
Classes of Submodular Constraints
Expressible by Graph Cuts

Stanislav Živný and Peter G. Jeavons

Computing Laboratory, University of Oxford,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom.

{stanislav.zivny,peter.jeavons}@comlab.ox.ac.uk

Abstract. Submodular constraints play an important role both in the-
ory and practice of valued constraint satisfaction problems (VCSPs). It
has previously been shown, using results from the theory of combinato-
rial optimisation, that instances of VCSPs with submodular constraints
can be minimised in polynomial time. However, the general algorithm
is of order O(n6) and hence rather impractical. In this paper, by us-
ing results from the theory of pseudo-Boolean optimisation, we identify
several broad classes of submodular constraints over a Boolean domain
which are expressible using binary submodular constraints, and hence
can be minimised in cubic time. We also discuss the question of whether
all submodular constraints of bounded arity over a Boolean domain are
expressible using only binary submodular constraints, and can therefore
be minimised efficiently.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a general framework which
can be used to model many different problems [11,17,21]. However, the CSP
model considers only the feasibility of satisfying a collection of simultaneous
requirements (so-called hard constraints).

Various extensions have been proposed to this model to allow it to deal with
different kinds of optimisation criteria, or preferences, between different feasible
solutions (so-called soft constraints). Two very general extended frameworks that
have been proposed are the SCSP (semi-ring CSP) framework and the VCSP
(valued CSP) framework [2]. The SCSP framework is slightly more general1,
but the VCSP framework is simpler, and yet sufficiently powerful to model a
wide range of optimisation problems [2,21,22].

Informally, in the Valued Constraint Satisfaction Problem (VCSP)
framework, an instance consists of a set of variables, a set of possible values, and
a set of (soft) constraints. Each constraint has an associated cost function which
assigns a cost (or a degree of violation) to every possible tuple of values for the

1 The main difference is that costs in VCSPs represent violation levels and have to be
totally ordered, whereas costs in SCSPs represent preferences and might be ordered
only partially.

variables in the scope of the constraint. The goal is to find an assignment of
values to all of the variables which has the minimum total cost. We remark that
infinite costs can be used to indicate infeasible assignments (hard constraints),
and hence the VCSP framework includes the standard CSP framework as a
special case and is equivalent to the Constraint Optimisation Problem
(COP) framework [21], which is widely used in practice.

One significant line of research on the VCSP is to identify restrictions which
ensure that instances are solvable in polynomial time. There are two main types
of restrictions that have been studied in the literature. Firstly, we can limit the
structure of the instances. We will not deal with this approach in this paper.

Secondly, we can restrict the forms of the valued constraints which are allowed
in the problem, giving rise to so-called language restrictions. Several language
restrictions which ensure tractability have been identified in the literature, (see
e.g., [8]). One important and well-studied restriction on valued constraints is
submodularity. In fact the class of submodular constraints is the only non-trivial
tractable case in the dichotomy classification of the Boolean VCSP [8].

The concept of submodularity not only plays an important role in theory,
but is also very important in practice. For example, many of the problems that
arise in computer vision can be expressed in terms of energy minimisation [16].
The problem of energy minimisation is NP-hard in general, and therefore a lot
of research has been devoted to identifying instances which can be solved more
efficiently. Kolmogorov and Zabih identified classes of instances for which the en-
ergy minimisation problem can be solved efficiently [16], and which are applicable
to a wide variety of vision problems, including image restoration, stereo vision
and motion tracking, image synthesis, image segmentation, multi-camera scene
reconstruction and medical imaging. The so-called regularity condition, which
specifies the efficiently solvable classes in [16], is equivalent to submodularity.

The notion of submodularity originally comes from combinatorial optimi-
sation where submodular functions are defined on subsets of a given base
set [14,18]. The time complexity of the fastest known algorithm for the problem
of Submodular Function Minimisation (SFM) is roughly O(n6) [19]. How-
ever, there are several known special classes of SFM that can be solved more
efficiently than the general case (see [3] for a survey).

Cohen et al. showed that VCSPs with submodular constraints over an arbi-
trary finite domain can be reduced to the SFM problem over a special family of
sets known as a ring family [8]. This problem is equivalent to the general SFM
problem [23], thus giving an algorithm of order O(n6 + n5L), where L is the
look-up time (needed to evaluate an assignment to all variables), for any VCSP
with submodular constraints. This tractability result has since been generalised
to a wider class of valued constraints over arbitrary finite domains known as
tournament-pair constraints [6]. An alternative approach can be found in [9].

In this paper we focus on submodular constraints over a Boolean domain
{0, 1}, which correspond precisely to submodular set functions [8]. We describe
an algorithm based on graph cuts which can be used to solve certain VCSPs
with submodular constraints over a Boolean domain much more efficiently than

2

the general case. Some of our results are closely related to known efficient cases
of SFM, and other previous results from different areas of computer science,
but we present them here in a unified and constraints-based framework which
allows us to make the proofs more consistent and often simpler. Moreover, we
explicitly discuss for the first time the expressive power of binary submodular
constraints, and use this powerful idea in a consistent way to identify new classes
of submodular constraints which can be solved efficiently.

