
The complexity of valued constraint models?

Stanislav Živný and Peter G. Jeavons

Computing Laboratory, University of Oxford, Oxford, UK
{stanislav.zivny,peter.jeavons}@comlab.ox.ac.uk

Abstract. The Valued Constraint Satisfaction Problem (VCSP)
is a general framework encompassing many optimisation problems. We
discuss precisely what it means for a problem to be modelled in the
VCSP framework. Using our analysis, we show that some optimisation
problems, such as (s, t)-Min-Cut and Submodular Function Min-
imisation, can be modelled using a restricted set of valued constraints
which are tractable to solve regardless of how they are combined. Hence,
these problems can be viewed as special cases of more general prob-
lems which include all possible instances using the same forms of valued
constraint. However, other, apparently similar, problems such as Min-
Cut and Symmetric Submodular Function Minimisation, which
also have polynomial-time algorithms, can only be naturally modelled
in the VCSP framework by using valued constraints which can repre-
sent NP-complete problems. This suggests that the reason for tractabil-
ity in these problems is more subtle; it relies not only on the form of
the valued constraints, but also on the precise structure of the problem.
Furthermore, our results suggest that allowing constant constraints can
significantly alter the complexity of problems in the VCSP framework,
in contrast to the CSP framework.

1 Introduction
The study of combinatorial optimisation traditionally considers a range of spe-
cific problem types, including integer programming problems, problems on graphs
and networks, and Boolean problems [2], such as submodular function minimi-
sation [14]. An important issue for any combinatorial optimisation problem is
how to choose an effective representation, which can be crucial to the efficiency
of solving the problem.

The valued constraint satisfaction problem (VCSP) is a single generic
framework, for modelling a wide range of optimisation problems [1,11,12].

Our aim in this paper is to investigate which standard combinatorial optimi-
sation problems can be modelled in the VCSP framework, and whether finding
such models sheds new light on the complexity of these problems. We will focus
on Boolean problems (i.e., each variable can take one of two possible values),
which are equivalent to minimising functions defined on sets.

We need to be a little careful in defining what it means for a problem to
be modelled in the VCSP framework: we clearly need to exclude modelling
procedures that simply obliterate the structure of the problem we are attempting
to model. For example, simply finding a solution to each given instance (using
some algorithm) and then creating a VCSP instance which allows precisely that
? Stanislav Živný is supported by EPSRC grant EP/F01161X/1.

solution is not a useful approach to modelling. The standard way of excluding
such pathological approaches is to limit the computational resources allowed
to transform the problem from one representation to another. However, when
dealing with tractable problems, we also need a suitably tight definition of what it
means for a problem to be modelled in the VCSP framework. (More on modelling
via constraints can be found in [15].)

In this paper we shall say that we have a VCSP model for a given com-
binatorial optimisation problem if the entire function to be minimised in that
problem is expressible using some collection of valued constraints (in a precise
sense defined below; note that this notion of expressibility was a major tool in the
complexity analysis of a wide variety of Boolean constraint problems carried out
by Creignou et al. [5], where it was referred to as implementation). We show that
many standard problems can be modelled in this way. Moreover, some problems,
including for example the (s, t)-Min-Cut problem and the problem of Submod-
ular Function Minimisation, can be modelled using very restricted forms of
constraints. In fact the forms of constraints needed to model these problems are
sufficiently restricted that they can be solved in polynomial time regardless of
how they are combined. Hence, these problems can be viewed as special cases of
more general problems which include all possible instances using the same forms
of valued constraint.

On the other hand, we show that other apparently similar problems, which
also have polynomial-time algorithms, can only be modelled using forms of con-
straint which are powerful enough to represent NP-complete problems. Our ex-
amples include the standard Min-Cut problem. This result indicates that the
reason for the tractability of such problems relies on the precise structure of
the problem and not just the form of the individual constraints. Such problems
provide a fresh incentive to develop the theoretical analysis of the complexity
of valued constraint problems, which currently has very little to say about such
“hybrid” reasons for tractability.

