
The Expressive Power of Binary Submodular
FunctionsI

Stanislav Živný∗,a, David A. Cohenb, Peter G. Jeavonsa

aComputing Laboratory, University of Oxford, UK
bDept. of Computer Science, Royal Holloway, University of London, UK

Abstract

We investigate whether all Boolean submodular functions can be decom-
posed into a sum of binary submodular functions over a possibly larger set of
variables. This question has been considered in several different contexts in
computer science, including computer vision, artificial intelligence, and pseudo-
Boolean optimisation. Using a connection between the expressive power of
valued constraints and certain algebraic properties of functions, we answer this
question negatively.

Our results have several corollaries. First, we characterise precisely which
submodular polynomials of arity 4 can be expressed by binary submodular poly-
nomials. Next, we identify a novel class of submodular functions of arbitrary
arities which can be expressed by binary submodular functions, and therefore
minimised efficiently using a so-called expressibility reduction to the Min-Cut
problem. More importantly, our results imply limitations on this kind of reduc-
tion and establish for the first time that it cannot be used in general to minimise
arbitrary submodular functions. Finally, we refute a conjecture of Promislow
and Young on the structure of the extreme rays of the cone of Boolean submod-
ular functions.

Key words: Decomposition of submodular functions, Min-Cut,
Pseudo-Boolean optimisation, Submodular function minimisation.

1. Introduction

1.1. Background
A function f : 2V → R is called submodular if for all S, T ⊆ V ,

f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T).

IA preliminary version of this paper appeared in Proceedings of the 34th International
Symposium on Mathematical Foundations of Computer Science (MFCS), 2009.

∗Corresponding author. Address: Computing Laboratory, University of Oxford, Wolfson
Building, Parks Road, Oxford OX1 3QD, UK. Tel: +44 (0)1865 273884

Email addresses: stanislav.zivny@comlab.ox.ac.uk (Stanislav Živný),
dave@cs.rhul.ac.uk (David A. Cohen), peter.jeavons@comlab.ox.ac.uk (Peter G. Jeavons)

Preprint submitted to Discrete Applied Mathematics July 21, 2009

Submodular functions are a key concept in operational research and combina-
torial optimisation [18, 27, 34, 39, 40, 50, 51]. Examples include cut capacity
functions, matroid rank functions, and entropy functions. Submodular functions
are often considered to be a discrete analogue of convex functions [37].

Both minimising and maximising submodular functions, possibly under some
additional conditions, have been considered extensively in the literature. Sub-
modular function maximisation is easily shown to be NP-hard [50] since it gen-
eralises many standard NP-hard problems such as the maximum cut problem.
In contrast, the problem of minimising a submodular function (SFM) can be
solved efficiently with only polynomially many oracle calls, using the ellipsoid
algorithm [21, 22], or by using one of several combinatorial algorithms that have
been obtained in the last decade [25, 26, 27, 28, 29, 42, 49]. The time complexity
of the fastest known general algorithm for SFM is O(n6 + n5L), where n is the
number of variables and L is the time required to evaluate the function [42].

The minimisation of submodular functions on sets is equivalent to the min-
imisation of submodular functions on distributive lattices [50]. Krokhin and
Larose have also studied the more general problem of minimising submodular
functions on non-distributive lattices [35].

An important and well-studied sub-problem of SFM is the minimisation of
submodular functions of bounded arity (SFMb), also known as locally defined
submodular functions [12], or submodular functions with succinct representa-
tion [16]. In this scenario the submodular function to be minimised is defined
as the sum of a collection of functions which each depend only on a bounded
number of variables. Locally defined optimisation problems of this kind occur
in a wide variety of contexts:

• In the context of pseudo-Boolean optimisation, such problems involve the
minimisation of Boolean polynomials of bounded degree [4].

• In the context of artificial intelligence, they have been studied as val-
ued constraint satisfaction problems (VCSP) [47], also known as soft or
weighted constraint satisfaction problems.

• In the context of computer vision, such problems are often formulated
as Gibbs energy minimisation problems or Markov Random Fields (also
known as Conditional Random Fields) [36, 52].

We will present our results primarily in the language of pseudo-Boolean opti-
misation. Hence an instance of SFMb with n variables will be represented as a
polynomial in n Boolean variables, of some fixed bounded degree.

A general algorithm for SFM can always be used for the more restricted
SFMb, but the special features of this more restricted problem sometimes allow
more efficient special-purpose algorithms to be used. (Note that we are focusing
on exact algorithms which find an optimal solution.) In particular, it has been
shown that certain cases can be solved much more efficiently by reducing to
the Min-Cut problem; that is, the problem of finding a minimum cut in a
directed graph which includes a given source vertex and excludes a given target

2

vertex. For example, it has been known since 1965 that the minimisation of
quadratic submodular polynomials is equivalent to finding a minimum cut in a
corresponding directed graph [4, 24]. Hence quadratic submodular polynomials
can be minimised in O(n3) time, where n is the number of variables.

A Boolean polynomial in at most 2 variables has degree at most 2, so any
sum of binary Boolean polynomials has degree at most 2; in other words, it is
quadratic. It follows that an efficient algorithm, based on reduction to Min-
Cut, can be used to minimise any class of functions that can be written as a
sum of binary submodular polynomials. We will say that a polynomial that can
be written in this way, perhaps with additional variables to be minimised over,
is expressible by binary submodular polynomials (see Section 2). The following
classes of functions have all been shown to be expressible by binary submodular
polynomials in this way1, over the past four decades:

• polynomials where all terms of degree 2 or more have negative coefficients
(also known as negative-positive polynomials) [45];

• cubic submodular polynomials [2];

• {0, 1}-valued submodular functions (also known as 2-monotone func-
tions) [8, 14];

• a class recently found by Živný and Jeavons [55] and independently by
Zalesky [54].

All these classes of functions have been shown to be expressible by binary sub-
modular polynomials and hence minimisable in cubic time (in the total num-
ber of variables). Moreover, several classes of submodular functions over non-
Boolean domains have also been shown to be expressible by binary submodular
functions and hence minimisable in cubic time [6, 7, 8].

This series of positive expressibility results naturally raises the following
question:

Question 1. Are all submodular polynomials expressible by binary submodular
polynomials, over a possibly larger set of variables?

Each of the above expressibility results was obtained by an ad-hoc con-
struction, and no general technique2 has previously been proposed which is
sufficiently powerful to address Question 1.

1In fact, it is known that all Boolean polynomials (of arbitrary degree) are expressible by
binary polynomials [4, 46], but the general construction does not preserve submodularity; that
is, the resulting binary polynomials are not necessarily submodular.

2For example, standard combinatorial counting techniques cannot resolve this question
because we allow arbitrary real-valued coefficients in submodular polynomials. We also allow
an arbitrary number of additional variables.

