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Abstract. We investigate whether all Boolean submodular functions
can be decomposed into a sum of binary submodular functions over a
possibly larger set of variables. This question has been considered within
several different contexts in computer science, including computer vision,
artificial intelligence, and pseudo-Boolean optimisation. Using a connec-
tion between the expressive power of valued constraints and certain al-
gebraic properties of functions, we answer this question negatively.
Our results have several corollaries. First, we characterise precisely which
submodular polynomials of arity 4 can be expressed by binary submodu-
lar polynomials. Next, we identify a novel class of submodular functions
of arbitrary arities which can be expressed by binary submodular func-
tions, and therefore minimised efficiently using a so-called expressibility
reduction to the Min-Cut problem. More importantly, our results imply
limitations on this kind of reduction and establish for the first time that
it cannot be used in general to minimise arbitrary submodular functions.
Finally, we refute a conjecture of Promislow and Young on the structure
of the extreme rays of the cone of Boolean submodular functions.
Keywords: Decomposition of submodular functions, Min-Cut, Pseudo-
Boolean optimisation, Submodular function minimisation.

1 Introduction

A function f : 2V → R is called submodular if for all S, T ⊆ V ,

f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ).

Submodular functions are a key concept in operational research and combinato-
rial optimisation [27,26,33,32,14,21,17]. Examples include cut capacity functions,
matroid rank functions, and entropy functions. Submodular functions are often
considered to be a discrete analogue of convex functions [24].

Both minimising and maximising submodular functions, possibly under some
additional conditions, have been considered extensively in the literature. Sub-
modular function maximisation is easily shown to be NP-hard [32] since it gen-
eralises many standard NP-hard problems such as the maximum cut problem.
In contrast, the problem of minimising a submodular function (SFM) can be
solved efficiently with only polynomially many oracle calls, see [17]. The time
complexity of the fastest known general algorithm for SFM is O(n6 + n5L),
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where n is the number of variables and L is the time required to evaluate the
function [28].

The minimisation of submodular functions on sets is equivalent to the minimi-
sation of submodular functions on distributive lattices [32]. Krokhin and Larose
have also studied the more general problem of minimising submodular functions
on non-distributive lattices [22].

An important and well-studied sub-problem of SFM is the minimisation
of submodular functions of bounded arity (SFMb), also known as locally de-
fined submodular functions [8], or submodular functions with succinct represen-
tation [12]. In this scenario the submodular function to be minimised is defined
as the sum of a collection of functions which each depend only on a bounded
number of variables. Locally defined optimisation problems of this kind occur in
a wide variety of contexts:

– In the context of pseudo-Boolean optimisation, such problems involve the
minimisation of Boolean polynomials of bounded degree [2].

– In the context of artificial intelligence, they have been studied as valued
constraint satisfaction problems (VCSP) [31], also known as soft or weighted
constraint satisfaction problems.

– In the context of computer vision, such problems are often formulated as
Gibbs energy minimisation problems or Markov Random Fields (also known
as Conditional Random Fields) [23].

We will present our results primarily in the language of pseudo-Boolean opti-
misation. Hence an instance of SFMb with n variables will be represented as a
polynomial in n Boolean variables, of some fixed bounded degree.

However, the concept of submodularity is important in a wide variety of fields
within computer science, and our results have direct consequences for Constraint
Satisfaction Problems [10,7,19,11] and Computer Vision [20]. Due to space re-
strictions we will not elaborate on these connections.

A general algorithm for SFM can always be used for the more restricted
SFMb, but the special features of this more restricted problem sometimes allow
more efficient special-purpose algorithms to be used. (Note that we are focusing
on exact algorithms which find an optimal solution.) In particular, it has been
shown that certain cases can be solved much more efficiently by reducing to
the Min-Cut problem; that is, the problem of finding a minimum cut in a
directed graph which includes a given source vertex and excludes a given target
vertex. For example, it has been known since 1965 that the minimisation of
quadratic submodular polynomials is equivalent to finding a minimum cut in a
corresponding directed graph [16,2]. Hence quadratic submodular polynomials
can be minimised in O(n3) time, where n is the number of variables.