The paper is organised as follows. In Section 2, we define the VCSP frame-
work and submodular constraints, and note that submodular constraints over a
Boolean domain can be represented by polynomials. In Section 3, we show that
the standard (s, t)-Min-Cut problem can be expressed in the VCSP framework
with a restricted constraint language Γcut, and that any instance of VCSP(Γcut)
is solvable in cubic time. Moreover, we show that Γcut can express all binary
submodular constraints. In Section 4, we show that any instance of the VCSP
with constraints whose corresponding polynomials have only non-positive coef-
ficients for terms of degree ≥ 2 can be expressed in VCSP(Γcut). We show the
same for all {0, 1}-valued submodular constraints, and also for all ternary sub-
modular constraints. In Section 5, we present a necessary condition for a quartic
polynomial to be submodular. Moreover, for every k ≥ 4, we identify new classes
of k-ary submodular constraints which can be expressed over VCSP(Γcut), and
thus solved efficiently. We then discuss the question of whether all submodular
constraints of bounded arity can be expressed over Γcut. Finally, in Section 6, we
summarise our work and discuss related and future work.

2 Definitions

2.1 Valued constraint satisfaction and expressibility

In this section we define the valued constraint satisfaction problem
(VCSP). In the original definition of this problem, given in [22], costs were
allowed to lie in any positive totally ordered monoid called a valuation struc-
ture. For our purposes, it is sufficient to consider costs which lie in the set Q+

consisting of all non-negative rational numbers together with infinity2.
Given a fixed set D, a function from Dk to Q+ will be called a cost function.

If the range of φ is {0,∞}, then φ is called a crisp cost function. Note that
crisp cost functions correspond precisely to relations, so we shall use these terms
interchangeably. If the range of φ lies entirely within Q+, the set of non-negative
rationals, then φ is called a finite-valued cost function.

Definition 1. An instance P of VCSP is a triple 〈V,D, C〉, where V is a finite
set of variables, which are to be assigned values from the set D, and C is a set of
valued constraints. Each c ∈ C is a pair c = 〈σ, φ〉, where σ is a tuple of variables
of length |σ|, called the scope of c, and φ : D|σ| → Q+ is a cost function. An

2 See [10] for a discussion of why limiting ourselves to the Q+ valuation structure is
not a severe restriction.

3

assignment for the instance P is a mapping s from V to D. The cost of an
assignment s is defined as follows:

CostP(s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

Any set Γ of cost functions is called a valued constraint language. The class
VCSP(Γ) is defined to be the class of all VCSP instances where the cost func-
tions of all valued constraints lie in Γ .

In any VCSP instance, the variables listed in the scope of each valued con-
straint are explicitly constrained, in the sense that each possible combination of
values for those variables is associated with a given cost. Moreover, if we choose
any subset of the variables, then their values are constrained implicitly in the
same way, due to the combined effect of the valued constraints. This motivates
the concept of expressibility for cost functions, which is defined as follows:

Definition 2. For any VCSP instance I = 〈V,D, C〉, and any list of variables
of I, l = 〈v1, . . . , vm〉, the projection of I onto l, denoted πl(I), is the m-ary
cost function defined as follows:

πl(I)(x1, . . . , xm) = min
{s:V→D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostI(s).

We say that a cost function φ is expressible over a valued constraint language Γ
if there exists an instance I ∈ VCSP(Γ) and a list l of variables of I such that
πl(I) = φ. We call the pair 〈I, l〉 a gadget for expressing φ over Γ . Variables
from V \ l are called extra or hidden variables.

Note that in the special case of relations (crisp cost functions) this notion
of expressibility corresponds to the standard notion of expressibility using con-
junction and existential quantification (primitive positive formulas) [4].

We denote by 〈Γ 〉 the expressive power of Γ which is the set of all cost
functions expressible over Γ up to additive and multiplicative constants.

2.2 Submodular functions and polynomials

A function ψ : 2V → Q defined on subsets of a set V is called a submodular
function [18] if, for all subsets S and T of V , ψ(S∩T)+ψ(S∪T) ≤ ψ(S)+ψ(T).
The problem of Submodular Function Minimisation (SFM) consists in
finding a subset S of V for which the value of ψ(S) is minimal.

For any lattice-ordered set D, a cost function φ : Dk → Q+ is called sub-
modular if for every u, v ∈ Dk, φ(min(u, v)) +φ(max(u, v)) ≤ φ(u) +φ(v) where
both min and max are applied coordinate-wise on tuples u and v. Note that ex-
pressibility preserves submodularity: if every φ ∈ Γ is submodular, and φ′ ∈ 〈Γ 〉,
then φ′ is also submodular.

