987. Greedy algorithm and symmetric matroids. Mathematical Programming 38, 2 (1987),
147–159. DOI:http://dx.doi.org/10.1007/BF02604639

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. 2012. A Tight Linear Time
(1/2)-Approximation for Unconstrained Submodular Maximization. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE, 649–658.
DOI:http://dx.doi.org/10.1109/FOCS.2012.73

Ramaswamy Chandrasekaran and Santosh N. Kabadi. 1988. Pseudomatroids. Discrete Mathematics 71, 3
(1988), 205–217. DOI:http://dx.doi.org/10.1016/0012-365X(88)90101-X

David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. 2006. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence 170, 11 (2006), 983–1016.
DOI:http://dx.doi.org/10.1016/j.artint.2006.04.002

Shahar Dobzinski and Jan Vondrák. 2012. From Query Complexity to Computational Complexity. In Pro-
ceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12). ACM, 1107–1116.
DOI:http://dx.doi.org/10.1145/2213977.2214076

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. 2011. Maximizing Non-monotone Submodular Functions.
SIAM J. Comput. 40, 4 (2011), 1133–1153. DOI:http://dx.doi.org/10.1137/090779346

Satoru Fujishige. 2005. Submodular Functions and Optimization (2nd ed.). Annals of Discrete Mathematics,
Vol. 58. North-Holland, Amsterdam.

Satoru Fujishige and Satoru Iwata. 2005. Bisubmodular Function Minimization. SIAM Journal on Discrete
Mathematics 19, 4 (2005), 1065–1073. DOI:http://dx.doi.org/10.1137/S0895480103426339

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman.

M. Grötschel, L. Lovasz, and A. Schrijver. 1981. The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1, 2 (1981), 169–198. DOI:http://dx.doi.org/10.1007/BF02579273

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Ward and S. Živný

M. Grötschel, L. Lovasz, and A. Schrijver. 1988. Geometric Algorithms and Combinatorial Optimization.
Algorithms and Combinatorics, Vol. 2. Springer.

Anna Huber and Vladimir Kolmogorov. 2012. Towards Minimizing k-Submodular Functions. In Proceed-
ings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12) (Lecture Notes in
Computer Science), Vol. 7422. Springer, 451–462. DOI:http://dx.doi.org/10.1007/978-3-642-32147-4 40

Anna Huber, Andrei Krokhin, and Robert Powell. 2014. Skew bisubmodularity and valued CSPs. SIAM J.
Comput. 43, 3 (2014), 1064–1084. DOI:http://dx.doi.org/10.1137/120893549

S. Iwata. 2002. A fully combinatorial algorithm for submodular function minimization. Journal of Combina-
torial Theory, Series B 84, 2 (2002), 203–212. DOI:http://dx.doi.org/10.1006/jctb.2001.2072

S. Iwata. 2003. A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32, 4
(2003), 833–840. DOI:http://dx.doi.org/10.1137/S0097539701397813

Satoru Iwata. 2008. Submodular Function Minimization. Mathematical Programming 112, 1 (2008), 45–64.
DOI:http://dx.doi.org/10.1007/s10107-006-0084-2

Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. 2001. A combinatorial strongly polynomial al-
gorithm for minimizing submodular functions. Journal of the ACM 48, 4 (2001), 761–777.
DOI:http://dx.doi.org/10.1145/502090.502096

Satoru Iwata, Shin ichi Tanigawa, and Yuichi Yoshida. 2013. Bisubmodular Function Maximization and
Extensions. Technical Report METR 2013-16. The University of Tokyo. http://www.keisu.t.u-tokyo.ac.jp/
research/techrep/data/2013/METR13-16.pdf

Satoru Iwata and James B. Orlin. 2009. A Simple Combinatorial Algorithm for Submodular Function Mini-
mization. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09).
1230–1237. DOI:http://dx.doi.org/10.1145/1496770.1496903