A Boolean polynomial in at most 2 variables has degree at most 2, so any
sum of binary Boolean polynomials has degree at most 2; in other words, it
is quadratic. It follows that an efficient algorithm, based on reduction to Min-
Cut, can be used to minimise any class of functions that can be written as a
sum of binary submodular polynomials. We will say that a polynomial that can
be written in this way, perhaps with additional variables to be minimised over,
is expressible by binary submodular polynomials (see Section 2.1). The following
classes of functions have all been shown to be expressible by binary submodular
polynomials in this way3, over the past four decades:
3 In fact, it is known that all Boolean polynomials (of arbitrary degree) are expressible

by binary polynomials [2], but the general construction does not preserve submod-
ularity; that is, the resulting binary polynomials are not necessarily submodular.
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– polynomials where all terms of degree 2 or more have negative coefficients
(also known as negative-positive polynomials) [30];

– cubic submodular polynomials [1];
– {0, 1}-valued submodular functions (also known as 2-monotone functions) [10,6];
– a class recently found by Živný and Jeavons [35] and independently in [34].

All these classes of functions have been shown to be expressible by binary sub-
modular polynomials and hence minimisable in cubic time (in the total number
of variables). Moreover, several broad classes of submodular functions over non-
Boolean domains have also been shown to be expressible by binary submodular
functions and hence minimisable in cubic time [3,5,6]. This series of positive
expressibility results naturally raises the following question:

Question 1. Are all submodular polynomials expressible by binary submodular
polynomials, over a possibly larger set of variables?

Each of the above expressibility results was obtained by an ad-hoc construc-
tion, and no general technique4 has previously been proposed which is sufficiently
powerful to address Question 1.

1.1 Contributions

Cohen et al. recently developed a novel algebraic approach to characterising the
expressive power of valued constraints in terms of certain algebraic properties of
those constraints [4].

Using this systematic algebraic approach we are able to give a negative answer
to Question 1: we show that there exist submodular polynomials of degree 4
that cannot be expressed by binary submodular polynomials. More precisely, we
characterise exactly which submodular polynomials of arity 4 are expressible by
binary submodular polynomials and which are not.

On the way to establishing these results we show that two broad families of
submodular functions, known as upper fans and lower fans, are all expressible by
binary submodular functions. This provides a new class of submodular polyno-
mials of all arities which are expressible by binary submodular polynomials and
hence solvable efficiently by reduction to Min-Cut. We use the expressibility of
this family, and the existence of non-expressible functions, to refute a conjecture
from [29] on the structure of the extreme rays of the cone of Boolean submodular
functions, and suggest a more refined conjecture of our own.

2 Preliminaries

In this section, we introduce the basic definitions and the main tools used
throughout the paper.

2.1 Cost functions and expressibility

We denote by R the set of all real numbers together with (positive) infinity. For
any fixed set D, a function φ from Dn to R will be called a cost function on D
of arity n. If the range of φ lies entirely within R, then φ is called a finite-valued
4 For example, standard combinatorial counting techniques cannot resolve this ques-

tion because we allow arbitrary real-valued coefficients in submodular polynomials.
We also allow an arbitrary number of additional variables.
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cost function. If the range of φ is {0,∞}, then φ can be viewed as a predicate,
or relation, allowing just those tuples t ∈ Dn for which φ(t) = 0.

Cost functions can be added and multiplied by arbitrary real values, hence
for any given set of cost functions, Γ , we define the convex cone generated by
Γ , as follows.

Definition 1. For any set of cost functions Γ , the cone generated by Γ , denoted
Cone(Γ ), is defined by:

Cone(Γ ) = {α1φ1 + · · ·+ αrφr | r ≥ 1; φ1, . . . , φr ∈ Γ ; α1, . . . , αr ≥ 0}.

Definition 2. A cost function φ of arity n is said to be expressible by a set
of cost functions Γ if φ = miny1,...,yj

φ′(x1, . . . , xn, y1, . . . , yj) + κ, for some
φ′ ∈ Cone(Γ ) and some constant κ.