Using results from [8] and [24], it can be shown that any submodular cost
function φ can be expressed as the sum of a finite-valued submodular cost func-
tion φfin, and a submodular relation φcrisp, that is, φ = φfin + φcrisp. More-
over, it is known that all submodular relations are binary decomposable [15],

4

and hence expressible using only binary submodular relations. Therefore, when
considering which cost functions are expressible over binary submodular cost
functions, we can restrict our attention to finite-valued cost functions without
any loss of generality.

In this paper we focus on problems over Boolean domains. We denote by
Γsub,k the set of all finite-valued submodular cost functions of arity at most k on
a Boolean domain D = {0, 1}, and we set Γsub =

⋃
k Γsub,k. We will show below

that VCSP(Γsub,2) can be solved in cubic time, and hence we will be concerned
with what other cost functions are expressible over Γsub,2, and so can also be
solved efficiently.

A cost function of arity k can be represented as a table of values of size Dk.
Alternatively, a (finite-valued) cost function φ : Dk → Q+ on a Boolean domain
D = {0, 1} can be uniquely represented as a polynomial in k (Boolean) variables
with coefficients from Q [3] (such functions are sometimes called pseudo-Boolean
functions). Hence, in what follows, we will often represent a finite-valued cost
function on a Boolean domain by a polynomial.

Note that if Γ is a set of cost functions on a Boolean domain, with arity at
most k, then any instance of VCSP(Γ) with n variables can be uniquely repre-
sented as a polynomial p in n Boolean variables, of degree at most k. Conversely,
any such polynomial represents an n-ary cost function which can be expressed
over a set of cost functions on a Boolean domain, with arity at most k. Note
that x2 = x, so p has at most 2n terms which correspond to subsets of variables.

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [3]). For example, the second order derivative of
a polynomial p, with respect to the first two indices, denoted δ1,2(x), is defined
as p(1, 1,x)− p(1, 0,x)− p(0, 1,x) + p(0, 0,x). Analogously for all other pairs of
indices.

Proposition 3 ([3]). A polynomial p(x1, . . . , xn) over Boolean variables
x1, . . . , xn represents a submodular cost function if and only if its second or-
der derivatives δi,j(x) are non-positive for all 1 ≤ i < j ≤ n and all x ∈ Dn−2.

Corollary 4. A quadratic polynomial a0 +
∑n
i=1 aixi +

∑
1≤i<j≤n aijxixj over

Boolean variables x1, . . . , xk, represents a submodular cost function if and only
if aij ≤ 0 for every 1 ≤ i < j ≤ n.

3 Binary submodular constraints

In this section we show that a constraint language Γcut, consisting of certain
simple binary and unary cost functions over a Boolean domain, has cubic time
complexity. We also show that Γcut can express any binary submodular cost
function over a Boolean domain, that is, Γsub,2 ⊆ 〈Γcut〉. It follows that any
instance of VCSP(Γsub,2) can also be solved in cubic time.

For any w ∈ Q+, we define the binary cost function χw as follows:

χw(x, y) =

{
w if (x, y) = (0, 1),
0 otherwise.

5

For any d ∈ D and c ∈ Q+, we define the unary cost function µcd as follows:

µcd =

{
c if x 6= d,
0 if x = d.

It is straightforward to check that all χw and µcd are submodular.
We define the constraint language Γcut to be the set of all cost functions χw

and µcd over a Boolean domain, for c, w ∈ Q+ and d ∈ {0, 1}.

Theorem 5. The problems (s, t)-Min-Cut and VCSP(Γcut) are linear-time
equivalent.

Proof. Consider any instance of (s, t)-Min-Cut with (directed) graph G =
〈V,E〉 and weight function w : E → Q+. Define a corresponding instance I
of VCSP(Γcut) as follows:

I = 〈V, {0, 1}, {〈〈i, j〉, χw(i,j)〉 | 〈i, j〉 ∈ E} ∪ {〈s, µ∞0 〉, 〈t, µ∞1 〉}〉.

Note that in any solution to I the source and target nodes, s and t, must
take the values 0 and 1, respectively. Moreover, the weight of any cut containing
s and not containing t is equal to the cost of the corresponding assignment to
I. Hence we have shown that (s, t)-Min-Cut can be reduced to VCSP(Γcut) in
linear time.

On the other hand, given an instance I = 〈V,D, C〉 of VCSP(Γcut), construct
a graph on V ∪ {s, t} as follows: any unary constraint on variable v with cost
function µc0 (respectively µc1) is represented by an edge of weight c from the
source node s to node v (respectively, from node v to the target node t). Any
binary constraint on variables 〈v1, v2〉 with cost function χw is represented by
an edge of weight w from node v1 to v2. It is straightforward to check that a
solution to I corresponds to a minimum (s, t)-cut of this graph. ut

Corollary 6. VCSP(Γcut) can be solved in cubic time.

Proof. By Theorem 5, VCSP(Γcut) has the same time complexity as (s, t)-Min-
Cut, which is known to be solvable in cubic time [13]. ut

Using a standard reduction (see, for example, [3]), we now show that all binary
submodular cost functions over a Boolean domain can be expressed over Γcut.