2 Background
Given some fixed set D, a function from Dk to Q+, where Q+ is the set of all
positive rational numbers together with infinity will be called a cost function.
Definition 1. An instance P of VCSP is a triple 〈V,D, C〉, where V is a finite
set of variables, which are to be assigned values from the set D, and C is a set
of valued constraints. Each constraint c ∈ C is a pair c = 〈σ, φ〉, where σ is a
tuple of variables of length |σ|, called the scope of c, and φ : D|σ| → Q+ is a cost
function. An assignment for the instance P is a mapping s from V to D. The
cost of an assignment s is defined as follows:

CostP(s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.
The VCSP is a very general framework which allows us to describe many

optimisation problems, including many NP-hard problems [11]. Any set, Γ , of
cost functions is called a valued constraint language. The class VCSP(Γ) is

2

defined to be the class of all VCSP instances where the cost functions of all
valued constraints lie in Γ . The complexity of a valued constraint language
Γ is defined as the complexity of VCSP(Γ). A valued constraint language Γ
is called tractable if VCSP(Γ ′) is solvable in polynomial time for every finite
Γ ′ ⊆ Γ , and Γ is called intractable if VCSP(Γ ′) is NP-hard for some finite
subset Γ ′ ⊆ Γ . Many examples of tractable valued constraint languages have
now been identified [4].

Definition 2. For any VCSP instance P = 〈V,D, C〉, and any list l = 〈v1, . . . , vm〉
of variables of P, the projection of P onto l, denoted πl(P), is the m-ary cost
function defined as follows:

πl(P)(x1, . . . , xm) = min
{s:V→D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostP(s).

We say that a cost function φ is expressible over a valued constraint language
Γ if there exists an instance P ∈ VCSP(Γ) and a list l of variables of P such
that πl(P) = φ.

We denote by 〈Γ 〉 the expressive power of Γ , which is the set of all cost
functions expressible over Γ up to additive and multiplicative constants.

Theorem 3 ([4]). For any valued constraint language Γ and any cost function
φ expressible over Γ , VCSP(Γ) and VCSP(Γ ∪{φ}) are linear-time equivalent.

3 Boolean optimisation problems
In this section we recall some standard Boolean optimisation problems.
(s, t)-Min-Cut: For a directed graph G = 〈V,E〉 with weights w : E → Q+,

s, t ∈ V , C is an (s, t)-cut if C ⊆ V , s ∈ C and t 6∈ C. The weight of C
is
∑

(u,v)∈E,u∈C,v 6∈C w(u, v). The (s, t)-Min-Cut problem consists in finding
the minimum-weight (s, t)-cut. A cubic-time algorithm (in the number of
vertices) based on network flows is known for this problem [6].

Min-Cut: For an undirected graph G = 〈V,E〉 with weights w : E → Q+, C is
a cut if C ⊆ V . The weight of C is defined as above. The Min-Cut problem
consists in finding the minimum-weight cut C such that C 6= ∅ and C 6= V .
Using the cubic-time algorithm for the (s, t)-Min-Cut problem [6], one can
easily construct an algorithm for the Min-Cut problem of order O(n4). A
purely combinatorial cubic-time algorithm which is not based on network
flows is also known for this problem [16].

Submodular Function Minimisation (SFM): A function ψ defined on sub-
sets of a set V is called a submodular function [14] if, for all subsets S and
T of V , ψ(S ∩ T) + ψ(S ∪ T) ≤ ψ(S) + ψ(T). The problem of Submodu-
lar Function Minimisation (SFM) consists in finding a subset S of V
for which the value of ψ(S) is minimal. It is a central problem in discrete
optimisation, with links to many different areas [14]. The time complexity
of the fastest published algorithm for SFM is O(n5EO + n6) where n = |V |
and EO is the time to evaluate ψ(S) for some S ⊆ V [9,7].