The variables y1, . . . , yj are called extra (or hidden) variables, and φ′ is called
a gadget for φ over Γ .

We denote by 〈Γ 〉 the expressive power of Γ , which is the set of all cost
functions expressible by Γ .

It was shown in [4] that the expressive power of a set of cost functions is
characterised by certain algebraic properties of those cost functions called frac-
tional polymorphisms. For the results of this paper, we will only need a certain
subset of these algebraic properties, called multimorphisms [7]. These are defined
in Definition 3 below (see also Figure 1).

The i-th component of a tuple t will be denoted by t[i]. Note that any opera-
tion on a set D can be extended to tuples over the set D in a standard way, as fol-
lows. For any function f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dn,
define f(t1, . . . , tk) ∈ Dn to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])〉.

Definition 3 ([7]). Let F : Dk → Dk be the function whose k-tuple of output
values is given by the tuple of functions F = 〈f1, . . . , fk〉, where each fi : Dk →
D.

For any n-ary cost function φ, we say that F is a k-ary multimorphism of φ
if, for all t1, . . . , tk ∈ Dn,

k∑
i=1

φ(ti) ≥
k∑
i=1

φ(fi(t1, . . . , tk)).

For any set of cost functions, Γ , we will say that F is a multimorphism of Γ if
F is a multimorphism of every cost function in Γ . The set of all multimorphisms
of Γ will be denoted Mul(Γ ).

Note that multimorphisms are preserved under expressibility. In other words,
if F ∈ Mul(Γ ), and φ ∈ 〈Γ 〉, then F ∈ Mul({φ}) [7,4]. This has two important
corollaries. First, if 〈Γ1〉 = 〈Γ2〉, then Mul(Γ1) = Mul(Γ2). Second, if there exists
F ∈ Mul(Γ ) such that F 6∈ Mul({φ}), then φ is not expressible by Γ , that is,
φ 6∈ 〈Γ 〉.

2.2 Lattices and submodularity

Recall that L is a lattice if L is a partially ordered set in which every pair of
elements (a, b) has a unique supremum and a unique infimum. For a finite lattice
L and a pair of elements (a, b), we will denote the unique supremum of a and b
by a ∨ b, and the unique infimum of a and b by a ∧ b.
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t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′k = fk(t1, . . . , tk)

t1[1] t1[2] . . . t1[n]
t2[1] t2[2] . . . t2[n]

...
tk[1] tk[2] . . . tk[n]

t′1[1] t′1[2] . . . t′1[n]
t′2[1] t′2[2] . . . t′2[n]

...
t′k[1] t′k[2] . . . t′k[n]

φ−→

φ(t1)
φ(t2)

...
φ(tk)

9>>>=>>>;
k∑
i=1

φ(ti)

≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′k)

9>>>=>>>;
k∑
i=1

φ(t′i)

Fig. 1. Inequality establishing F = 〈f1, . . . , fk〉 as a multimorphism of cost function φ
(see Definition 3).

For any finite lattice-ordered set D, a cost function φ : Dn → R is called
submodular if for every u, v ∈ Dn, φ(u ∧ v) + φ(u ∨ v) ≤ φ(u) + φ(v) where
both ∧ and ∨ are applied coordinate-wise on tuples u and v [27]. This standard
definition can be reformulated very simply in terms of multimorphisms: φ is
submodular if 〈∧,∨〉 ∈ Mul({φ}).

Using results from [7] and [32], it can be shown that any submodular cost
function φ can be expressed as the sum of a finite-valued submodular cost func-
tion φfin, and a submodular relation φrel, that is, φ = φfin + φrel.

Moreover, it is known that all submodular relations are binary decomposable
(that is, equal to the sum of their binary projections) [18], and hence expressible
by binary submodular relations. Therefore, when considering which cost func-
tions are expressible by binary submodular cost functions, we can restrict our
attention to finite-valued cost functions without any loss of generality.

Next we define some particular families of submodular cost functions, first
described in [29], which will turn out to play a central role in our analysis.