Theorem 7. Γsub,2 ⊆ 〈Γcut〉.

Proof. By Corollary 4, any cost function from Γsub,2 can be represented by a
quadratic Boolean polynomial p(x1, x2) = a0 + a1x1 + a2x2 + a12x1x2 where
a12 ≤ 0. This can then be re-written as

p(x1, x2) = a′0 +
∑
i∈P

a′ixi +
∑
j∈N

a′j(1− xj) + a′12(1− x1)x2,

where P ∩ N = ∅, P ∪ N = {1, 2}, a′12 = −a12, and a′i, a
′
j , a
′
12 ≥ 0. (This is

known as a posiform [3].)

6

Hence p can be expressed over Γcut (up to the constant a′0) by the gadget
〈I, 〈x1, x2〉〉, where I is the instance 〈{x1, x2, s, t}, {0, 1}, C〉 of VCSP(Γcut) and

C = {〈〈s, xi〉, χa
′
i〉 | i ∈ P} ∪ {〈〈xj , t〉, χa

′
j 〉 | j ∈ N}

∪ {〈〈s〉, µ∞0 〉, 〈〈t〉, µ∞1 〉, 〈〈x1, x2〉, χa
′
12〉}.

ut

Corollary 8. VCSP(Γsub,2) can be solved in cubic time.

Proof. By Theorem 7, any instance of VCSP(Γsub,2) can be reduced to
VCSP(Γcut) in linear time by replacing each constraint with a suitable gad-
get of fixed size. The result then follows from Corollary 6. (Note that we can use
the same vertices s and t for all constraints.) ut

4 Negative higher degree terms, {0, 1}-valued and
ternary submodular constraints

In this section we extend the results from Section 3 to three further classes of
constraints over a Boolean domain: submodular constraints whose corresponding
polynomials have negative coefficients for all terms of degree ≥ 2; {0, 1}-valued
submodular constraints; and ternary submodular constraints. We show that the
cost functions for these three classes of submodular constraints can all be ex-
pressed over Γsub,2, and hence can be minimised in cubic time in the number of
variables plus the number of higher-order (non-binary) constraints.

Define Γneg,k to be the set of all cost functions over a Boolean domain, of
arity at most k, whose corresponding polynomials have negative coefficients for
all terms of degree greater than or equal to 2. It is easy to check that these
cost functions, sometimes called negative-positive, are submodular. Set Γneg =⋃
k Γneg,k. The minimisation of cost functions chosen from Γneg using min-cuts

was first studied in [20].

Theorem 9. Γneg ⊆ 〈Γsub,2〉.

Proof. Consider the following polynomial:

p0(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈A

(1− xi)}.

It is straightforward to check that for a given A ⊆ {1, . . . , n}, p0(x) = −1 if
A ⊆ x and p0(x) = 0 otherwise (where A ⊆ x means ∀i ∈ A, xi = 1).

Now, given any polynomial of the form p1(x1, . . . , xn) = −aklmxkxlxm +Q,
where Q consists of terms of degree ≤ 2, we can use a similar construction to p0

to obtain

p1(x1, . . . , xn) = min
y∈{0,1}

{Q+ aklm(−y + y
∑

i∈{k,l,m}

(1− xi))}.

7

Given any polynomial p, we can use a similar construction to replace each term
of degree ≥ 3 in turn, introducing a distinct new variable y each time.

Proceeding in this way, we can express any polynomial p representing a cost
function in Γneg as a quadratic polynomial with non-positive quadratic coeffi-
cients, introducing k new variables, where k is the total number of terms of
degree ≥ 3. Such a quadratic polynomial can be expressed over Γsub,2, by Corol-
lary 4. ut
Corollary 10. For any fixed k, VCSP(Γneg,k) can be solved in cubic time.

Proof. By Theorem 9, any instance of VCSP(Γneg,k) can be reduced to
VCSP(Γsub,2) in linear time by replacing each constraint with a suitable gadget.
For any fixed k, the number of new variables introduced in any of these gadgets
is bounded by a constant. The result then follows from Corollary 8.

Next we consider the class of submodular constraints over a Boolean domain
which take only the cost values 0 and 1. (Such constraints can be used to model
optimisation problems such as Max-CSP, see [7].) Define Γ{0,1},k to be the set
of all {0, 1}-valued submodular cost functions over a Boolean domain, of arity
at most k, and set Γ{0,1} = ∪kΓ{0,1},k. The minimisation of submodular cost
functions from Γ{0,1} was studied in [11], where they were called 2-monotone
functions. The equivalence of 2-monotone and submodular cost functions and
a generalisation of 2-monotone functions to non-Boolean domains was shown
in [7].

Definition 11. A cost function φ is called 2-monotone if there exist two sets
A,B ⊆ {1, . . . , n} such that φ(x) = 0 if A ⊆ x or x ⊆ B and φ(x) = 1 otherwise
(where A ⊆ x means ∀i ∈ A, xi = 1 and x ⊆ B means ∀i 6∈ B, xi = 0).