3

1.2. Contributions
Cohen et al. recently developed a novel algebraic approach to characterising

the expressive power of valued constraints in terms of certain algebraic proper-
ties of those constraints [9].

Using this systematic algebraic approach we are able to give a negative
answer to Question 1: we show that there exist submodular polynomials of
degree 4 that cannot be expressed by binary submodular polynomials. More
precisely, we characterise exactly which submodular polynomials of arity 4 are
expressible by binary submodular polynomials and which are not.

On the way to establishing these results we show that two broad families of
submodular functions, known as upper fans and lower fans, are all expressible
by binary submodular functions. This provides a new class of submodular poly-
nomials of all arities which are expressible by binary submodular polynomials
and hence solvable efficiently by reduction to Min-Cut. We use the express-
ibility of this family, and the existence of non-expressible functions, to refute a
conjecture from [43] on the structure of the extreme rays of the cone of Boolean
submodular functions, and suggest a more refined conjecture of our own.

1.3. Applications
The concept of submodularity is important in a wide variety of fields within

computer science; in this paper we briefly discuss two of these: artificial intelli-
gence and computer vision. Our results can be directly applied to both of these
areas, as we show in Section 4 below.

Artificial Intelligence. A major area of investigation in artificial intelligence is
the Constraint Satisfaction problem (CSP) [47]. A number of extensions have
been added to the basic CSP framework to deal with questions of optimisation,
including semi-ring CSPs, valued CSPs, soft CSPs and weighted CSPs. These
extended frameworks can be used to model a wide range of discrete optimisation
problems [3, 47, 48], including standard problems such as Min-Cut, Max-Sat,
Max-Ones Sat, Max-CSP [11, 14], and Min-Cost Homomorphism [23].

The differences between the various frameworks are not relevant for our
purposes, so we will simply focus on one very general framework, the valued
constraint satisfaction problem or VCSP. Informally, in the VCSP framework,
an instance consists of a set of variables, a set of possible values for those vari-
ables, and a set of constraints. Each constraint has an associated cost function
which assigns a cost (or degree of violation) to every possible tuple of values for
the variables in the scope of the constraint. The goal is to find an assignment
of values to all of the variables which has the minimum total cost.

The class of constraints with submodular cost functions is the only non-
trivial tractable class of optimisation problems in the dichotomy classification
of the Boolean VCSP [11], and the only tractable class in the dichotomy clas-
sification of the Max-CSP problem for both 3-element sets [31] and arbitrary
finite sets allowing constant (that is, fixed-value) constraints [15].

Cohen et al. showed that VCSP instances with submodular constraints over
an arbitrary finite domain can be reduced to SFM [11], and hence can be solved

4

in polynomial time. This tractability result has since been generalised to a wider
class of valued constraints over arbitrary finite domains known as tournament-
pair constraints [10]. An alternative approach to solving VCSP instances with
bounded-arity submodular constraints, based on linear programming, can be
found in [12].

Computer Vision. Gibbs energy minimisation, Markov Random Fields and
Conditional Random Fields play an important role in computer vision as they
are applicable to a wide variety of vision problems, including image restora-
tion, stereo vision and motion tracking, image synthesis, image segmentation,
multi-camera scene reconstruction and medical imaging [33]. Reducing energy
minimisation to the Min-Cut problem has recently become a very popular ap-
proach, leading to the rediscovery of the property of submodularity [17, 33], and
showing that certain special classes of functions can be minimised using graph
cuts by introducing extra variables [32, 44].

Our results below characterise precisely which 4-ary submodular functions
can be minimised using graph cuts in this way and which cannot. We also
identify a very broad new class of submodular functions of arbitrary arity which
can be minimised efficiently in this way.

2. Preliminaries

In this section, we introduce the basic definitions and the main tools used
throughout the paper.

2.1. Cost functions and expressibility
We denote by R the set of all real numbers together with (positive) infinity.

For any fixed set D, a function φ from Dn to R will be called a cost function
on D of arity n. If the range of φ lies entirely within R, then φ is called a
finite-valued cost function. If the range of φ is {0,∞}, then φ can be viewed as
a predicate, or relation, allowing just those tuples t ∈ Dn for which φ(t) = 0.

Cost functions can be added and multiplied by arbitrary real values, hence
for any given set of cost functions, Γ, we define the convex cone generated by
Γ, as follows.

Definition 2. For any set of cost functions Γ, the cone generated by Γ, denoted
Cone(Γ), is defined by:

Cone(Γ) = {α1φ1 + · · ·+ αrφr | r ≥ 1; φ1, . . . , φr ∈ Γ; α1, . . . , αr ≥ 0}.

Definition 3. A cost function φ of arity n is said to be expressible by a set
of cost functions Γ if φ = miny1,...,yj φ

′(x1, . . . , xn, y1, . . . , yj) + κ, for some
φ′ ∈ Cone(Γ) and some constant κ.

The variables y1, . . . , yj are called extra (or hidden) variables, and φ′ is called
a gadget for φ over Γ.

5

t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′k = fk(t1, . . . , tk)

t1[1] t1[2] . . . t1[n]
t2[1] t2[2] . . . t2[n]

...
tk[1] tk[2] . . . tk[n]

t′1[1] t′1[2] . . . t′1[n]
t′2[1] t′2[2] . . . t′2[n]

...
t′k[1] t′k[2] . . . t′k[n]

φ−→

φ(t1)
φ(t2)

...
φ(tk)


k∑
i=1

φ(ti)
≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′k)


k∑
i=1

φ(t′i)

Figure 1: Inequality establishing F = 〈f1, . . . , fk〉 as a multimorphism of cost function φ (see
Definition 4).

Note that in the special case of relations this notion of expressibility corre-
sponds to the standard notion of expressibility using conjunction and existential
quantification (primitive positive formulas) [5]. Note that the notion of express-
ibility has been a major tool in the complexity analysis of a wide variety of
Boolean constraint satisfaction problems carried out by Creignou et al. [14],
where it was referred to as implementation.

We denote by 〈Γ〉 the expressive power of Γ, which is the set of all cost
functions expressible by Γ.

It was shown in [9] that the expressive power of a set of cost functions
is characterised by certain algebraic properties of those cost functions called
fractional polymorphisms. For the results of this paper, we will only need a
certain subset of these algebraic properties, called multimorphisms [11]. These
are defined in Definition 4 below (see also Figure 1).

The i-th component of a tuple t will be denoted by t[i]. Note that
any operation on a set D can be extended to tuples over the set D in a
standard way, as follows. For any function f : Dk → D, and any col-
lection of tuples t1, . . . , tk ∈ Dn, define f(t1, . . . , tk) ∈ Dn to be the tuple
〈f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])〉.

Definition 4 ([11]). Let F : Dk → Dk be the function whose k-tuple of output
values is given by the tuple of functions F = 〈f1, . . . , fk〉, where each fi : Dk →
D.