Definition 4. Let L be a lattice. We define the following cost functions on L:

– For any set A of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same least upper bound,∨
A, the following cost function is called an upper fan:

φA(x) =


−2 if x ≥

∨
A,

−1 if x 6≥
∨
A, but x ≥ ai for some i,

0 otherwise.

– For any set B of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same greatest lower bound,∧
B, the following cost function is called a lower fan:

φB(x) =


−2 if x ≤

∧
B,

−1 if x 6≤
∧
B, but x ≤ ai for some i,

0 otherwise.

We call a cost function a fan if it is either an upper fan or a lower fan. Note
that our definition of fans is slightly more general than the definition in [29].
In particular, we allow the set A to be empty, in which case the corresponding
upper fan φA is a constant function. It is not hard to show that all fans are
submodular [29].
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2.3 Boolean cost functions and polynomials

In this paper we will focus on problems over Boolean domains, that is, where
D = {0, 1}.

Any cost function of arity n can be represented as a table of values of size Dn.
Moreover, a finite-valued cost function φ : Dn → R on a Boolean domain D =
{0, 1} can also be represented as a unique polynomial in n (Boolean) variables
with coefficients from R (such functions are sometimes called pseudo-Boolean
functions [2]). Hence, in what follows, we will often refer to a finite-valued cost
function on a Boolean domain and its corresponding polynomial interchangeably.

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [2]). For example, the second-order derivative of a
polynomial p, with respect to the first two indices, denoted δ1,2(x), is defined as
p(1, 1,x)− p(1, 0,x)− p(0, 1,x) + p(0, 0,x). Derivatives for other pairs of indices
are defined analogously. It was shown in [13] that a polynomial p(x1, . . . , xn) over
Boolean variables x1, . . . , xn represents a submodular cost function if, and only
if, its second-order derivatives δi,j(x) are non-positive for all 1 ≤ i < j ≤ n and
all x ∈ Dn−2. An immediate corollary is that a quadratic polynomial represents
a submodular cost function if, and only if, the coefficients of all quadratic terms
are non-positive.

Note that a cost function is called supermodular if all its second-order deriva-
tives are non-negative. Clearly, f is submodular if, and only if, −f is supermod-
ular, so it is straightforward to translate results about supermodular functions,
such as those given in [6] and [29], into similar results for submodular functions,
and we will use this observation several times below. Cost functions which are
both submodular and supermodular (in other words, all second-order derivatives
are equal to zero) are called modular, and polynomials corresponding to modular
cost functions are linear [2].

Example 1. For any set of indices I = {i1, . . . , im} ⊆ {1, . . . , n} we can define a
cost function φI in n variables as follows:

φI(x1, . . . , xn) =

{
−1 if (∀i ∈ I)(xi = 1),

0 otherwise.

The polynomial representation of φI is p(x1, . . . , xn) = −xi1 . . . xim , which is
a polynomial of degree m. Note that it is straightforward to verify that φI is
submodular by checking the second-order derivatives of p.

However, the function φI is also expressible by binary submodular polyno-
mials, using a single extra variable, y, as follows:

φI(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈I

(1− xi)}.

We remark that this is a special case of the expressibility result for negative-
positive polynomials first obtained in [30].

Note that when D = {0, 1}, the set Dn with the product ordering is isomor-
phic to the lattice of all subsets of an n-element set ordered by inclusion. Hence,
a cost function on a Boolean domain can be viewed as a cost function defined
on a lattice of subsets, and we can apply Definition 4 to identify certain Boolean
functions as upper fans or lower fans, as the following example indicates.
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Example 2. Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that
for all i 6= j we have Ii 6⊆ Ij and Ii ∪ Ij =

⋃
A.

By Definition 4, the corresponding upper fan function φA has the following
polynomial representation:

p(x1, . . . , xn) = (r − 2)
∏
i∈

S
A

xi −
∏
i∈I1

xi − · · · −
∏
i∈Ir

xi.