Theorem 12. Γ{0,1} ⊆ 〈Γsub,2〉.
Proof. Any 2-monotone cost function φ can be expressed over Γsub,2 using 2
extra variables, y1, y2:

φ(x) = min
y1,y2∈{0,1}

{(1− y1)y2 + y1
∑
i∈A

(1− xi) + (1− y2)
∑
i 6∈B

xi}.

ut
Corollary 13. For any fixed k, VCSP(Γ{0,1},k) can be solved in cubic time.

Finally, we consider the class Γsub,3 of ternary submodular cost functions
over a Boolean domain. This class was studied in [1], from where we obtain the
following useful characterisation of cubic submodular polynomials.

Lemma 14 ([1]). A cubic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function if and only if it can be written as

p(x1, . . . , xn) = a0 +
∑
{i}∈C+

1

aixi −
∑
{i}∈C−1

aixi −
∑

{i,j}∈C2

aijxixj

+
∑

{i,j,k}∈C+
3

aijkxixjxk −
∑

{i,j,k}∈C−3

aijkxixjxk,

8

where

1. ai, aij , aijk ≥ 0 ({i} ∈ C+
1 ∪ C

−
1 , {i, j} ∈ C2, {i, j, k} ∈ C+

3 ∪ C
−
3),

2. ∀{i, j} ∈ C2, aij +
∑
k|{i,j,k}∈C+

3
aijk ≤ 0.

Theorem 15. Γsub,3 ⊆ 〈Γsub,2〉.

Proof. Let p be a polynomial representing an arbitrary cost function in Γsub,3.
By Lemma 14, the quadratic terms in p are non-positive. We already know how
to express a negative cubic term using a gadget over Γsub,2 (Theorem 9). To
express a positive cubic term, consider the following identity:

xixjxk − xixj − xixk − xjxk = min
y∈{0,1}

{(1− xi − xj − xk)y}.

We can replace a positive cubic term aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

It remains to check that all quadratic coefficients of the resulting polynomial are
non-positive. However, this is ensured by the second condition from Lemma 14.

ut

Corollary 16. VCSP(Γsub,3) can be solved in cubic time.

5 Submodular constraints of arity 4 and higher

In this section we investigate the question of which submodular constraints of
arity 4 or higher can be expressed by binary submodular constraints. We de-
rive a necessary condition for a 4-ary constraint over a Boolean domain to be
submodular. We also present some sufficient conditions, which give rise to new
classes of submodular constraints which can be expressed over Γsub,2, and hence
minimised efficiently. First, we prove the sufficient condition for 4-ary submodu-
lar cost functions. Next, we generalise it to k-ary submodular cost functions for
every k ≥ 4. Finally, we discuss the general question of which submodular cost
functions over a Boolean domain can be expressed with binary submodular cost
functions.

5.1 4-ary constraints

One might hope to obtain a nice characterisation of 4-ary submodular cost func-
tions over a Boolean domain similar to Lemma 14. However, it has been shown
that testing whether a given quartic Boolean polynomial is submodular is co-
NP-complete [12]. Hence, one is unlikely to find a “simple” characterisation; any
characterisation is likely to involve an exponential blow-up (e.g., quantification
over a non-constant number of variables). However, we can obtain the following
necessary condition.

9

Lemma 17. If a quartic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function, then it can be written such that, for all
{i, j} ∈ C2:

1. aij ≤ 0, and
2. aij +

∑
k|{i,j,k}∈C+

3
aijk +

∑
k,l|{i,j,k,l}∈C+

4
aijkl + Fij ≤ 0

where Fi,j is a non-positive value which is equal to the sum of the coefficients
of certain non-positive cubic and quartic terms, C2 denotes the set of quadratic
terms, and C+

i denotes the set of terms of degree i with positive coefficients, for
i = 3, 4.

Proof. Let p be a quartic submodular polynomial and let i and j be given, then
p can always be put in a form so that the second order derivative is:

δi,j = ai,j +
∑

k|{i,j,k}∈C+
3

aijkxk +
∑

k,l|{i,j,k,l}∈C+
4

aijklxkxl

−
∑

k|{i,j,k}∈C−3

aijkxk −
∑

k,l|{i,j,k,l}∈C−4

aijklxkxl.

Consider an assignment which sets xi = xj = 1 and xk = 0 ∀k 6= i 6= j. By
Proposition 3, aij ≤ 0, which proves the first condition. By setting xk = 1 for all
k such that {i, j, k} ∈ C+

3 and xk = xl = 1 for all k, l such that {i, j, k, l} ∈ C+
4 ,

we get the second condition. We set to 1 all variables which occur in some positive
cubic or quartic term. The second condition then says that the sum of all these
positive coefficients minus those which are forced, by our setting of variables, to
be 1 (Fij), is at most 0. (Note that this also proves Lemma 14.) ut

Next we show a useful example of a 4-ary submodular cost function which
can be expressed over the binary submodular cost functions using one extra
variable.