For any n-ary cost function φ, we say that F is a k-ary multimorphism of φ
if, for all t1, . . . , tk ∈ Dn,

k∑
i=1

φ(ti) ≥
k∑
i=1

φ(fi(t1, . . . , tk)).

For any set of cost functions, Γ, we will say that F is a multimorphism of Γ if
F is a multimorphism of every cost function in Γ. The set of all multimorphisms

6

of Γ will be denoted Mul(Γ).
Note that multimorphisms are preserved under expressibility. In other

words, if F ∈ Mul(Γ), and φ ∈ 〈Γ〉, then F ∈ Mul({φ}) [9, 11]. This has two
important corollaries. First, if 〈Γ1〉 = 〈Γ2〉, then Mul(Γ1) = Mul(Γ2). Second, if
there exists F ∈ Mul(Γ) such that F 6∈ Mul({φ}), then φ is not expressible over
Γ, that is, φ 6∈ 〈Γ〉.

2.2. Lattices and submodularity
Recall that L is a lattice if L is a partially ordered set in which every pair

of elements (a, b) has a unique supremum and a unique infimum. For a finite
lattice L and a pair of elements (a, b), we will denote the unique supremum of
a and b by a ∨ b, and the unique infimum of a and b by a ∧ b.

For any finite lattice-ordered set D, a cost function φ : Dn → R is called
submodular if for every u, v ∈ Dn, φ(u ∧ v) + φ(u ∨ v) ≤ φ(u) + φ(v) where
both ∧ and ∨ are applied coordinate-wise on tuples u and v [40]. This standard
definition can be reformulated very simply in terms of multimorphisms: φ is
submodular if 〈∧,∨〉 ∈ Mul({φ}).

Using results from [11] and [50], it can be shown that any submodular cost
function φ can be expressed as the sum of a finite-valued submodular cost func-
tion φfin, and a submodular decomposable (that is, equal to the sum of their
binary projections) [30], and hence expressible using only binary submodular
relations. Therefore, when considering which cost functions are expressible by
binary submodular cost functions, we can restrict our attention to finite-valued
cost functions without any loss of generality.

Next we define some particular families of submodular cost functions, first
described in [43], which will turn out to play a central role in our analysis.

Definition 5. Let L be a lattice. We define the following cost functions on L:

• For any set A of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same least upper bound,∨
A, the following cost function is called an upper fan:

φA(x) =


−2 if x ≥

∨
A,

−1 if x 6≥
∨
A, but x ≥ ai for some i,

0 otherwise.

• For any set B of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same greatest lower
bound,

∧
B, the following cost function is called a lower fan:

φB(x) =


−2 if x ≤

∧
B,

−1 if x 6≤
∧
B, but x ≤ ai for some i,

0 otherwise.

7

We call a cost function a fan if it is either an upper fan or a lower fan. Note
that our definition of fans is slightly more general than the definition in [43].
In particular, we allow the set A to be empty, in which case the corresponding
upper fan φA is a constant function. It is not hard to show that all fans are
submodular [43].

2.3. Boolean cost functions and polynomials
In this paper we will focus on problems over Boolean domains, that is, where

D = {0, 1}.
Any cost function of arity n can be represented as a table of values of size

Dn. Moreover, a finite-valued cost function φ : Dn → R on a Boolean domain
D = {0, 1} can also be represented as a unique polynomial in n (Boolean)
variables with coefficients from R (such functions are sometimes called pseudo-
Boolean functions [4]). Hence, in what follows, we will often refer to a finite-
valued cost function on a Boolean domain and its corresponding polynomial
interchangeably.

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [4]). For example, the second-order derivative
of a polynomial p, with respect to the first two indices, denoted δ1,2(x), is
defined as p(1, 1,x) − p(1, 0,x) − p(0, 1,x) + p(0, 0,x). Derivatives for other
pairs of indices are defined analogously. It was shown in [41] that a polynomial
p(x1, . . . , xn) over Boolean variables x1, . . . , xn represents a submodular cost
function if, and only if, its second-order derivatives δi,j(x) are non-positive for
all 1 ≤ i < j ≤ n and all x ∈ Dn−2. An immediate corollary is that a quadratic
polynomial represents a submodular cost function if, and only if, the coefficients
of all quadratic terms are non-positive.

Note that a cost function is called supermodular if all its second-order deriva-
tives are non-negative. Clearly, f is submodular if, and only if, −f is supermod-
ular, so it is straightforward to translate results about supermodular functions,
such as those given in [8] and [43], into similar results for submodular func-
tions, and we will use this observation several times below. Cost functions that
are both submodular and supermodular (in other words, where all second-order
derivatives are equal to zero) are called modular, and polynomials corresponding
to modular cost functions are linear [4].

Example 6. For any set of indices I = {i1, . . . , im} ⊆ {1, . . . , n} we can define
a cost function φI in n variables as follows:

φI(x1, . . . , xn) =

{
−1 if (∀i ∈ I)(xi = 1),

0 otherwise.

The polynomial representation of φI is p(x1, . . . , xn) = −xi1 . . . xim , which is
a polynomial of degree m. Note that it is straightforward to verify that φI is
submodular by checking the second-order derivatives of p.

8

However, the function φI is also expressible by binary submodular polyno-
mials, using a single extra variable, y, as follows:

φI(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈I

(1− xi)}.

We remark that this is a special case of the expressibility result for negative-
positive polynomials first obtained in [45].

Note that when D = {0, 1}, the set Dn with the product ordering is isomor-
phic to the lattice of all subsets of an n-element set ordered by inclusion. Hence,
a cost function on a Boolean domain can be viewed as a cost function defined
on a lattice of subsets, and we can apply Definition 5 to identify certain Boolean
functions as upper fans or lower fans, as the following example indicates.

Example 7. Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that
for all i 6= j we have Ii 6⊆ Ij and Ii ∪ Ij =

⋃
A.

By Definition 5, the corresponding upper fan function φA has the following
polynomial representation:

p(x1, . . . , xn) = (r − 2)
∏
i∈

S
A

xi −
∏
i∈I1

xi − · · · −
∏
i∈Ir

xi.

We remark that any permutation of a set D gives rise to an automorphism
of cost functions over D. In particular, for any cost function f on a Boolean
domain D, the dual of f is the corresponding cost function which results from
exchanging the values 0 and 1 for all variables. In other words, if p is the
polynomial representation of f , then the dual of f is the cost function whose
polynomial representation is obtained from p by replacing all variables x with
1−x. Observe that, due to symmetry, taking the dual preserves submodularity
and expressibility by binary submodular cost functions.

It is not hard to see that upper fans are duals of lower fans and vice versa.