3

(s, t)-SFM: Given a submodular function ψ defined on subsets of a set V ,
and two elements s, t ∈ V , the problem of (s, t)-Submodular Function
Minimisation consists in finding a nonempty subset S of V such that s ∈ S,
t 6∈ S, and the value of ψ(S) is minimal.
Proposition 4. (s, t)-SFM is linear-time equivalent to SFM.
Proof. First we show that (s, t)-SFM is reducible to SFM. Clearly, S ⊂ V
is a solution to an instance 〈V, ψ〉 of (s, t)-SFM if and only if S \ {s} is a
solution to the instance 〈V \{s, t}, ψ〉 of SFM where ψ(U) = ψ(U ∪{s}). On
the other hand, S ⊆ V is a solution to an instance 〈V, ψ〉 of SFM if and only
if S ∪ {s} is a solution to the instance 〈V ∪ {s, t}, ψ〉 of (s, t)-SFM, where
ψ(U) = ψ(U \ {s}). ut

Symmetric SFM (SSFM): Given a submodular function ψ defined on sub-
sets of a set V , we say that ψ is symmetric if for every U ⊆ V , ψ(U) =
ψ(V \ U). Note that ψ(∅) = ψ(V) ≤ ψ(U) for every U ⊆ V . Symmet-
ric Submodular Function Minimisation consists in finding a nonempty
proper subset S of V for which the value of ψ(S) is minimal. Queyranne ex-
tended the cubic-time algorithm for the Min-Cut problem mentioned above
to obtain a purely combinatorial cubic-time algorithm for SSFM [10].

(s, t)-SSFM: Given a symmetric submodular set function ψ on subsets of V
and two elements s, t ∈ V , the problem of (s, t)-Symmetric Submodular
Function Minimisation consists in finding a proper nonempty subset S
of V , where s ∈ S and t 6∈ S, for which the value of ψ(S) is minimal.
Similarly to the proof of Proposition 4, it can be easily shown that SSFM
is reducible to (s, t)-SSFM.
Proposition 5 ([10]). SFM is linear-time reducible to (s, t)-SSFM.
However, using the same proof idea as Proposition 4 does not show that
(s, t)-SSFM is reducible to SSFM (as it seems difficult to preserve two
properties, namely being submodular and symmetric, at the same time).1

Moreover, Proposition 5 shows that (s, t)-SSFM is as hard as SFM, so
a time-complexity-preserving reduction from (s, t)-SSFM to SSFM would
make SFM equivalent to SSFM, which would yield a cubic-time algorithm
for SFM. This would be a major advance in discrete optimisation.

4 Modelling in the VCSP framework
It is easy (and standard) to see that any set function ψ defined on subsets of
V = {v1, . . . , vn} can be associated with a function φ : {0, 1}n → Q+ defined as
follows: for each tuple t ∈ {0, 1}n, set φ(t) = ψ(T), where T = {vi | t[i] = 1}
(moreover, if U ⊆ V is forbidden, then set ψ(T) =∞).

Note that the submodularity condition on a set function ψ is equivalent to the
following condition on the associated Boolean function φ: for every two tuples
s, t ∈ {0, 1}n, φ(Min(s, t)) + φ(Max(s, t)) ≤ φ(s) + φ(t), where both Min and
Max are applied coordinate-wise. We therefore call a cost function φ satisfying
1 More on the relationships between SFM, SSFM and (s, t)-SSFM can be found in [8].

4

this condition submodular. We now define a precise notion of what it means to
model a problem in the VCSP framework. This notion is designed to rule out
pathological cases and ensure that the models we allow do provide some insight
into the nature of the problem being modelled.

Definition 6. Let P be a problem which consists in minimising a given function
ψ defined on the subsets of a given set V , and let φ be the associated Boolean
cost function, as defined above. We say that P can be e-modelled by VCSP(Γ)
if φ can be expressed over Γ .