Example 18. Let φ be the 4-ary cost function defined as follows: φ(x) =
min{2k, 5}, where k is the number of 0s in x ∈ {0, 1}4. The corresponding
quartic polynomial representing φ is

p(x1, x2, x3, x4) = 5 + x1x2x3x4 − x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

Is is easy to check that p is submodular. It can be shown by simple case analysis
that p cannot be expressed as a quadratic polynomial with non-positive quadratic
coefficients (from the definition of p, the polynomial would have to be 5−x1x2−
x1x3 − x1x4 − x2x3 − x2x4 − x3x4 which is not equal to p on x1 = x2 = x3 =
x4 = 1).

However, p can be expressed over Γsub,2 using just one extra variable, via the
following gadget:

p(x1, x2, x3, x4) = min
y∈{0,1}

{5 + (3− 2x1 − 2x2 − 2x3 − 2x4)y}.

10

Using the same notation as in Lemma 17, define Γnew,4 to be the set of all 4-ary
submodular cost functions over a Boolean domain whose corresponding quartic
polynomials satisfy, for every i < j,

aij +
∑

k|{i,j,k}∈C+
3

aijk +
∑

k,l|{i,j,k,l}∈C+
4

aijkl ≤ 0. (1)

Theorem 19. Γnew,4 ⊆ 〈Γsub,2〉.

Proof. Let φ ∈ Γnew,4 and let p be the corresponding polynomial which represents
φ. First, replace all negative cubic and quartic terms using the construction in
Theorem 9. As in the proof of Theorem 15, replace every positive cubic term
aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

Using the same construction as in Example 18, replace every positive quartic
term aijklxixjxkxl with

min
y∈{0,1}

{aijkl(3− 2xi − 2xj − 2xk − 2xl)y

+ aijkl(xixj + xixk + xixl + xjxk + xjxl + xkxl)}.

It only remains to check that all quadratic coefficients in the resulting polynomial
are non-positive. However, this is ensured by the definition of Γnew,4 and by the
choice of the gadgets. ut

Corollary 20. VCSP(Γnew,4) can be solved in cubic time.

Unfortunately, our next example shows that Γnew,4 (Γsub,4, and it remains an
open question whether all 4-ary submodular constraints over a Boolean domain
can be expressed over Γsub,2.

Example 21. Define a 4-ary submodular cost function φ as follows: φ(x) =
min(3k, 7) + 2y+ z, where k is the number of 0s in x ∈ {0, 1}4, y = 1 if and only
if x = 〈1, 1, 1, 0〉, and z = 1 if and only if x = 〈1, 1, 0, 0〉. The corresponding
polynomial representing φ is

p(x1, x2, x3, x4) = 7 + 2x1x2x3x4 − 2x1x2x4 − x1x3x4 − x2x3x4

− x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

It is easy to check that φ is submodular, but φ 6∈ Γnew,4 (e.g., for i = 1 and j = 2,
the expression in Equation 1 gives 2), so Theorem 19 does not apply.

As in Example 18, by a simple case analysis, it can be shown that φ cannot
be expressed over Γsub,2 without extra variables. However, the following gadget
shows that φ is in fact expressible over Γsub,2 using just two extra variables:

p(x1, x2, x3, x4) = 7− x1x4 − x2x4 − x3x4

+ min
y1,y2∈{0,1}

{2y1 + 3y2 − y1y2 − y1(x1 + x2 + 2x3)− y2(x1 + x2 + 2x4)}.

11

5.2 The general case

We now generalise the result from the previous section to subclasses of sub-
modular constraints of arbitrary arities. We define Γnew,k to be the set of all
k-ary submodular cost functions over a Boolean domain whose corresponding
polynomials satisfy, for every 1 ≤ i < j ≤ k,

aij +
k−2∑
s=1

∑
{i,j,i1,...,is}∈C+

s+2

ai,j,i1,...,is ≤ 0.

In other words, for any 1 ≤ i < j ≤ k, the sum of aij and all positive coefficients
of cubic and higher degree terms which include xi and xj is non-positive.

Theorem 22. For every k ≥ 4, Γnew,k ⊆ 〈Γsub,2〉.

Proof. Note that the case k = 4 is proved by Theorem 19. First we show that
in order to prove the statement of the theorem, it is sufficient to have a uniform
way of generating gadgets over Γsub,2 for polynomials of the following type:

pk(x1, . . . , xk) =
k∏
i=1

xi −
∑

1≤i<j≤k

xixj .

Note that pk(x) = −
(
m
2

)
, where m is the number of 1s in x, and

(
0
2

)
=
(
1
2

)
= 0,

unless m = k (x consists of 1s only), in which case pk(x) = −
(
m
2

)
+ 1.