3. Results

In this section, we present our main results. First, we show that fans of
all arities are expressible by binary submodular cost functions. Next, we char-
acterise the multimorphisms of binary submodular cost functions. Combining
these results, we then characterise precisely which 4-ary submodular cost func-
tions are expressible by binary submodular cost functions. More importantly,
we show that some submodular cost functions are not expressible by binary sub-
modular cost functions, and therefore cannot be minimised using the Min-Cut
problem via an expressibility reduction. Finally, we consider the complexity
of recognising which cost functions are expressible by binary submodular cost
functions.

9

3.1. Expressibility of upper fans and lower fans
We denote by Γsub,n the set of all finite-valued submodular cost functions of

arity at most n on a Boolean domain D, and we set Γsub =
⋃
n Γsub,n.

We denote by Γfans,n the set of all fans of arity at most n on a Boolean
domain D, and we set Γfans =

⋃
n Γfans,n.

Our next result shows that Γfans ⊆ 〈Γsub,2〉.

Theorem 8. Any fan on a Boolean domain D is expressible by binary submod-
ular functions on D using at most 1 + bm/2c extra variables, where m is the
degree of its polynomial representation.

Proof. Since upper fans are dual to lower fans, it is sufficient to establish the
result for upper fans only.

Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that for all i 6= j
we have Ii 6⊆ Ij and Ii∪Ij =

⋃
A, and let φA be the corresponding upper fan, as

specified by Definition 5. The polynomial representation of φA, p(x1, . . . , xn),
is given in Example 7.

The degree of p is equal to the total number of variables occurring in it,
which will be denoted m. Note that m = |

⋃
A|.

If r = 0, then φA is constant, so the result holds trivially. If r = 1, we
have A = {I}, where I = {i1, . . . , im} and the polynomial representation of φA
is −2xi1xi2 · · ·xim . In this case, it was shown in Example 6 that φA can be
expressed by quadratic functions using one extra variable, as follows:

−2xi1xi2 · · ·xim = min
y∈{0,1}

{2y((m− 1)−
∑
i∈I

xi)}.

For the case when r > 1, we first note that any i ∈
⋃
A must belong to all

the elements of A except for at most one (otherwise there would be two elements
of A, say Ii and Ij , such that Ii ∪ Ij 6=

⋃
A, which contradicts the choice of A).

We will say that two elements of
⋃
A are equivalent if they occur in exactly

the same elements of A; that is, i1, i2 ∈
⋃
A are equivalent if i1 ∈ Ij ⇔ i2 ∈ Ij

for all j ∈ {i, . . . , r}. Equivalent elements i1 and i2 of
⋃
A can be merged by

replacing them with a single new element. In the polynomial representation
of φA this corresponds to replacing the variables xi1 and xi2 with a single new
variable, z, corresponding to their product. Note that the number of equivalence
classes of size two or greater is at most bm/2c.

After completing all such merging, we obtain a new set A′ = {I ′1, . . . , I ′r′}
with the property that |I ′i| = m′ − 1 for every i, where m′ = |

⋃
A′| is the size

of the common join of any I ′i, I
′
j ∈ A′. This set has a corresponding new upper

fan, φA′ , over the new merged variables.
To complete the proof we will construct a simple gadget for expressing φA′ ,

and show how to use this to obtain a gadget for expressing the original upper
fan φA.

Note that the sets I ′i are subsets of
⋃
A′, each of size m′ − 1. Any such

subset is uniquely determined by its single missing element. We denote by K
the set of elements occurring in all sets I ′i and by L the set of elements which

10

are missing from one of these subsets. Clearly, |K| + |L| = m′. We claim that
the following polynomial is a gadget for expressing φ′A:

p′(z1, . . . , zm′) = min
y∈{0,1}

{y(2(m′ − 1)− |L| −
∑
i∈L

zi − 2
∑
i∈K

zi)}.

To establish this claim, we will compute the value of p′, for each possible as-
signment to the variables z1, . . . , zm′ . Denote by k0 the number of 0s assigned
to variables in K, and by l0 the number of 0s assigned to variables in L. Then
we have:

p′(z1, . . . , zm′) = min
y∈{0,1}

y(2m′ − 2− |L| −
∑
i∈L

zi − 2
∑
i∈K

zi)

= min
y∈{0,1}

y(2m′ − 2− |L| − (|L| − l0)− 2(m′ − |L| − k0))

= min
y∈{0,1}

y(2m′ − 2− 2|L|+ l0 − 2m′ + 2|L|+ 2k0)

= min
y∈{0,1}

y(−2 + 2k0 + l0).

Hence if k0 = l0 = 0, then p′ takes the value -2. If k0 = 0 and l0 = 1, then p′

takes the value -1. In all other cases (that is, k0 > 0 or l0 > 1), p′ takes the value
0. By Definition 5, this means that p′ is the (unique) polynomial representation
for φA′ . Note that p′ uses just one extra variable, y.

Finally, we show how to obtain a gadget for the original upper fan φA, from
the polynomial p′. Each variable in p′ represents an equivalence class of ele-
ments of

⋃
A, so it can be replaced by a term consisting of the product of the

variables in this equivalence class. In this way we obtain a new polynomial over
the original variables containing linear and negative quadratic terms together
with negative higher order terms (cubic or above) corresponding to every equiv-
alence class with 2 or more elements. However, each of these higher order terms
can itself be expressed by a quadratic submodular polynomial, by introducing a
single extra variable, as shown in the case when r = 1, above. Therefore, com-
bining each of these polynomials, the total number of new variables introduced
is at most 1 + bm/2c.

Many of the earlier expressibility results mentioned in Section 1.1 can be
obtained as simple corollaries of Theorem 8, as the following examples indicate.

Example 9. Any negative monomial −x1x2 · · ·xm is a positive multiple of an
upper fan, and the positive linear monomial x1 is equal to −(1−x1) + 1, so it is
a positive multiple of a lower fan, plus a constant. Hence all negative-positive
submodular polynomials are contained in Cone(Γfans), and by Theorem 8, they
are expressible by binary submodular polynomials, as originally shown in [45].

Example 10. A polynomial is called homogeneous [2] or polar [13] if it can be
expressed as a sum of terms of the form ax1x2 . . . xk or a(1−x1)(1−x2) . . . (1−
xk) with positive coefficients a, together with a constant term. It was observed

11

in [2] that all polar polynomials are supermodular, so all negated polar polyno-
mials are submodular. As every negated term −ax1x2 . . . xk, is a positive mul-
tiple of an upper fan, and every negated term −a(1 − x1)(1 − x2) . . . (1 − xk),
is a positive multiple of a lower fan, by Theorem 8, all cost functions which
are the negations of polar polynomials are expressible by binary submodular
polynomials, and solvable by reduction to Min-Cut, as originally shown in [2].