We remark that any permutation of a set D gives rise to an automorphism of
cost functions over D. In particular, for any cost function f on a Boolean domain
D, the dual of f is the corresponding cost function which results from exchang-
ing the values 0 and 1 for all variables. In other words, if p is the polynomial
representation of f , then the dual of f is the cost function whose polynomial
representation is obtained from p by replacing all variables x with 1−x. Observe
that, due to symmetry, taking the dual preserves submodularity and expressibil-
ity by binary submodular cost functions.

It is not hard to see that upper fans are duals of lower fans and vice versa.

3 Results

In this section, we present our main results. First, we show that fans of all arities
are expressible by binary submodular cost functions. Next, we characterise the
multimorphisms of binary submodular cost functions. Combining these results,
we then characterise precisely which 4-ary submodular cost functions are ex-
pressible by binary submodular cost functions. More importantly, we show that
some submodular cost functions are not expressible by binary submodular cost
functions, and therefore cannot be minimised using the Min-Cut problem via
an expressibility reduction. Finally, we consider the complexity of recognizing
which cost functions are expressible by binary submodular cost functions.

3.1 Expressibility of upper fans and lower fans

We denote by Γsub,n the set of all finite-valued submodular cost functions of arity
at most n on a Boolean domain D, and we set Γsub =

⋃
n Γsub,n.

We denote by Γfans,n the set of all fans of arity at most n on a Boolean domain
D, and we set Γfans =

⋃
n Γfans,n.

Our next result shows that Γfans ⊆ 〈Γsub,2〉. The proof is omitted due to space
restrictions.

Theorem 1. Any fan on a Boolean domain D is expressible by binary submod-
ular functions on D using at most 1 + bm/2c extra variables, where m is the
degree of its polynomial representation.

Many of the earlier expressibility results mentioned in Section 1 can be obtained
as simple corollaries of Theorem 1, as the following examples indicate.

Example 3. Any negative monomial −x1x2 · · ·xm is a positive multiple of an
upper fan, and the positive linear monomial x1 is equal to −(1 − x1) + 1, so it
is a positive multiple of a lower fan, plus a constant. Hence all negative-positive
submodular polynomials are contained in Cone(Γfans), and by Theorem 1, they
are expressible by binary submodular polynomials, as originally shown in [30].
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Example 4. A polynomial is called homogeneous [1] or polar [9] if it can be
expressed as a sum of terms of the form ax1x2 . . . xk or a(1−x1)(1−x2) . . . (1−xk)
with positive coefficients a, together with a constant term. It was observed in [1]
that all polar polynomials are supermodular, so all negated polar polynomials
are submodular. As every negated term −ax1x2 . . . xk, is a positive multiple of
an upper fan, and every negated term −a(1−x1)(1−x2) . . . (1−xk), is a positive
multiple of a lower fan, by Theorem 1, all cost functions which are the negations
of polar polynomials are expressible by binary submodular polynomials, and
hence solvable by reduction to Min-Cut, as originally shown in [1].

Example 5. Any cubic submodular polynomial can be expressed as a positive
sum of upper fans [29]. Hence, by Theorem 1, all cubic submodular polynomials
are expressible by binary submodular polynomials, as originally shown in [1].

Example 6. A Boolean cost function φ is called 2-monotone [10] if there exist
two sets R,S ⊆ {1, . . . , n} such that φ(x) = 0 if R ⊆ x or x ⊆ S and φ(x) = 1
otherwise (where R ⊆ x means ∀i ∈ R, x[i] = 1 and x ⊆ S means ∀i 6∈ S, x[i] =
0). It was shown in [6, Proposition 2.9] that a 2-valued Boolean cost function is
2-monotone if, and only if, it is submodular.

For any 2-monotone cost function defined by the sets of indices R and S, it
is straightforward to check that φ = miny∈{0,1} y(1 + φA/2) + (1− y)(1 + φB/2)
where φA is the upper fan defined by A = {R} and φB is the lower fan defined by
B = {S}. Note that the function yφA is an upper fan, and the function (1−y)φB
is a lower fan. Hence, by Theorem 1, all 2-monotone polynomials are expressible
by binary submodular polynomials, and solvable by reduction to Min-Cut, as
originally shown in [10].