Assume that for any k ≥ 5, we can construct a gadget Pk for pk over Γsub,2.
Given a cost function φ ∈ Γnew,k, let p be the corresponding polynomial which
represents φ. By the construction in Theorem 9, we can replace all negative
terms of degree ≥ 3. By the constructions in Theorem 15 and Theorem 19, we
can replace all positive cubic and quartic terms. Now for any positive term of
degree d, 5 ≤ d ≤ k, we replace it with the gadget Pd. This construction works if
all quadratic coefficients of the resulting polynomial are non-positive. However,
this is ensured by the definition of Γnew,k and by the choice of the gadgets.

It remains to show how to uniformly generate gadgets for pk, where k ≥ 5.
We claim, that for any k ≥ 4, the following, denoted by Pk, is a gadget for pk:

pk(x1, . . . , xk) = min
y0,...,yk−4∈{0,1}

{y0(3− 2
k∑
i=1

xi) +
k−4∑
j=1

yj(2 + j −
k∑
i=1

xi)}.

Notice that in the case of k = 4, the gadget corresponds to the gadget used in
the proof of Theorem 19, and therefore the base case is proved. We proceed by
induction in k. Assume that Pi is a gadget for pi for every i ≤ k. We prove that
Pk+1 is a gadget for pk+1.

Firstly, take the gadget Pk for pk, and replace every sum
∑k
i=1 xi with∑k+1

i=1 xi. We denote the new gadget P ′. It is not difficult to see that P ′ is a
valid gadget for pk+1 on all assignments with at most k − 1 1s. Also, on any

12

assignment with exactly k 1s, P ′ returns −
(
k
2

)
+1. On the assignment consisting

of 1s only, P ′ returns: −
(
k
2

)
+ 1− 2− 1(k− 4). This can be simplified as follows:

−
(
k
2

)
+ 1− 2− k+ 4 = −

(
k
2

)
+ 1− k+ 2 = −(

(
k
2

)
+
(
k
1

)
) + 1 + 2 = −

(
k+1
2

)
+ 1 + 2.

Hence P ′ is almost a gadget for pk+1: we only need to subtract 1 on an assign-
ment which has exactly k 1s, and subtract 2 on the assignment consisting of 1s
only. But this is exactly what minyk−3∈{0,1}{yk−3(2 + (k− 3)−

∑k+1
i=1 xi)} does.

Therefore, we have established that Pk+1 is a gadget for pk+1, which finishes the
proof of the theorem. ut

Corollary 23. For any k ≥ 4, VCSP(Γnew,k) can be solved in cubic time.

The general question we are investigating is what can be expressed over Γsub,2.
Denote by 〈Γsub,2〉m the set of all (submodular) cost functions expressible over
Γsub,2 with at most m extra variables. Clearly, 〈Γsub,2〉m ⊆ 〈Γsub,2〉m+1 for every
m ≥ 0.

In the proof of Theorem 22, we proved that, for any k ≥ 4, Γnew,k ⊆ 〈Γsub,2〉m
where m = k − 3. We have since found out that a slightly stronger result was
obtained independently by Zalesky. He has shown that Γnew,k ⊆ 〈Γsub,2〉m where
m = bk−1

2 c (see the unpublished manuscript [25]). This result yields the same
cubic time complexity for VCSP(Γnew,k).

We saw in Section 5 that 〈Γsub,2〉1 is strictly larger than 〈Γsub,2〉0 (see Exam-
ple 18). In other words, allowing a single hidden variable strictly increases the
expressive power of Γsub,2. On the other hand, we do not know whether allow-
ing further hidden variables increases the expressive power any further. In other
words, it is an open question whether 〈Γsub,2〉m (〈Γsub,2〉m+1 for any m ≥ 1. We
suspect that some of these inclusions are strict (see Example 21), as we carried
out a computer-assisted search for gadgets, using the constraint-solver MINION3,
and for some cost function we were not able to find a gadget with a given number
of extra variables.

However, we do know that there is a limit to the additional expressive power
that can be gained by allowing an arbitrary number of hidden variables. This is a
consequence of the following result, which is a general result about expressibility,
and not specific to submodular constraints or Boolean domains.

Proposition 24. If a cost function φ : Dk → Q+ is expressible over Γ , then φ

is expressible over Γ using at most |D||D|k hidden variables.

Proof. If φ ∈ 〈Γ 〉, then by Definition 2, there is a gadget 〈P, l〉, where l =
〈v1, . . . , vk〉, for expressing φ over Γ . For the gadget 〈P, l〉 to express φ, it has
to define φ on each of the |D|k different assignments to l. Let each of these
|D|k assignments be extended to a complete assignment to all variables of P
(including hidden variables) in a way that minimises the total cost. For each
hidden variable v of 〈P, l〉, we can use the list of |D|k values assigned to v
by these complete assignments to label the variable v. If there are more then
|D||D|k hidden variables, then two of them will receive the same label. However,

3 Available from http://minion.sourceforge.net/

13

this implies that one of the two is redundant, as all constraints involving that
variable can replace it with the other variable without changing the overall cost.
Hence we require at most |D||D|k distinct hidden variables to express φ. ut

6 Conclusion

In this paper we first considered binary submodular constraints over a Boolean
domain, and showed that they can be minimised in cubic time via a reduction
to the minimum cut problem for graphs. We then investigated which other sub-
modular constraints are expressible using binary submodular constraints over a
Boolean domain, and hence can also be minimised efficiently using minimum
cuts.