Example 11. Any cubic submodular polynomial can be expressed as a positive
sum of upper fans [43]. Hence, by Theorem 8, all cubic submodular polynomials
are expressible by binary submodular polynomials, as originally shown in [2].

Example 12. A Boolean cost function φ is called 2-monotone [14] if there
exist two sets R,S ⊆ {1, . . . , n} such that φ(x) = 0 if R ⊆ x or x ⊆ S and
φ(x) = 1 otherwise (where R ⊆ x means ∀i ∈ R, x[i] = 1 and x ⊆ S means
∀i 6∈ S, x[i] = 0). It was shown in [8, Proposition 2.9] that a 2-valued Boolean
cost function is 2-monotone if, and only if, it is submodular.

For any 2-monotone cost function defined by the sets of indices R and S, it
is straightforward to check that φ = miny∈{0,1} y(1 +φA/2) + (1− y)(1 +φB/2)
where φA is the upper fan defined by A = {R} and φB is the lower fan defined
by B = {S}. Note that the function yφA is an upper fan, and the function
(1 − y)φB is a lower fan. Hence, by Theorem 8, all 2-monotone polynomials
are expressible by binary submodular polynomials, and solvable by reduction to
Min-Cut, as originally shown in [14].

However, Theorem 8 also provides many new functions of all arities which have
not previously been shown to be expressible by binary submodular functions,
as the following example indicates.

Example 13. The function 2x1x2x3x4−x1x2x3−x1x2x4−x1x3x4−x2x3x4 be-
longs to Γfans,4, but does not belong to any class of submodular functions which
has previously been shown to be expressible by binary submodular functions.
In particular, it does not belong to the class Γnew identified in [54, 55].

3.2. Characterisation of Mul(Γsub,2)
Since we have seen that a cost function can only be expressed by a given

set of cost functions if it has the same multimorphisms, we now investigate the
multimorphisms of Γsub,2.

A function F : Dk → Dk is called conservative if, for each possible choice
of x1, . . . , xk, the tuple F(x1, . . . , xk) is a permutation of x1, . . . , xk (though
different inputs may be permuted in different ways).

For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D, we denote
by H(x,y) the Hamming distance between x and y, which is the number of
positions at which the corresponding values are different.

Theorem 14. For any Boolean domain D, and any F : Dk → Dk, the follow-
ing are equivalent:

12

1. F ∈ Mul(Γsub,2).
2. F ∈ Mul(Γ∞sub,2), where Γ∞sub,2 denotes the set of binary submodular cost

functions taking finite or infinite values.
3. F is conservative and Hamming distance non-increasing.

Proof. First we consider unary cost functions. All unary cost functions on
a Boolean domain are easily shown to be submodular. Also, any conservative
function F : Dk → Dk is clearly a multimorphism of any unary cost function,
since it merely permutes its arguments.

For any d ∈ D, define the unary cost function µd as follows:

µd(x) =

{
1 if x = d,

0 if x 6= d.

Let F : Dk → Dk be a non-conservative function. In that case, there are
u1, . . . , uk, v1, . . . , vk ∈ D such that F(u1, . . . , uk) = 〈v1, . . . , vk〉 and there is i
such that vi occurs more often in 〈v1, . . . , vk〉 than in 〈u1, . . . , uk〉. It is simple
to check that F is not a multimorphism of the unary cost function µvi . Hence
any F ∈ Mul(Γsub,2) must be conservative.

By the same argument, any F ∈ Mul(Γ∞sub,2) must be conservative.
For any c ∈ R, define the binary cost functions λc and χc as follows:

λc(x, y) =

{
c if x = 0 and y = 1,
0 otherwise.

χc(x, y) =

{
c if x 6= y,
0 otherwise.

Note that χc(x, y) = λc(x, y) + λc(y, x).
By a simple case analysis, it is straightforward to check that any binary

submodular cost function on a Boolean domain can be expressed by binary
functions of the form λc, with c > 0 together with unary cost functions of the
form µd.

We observe that when c <∞, λc(x, y) = (χc(x, y) + cµ0(x) + cµ1(y)− c)/2,
so λc can be expressed by functions of the form χc together with unary cost
functions of the form µd. Hence, since expressibility preserves multimorphisms,
Mul(Γsub,2) = Mul({χc | c ∈ R, c > 0}) ∩Mul({µd | d ∈ D}).

Now let u,v ∈ Dk, and consider the multimorphism inequality, as given in
Definition 4, for the case where ti = 〈u[i],v[i]〉, for i = 1, . . . , k. By Definition 4,
for any c > 0, F is a multimorphism of χc if, and only if, the following holds for
all choices of u and v:

H(u,v) ≥ H(F(u),F(v)).

This proves that the multimorphisms of Γsub,2 are precisely the conservative
functions which are also Hamming distance non-increasing.

Since Γsub,2 ⊆ Γ∞sub,2, we know that Mul(Γ∞sub,2) ⊆ Mul(Γsub,2). Therefore, in
order to complete the proof it is enough to show that every conservative and
Hamming distance non-increasing function F is a multimorphism of λ∞.

13

For any u,v ∈ {0, 1}k, the Hamming distance H(u,v) is equal to the sym-
metric difference of the sets of positions where u and v take the value 1. Hence,
for tuples u and v containing some fixed number of 1s, the minimum Hamming
distance occurs precisely when one of these sets of positions is contained in the
other.

Now consider again the multimorphism inequality, as given in Definition 4,
for the case where ti = 〈u[i],v[i]〉, for i = 1, . . . , k. If there is any position i
where u[i] = 0 and v[i] = 1, then λ∞(ti) =∞, so the multimorphism inequality
is trivially satisfied. If there is no such position, then the set of positions where
v takes the value 1 is contained in the set of positions where u takes the value
1, so H(u,v) takes its minimum possible value over all reorderings of u and v.
Hence if F is conservative, then H(u,v) ≤ H(F(u),F(v)), and if F is Hamming
distance non-increasing, we have H(u,v) = H(F(u),F(v)). But this implies
that the set of positions where F(v) takes the value 1 is contained in the set of
positions where F(u) takes the value 1. By definition of λ∞, this implies that
both sides of the multimorphism inequality are zero, so F is a multimorphism
of λ∞.

3.3. Non-expressibility of Γsub over Γsub,2

Theorem 14 characterises the multimorphisms of Γsub,2, and hence enables
us to systematically search (for example, using Mathematica) for multimor-
phisms of Γsub,2 which are not multimorphisms of Γsub. In this way, we have
identified the function Fsep : {0, 1}5 → {0, 1}5 defined in Figure 2. We will show
in this section that this function can be used to characterise all the submodular
functions of arity 4 which are expressible by binary submodular functions on a
Boolean domain. Using this result, we show that some submodular functions
are not expressible in this way.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fsep(x) 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 2: Definition of Fsep.

Proposition 15. Fsep is conservative and Hamming distance non-increasing.