In other words, a problem P can be e-modelled by VCSP(Γ) if, for any
instance 〈{v1, v2, . . . , vn}, ψ〉 of P, there is an instance I = 〈W, {0, 1}, C〉 of
VCSP(Γ), and a list of variables 〈wv1 , wv2 , . . . , wvn〉 ⊆ W , such that for any
S ⊆ V , the minimal cost over all assignments for I which assign each variable
wvi

the value 0 or 1 according to whether or not vi ∈ S, is equal to ψ(S).

Theorem 7.
– (s, t)-Min-Cut, SFM, (s, t)-SFM, and (s, t)-SSFM can be e-modelled by

VCSP(Γ), by a suitable choice of tractable valued constraint language Γ .
– Min-Cut and SSFM can be e-modelled by VCSP(Γ), but only by using an

intractable language Γ .

Proof. Consider first the (s, t)-Min-Cut problem. We have to prove that there
exists a tractable valued constraint language Γcut such that (s, t)-Min-Cut can
be e-modelled by VCSP(Γcut). For any w ∈ Q+, we define the binary cost
function λw as λw(x, y) = w if 〈x, y〉 = 〈0, 1〉, and 0 otherwise. For each d ∈ {0, 1}
and each c ∈ Q+, we define the unary cost function µcd as µcd(x) = c if x 6= d,
and 0 otherwise. Now let Γcut consist of all λw and µcu for w ∈ Q+, c ∈ Q+ and
d ∈ {0, 1}.

Now consider any instance of (s, t)-Min-Cut with graph G = 〈V,E〉 and
weight function w : E → Q+. Define a corresponding instance I of VCSP(Γcut)
as I = 〈V, {0, 1}, {〈〈i, j〉, λw(i,j)〉 | 〈i, j〉 ∈ E} ∪ {〈s, µ∞0 〉, 〈t, µ∞1 〉}〉. Note that in
any solution to I the source and target nodes, s and t, must take the values 0 and
1, respectively. Moreover, the weight of any cut containing s and not containing
t is equal to the cost of the corresponding assignment to I. Hence we have shown
that (s, t)-Min-Cut can be e-modelled by VCSP(Γcut).

On the other hand, we claim that VCSP(Γcut) can be reduced to (s, t)-Min-
Cut in linear time as follows: any unary constraint on variable v with cost
function µc0 (respectively µc1) is represented by an edge of weight c from the
source node s to node v (respectively, from node v to the target node t). Any
binary constraint on variables v1, v2 with cost function λw is represented by an
edge of weight w from nodes v1 to v2. Hence VCSP(Γcut) has the same time
complexity as (s, t)-Min-Cut.

Next we consider the SFM problem. Let Γsub be the valued constraint lan-
guage which consists of all submodular cost functions. Because submodular cost
functions may take infinite values, instances of VCSP(Γsub) cannot be sim-
ply solved by standard submodular function minimisation algorithms for finite-
valued submodular functions. However, Cohen et al. showed [4] that VCSP(Γsub)

5

is polynomial-time reducible to the problem of SFM over a ring family2 which
is known to be equivalent to SFM [13], so Γsub is tractable.

Now we consider the (s, t)-SFM problem. A constant constraint is a unary
constraint µ∞d for an arbitrary d ∈ D. We denote by Γconst = {µ∞d | d ∈ D} the
valued constraint language consisting of all constant constraints.

Clearly, (s, t)-SFM can be e-modelled by VCSP(Γsub ∪ Γconst). Also, as con-
stant constraints are submodular, we have Γconst ⊆ Γsub, so (s, t)-SFM can be
e-modelled by VCSP(Γsub) and we have already shown that Γsub is tractable.

Now we consider the Min-Cut problem. To e-model Min-Cut, we can use
the valued constraint language Γcut defined above, and then forbid the empty and
complete cuts by putting a crisp Not-All-Equal constraint over the variables
w1, . . . , wn which represent V . In other words, Min-Cut can be e-modelled by
VCSP(Γcut ∪ Γnae) where Γnae consists of Not-All-Equal constraints of all
possible arities.