Vladimir Kolmogorov. 2011. Submodularity on a tree: Unifying L]-convex and bisubmodular func-
tions. In Proceedings of the 36th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS’11) (Lecture Notes in Computer Science), Vol. 6907. Springer, 400–411.
DOI:http://dx.doi.org/10.1007/978-3-642-22993-0 37

Bernhard Korte and Jens Vygen. 2007. Combinatorial Optimization (4th ed.). Algorithms and Combina-
torics, Vol. 21. Springer.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. 2010. Submodular Maximization over Multiple Matroids
via Generalized Exchange Properties. Mathematics of Operations Research 35, 4 (2010), 795–806.
DOI:http://dx.doi.org/10.1287/moor.1100.0463

László Lovász. 1983. Submodular Functions and Convexity. In Mathematical Programming – The State of
the Art, A. Bachem, M. Grötschel, and B. Korte (Eds.). Springer, Berlin, 235–257.

S. Thomas McCormick and Satoru Fujishige. 2010. Strongly polynomial and fully combinatorial algo-
rithms for bisubmodular function minimization. Mathematical Programming 122, 1 (2010), 87–120.
DOI:http://dx.doi.org/10.1007/s10107-008-0242-9

H. Narayanan. 1997. Submodular Functions and Electrical Networks. North-Holland, Amsterdam.
George L. Nemhauser and Laurence A. Wolsey. 1988. Integer and Combinatorial Optimization. John Wiley

& Sons.
James B. Orlin. 2009. A Faster Strongly Polynomial Time Algorithm for Submodular Function Minimization.

Mathematical Programming 118, 2 (2009), 237–251. DOI:http://dx.doi.org/10.1007/s10107-007-0189-2
Christos H. Papadimitriou and Mihalis Yannakakis. 1991. Optimization, Approxima-

tion, and Complexity Classes. J. Comput. System Sci. 43, 3 (1991), 425–440.
DOI:http://dx.doi.org/10.1016/0022-0000(91)90023-X

Liqun Qi. 1988. Directed submodularity, ditroids and directed submodular flows. Mathematical Program-
ming 42, 1-3 (1988), 579–599. DOI:http://dx.doi.org/10.1007/BF01589420

Alexander Schrijver. 2000. A Combinatorial Algorithm Minimizing Submodular Functions in
Strongly Polynomial Time. Journal of Combinatorial Theory, Series B 80, 2 (2000), 346–355.
DOI:http://dx.doi.org/10.1006/jctb.2000.1989

Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combi-
natorics, Vol. 24. Springer.

Ajit P. Singh, Andrew Guillory, and Jeff Bilmes. 2012. On Bisubmodular Maximization. In Proceedings of
the 15th International Conference on Artificial Intelligence and Statistics (AISTATS’12) (JLMR Work-
shop and Conference Proceedings), Vol. 22. 1055–1063. http://jmlr.csail.mit.edu/proceedings/papers/v22/
singh12/singh12.pdf

Johan Thapper and Stanislav Živný. 2012. The power of linear programming for valued CSPs. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE, 669–678.
DOI:http://dx.doi.org/10.1109/FOCS.2012.25

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing k-Submodular Functions and Beyond A:25

Johan Thapper and Stanislav Živný. 2013. The complexity of finite-valued CSPs. In Proceed-
ings of the 45th ACM Symposium on the Theory of Computing (STOC’13). ACM, 695–704.
DOI:http://dx.doi.org/10.1145/2488608.2488697

Donald Topkis. 1998. Supermodularity and Complementarity. Princeton University Press.
Jan Vondrák. 2009. Symmetry and Approximability of Submodular Maximization Problems. In Proceedings

of the 50th IEEE Symposium on Foundations of Computer Science (FOCS ’09). IEEE Computer Society,
651–670. DOI:http://dx.doi.org/10.1109/FOCS.2009.24

Magnus Wahlström. 2014. Half-integrality, LP-branching and FPT Algorithms. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 1762–1781.
DOI:http://dx.doi.org/10.1137/1.9781611973402.128

Justin Ward and Stanislav Živný. 2014. Maximizing Bisubmodular and k-Submodular Functions. In Pro-
ceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 1468–
1481. DOI:http://dx.doi.org/10.1137/1.9781611973402.108

A. IMPROVED ANALYSIS OF ALGORITHM 2 FOR K-SUBMODULAR FUNCTIONS
In the case that f is in fact pairwise monotone (and, hence, k-submodular), we can
prove the following stronger form of Lemma 6.2.