Proof. Straightforward exhaustive verification.

14

Theorem 16. For any function f ∈ Γsub,4 the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. Fsep ∈ Mul({f}).
3. f ∈ Cone(Γfans,4).

Proof. First, we show (1) ⇒ (2). Proposition 15 and Theorem 14 imply
that Fsep is a multimorphism of any binary submodular function on a Boolean
domain. Hence having Fsep as a multimorphism is a necessary condition for
any submodular cost function on a Boolean domain to be expressible by binary
submodular cost functions.

Next, we show (2) ⇒ (3). Consider the complete set of inequalities on the
values of a 4-ary cost function resulting from having the multimorphism Fsep,
as specified in Definition 4. A routine calculation in Mathematica shows that,
out of 165 such inequalities, there are 4635 which are distinct. After removing
from these all those which are equal to the sum of two others, we obtain a
system of just 30 inequalities which must be satisfied by any 4-ary submodular
cost function which has the multimorphism Fsep. Using the double description
method [38], we obtain from these 30 inequalities an equivalent set of 31 extreme
rays which generate the same polyhedral cone of cost functions. These extreme
rays all correspond to fans or sums of fans.

Finally, we show (3) ⇒ (1). By Theorem 8, all fans are expressible over
Γsub,2. It follows that any cost function in this cone of functions is also express-
ible over Γsub,2.

Next we show that there are indeed 4-ary submodular cost functions which
do not have Fsep as a multimorphism and therefore are not expressible by binary
submodular cost functions.

Definition 17. For any Boolean tuple t of arity 4 containing exactly 2 ones
and 2 zeros, we define the 4-ary cost function θt as follows:

θt(x1, x2, x3, x4) =


−1 if (x1, x2, x3, x4) = (1, 1, 1, 1) or (0, 0, 0, 0),

1 if (x1, x2, x3, x4) = t,

0 otherwise.

Cost functions of the form θt were introduced in [43], where they are called
quasi-indecomposable functions. We denote by Γqin the set of all (six) quasi-
indecomposable cost functions of arity 4. It is straightforward to check that
they are submodular, but the next result shows that they are not expressible
by binary submodular functions.

Proposition 18. For all θ ∈ Γqin, Fsep 6∈ Mul({θ}).

Proof. The table in Figure 3 shows that Fsep 6∈ Mul({θ(1,1,0,0)}). Permuting
the columns appropriately establishes the result for all other θ ∈ Γqin.

Corollary 19. For all θ ∈ Γqin, θ 6∈ 〈Γsub,2〉.

15

Fsep

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 1
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1

θ(1,1,0,0)−→

0
0
0
0
0


∑

= 0

θ(1,1,0,0)−→

0
0
1
0
0


∑

= 1

Figure 3: Fsep 6∈ Mul({θ(1,1,0,0)}).

Proof. By Theorem 16 and Proposition 18.

Are there any other 4-ary submodular cost functions which are not ex-
pressible over Γsub,2? Promislow and Young characterised the extreme rays
of the cone of all 4-ary submodular cost functions and established that Γsub,4 =
Cone(Γfans,4 ∪ Γqin) – see Theorem 5.2 of [43]. Hence the results in this section
characterise the expressibility of all 4-ary submodular functions.

Promislow and Young conjectured that for k 6= 4, all extreme rays of Γsub,k

are fans [43]; that is, they conjectured that for all k 6= 4, Γsub,k = Cone(Γfans,k).
However, if this conjecture were true it would imply that all submodular func-
tions of arity 5 and above were expressible by binary submodular functions, by
Theorem 8. This is clearly not the case, because inexpressible cost functions
such as those identified in Corollary 19 can be extended to larger arities (for
instance, by adding dummy arguments) and remain inexpressible. Hence our
results refute this conjecture for all k ≥ 5. However, we suggest that this con-
jecture can be refined to a similar statement concerning just those submodular
functions which are expressible by binary submodular functions, as follows:

Conjecture 20. For all k, Γsub,k ∩ 〈Γsub,2〉 = Cone(Γfans,k).

This conjecture was previously known to be true for k ≤ 3 [43]; Theorem 8
shows that Cone(Γfans,k) ⊆ Γsub,k ∩ 〈Γsub,2〉 for all k, and Theorem 16 confirms
that equality holds for k = 4.

3.4. The complexity of recognising expressible functions
Finally, we show that we can test efficiently whether a submodular polyno-

mial of arity 4 is expressible by binary submodular polynomials.

Definition 21. Let p(x1, x2, x3, x4) be the polynomial representation of a 4-ary
submodular cost function f . We denote by aI the coefficient of the term

∏
i∈I xi.

We say that f satisfies condition Sep if for each {i, j}, {k, `} ⊂ {1, 2, 3, 4}, with
i, j, k, ` distinct, we have a{i,j} + a{k,`} + a{i,j,k} + a{i,j,`} ≤ 0.

16

Theorem 22. For any f ∈ Γsub,4, the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. f satisfies condition Sep.

Proof. As in the proof of Theorem 16, we construct a set of 30 inequalities cor-
responding to the multimorphism Fsep. Each of these inequalities on the values
of a cost function can be translated into inequalities on the coefficients of the
corresponding polynomial representation by a straightforward linear transfor-
mation. This calculation shows that 24 of the resulting inequalities impose the
condition of submodularity, and the remaining 6 impose condition Sep. Hence
a submodular cost function of arity 4 has the multimorphism Fsep if, and only
if, its polynomial representation satisfies condition Sep. The result then follows
from Theorem 16. 2

Using Theorem 22, we can test whether optimisation problems given as a
sum of submodular functions of arity 4 can be reduced to the Min-Cut problem
via the expressibility reduction. These problems arise in Computer Vision and
in Valued Constraint Satisfaction Problems.

Furthermore, by Theorem 8, the number of extra variables needed in this
reduction is rather small compared to the theoretical upper bound given in [9].

It is known that the problem of recognising whether an arbitrary degree-4
polynomial is submodular is co-NP-complete [13, 19]. One might hope that the
more restricted class of submodular polynomials expressible by binary submod-
ular polynomials would be recognisable in polynomial time. At the moment, the
complexity of the recognition problem for submodular polynomials of degree 4
that are expressible by binary submodular polynomials is open.

4. Applications

In this section we discuss the application of our results to two specific appli-
cation areas: artificial intelligence and computer vision.

As indicated in the previous Section, in general testing for submodularity
is co-NP-complete even for polynomials of degree 4 [19]. However, for many
optimisation problems arising in practice, testing for submodularity is not an
issue because the function to be minimised is presented as a sum of functions
of bounded arity. In such cases, each of the bounded-arity sub-functions can be
tested for submodularity in constant time. For example, in valued constraint
satisfaction problems and energy minimisation problems in computer vision,
each instance is specified as a sum of bounded-arity functions. The recognition
of submodularity only becomes co-NP-complete when a function is presented
without a fixed decomposition into sub-functions of this kind.