However, Theorem 1 also provides many new functions of all arities which have
not previously been shown to be expressible by binary submodular functions, as
the following example indicates.

Example 7. The function 2x1x2x3x4−x1x2x3−x1x2x4−x1x3x4−x2x3x4 belongs
to Γfans,4, but does not belong to any class of submodular functions which has
previously been shown to be expressible by binary submodular functions. In
particular, it does not belong to the class Γnew identified in [34,35].

3.2 Characterisation of Mul(Γsub,2)

Since we have seen that a cost function can only be expressed by a given set
of cost functions if it has the same multimorphisms, we now investigate the
multimorphisms of Γsub,2.

A function F : Dk → Dk is called conservative if, for each possible choice
of x1, . . . , xk, the tuple F(x1, . . . , xk) is a permutation of x1, . . . , xk (though
different inputs may be permuted in different ways).

For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D, we denote
by H(x,y) the Hamming distance between x and y, which is the number of
positions at which the corresponding values are different.

Theorem 2. For any Boolean domain D, and any F : Dk → Dk, the following
are equivalent:

1. F ∈ Mul(Γsub,2).
2. F ∈ Mul(Γ∞sub,2), where Γ∞sub,2 denotes the set of binary submodular cost func-

tions taking finite or infinite values.
3. F is conservative and Hamming distance non-increasing.

The proof is omitted due to space restrictions.
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3.3 Non-expressibility of Γsub over Γsub,2

Theorem 2 characterises the multimorphisms of Γsub,2, and hence enables us to
systematically search (for example, using Mathematica) for multimorphisms
of Γsub,2 which are not multimorphisms of Γsub. In this way, we have identi-
fied the function Fsep : {0, 1}5 → {0, 1}5 defined in Figure 2. We will show in
this section that this function can be used to characterise all the submodular
functions of arity 4 which are expressible by binary submodular functions on a
Boolean domain. Using this result, we show that some submodular functions are
not expressible in this way.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fsep(x) 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Fig. 2. Definition of Fsep.

Proposition 1. Fsep is conservative and Hamming distance non-increasing.

Proof. Straightforward exhaustive verification. ut

Theorem 3. For any function f ∈ Γsub,4 the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. Fsep ∈ Mul({f}).
3. f ∈ Cone(Γfans,4).

Proof. First, we show (1)⇒ (2). Proposition 1 and Theorem 2 imply that Fsep is
a multimorphism of any binary submodular function on a Boolean domain. Hence
having Fsep as a multimorphism is a necessary condition for any submodular
cost function on a Boolean domain to be expressible by binary submodular cost
functions.

Next, we show (2) ⇒ (3). Consider the complete set of inequalities on the
values of a 4-ary cost function resulting from having the multimorphism Fsep,
as specified in Definition 3. A routine calculation in Mathematica shows that,
out of 165 such inequalities, there are 4635 which are distinct. After removing
from these all those which are equal to the sum of two others, we obtain a
system of just 30 inequalities which must be satisfied by any 4-ary submodular
cost function which has the multimorphism Fsep. Using the double description
method [25], we obtain from these 30 inequalities an equivalent set of 31 extreme
rays which generate the same polyhedral cone of cost functions. These extreme
rays all correspond to fans or sums of fans.

Finally, we show (3)⇒ (1). By Theorem 1, all fans are expressible over Γsub,2.
It follows that any cost function in this cone of functions is also expressible over
Γsub,2. ut
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Next we show that there are indeed 4-ary submodular cost functions which
do not have Fsep as a multimorphism and therefore are not expressible by binary
submodular cost functions.

Definition 5. For any Boolean tuple t of arity 4 containing exactly 2 ones and
2 zeros, we define the 4-ary cost function θt as follows:

θt(x1, x2, x3, x4) =


−1 if (x1, x2, x3, x4) = (1, 1, 1, 1) or (0, 0, 0, 0),

1 if (x1, x2, x3, x4) = t,

0 otherwise.

Cost functions of the form θt were introduced in [29], where they are called
quasi-indecomposable functions. We denote by Γqin the set of all (six) quasi-
indecomposable cost functions of arity 4. It is straightforward to check that
they are submodular, but the next result shows that they are not expressible by
binary submodular functions.