Using known results from combinatorial optimisation, we identified several
such classes of constraints, including all ternary submodular constraints, and
all {0, 1}-valued submodular constraints of any arity. By constructing suitable
gadgets, we identified certain new classes of k-ary submodular constraints, where
k ≥ 4, which can also be expressed by binary submodular constraints.

The main open problem raised by this paper is whether all bounded-arity
submodular constraints over a Boolean domain can be expressed by binary sub-
modular constraints, and hence solved in cubic time. In terms of polynomials,
this is equivalent to the following problem: can any Boolean polynomial with non-
positive second order derivatives be expressed as the projection of a quadratic
polynomial with non-positive quadratic coefficients?

The results presented in this paper provide a partial answer to this question
using constructive methods which can be used to obtain concrete reductions
to problems such as (s, t)-Min-Cut. We note that an alternative general ap-
proach to the problem of determining the expressive power of valued constraints
was developed in [5]. It was shown there that the expressive power of any val-
ued constraint language is characterised by a collection of algebraic properties
called fractional polymorphisms [5]. In order to show that Γsub,k ⊆ 〈Γsub,2〉 it
would therefore be sufficient to show that Γsub,2 and Γsub,k have the same frac-
tional polymorphisms. However, this algebraic approach is non-constructive, and
hence has certain limitations: even if it could be established in this way that
Γsub,k ⊆ 〈Γsub,2〉, this would not directly provide us with a gadget for any given
problem (and hence an efficient algorithm). Conversely, if it could be established
using the algebraic approach that Γsub,k 6⊆ 〈Γsub,2〉, that would still leave open
the question of identifying which subclasses of Γsub,k can be expressed over Γsub,2,
and hence solved efficiently. This paper provides a first step in answering that
question using constructive techniques that could be implemented in valued con-
straint solvers.
Acknowledgements The authors would like to thank David Cohen and Mar-
tin Cooper for fruitful discussions on submodular constraints and Chris Jefferson
for help with using the constraint-solver MINION, which helped us to find and
simplify some of the gadgets presented in this paper. Stanislav Živný gratefully
acknowledges the support of EPSRC grant EP/F01161X/1.

14

References

1. Billionet, A., Minoux, M.: Maximizing a supermodular pseudo-boolean function:
a polynomial algorithm for cubic functions. D. App. Mathematics 12 (1985) 1–11

2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints 4 (1999) 199–240

3. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathe-
matics 123(1-3) (2002) 155–225

4. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3) (2005) 720–742

5. Cohen, D., Cooper, M., Jeavons, P.: An algebraic characterisation of complexity
for valued constraints. In: CP’06. Volume 4204 of LNCS. (2006) 107–121

6. Cohen, D., Cooper, M., Jeavons, P.: Generalising submodularity and Horn clauses:
Tractable optimization problems defined by tournament pair multimorphisms.
Theoretical Computer Science (2008) (in press).

7. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: Supermodular functions and the
complexity of Max-CSP. Discrete Applied Mathematics 149 (2005) 53–72

8. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170 (2006) 983–1016

9. Cooper, M.C.: Minimization of locally defined submodular functions by optimal
soft arc consistency. Constraints 13 (2008)

10. Cooper, M.: High-order consistency in valued constraint satisfaction. Constraints
10 (2005) 283–305

11. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. Volume 7 of SIAM Monographs on Discrete Math-
ematics and Applications. SIAM (2001)

12. Gallo, G., Simeone, B.: On the supermodular knapsack problem. Mathematical
Programming 45 (1988) 295–309

13. Goldberg, A., Tarjan, R.: A new approach to the maximum flow problem. Journal
of the ACM 35 (1988) 921–940

14. Iwata, S.: Submodular function minimization. Math. Progr. 112 (2008) 45–64
15. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artificial

Intelligence 101(1–2) (1998) 251–265
16. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph

cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2) (2004) 147–159
17. Montanari, U.: Networks of constraints: Fundamental properties and applications

to picture processing. Information Sciences 7 (1974) 95–132
18. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. (1988)
19. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function

minimization. In: IPCO’07. Volume 4513 of LNCS. (2007) 240–251
20. Rhys, J.: A selection problem of shared fixed costs and network flows. Management

Science 17(3) (1970) 200–207
21. Rossi, F., van Beek, P., Walsh, T., eds.: The Handbook of CP. Elsevier (2006)
22. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard

and easy problems. In: IJCAI’95. (1995) 631–639
23. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. J. of Combinatorial Theory, Series B 80 (2000) 346–355
24. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Volume 24

of Algorithms and Combinatorics. Springer (2003)
25. Zalesky, B.: Efficient determination of Gibbs estimators with submodular energy

functions. arXiv:math/0304041v1 (February 2008)

15