However, since Not-All-Equal Satisfiability is NP-complete, it follows
that Γnae is intractable. We now show that for any valued constraint language Γ
which e-models Min-Cut, VCSP(Γ) must be intractable.

Let Γ be a valued constraint language such that Min-Cut can be e-modelled
by VCSP(Γ). Consider an instance of Min-Cut which is a triangle with all
weights set to zero. The empty and complete cuts are forbidden, any other cut has
cost 0, so Γ expresses a Not-All-Equal constraint, and hence is intractable.

Now, let Γssub be the valued constraint language which consists of all symmet-
ric submodular functions. The SSFM problem can be e-modelled by VCSP(Γssub∪
Γnae) in a similar way to Min-Cut. However, since Min-Cut is just a special
case of SSFM, it follows from the argument just given that any suitable choice
of Γ will again be intractable.

Finally, we consider the (s, t)-SSFM problem. Similarly to the arguments
above, (s, t)-SSFM can be e-modelled by the language Γssub ∪ Γconst which is a
subset of Γsub. ut

We now examine more closely the language Γssub ∪ Γconst consisting of sym-
metric submodular constraints and constant constraints, which was introduced
to model the (s, t)-SSFM problem. The following proposition shows that all
submodular constraints can be expressed by this language.

Proposition 8. Γsub = 〈Γssub ∪ Γconst〉.
Proof. Since Γssub ∪ Γconst ⊆ Γsub, it only remains to prove that any submod-
ular function can be expressed by symmetric submodular functions and unary
constant constraints. Our proof is adapted from the construction given in [10].

Let ψ be a submodular function defined on subsets of a set V , with |V | = n.
Let M = Max(ψ(U)|U ⊆ V, ψ(U) <∞). Define V = V ∪ {s, t} for s, t 6∈ V and
ψ as follows:

ψ(U) =


ψ(U \ {s}) +M(n+ 2) if s ∈ U and t 6∈ U ,
M | U | if s, t ∈ U ,
ψ(V \ U) if s 6∈ U .

2 A collection of sets C is called a ring family if C is closed under union and intersection.

6

It can be shown that ψ is symmetric and submodular, and that S ⊆ V where
s ∈ S and t 6∈ S minimises ψ if and only if S \{s} minimises ψ [10]. Hence ψ can
be expressed (up to an additive constant) by ψ and two elements of Γconst. ut

Note that, in the CSP, it has been shown that adding constant constraints to
a tractable language which is a core does not change the complexity (i.e., CSP(Γ)
is linear-time equivalent to CSP(Γ ∪ Γconst), provided Γ is a core) [3]. However,
in the valued constraint case Proposition 8 suggests that the situation may be
rather different: the complexity of the valued language Γssub, consisting of all
symmetric submodular functions, is cubic, whereas adding constant constraints
allows us to express all submodular functions. The best known algorithm for
minimising arbitrary submodular functions is Ω(n6).

The concept of e-modelling we have defined here is designed to avoid trivial
models by requiring the constraints in the model to be capable of expressing
the function being minimised. However, more relaxed notions of modelling can
also yield non-trivial representations, and may provide more flexibility, as the
following result indicates:
Theorem 9. There is a tractable valued constraint language Γ over an infinite
domain such that Min-Cut can be reduced to VCSP(Γ) in linear-time.

Proof. Let D = {〈i, d〉 | i ∈ N, d ∈ {0, 1}}.
For any w ∈ Q+ and k ∈ N, we define the binary cost function λwk as follows:

λwk (〈i, d1〉, 〈j, d2〉) =

∞ if Max(i, j) > k or i 6= j,
0 if i = j and d1 = d2,
w otherwise.

Next, for any d ∈ {0, 1} and k ∈ N, we define the unary cost function µk→d as
follows:

µk→d(〈i, x〉) =
{
∞ if i = k and x 6= d,
0 otherwise.

Let Γ be the valued constraint language over D consisting of the cost functions
λwk and µk→d for all w ∈ Q+, k ∈ N and d ∈ {0, 1}. We first show how to reduce
Min-Cut to VCSP(Γ).