Proposition 2. For all θ ∈ Γqin, Fsep 6∈ Mul({θ}).
Proof. The following table shows that Fsep 6∈ Mul({θ(1,1,0,0)}).

Fsep

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 1
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1

θ(1,1,0,0)−→

0
0
0
0
0


∑

= 0

θ(1,1,0,0)−→

0
0
1
0
0


∑

= 1

Permuting the columns appropriately establishes the result for all other θ ∈ Γqin.
ut

Corollary 1. For all θ ∈ Γqin, θ 6∈ 〈Γsub,2〉.
Proof. By Theorem 3 and Proposition 2. ut

Are there any other 4-ary submodular cost functions which are not ex-
pressible over Γsub,2? Promislow and Young characterised the extreme rays of
the cone of all 4-ary submodular cost functions and established that Γsub,4 =
Cone(Γfans,4 ∪ Γqin) – see Theorem 5.2 of [29]. Hence the results in this section
characterise the expressibility of all 4-ary submodular functions.

Promislow and Young conjectured that for k 6= 4, all extreme rays of Γsub,k

are fans [29]; that is, they conjectured that for all k 6= 4, Γsub,k = Cone(Γfans,k).
However, if this conjecture were true it would imply that all submodular func-
tions of arity 5 and above were expressible by binary submodular functions, by
Theorem 1. This is clearly not the case, because inexpressible cost functions such
as those identified in Corollary 1 can be extended to larger arities (for example,
by adding dummy arguments) and remain inexpressible. Hence our results refute
this conjecture for all k ≥ 5. However, we suggest that this conjecture can be
refined to a similar statement concerning just those submodular functions which
are expressible by binary submodular functions, as follows:
Conjecture 1. For all k, Γsub,k ∩ 〈Γsub,2〉 = Cone(Γfans,k).
This conjecture was previously known to be true for k ≤ 3 [29]; Theorem 1
shows that Cone(Γfans,k) ⊆ Γsub,k ∩ 〈Γsub,2〉 for all k, and Theorem 3 confirms
that equality holds for k = 4.
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3.4 The complexity of recognising expressible functions

Finally, we show that we can test efficiently whether a submodular polynomial
of arity 4 is expressible by binary submodular polynomials.

Definition 6. Let p(x1, x2, x3, x4) be the polynomial representation of a 4-ary
submodular cost function f . We denote by aI the coefficient of the term

∏
i∈I xi.

We say that f satisfies condition Sep if for each {i, j}, {k, `} ⊂ {1, 2, 3, 4}, with
i, j, k, ` distinct, we have a{i,j} + a{k,`} + a{i,j,k} + a{i,j,`} ≤ 0.

Theorem 4. For any f ∈ Γsub,4, the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. f satisfies condition Sep.

Proof. As in the proof of Theorem 3, we construct a set of 30 inequalities cor-
responding to the multimorphism Fsep. Each of these inequalities on the values
of a cost function can be translated into inequalities on the coefficients of the
corresponding polynomial representation by a straightforward linear transfor-
mation. This calculation shows that 24 of the resulting inequalities impose the
condition of submodularity, and the remaining 6 impose condition Sep. Hence
a submodular cost function of arity 4 has the multimorphism Fsep if, and only
if, its polynomial representation satisfies condition Sep. The result then follows
from Theorem 3. ut

Using Theorem 4, we can test whether optimisation problems given as a sum
of submodular functions of arity 4 can be reduced to the Min-Cut problem via
the expressibility reduction. These problems arise in Computer Vision and in
Valued Constraint Satisfaction Problems.

Furthermore, by Theorem 1, the number of extra variables needed in this
reduction is rather small compared to the theoretical upper bound given in [4].

It is known that the problem of recognising whether an arbitrary degree-4
polynomial is submodular is co-NP-complete [9,15]. At the moment, the com-
plexity of the recognition problem for submodular polynomials of degree 4 that
are expressible by binary submodular polynomials is open.
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