4.1. Artificial Intelligence
First we formally define the valued constraint satisfaction problem [3, 47, 48].

17

Definition 23. Let Γ be a set of cost functions over a set D. An instance P
of VCSP(Γ) is a triple 〈V,D, C〉, where V is a finite set of variables, which are
to be assigned values from the set D, and C is a set of valued constraints. Each
c ∈ C is a pair c = 〈σ, φ〉, where σ is a tuple of variables of length |σ|, called the
scope of c, and φ : D|σ| → R is a cost function from Γ. An assignment for the
instance P is a mapping s from V to D. The cost of an assignment s is defined
as follows:

CostP(s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

Now we show how our results can be applied in this framework.

Corollary 24 (of Theorem 8). VCSP(Γfans) is solvable in O((n+k)3) time,
where n is the number of variables and k is the number of constraints of arity
3 or higher.

Moreover, as shown above, VCSP(Γfans,4) is the maximal class in
VCSP(Γsub,4) which can be solved by reduction to Min-Cut in this way.

Cohen et al. [9] showed that if a cost function φ of arity k is expressible
by some set of cost functions over Γ, then φ is expressible by Γ using at most
22k

extra variables. Our results show that only O(k) extra variables are needed
to express any cost function from Γfans,k by Γsub,2. Therefore, an instance of
VCSP(Γfans) needs only linearly many (in the number of constraints of arity 3
or higher) extra variables, where the linear factor is proportional to the max-
imum arity of the constraints. In particular, an instance of VCSP(Γsub,4) is
either reducible to Min-Cut with only linearly many extra variables,3 or is not
reducible in this way at all.

4.2. Computer Vision
In computer vision, many problems can be naturally formulated in terms of

energy minimisation where the energy function, over a set of variables {xv}v∈V ,
has the following form:

E(x) = c0 +
∑
v∈V

cv(xv) +
∑

〈u,v〉∈V×V

cuv(xu, xv) + . . .

Set V usually corresponds to pixels, xv denotes the label of of pixel v ∈ V which
must belong to a finite domain D. The constant term of the energy is c0, the
unary terms cv(·) encode data penalty functions, the pairwise terms cuv(·, ·) are
interaction potentials, and so on. Functions of arity 3 and above are also called

3Optimal (in the number of extra variables) gadgets for cost functions from Γfans,4 are
given in [56].

18

higher-order cliques. This energy is often derived in the context of Markov
Random Fields (also known as Conditional Random Fields) [1, 20]: a minimum
of E corresponds to a maximum a posteriori (MAP) labelling x [36, 52].

It is straightforward to verify that this formulation is equivalent to the
VCSP. See [53] for a survey on the connection between computer vision
and constraint satisfaction problems. Therefore, for energy minimisation over
Boolean variables we get the following:

Corollary 25 (of Theorem 8). Energy minimisation, where each term of the
energy function belongs to Γfans, is solvable in O((n+ k)3) time, where where n
is the number of variables (pixels) and k is the number of higher-order (ternary
and above) terms in the energy function.

Note that any variable over a non-Boolean domain D = {0, 1, . . . , d− 1} of
size d can be encoded by d− 1 Boolean variables. One such encoding is the fol-
lowing: define en(i) = 0d−i−11i. Note that en(max(a, b)) = max(en(a), en(b))
and en(min(a, b)) = min(en(a), en(b)), so this encoding preserves submodular-
ity. To convert a non-Boolean energy minimisation problem into a Boolean
problem we replace each variable with d− 1 new Boolean variables and impose
a (submodular) relation on these new variables which ensures that they only
take values in the range of the encoding function en. Other forms of encoding,
which are suitable for certain subclasses of submodular functions, and require
fewer Boolean variables, have also been studied [32, 44].

Acknowledgements

The authors would like to thank Martin Cooper for fruitful discussions on
submodular functions and, in particular, for help with the proof of Theorem 8.
Stanislav Živný would like to thank Philip Torr and Tomáš Werner for useful
discussions on the connection between constraint satisfaction problems and com-
puter vision. Stanislav Živný was supported by EPSRC grant EP/F01161X/1.

References

[1] J. Besag, On the Statistical Analysis of Dirty Pictures, Journal of the Royal
Statistical Society, Series B 48 (3) (1986) 259–302.

[2] A. Billionet, M. Minoux, Maximizing a supermodular pseudo-Boolean func-
tion: a polynomial algorithm for cubic functions, Discrete Applied Mathe-
matics 12 (1) (1985) 1–11.

[3] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, G. Verfail-
lie, Semiring-based CSPs and Valued CSPs: Frameworks, Properties, and
Comparison, Constraints 4 (3) (1999) 199–240.

[4] E. Boros, P. L. Hammer, Pseudo-Boolean optimization, Discrete Applied
Mathematics 123 (1-3) (2002) 155–225.

19

[5] A. Bulatov, A. Krokhin, P. Jeavons, Classifying the Complexity of Con-
straints using Finite Algebras, SIAM Journal on Computing 34 (3) (2005)
720–742.

[6] R. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge Properties in Op-
timization, Discrete Applied Mathematics 70 (2) (1996) 95–161.

[7] D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, A Maximal Tractable Class
of Soft Constraints, Journal of Artificial Intelligence Research 22 (2004)
1–22.

[8] D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, Supermodular Functions
and the Complexity of MAX-CSP, Discrete Applied Mathematics 149 (1-3)
(2005) 53–72.

[9] D. A. Cohen, M. C. Cooper, P. G. Jeavons, An Algebraic Characterisation
of Complexity for Valued Constraints, in: Proceedings of the 12th Inter-
national Conference on Principles and Practice of Contraint Programming
(CP’06), vol. 4204 of Lecture Notes in Computer Science, Springer, 2006.

[10] D. A. Cohen, M. C. Cooper, P. G. Jeavons, Generalising submodularity and
Horn clauses: Tractable optimization problems defined by tournament pair
multimorphisms, Theoretical Computer Science 401 (1-3) (2008) 36–51.

[11] D. A. Cohen, M. C. Cooper, P. G. Jeavons, A. A. Krokhin, The Complexity
of Soft Constraint Satisfaction, Artificial Intelligence 170 (11) (2006) 983–
1016.

[12] M. C. Cooper, Minimization of Locally Defined Submodular Functions by
Optimal Soft Arc Consistency, Constraints 13 (4) (2008) 437–458.

[13] Y. Crama, Recognition problems for special classes of polynomials in 0-1
variables, Mathematical Programming 44 (1-3) (1989) 139–155.

[14] N. Creignou, S. Khanna, M. Sudan, Complexity Classification of Boolean
Constraint Satisfaction Problems, vol. 7 of SIAM Monographs on Discrete
Mathematics and Applications, SIAM, 2001.