Consider an instance of Min-Cut with graph G = 〈V,E〉 (without loss of
generality, without isolated vertices), where V = {v1, . . . , vn}, and weight w(i, j)
for every {vi, vj} ∈ E. We define a corresponding instance I of VCSP(Γ) as
follows. Let I = 〈V,D, C〉, where C = {〈〈vi, vj〉, λw(i,j)

n−1 〉 | i < j, {vi, vj} ∈ E} ∪
{〈v1, µ(i−1)→0〉, 〈vi, µ(i−1)→1〉 | vi ∈ V \ {v1}}.

Clearly, if ∅ 6= U (V is a minimum cut of G, then so is V \ U . Therefore,
we can assume that v1 ∈ U . Note that a necessary condition for an assignment
of variables of I to have a finite cost is that there exists some i ∈ {1, . . . , n− 1}
such that every variable of I is assigned a value of the form 〈i, .〉. Such an i
forces the variable v1 to be assigned 〈i, 0〉 (i.e., v1 belongs to the cut), and the
variable vi+1 to be assigned 〈i, 1〉 (i.e., vi+1 does not belong to the cut). For the
minimum cut U , there has to be an i ∈ {2, . . . , n} such that vi 6∈ U and the
assignment of 〈i − 1, 0〉 to variables in U , and 〈i − 1, 1〉 to variables not in U ,
gives the weight of U . (This construction is similar to the one used in the proof
of Theorem 7 which shows that (s, t)-Min-Cut can be e-modelled.)

7

It remains to show that Γ is tractable. Let Γ ′ be any finite subset of Γ ,
and let k be the biggest number which occurs in the subscript of any λ cost
function in Γ ′. The cost of an assignment to any instance of VCSP(Γ ′) which
is of the form 〈i, .〉, for i ∈ {1, . . . , k}, corresponds to the cost of an (s, t)-cut in
an associated graph. Therefore, VCSP(Γ ′) can be solved by solving k instances
of the (s, t)-Min-Cut problem, and hence its time complexity is O(kn3). For
a fixed Γ ′ (and hence a fixed value of k) this is polynomial in the size of the
instance. ut

The language Γ used in Theorem 9 has a much higher complexity than Min-
Cut. It is an interesting open question whether Min-Cut can be reduced to
VCSP(Γ) for some Γ with the same complexity as Min-Cut (i.e., such that
VCSP(Γ) is linear-time reducible to Min-Cut).

References

1. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints 4 (1999) 199–240

2. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathe-
matics 123(1-3) (2002) 155–225

3. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3) (2005) 720–742

4. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170 (2006) 983–1016

5. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. vol. 7 of SIAM Monographs on Discrete Mathematics
and Applications, SIAM, 2001.

6. Goldberg, A., Tarjan, R.: A new approach to the maximum flow problem. Journal
of the ACM 35 (1988) 921–940

7. Iwata, S., Orlin, J. B.: A Simple Combinatorial Algorithm for Submodular Func-
tion Minimization. In Proceedings of the 20th SODA, pages 1230–1237, 2009.

8. Narayanan, H.: A note on the minimization of symmetric and general submodular
functions. Discrete Applied Mathematics 131(2) (2003) 513–522

9. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming 118 (2009) 237–251.

10. Queyranne, M.: Minimising symmetric submodular functions. Mathematical Pro-
gramming 82 (1998) 3–12

11. Rossi, F., van Beek, P., Walsh, T., eds.: The Handbook of Constraint Programming.
Elsevier (2006)

12. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proceedings of the 14th IJCAI, Montreal, Canada (1995)

13. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. of Combinatorial Theory, Series B 80 (2000) 346–355

14. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Volume 24
of Algorithms and Combinatorics. Springer (2003)

15. Smith, B. Modelling. Chapter 11 of the Handbook of Constraint Programming.
Elsevier (2006)

16. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44(4)
(1997) 585–591

8