LEMMA A.1. Suppose that f is k-submodular. Then, for any 0 ≤ j ≤ n,

E[f(o(j))− f(o(j+1))] ≤ αE[f(s(j+1))− f(s(j))].

where α = max(1,
√

k−1
4).

PROOF. Using the same notation as in the proof of Lemma 6.2, we shall now show∑
i 6=p

yi(ap − ai) ≤ α
∑
i

y2i , (27)

where α = max(1,
√

k−1
4). As in the proof of Lemma 6.2, we note that for any value of

y1, . . . , yk, the left hand side of (27) is upper bounded by the optimal value of a linear
program in a1, . . . , ak. Now, however, because f is pairwise monotone, we replace the
(22) with

(
k
2

)
constraints of the form of ai + a` ≥ 0. This gives the program

maximize
∑
i 6=p

yj(ap − ai)

subject to ai ≤ yi 1 ≤ i ≤ k

ai + a` ≥ 0 ∀{i, `} ∈
(
{1, . . . , k}

2

)
.

Consider an optimal solution for this program. We note that increasing ap cannot vio-
late any constraint ap + a` ≥ 0, and will increase the objective. Thus, we may assume
that a∗p = yp ≥ 0. We now consider 2 cases.

First, suppose that we have a∗` = −t < 0 for some ` ∈ {1, . . . , k} and some value t > 0.
Because a∗i + a∗` ≥ 0 for all i 6= `, there can be at most one such `. Moreover, we must
have a∗i ≥ t for all i 6= `. For any value i 6∈ {`, p}, we note that decreasing a∗i can only
increase the objective of our linear program. Thus, in this case, we may assume that
a∗i = t for all i 6∈ {`, p}, a` = −t and ap = yp. We can then rewrite our objective as:

∑
i 6=p

yiyp + t

y` − ∑
j 6=`,p

yj

 . (28)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 J. Ward and S. Živný

Because t > 0, we must have y` ≥
∑
j 6=`,p yj (otherwise, we could increase (28) by

decreasing t). Moreover, we must have t ≤ yp, since otherwise we would have a∗p + a∗` =
yp − t < 0. Hence, we have:

∑
i 6=p

yiyp + t

y` − ∑
j 6=`,p

yj

 ≤∑
i6=p

yiyp + ypy` − yp
∑
j 6=`,p

yj = 2ypy` ≤ y2p + y2` ≤
∑
i

y2i ,

and we have proved (27) with α = 1.
Next, suppose that ai ≥ 0 for all i ∈ {1, . . . , k}. Then, the objective of our program

satisfies ∑
i 6=p

yi(ap − ai) ≤
∑
i 6=p

yiap

=
∑
i 6=p

yiyp

=
1

2
√
k − 1

· 2
√
k − 1yp

∑
i6=p

yi

≤ 1

2
√
k − 1

(k − 1)y2p +

∑
i 6=p

yi

2


≤ 1

2
√
k − 1

(k − 1)y2p + (k − 1)
∑
i 6=p

y2i


=

√
k − 1

2

∑
i

y2i ,

where the second inequality follows from a2 + b2 ≥ 2ab for any real numbers a and
b, and third inequality follows from the Cauchy-Schwarz inequality. Thus, we have
proved (27) with α =

√
k−1
4 .

By replacing Lemma 6.2 with Lemma A.1, in the proof of Theorem 6.1, we obtain
the following result.

THEOREM A.2. Let f : {0, . . . , k}U be a k-submodular set function. Let o be an
orthant of U that maximizes f and let s be the orthant of U produced by the randomized
greedy algorithm. Then,

(1 + α)E[f(s)] ≥ f(o),

for α = max(1,
√

k−1
4).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