[15] V. Deineko, P. Jonsson, M. Klasson, A. Krokhin, The approximability of
Max CSP with fixed-value constraints, Journal of the ACM 55 (4).

[16] U. Feige, V. S. Mirrokni, J. Vondrák, Maximizing non-monotone submod-
ular functions, in: Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), IEEE Computer Society,
2007.

[17] D. Freedman, P. Drineas, Energy Minimization via Graph Cuts: Settling
What is Possible, in: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), IEEE Computer Society, 2005.

20

[18] S. Fujishige, Submodular Functions and Optimization, vol. 58 of Annals of
Discrete Mathematics, 2nd ed., North-Holland, Amsterdam, 2005.

[19] G. Gallo, B. Simeone, On the supermodular knapsack problem, Mathemat-
ical Programming 45 (1-3) (1988) 295–309.

[20] S. Geman, D. Geman, Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis
and Machine Intelligence 6 (6) (1984) 721–741.

[21] M. Grötschel, L. Lovasz, A. Schrijver, The ellipsoid method and its con-
sequences in combinatorial optimization, Combinatorica 1 (2) (1981) 169–
198.

[22] M. Grötschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combi-
natorial Optimization, vol. 2 of Algorithms and Combinatorics, Springer,
1988.

[23] G. Gutin, A. Rafiey, A. Yeo, M. Tso, Level of Repair Analysis and Minimum
Cost Homomorphisms of Graphs, Discrete Applied Mathematics 154 (6)
(2006) 881–889.

[24] P. L. Hammer, Some network flow problems solved with pseudo-Boolean
programming, Operations Research 13 (3) (1965) 388–399.

[25] S. Iwata, A fully combinatorial algorithm for submodular function mini-
mization, Journal of Combinatorial Theory, Series B 84 (2) (2002) 203–212.

[26] S. Iwata, A faster scaling algorithm for minimizing submodular functions,
SIAM Journal on Computing 32 (4) (2003) 833–840.

[27] S. Iwata, Submodular Function Minimization, Mathematical Programming
112 (1) (2008) 45–64.

[28] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial strongly polynomial
algorithm for minimizing submodular functions, Journal of the ACM 48 (4)
(2001) 761–777.

[29] S. Iwata, J. B. Orlin, A Simple Combinatorial Algorithm for Submodular
Function Minimization, in: Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’09), 2009.

[30] P. Jeavons, D. Cohen, M. C. Cooper, Constraints, Consistency and Closure,
Artificial Intelligence 101 (1–2) (1998) 251–265.

[31] P. Jonsson, M. Klasson, A. Krokhin, The Approximability of Three-valued
MAX CSP, SIAM Journal on Computing 35 (6) (2006) 1329–1349.

[32] P. Kohli, L. Ladický, P. Torr, Robust Higher Order Potentials for Enforcing
Label Consistency, International Journal of Computer Vision 82 (3) (2009)
302–324.

21

[33] V. Kolmogorov, R. Zabih, What Energy Functions Can Be Minimized via
Graph Cuts?, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 26 (2) (2004) 147–159.

[34] B. Korte, J. Vygen, Combinatorial Optimization, vol. 21 of Algorithms and
Combinatorics, 4th ed., Springer, 2007.

[35] A. Krokhin, B. Larose, Maximizing Supermodular Functions on Product
Lattices, with Application to Maximum Constraint Satisfaction, SIAM
Journal on Discrete Mathematics 22 (1) (2008) 312–328.

[36] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.

[37] L. Lovász, Submodular Functions and Convexity, in: A. Bachem,
M. Grötschel, B. Korte (eds.), Mathematical Programming – The State
of the Art, Springer, Berlin, 1983.

[38] T. Motzkin, H. Raiffa, G. Thompson, R. Thrall, The double description
method, in: H. W. Kuhn, A. W. Tucker (eds.), Contributions to the Theory
of Games, vol. 2, Princeton University Press, 1953, pp. 51–73.

[39] H. Narayanan, Submodular Functions and Electrical Networks, North-
Holland, Amsterdam, 1997.

[40] G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, 1988.

[41] G. Nemhauser, L. Wolsey, M. Fisher, An Analysis of Approximations
for Maximizing Submodular Set Functions-I, Mathematical Programming
14 (1) (1978) 265–294.

[42] J. B. Orlin, A faster strongly polynomial time algorithm for submodular
function minimization., Mathematical Programming 118 (2) (2009) 237–
251.

[43] S. Promislow, V. Young, Supermodular Functions on Finite Lattices, Order
22 (4) (2005) 389–413.

[44] S. Ramalingam, P. Kohli, K. Alahari, P. Torr, Exact Inference in Multi-
label CRFs with Higher Order Cliques, in: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’08), IEEE
Computer Society, 2008.

[45] J. Rhys, A selection problem of shared fixed costs and network flows, Man-
agement Science 17 (3) (1970) 200–207.

[46] I. Rosenberg, Reduction of bivalent maximization to the quadratic case,
Cahier du Centre dEtudes de Recherche Oprationnelle 17 (1975) 71–74.

[47] F. Rossi, P. van Beek, T. Walsh (eds.), The Handbook of Constraint Pro-
gramming, Elsevier, 2006.

22

[48] T. Schiex, H. Fargier, G. Verfaillie, Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems, in: Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI’95), 1995.

[49] A. Schrijver, A Combinatorial Algorithm Minimizing Submodular Func-
tions in Strongly Polynomial Time, Journal of Combinatorial Theory, Series
B 80 (2) (2000) 346–355.

[50] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24
of Algorithms and Combinatorics, Springer, 2003.

[51] D. Topkis, Supermodularity and Complementarity, Princeton University
Press, 1998.

[52] M. J. Wainwright, M. I. Jordan, Graphical models, exponential families,
and variational inference, Foundations and Trends in Machine Learning
1 (1-2) (2008) 1–305.

[53] T. Werner, A Linear Programming Approach to Max-Sum Problem: A
Review, IEEE Transactions on Pattern Analysis and Machine Intelligence
29 (7) (2007) 1165–1179.

[54] B. Zalesky, Efficient Determination of Gibbs Estimators with Submodular
Energy Functions, arXiv:math/0304041v1 (February 2008).

[55] S. Živný, P. G. Jeavons, Classes of Submodular Constraints Expressible
by Graph Cuts, in: Proceedings of the 14th International Conference on
Principles and Practice of Constraint Programming (CP’08), vol. 5202 of
Lecture Notes in Computer Science, Springer, 2008.

[56] S. Živný, P. G. Jeavons, Which submodular functions are expressible using
binary submodular functions?, Research Report CS-RR-08-08, Computing
Laboratory, University of Oxford, Oxford, UK (June 2008).

23

